初中数学不等式与不等式组提高题与常考题和培优题(含解析)一?选择题(共13小题)1?已知a>b,下列关系式中一定正确的是()A.a2vb2B.2av2bC.a+2vb+2D.-av-b2?不等式2x+3>3x+2的解集在数轴上表示正确的是()A.0*'B." />

15章不等式与不等式组(上交)


初中数学不等式与不等式组提高题与常考题和培优题(含解析)-

1 — H C. f J 4 7 "I i D. -J 0 4 > 初中数学不等式与不等式组提高题与常考题和培优题 (含解 析) 一?选择题(共13小题) 1 ?已知a >b ,下列关系式中一定正确的是( ) A. a 2v b 2 B. 2a v 2b C. a+2v b+2 D.- a v- b 2?不等式2x+3>3x+2的解集在数轴上表示正确的是( ) A.0 *' B. —o —0 C. —tT r D.o 卜 3.若关于x 的不等式3-x >a 的解集为x v 4,则关于m 的不等式2m+3v 1的 解为( ) A. m v 2 B. m> 1 C. m>- 2 D. m v- 1 4.关于x 的不等式x - b >0恰有两个负整数解,则b 的取值范围是( ) A. 5. A. -3v b v - 2 B.- 3v b <- 2 C. 0 B.- 1 C . - 2 D . 3 -3< b <- 2 D. - 3< b v- 2 不等式组 的最小整数解是( 6. 已知点P (1 - 2a , a+3)在第二象限,则 A. a v - 3 B. a C. v a v 3 D. a 的取值范围是( -3v a v 丄 2 7. A. r 3x+2>-4 4 B . 5 C. 6 D.无数个 不等式组 的整数解的个数是( 8. 已知 2xl-y=2k+l A. —1 v k v- 丄 B.— v k v 1 C. 0v k v 1 D. 0v kvJ- 2 2 2 A . J 0 4 \ ■ -3 0 4 且-1v x - y v 0,则k 的取值范围为( 的解集,在数轴上表示正确的是( 9. B L J ) 2

第九章不等式与不等式组单元教学计划

第九章不等式与不等式组单元教学计划 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第九章不等式与不等式组单元教学计划 教学目标: 知识目标:了解一元一次不等式及其相关概念,了解解一元一次不等式的基本目标(使不等式逐步转化为x>a或x<a的形式),熟悉解一元一次不等式的一般步骤。了解不等式组及其解法。 技能目标:能够“列出不等式活不等式组表示问题中的不等关系”,通过观察、对比和归纳,探索不等式的性质,能利用它们探究一元一次不等式的解法,掌握一元一次不等式的解法,并能在数轴上表示出解集。会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。 情感态度价值观目标:经历“把实际问题抽象为不等式”的过程,体会不等式(组)是刻画现实世界中不等关系的一种有效的数学模型。体会一元一次不等式解法中蕴含的化归思想。 学情分析:我所担任的班共有25名学生,根据上学期期末考试看,学生成绩非常不理想,总及格率只有68%,优秀率为20%,其中最低分只有0分。学生的学习目标不明确,学习习惯较差,学生对数学的基础知识掌握不牢固、数学思维与理解能力较差、特别是数学计算不过关。加之学生由小学升入中学,学习环境的变化,学习内容的增加,学生学习习惯的养成,学习方法的欠缺,这些因素都将影响教学效果和学生学习能力的提高。在今后教学过程中应逐步把握学生的学习状况,通过对学生分层,对于学困生引导其树立积极地学习态度,中间层次的学生巩固基础知识,基础较好学生以提高能力训练为主。 教材分析: 1、指导思想:“逐步培养学生观察、试验、比较、猜想、分析、综合、抽象和概括能力,逐步使学生掌握简单的推理方法,从而提高学生的推理能力”。这是《数学课程标准》对中学数学教学的要求。 2、主要内容及其地位作用本章教材是在学生学习了一元一次方程、二元一次方程组和一次函数基础上才开始研究简单的不等式关系的通过前面的学习,学生已初步体会到生活中量与量之间的关系是众多而且复的.大量的同类量之间最容易想到的就是它们有大小之分,而且学生通过

