多机器人协作系统的设计与实现

多机器人协作系统的设计与实现
多机器人协作系统的设计与实现

随着科学技术的不断发展,机器人的能力不断提高,机器人的应用领域和范围在不断的扩展,与此同时,机器人的工作环境以及任务复杂度也在逐步上升,单个机器人越来越难以满足需求,而多机器人系统凭着其在任务适用性、经济性、最优性、鲁棒性、可扩展性等方面表现出极大的优越性,目前已成为机器人领域最为热门的研究课题之一,多机器人协调合作作为一种全新的机器人应用形式,正日益受到国内外的关注。

自上世纪40年代中,Walter Wiener和Shannon在研究龟型机器人时,就发现这些简单个体在互相作用中能反映出“复杂的群体行为”其后,80年代末建立了首个多智能体的多机器人系统,多机器人系统在应用和理论研究上都有了长足进展。[1]多机器人系统的最重要特征和关键指标最早由Noreils定义为:多个机器人协同工作,完成单个机器人无法完成的任务,或改善工作过程,并获得更优的系统性能。由此也能看出对比单个机器人,多机器人系统的巨大优势。正因为多机器人系统有着如此众多的优点,欧美各国都在多机器人系统领域上大量投入,如:美国国防高级研究计划局涉及到多机器人作战平台研究包括MARS-2020、TASK、TMR和SDR等,欧盟也很早开始研究多机器人协同搬运的MARTHA 项目,日本则将精力更多投入在仿生多机器人系统上。[2]相比国外,国内的多机器人系统研究起步较晚,但发展速度很快,各大高校都展开了各自的研究工作,并在国际多机器人足球赛上屡获佳绩,证明我国在多机器人的技术研究方面有了巨大进步。

根据协作机制的不同,多机器人系统可分为:无意识协作和有意识协作两类,无意识协作乃是数量众多的简单个体通过本地交换得到全局突现行为,从而获得高层协作行为,有意识协作则是,拥有全局目标且数量较少、个体智能水平较高的个体组成的多机器人系统,主要依赖规划提高效率,对通信要求较高,对协调控制机制依赖性大。无意识协作系统主要是模仿社会性生物群落的运行机制,适用于大空间、无时间要求的重复性任务,而有意识协作适用于更加复杂的任务。[2]

对于有意识协作的多机器人系统而言,必须具备以下三个特点:合理的系统体系结构、正确的环境感知能力、优化的决策控制能力。首先,系统体系结构定义了整个系统内的各机器人之间的相互关系和功能分配,确定了系统和各机器人之间的信息流通关系及其逻辑上的拓扑结构,决定了任务分解和角色分配、规划及执行等操作的运行机制,提供了机器人活动和交互的框架。在这方面国外提出了许多系统结构,如:日本Asama等提出的ACTRESS系统结构,美国学者Beni等研究的SW ARM系统结构等。[2]

然而对于任意一个系统体系结构,都必须有良好的组织结构、通信方式和控制结构,多机器人系统的组织结构可分为:集中控制结构和分散控制结构,而分散控制结构又可分为分布控制结构以及混合控制结构,集中式结构适合强协调任务,主机器人拥有完全控制权,此种结构实时性和动态性差,结构不灵活、鲁棒性差。分布式结构适合弱协调任务,该结构提高了拓展性和鲁棒性,但对通信要求较高,不保证全局最优解。混合式结构是集中式和分布结构的互补,提高了系统的灵活性和协调效率,但复杂性高,不易实现。[3] 对于通信方面来说,机器人之间的通信方式可分为隐式通行和显式通信,隐式通信利用机器人的行为对产生环境的变化来影响其他机器人的行为,显式通信则需要专用硬件通信设备以及复杂的信息表示模型。控制结构则可分为:反应式和慎思式。多机器人系统要实现优化决策,并获得良好的协调控制性能,必须依赖于准确可靠的环境感知能力,现在热门的重点是信息融合以及协同定位。多机器人的协作是从系统整体规划上减小冲突概率,减少资源浪费,保证系统的最优性.协作机制可以存在于机器人的控制结构、通信机制和相互作用中,并主要表现为任务分配问题机器人的任务分配问题在不同情况下可分别看作最优分配问、整数线性规划问题、调度问题、网络流问题和组合优化问题[4],其解决方法主要有基于行为的分配方法、市场机制方法、群体智能方法、基于线性规划的方法、基于情感招募的方法和基于空闲链的方法等。

多机器人系统拥有极其诱人的前景,未来它的应用领域必将越来越广,在工业,航天业,军事,医学等领域起到重要作用,然而目前还有众多问题尚待解决如:动态、未知环境下的任务动态分配和再分配问题,任务预测与任务分解问题以及异构大规模系统和复杂任务的任务分配问题等,可以预见的是多机器人系统必将给人类社会带来巨大的变革,多机器人系统的设计和实现是一项具有挑战性的工作,不管是理论还是实践技术上,都需要我们做更多的工作,

参考文献

[1]《面向任务的多机器人系统的组织设计研究》李淑琴南京理工大学2005

[2]《协作多机器人系统研究进展综述》国防科技大学.吴军,徐昕,连传强,贺汉根2011

[3]《多机器人系统协作研究》浙江大学董炀斌2006

[4]《多机器人系统》清华大学谭民王硕曹志强2005

工业机器人控制系统组成及典型结构

工业机器人控制系统组成及典型结构 一、工业机器人控制系统所要达到的功能机器人控制系统是机器人的重要组成部分,用于对操作机的控制,以完成特定的工作任务,其基本功能如下: 1、记忆功能:存储作业顺序、运动路径、运动方式、运动速度和与生产工艺有关的信息。 2、示教功能:离线编程,在线示教,间接示教。在线示教包括示教盒和导引示教两种。 3、与外围设备联系功能:输入和输出接口、通信接口、网络接口、同步接口。 4、坐标设置功能:有关节、绝对、工具、用户自定义四种坐标系。 5、人机接口:示教盒、操作面板、显示屏。 6、传感器接口:位置检测、视觉、触觉、力觉等。 7、位置伺服功能:机器人多轴联动、运动控制、速度和加速度控制、动态补偿等。 8、故障诊断安全保护功能:运行时系统状态监视、故障状态下的安全保护和故障自诊断。 二、工业机器人控制系统的组成 1、控制计算机:控制系统的调度指挥机构。一般为微型机、微处理器有32 位、64 位等如奔腾系列CPU 以及其他类型CPU 。 2、示教盒:示教机器人的工作轨迹和参数设定,以及所有人机交互操作,拥有自己独立的 CPU 以及存储单元,与主计算机之间以串行通信方式实现信息交互。 3、操作面板:由各种操作按键、状态指示灯构成,只完成基本功能操作。 4、硬盘和软盘存储存:储机器人工作程序的外围存储器。 5、数字和模拟量输入输出:各种状态和控制命令的输入或输出。 6、打印机接口:记录需要输出的各种信息。 7、传感器接口:用于信息的自动检测,实现机器人柔顺控制,一般为力觉、触觉和视觉传感器。 8、轴控制器:完成机器人各关节位置、速度和加速度控制。 9、辅助设备控制:用于和机器人配合的辅助设备控制,如手爪变位器等。 10 、通信接口:实现机器人和其他设备的信息交换,一般有串行接口、并行接口等。 11 、网络接口 1) Ethernet 接口:可通过以太网实现数台或单台机器人的直接PC 通信,数据传输速率高达 10Mbit/s ,可直接在PC 上用windows 库函数进行应用程序编程之后,支持TCP/IP 通信协议,通过Ethernet