不等式与不等式组知识概念

不等式与不等式组知识概念 1.用符号“<”“>”“≤”“≥”表示大小关系的式子叫做不等式。 2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。 3.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。 4.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。 5.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成 6.了一个一元一次不等式组。 7.定理与性质 不等式的性质: 不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。 不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。 不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。 本章内容要求学生经历建立一元一次不等式(组)这样的数学模型并应用它解决实际问题的过程,体会不等式(组)的特点和作用,掌握运用它们解决问题的一般方法,提高分析问题、解决问题的能力,增强创新精神和应用数学的意识。 第十章数据的收集、整理与描述 一.知识框架 1.全面调查:考察全体对象的调查方式叫做全面调查。 2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。 3.总体:要考察的全体对象称为总体。 4.个体:组成总体的每一个考察对象称为个体。 5.样本:被抽取的所有个体组成一个样本。 6.样本容量:样本中个体的数目称为样本容量。 7.频数:一般地,我们称落在不同小组中的数据个数为该组的频数。 8.频率:频数与数据总数的比为频率。 9.组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。 本章要求通过实际参与收集、整理、描述和分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立统计的观念,培养重视调查研究的良好习惯和科学态度。

初一数学《不等式与不等式组》知识点

初一数学《不等式与不等式组》知识点 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

一、目标与要求 1.感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上; 2.经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想; 3.通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。 二、知识框架 三、重点 理解并掌握不等式的性质; 正确运用不等式的性质; 建立方程解决实际问题,会解“ax+b=cx+d”类型的一元一次方程; 寻找实际问题中的不等关系,建立数学模型; 一元一次不等式组的解集和解法。 四、难点 一元一次不等式组解集的理解;

弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式; 正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上。 五、知识点、概念总结 1.不等式:用符号“<”“>”“≤”“≥”表示大小关系的式子叫做不等式。 2.不等式分类:不等式分为严格不等式与非严格不等式。 一般地,用纯粹的大于号、小于号“>”“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)≥”“≤”连接的不等式称为非严格不等式,或称广义不等式。 3.不等式的解:使不等式成立的未知数的值,叫做不等式的解。 4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。 5.不等式解集的表示方法: (1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-1≤2的解集是x≤3。 (2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。 6.解不等式可遵循的一些同解原理 (1)不等式F(x)< G(x)与不等式 G(x)>F(x)同解。 (2)如果不等式F(x) < G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x)

不等式与不等式组全章测试题含答案

第九章 不等式与不等式组 全章测试题 一、选择题 1.下列变形错误的是( ) A .若a -c >b -c ,则a >b B .若12a <12 b ,则a <b C .若-a - c >-b -c ,则a >b D .若-12a <-12 b ,则a >b 2.不等式x 2-x -13 ≤1的解集是( ) A .x≤4 B.x≥4 C .x≤-1 D .x≥-1 3.将不等式组???12x -1≤7-32x ,5x -2>3(x +1) 的解集表示在数轴上,正确的是( ) 4.若关于x 的方程3(x +k)=x +6的解是非负数,则k 的取值范围是( ) A .k≥2 B.k >2 C .k≤2 D.k <2 5.若关于x 的一元一次不等式组???x -1<0,x -a >0 无解,则a 的取值范围是( ) A .a≥1 B.a >1 C .a≤-1 D .a <-1 6.若不等式组???x -b <0,x +a >0 的解集为2<x <3,则a ,b 的值分别为( ) A .-2,3 B .2,-3 C .3,-2 D .-3,2 7.三个连续正整数的和小于39,这样的正整数中,最大一组的和是( ) A .39 B .36 C .35 D .34 8.某天然气公司在一些居民小区安装天然气管道时,采用一种鼓励居民使用天然气的收费办

法,若整个小区每户都安装,收整体初装费10000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数( ) A .至少20户 B .至多20户 C .至少21户 D .至多21户 9.某种出租车的收费标准是:起步价7元(即行驶距离不超过3千米都收7元车费),超过3千米以后,超过部分每增加1千米,加收元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共支付19元,设此人从甲地到乙地经过的路程是x 千米,那么x 的取值范围是 ( ) A .1<x≤11 B.7<x≤8 C .8<x≤9 D .7<x <8 二、填空题 10.已知x 2是非负数,用不等式表示____;已知x 的5倍与3的差大于10,且不大于20,用不等式组表示____________. 11.若|x +1|=1+x 成立,则x 的取值范围是__________. 12.若关于x ,y 的二元一次方程组???3x -2y =m +2,2x +y =m -5 中x 的值为正数,y 的值为负数,则m 的取值范围为____________. 13.在平面直角坐标系中,已知点A(7-2m ,5-m)在第二象限内,且m 为整数,则点A 的坐标为_________. 14.一种药品的说明书上写着:“每日用量60~120 mg ,分4次服用”,则一次服用这种药品的用量x(mg)的范围是____________. 15.按下列程序(如图),进行运算规定:程序运行到“判断结果是否大于244”为一次运算.若x =5,则运算进行______次才停止;若运算进行了5次才停止,则x 的取值范围是__________. 16.为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维护交通秩序.若每一个路口安排4人,那么还剩下78人;若每一个路口安排8人,那么最后一个路口不足8人,但不少于4人.则这个中学共选派值勤学生_______人,共有______个交通路口安排值勤. 三、解答题 17.解下列不等式(组),并把解集在数轴上表示出来: (1)5x -13-x >1;

方程与不等式组知识点总结

方程与不等式组知识点总结 方程与方程组 一、一元一次方程的概念 1、方程含有未知数的等式叫做方程。 2、方程的解能使方程两边相等的未知数的值叫做方程的解。 3、等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。 4、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)为未知数,( ) 叫做一元一次方程的标准形式,a是未知数x的系数,b 是常数项。 二、一元二次方程 1、一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。 2、一元二次方程的一般形式( ) 它的特征是:等式左边十一个关于未知数x的二次多项式,等式右边是零,其中( )叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。 三、一元二次方程的解法 1、直接开平方法 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如( )的一元二次方程。根据平方根的定义可知,( )是b的平方根,当( )时,( ) ,( ),当b<0时,方程没有实数根。 2、配方法 配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。配方法的理论根据是完全平方公式( ),把公式中的a看做未知数x,并用x代替,则有( )。 3、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。一元二次方程( )( )的求根公式:( ) 4、因式分解法 因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。 四、一元二次方程根的判别式 根的判别式 一元二次方程( )中,( ) 叫做一元二次方程( )的根的判别式,通常用“( )来表示,即( ) 五、一元二次方程根与系数的关系 如果方程( )的两个实数根是( )( ),,那么( ),( )。也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。 六、分式方程 1、分式方程分母里含有未知数的方程叫做分式方程。 2、分式方程的一般方法 解分式方程的思想是将“分式方程”转化为“整式方程”。它的一般解法是:

初中不等式与不等式组超经典复习

第九章不等式与不等式组 第一节、知识梳理 一、学习目标 1.掌握不等式及其解(解集)的概念,理解不等式的意义. 2.理解不等式的性质并会用不等式基本性质解简单的不等式. 3.会用数轴表示出不等式的解集. 二、知识概要 1.不等式:一般地,用不等号“>”、“<”表示不等关系的式子叫做不等式. 2.不等式的解:一般地,在含有未知数的不等式中,能使不等式成立的未知数的值,叫做不等式的解. 3.不等式的解集:一个不等式的所有解,组成这个不等式的解的集合,称之为此不等式的解集. 4.一元一次不等式:只含有一个未知数,且未知数的次数是1的不等式,叫做一元一次不等式. 5.不等式的性质: 性质一:不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变. 性质二:不等式两边都乘以(或除以)同一个正数,不等号的方向不变. 性质三:不等式的两边都乘以(或除以)同一个负数,不等号方向改变. 6.三角形中任意两边之差小于第三边. 三、重点难点 重点是不等式的基本性质及其应用,难点是不等式和不等式解集的理解. 四、知识链接 本周知识由以前学过的比较大小拓展而来,又为解决实际问题提供了一个解题的工具,并为以后学的不等式组打下基础. 五、中考视点 不等式也是经常考到的内容,经常出现在选择题、填空题中,以解不等式为主.有时在一些解答题中也要用到不等式,利用不等关系求范围等.

1. 常用的不等号有哪些? 常用的不等号有五种,其读法和意义是: (1)“≠”读作“不等于”,它说明两个量是不相等的,但不能明确哪个大哪个小. (2)“>”读作“大于”,表示其左边的量比右边的量大. (3)“<”读作“小于”,表示其左边的量比右边的量小. (4)“≥”读作“大于或等于”,即“不小于”,表示左边的量不小于右边的量. (5)“≤”读作“小于或等于”,即“不大于”,表示左边的量不大于右边的量. 2. 如何恰当地列不等式表示不等关系? (1)找准题中不等关系的两个量,并用代数式表示. (2)正确理解题目中的关键词语,如:多、少、快、慢、增加了、减少了、不足、不到、不大于、不小于、不超过、非负数、至多、至少等的确切含义. (3)选用与题意符合的不等号将表示不等关系的两个量的代数式连接起来. 根据下列关系列不等式:a的2倍与b的的和不大于3.前者用代数式表示是2a+ b.“不大于”就是“小于或等于”. 列不等式为:2a+b≤3. 3. 用数轴表示不等式注意什么? 用数轴表示不等式要注意两点:一是边界;二是方向.若边界点在范围内则用实心点表示,若边界点不在范围内,则用空心圆圈表示;方向是对于边界点而言,大于向右画,而小于则向左画. 在同一个数轴上表示下列两个不等式:x>-3;x≤2.

初中数学不等式与不等式组提高题与常考题和培优题(含解析)-

初中数学不等式与不等式组提高题与常考题和培优题(含解析)- -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

初中数学不等式与不等式组提高题与常考题和培优题(含解析) 一.选择题(共13小题) 1.已知a>b,下列关系式中一定正确的是() A.a2<b2B.2a<2b C.a+2<b+2 D.﹣a<﹣b 2.不等式2x+3>3x+2的解集在数轴上表示正确的是() A.B.C. D. 3.若关于x的不等式3﹣x>a的解集为x<4,则关于m的不等式2m+3a<1的解为() A.m<2 B.m>1 C.m>﹣2 D.m<﹣1 4.关于x的不等式x﹣b≥0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣2 5.不等式组的最小整数解是() A.0 B.﹣1 C.﹣2 D.3 6.已知点P(1﹣2a,a+3)在第二象限,则a的取值范围是() A.a<﹣3 B.a>C.﹣<a<3 D.﹣3<a< 7.不等式组的整数解的个数是() A.4 B.5 C.6 D.无数个 8.已知且﹣1<x﹣y<0,则k的取值范围为() A.﹣1<k<﹣B.<k<1 C.0<k<1 D.0<k< 9.不等式组的解集,在数轴上表示正确的是() A.B. C.D.

10.当0<x<1时,x2、x、的大小顺序是() A.x2 B.<x<x2C.<x D.x<x2< 11.三个连续正整数的和小于39,这样的正整数中,最大一组的和是()A.39 B.36 C.35 D.34 12.“一方有难,八方支援”,雅安芦山4?20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为() A.60 B.70 C.80 D.90 13.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是() A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤23 二.填空题(共12小题) 14.不等式组的解集是. 15.不等式5x﹣3<3x+5的所有正整数解的和是. 16.若关于x的不等式3m﹣2x<5的解集是x>3,则实数m的值为.17.若不等式x<2的解集都能使关于x的一次不等式(a﹣3)x<a+5成立,则a的取值范围是. 18.若关于x的一元一次不等式组有解,则a的取值范围是.19.在实数范围内规定新运算“△”,其规则是:a△b=2a﹣b.已知不等式x△k ≥1的解集在数轴上如图表示,则k的取值范围是.

不等式与不等式组知识点归纳

第九章 不等式与不等式组 一、知识结构图 二、知识要点 (一、)不等式的概念 1、不等式:一般地,用不等符号(“<”“>”“≤”“≥”)表示大小关系的式子,叫做不等式,用“≠”表示不等关系的式子也是不等式。不等号主要包括: > 、 < 、 ≥ 、 ≤ 、 ≠ 。 2、不等式的解:使不等式左右两边成立的未知数的值,叫做不等式的解。 3、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集(即未知数的取值范围)。 4、解不等式:求不等式的解集的过程,叫做解不等式。 5、不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向。规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈。 ????????????????????????????????与实际问题 组一元一次不等式法 一元一次不等式组的解不等式组一元一次不等式组性质性质性质不等式的性质一元一次不等式不等式的解集不等式的解不等式不等式相关概念不等式与不等式组)(321

(二、)不等式的基本性质 不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向 不变 。 用字母表示为:如果b a >,那么c b c a ±>±;如果b a <,那么c b c a ±<± ; 不等式的性质2:不等式的两边同时乘以(或除以)同一个 正数 ,不等号的方向 不变 。 用字母表示为: 如果0,>>c b a ,那么bc ac >(或c b c a >);如果0,>c b a ,那么bc ac <(或c b c a <);如果0,<(或c b c a >); 解不等式思想——就是要将不等式逐步转化为x a 或x <a 的形 式。 (注:①传递性:若a >b ,b >c ,则a >c . ②利用不等式的基本性质可以解简单的不等式) (三、)一元一次不等式

初一数学不等式与不等式组教案

初一数学不等式与不等 式组教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

授课内容不等式和不等式组 教学目标1.掌握不等式的解集表示方法; 2.掌握不等式的性质 3.了解什么是不等式组 教学内容 【知识梳理】 知识点一、不等式的解集 1.一元一次不等式:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式2.解一元一次不等式的一般步骤:去分母,去括号,移项,合并同类项,把系数化为1.3.不等式解集及其数轴表示法 ⑴不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x≤8. (2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式有无限个解.如: 知识点二、不等式的性质 1、不等式的性质1:不等式的两边加上(或减去)同一个数(或式子),不等号的方向不变,用式子表示:如果a>b,那么a±c>b±c. 2、不等式的性质2:不等式的两边乘以(或除以)同一正数,不等号的方向不变, 3、不等式的性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变,用式子表示: a>b,c<0,那么,ac

3、求不等式组的解集的过程,叫做解不等式组。 4、一元一次不等式组的两个步骤: (1)求出这个不等式组中各个不等式的解集; (2)利用数轴求出这些不等式的解集的公共部分,即求出这个不等式组的解集。 【例题精讲】 题型1:不等式的变形 例若a>b,试比较下列各题中两个代数式的大小. (1)a+c与b+c;(2)3a与3b;(3)-a与-b;(4)ac与bc. 【解答】1、(1)不等式a>b两边都加上c,根据不等式性质1可知a+c>b+c; (2)不等式a>b两边都乘以3,根据不等式性质2可知3a>3b; (3)不等式a>b两边都乘以-1,根据不等式的基本性质3可知-a<-b; (4)分三种情况,①若c>0,不等式a>b两边都乘以c,得ac>bc; ②若c=0,不等式a>b两边都乘以c,得ac=bc=0; ③若c<0,不等式a>b两边都乘以c,得ac=4,得x>=2; (3)由4x>=2,得; (4)由-3x≤3,得x>=-1; (5)由-2x-5<1,得x>-3. 【分析】用不等式的基本性质解答. 【解答】1、解:(1)由x-7<1,得x<8的依据是不等式的基本性质1,不等式两边都加上7得到的. (2)由x+2>=4,得x>=2的依据是不等式的基本性质1,不等式两边都减去2得到的. (3)由4x>=2,得的依据是不等式的基本性质2,不等式两边都除以4得到的. (4)由-3x≤3,得x>=-1的依据是不等式的基本性质3,不等式两边都除以-3得到的. (5)由-2x-5<1得x>-3的依据是不等式的基本性质1和3,先是不等式两边都加5,得-2x<6,再是不等式两边都除以-2,得x>-3. 【点评】不等式的变形主要依据就是不等式的基本性质. 题型2:不等式的性质 例根据不等式的性质,将不等式化成“x>a”或“x4x;(3)2x-3>=4x;(4).

不等式与不等式组专项练习(提高)学习资料

不等式与不等式组专项练习(提高)

不等式与不等式组专项练习(能力提高) 1.已知方程组3133 x y k x y +=+??+=?的解x 、y,且2-4)5(的解集. 7.已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小. 8.(类型相同)当k 取何值时,方程组???-=+=-5 2,53y x k y x 的解x ,y 都是负数. 9(类型相同)已知? ??+=+=+122,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围. 10.已知a 是自然数,关于x 的不等式组???>-≥-0 2,43x a x 的解集是x >2,求a 的值. 11.关于x 的不等式组? ??->-≥-123,0x a x 的整数解共有5个,求a 的取值范围.

第九章不等式与不等式组单元测试题及答案

_ D _ C _ B _ A 第九章 不等式与不等式组单元测试 1.满足不等式45 ) 31(22≤-< -x 的整数是 ( ) A .-1,0,1,2,3 B. 0,1,2,3 C .0,1 D. -3,-2,-1,0,1 2.同时使不等式x x 52)1(3->+-与 x x 2 3 7121-≤-成立的所有整数积是 ( ) A .12 B. 3 C. 7 D. 24 3. 已知x 和y 满足1,243<-=+y x y x ,则 ( ) A .76= x B. 71-=y C. 76 x D.7 1 - y 4. 已知a1. C. 3a>2b. D. 2 a >ab. 5、不等式组 的整数解的和是 ( ) A.1 B.2 C.0 D.-2 6. 若 为非负数,则x 的取值范围是( ) A.x ≥1 B.x ≥-1/2 C.x >1 D.x >-1/2 7.下列各式中是一元一次不等式的是( ) A.5+4>8 B.2x-1 C.2x-5≤1 D.1/x-3x ≥0 8.若│a │>-a,则a 的取值范围是( ) A.a>0 B.a ≥0 C.a<0 D.自然数 9. 不等式组5 3 x x ≤?? >?的解集在数轴上表示,正确的是( ) x A x B x C x D .表示三种不同的物体,用天平比较 10.设它们质量的大小,情况如图, 那么 这三种物体按 质量从大到小的顺序为( )

11.用恰当的不等号表示下列关系: ①a 的5倍与8的和比b 的3倍小:_______________; ②x 比y 大4:______________. 12.不等式3(x+1)≥5x-3的正整数解是_________; 13.若a<1,则不等式(a-1)x>1的解集为___. 14.若x=3是方程 2x a --2=x-1的解,则不等式(5-a)x<1 2 的解集是_______. 15.若不等式组21 23 x a x b -?的解集为-1-?? -?≥?? (3) 1)1(2 2<---x x ,. (4) ??? ??-≤-+>-x x x x 23712 1)1(325 18. 关于x 的不等式a-2x<-1的解集如图所示.求a.

一次方程组一次不等式与不等式组的解法

年中考总复习第一轮导学案2013课时4.一次方程组、一次不等式与不等式组的解法 【知识梳理】 1.基本概念: (1)_______________________叫做方程;_______________________叫做方程的解。 (2)_________________________叫做一元一次方程。 (3)______________________叫做不等式,_____________________叫做不等式的解集,不等式的基本性质有_____________________________________________________________. 2.方程组的解法: 方程组的解法主要思想是“消元”,基本方法有加减消元法和代入消元法. 3.不等式组的解集的确定方法:先求出每个不等式的解集,再借助数轴确定它们的公共部x?ax?a??分.若a<b,则有:⑴的解集是,即“同小取小”;⑵的解集是,即;⑶ ??x?bx?b??x?ax?a??的解集是,即;⑷的解集是,即.(若a=b呢)??x?bx?b??4.方程(组)的根的理解: 方程组的解是满足方程组中的每一个方程的左右两边相等的未知数的值. 方程组的解的几何意义:方程组的解是坐标平面上的两个方程所表示的图像的交点的坐标,当交点只有一个时,方程组只有一组解;当交点有两个时,方程组有两组解;当没有交点时,方程组无解. y?kx?by?kx?by?y,则可与5.用函数观点看不等式的解集:对于直线,若 22121112kx?b?kx?bk?ky?y,即直线,当得时,为一元一次不等式,在其解集内,22211211y?kx?by?kx?b的上方.在直线212112 【典例精析】 例1.(1)求解下列方程(组): 2x?y?5?2x-1x+0.12x+1①-= –1;②(用两种方法)? 30.64x?3y?6? (2)求解下列不等式组: 1 / 4 x?3?03x?1?2(x?1)????①;②1?12xx???3?x??1?1?? 322??

人教版七年级数学下册不等式与不等式组知识点

不等式与不等式组知识总结 一、不等式的概念 1.不等式:用不等号表示不等关系的式子,叫做不等式。 2.不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。 3.不等式的解集:对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。 4.解不等式:求不等式的解集的过程,叫做解不等式。 5.用数轴表示不等式的解集。 二、不等式的基本性质 1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。 2.不等式两边都乘以(或除以)同一个正数,不等号的方向不变。 3.不等式两边都乘以(或除以)同一个负数,不等号的方向改变。 说明: ①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。 ②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。 三、一元一次不等式 1.一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。 2.解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项 (4)合并同类项(5)将x项的系数化为1 四、一元一次不等式组 1、一元一次不等式组的概念:

几个一元一次不等式合在一起,就组成了一个一元一次不等式组。 2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。 3、求不等式组的解集的过程,叫做解不等式组。 4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。 5、一元一次不等式组的解法 (1)分别求出不等式组中各个不等式的解集 (2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。 练习题:P133

七年级下册不等式与不等式组分类提高题(有难度,适合成绩较好同学做)

1 不等式与不等式组(提高) 题型一: 1. 若不等式x a <只有4个正整数解,则a 的取值范围是______________. 2. 已知关于x 的不等式x -2a <3的最大整数解-5,则a 的取值范围是______________. 3.关于x 的不等式组1 2 1,232, x x x a -+? -≤???->?只有3个整数解,则a 的取值范围是______________. 4.关于x 的不等式组21,2,x b x a +≤-??->?的整数解只有-1,-2,-3, 则a 的取值范围是______________.b 的取值范围是______________. 题型二: 5. 若不等式组???->+<+1472, 03x x a x 的解集为4x <,则a 的取值范围是__________. 若该不等式组的解集为0--??>--??的解集为3x >- ,则m __________. 题型三: 8.若关于x 的不等式组3(2)2 24x x a x x --< ???+>??有解,则实数a 的取值范围是__________. 9.已知关于x 的不等式组521 0x x a -≥-??->?无解,则a 的取值范围是__________. 10. 如果不等式组31 2x a x a -≤≤+??>? 有解,那么a 的取值范围是__________. 11. 关于x 的不等式组12, x x m -<≤??>?有解,则m 的取值范围是__________. 若该不等式组无解,则m 的取值范围是__________. 12.若不等式组12, 5x k x <≤??<

不等式与不等式组全章教案

第九章不等式与不等式组 9.1.1不等式及其解集 教学目标1、感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上; 2、经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想; 3、通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。 教学重点:建立方程解决实际问题,会解“ax +b=cx+d ”类型的一元一次方程 教学难点:正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上。 教学过程 1、两个体重相同的孩子正在跷跷板上做游戏.现在换了一个小胖子上去,跷跷板发生了倾斜,游戏无法继续进行下去了.这是什么原因呢? 2、一辆匀速行驶的汽车在11:20时距离A 地50千米。要在12:00以前驶过A 地,车速应该具备什么条件?若设车速为每小时x 千米,能用一个式子表示吗? 探究新知 (一)不等式、一元一次不等式的概念 1、 在学生充分发表自己意见的基础上,师生共同归纳得出:用“<”或“>”表示大小关系的式子叫做不等式;用“并”表示不等关系的式子也是不等式。 2、下列式子中哪些是不等式? (1)a +b=b+a (2)-3>-5(3)x ≠l (4)x 十3>6(5)2m50的解? 问题4,数中哪些是不等式x 3 2>50的解: 76,73,79,80,74.9,75.1,90,60 你能找出这个不等式其他的解吗?它到底有多少个解?你从中发现了什么规律? 一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集.求不

(完整版)一次方程组和一次不等式组练习题

一次方程/组和一次不等式/组练习题 一、填空/选择 1、在数轴上从左至右的三个数为a ,1+a ,-a ,则a 的取值范围是( ) A 、a <12 B 、a <0 C 、a >0 D 、a <-12 2、如果不等式组x a x b >??

2、已知关于x ,y 的方程组? ??=+=+-b y x y x a 5)1(当a ,b 满足什么条件时,方程组有唯一解,无解,有无数解? 3、(1)对于有理数x、y,定义一种新运算“*”,x*y=a x+b y+c ,其中a 、b 、c 为常数,等式右边是常用的加法与乘法运算,又已知3*5=15,4*7=28,求1*1的值。 (2)对于有理数x 、y 定义新运算:x *y =ax +by +5,其中a ,b 为常数.已知1*2=9,(-3)*3=2,求a ,b 的值. 四、应用题 1、甲、乙两件服装的成本共500元,商店老板为获得利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价,在实际出售时,顾客要求,两件衣服均9折出售,这样商店共获利157元。求服装的成本各是多少元? 2、把若干颗花生分给若干只猴子。如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。问猴子有多少只,花生有多少颗? 3.某园林的门票每张10元,一次使用,考虑到人们的不同需要,也为了吸引更多的游客,该 园林除保留原来的售票方法外,还推出了一种“购买年票”的方法。年票分为A 、B 、C 三种:A 年票每张120元,持票进入不用再买门票;B 类每张60元,持票进入园林需要再买门票,每张2元,C 类年票每张40元,持票进入园林时,购买每张3元的门票。 (1) 如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算, 找出可使进入该园林的次数最多的购票方式。 (2) 求一年中进入该园林至少多少时,购买A 类年票才比较合算。

七年级下册数学不等式与不等式组试卷

一、选择题(每小题5分,共30分) 1. 若m >n ,则下列不等式中成立的是( ) A .m + a <n + b B .ma <nb C .ma 2>na 2 D .a -m <a -n 2.不等式4(x -2)>2(3x + 5)的非负整数解的个数为( ) A .0个 B .1个 C .2个 D .3个 3.若不等式组的解集为-1≤x ≤3,则图中表示正确的是( ) A . B . C . D . 4.若方程()()31135m x m x x ++=--的解是负数,则m 的取值范围是 ( ) A .54m >- B .54m <- C .54m > D .54 m < 5.不等式()123 x m m ->-的解集为2x >,则m 的值为( ) A .4 B .2 C .32 D .12 6.不等式组123 x x -≤??-

相关文档
最新文档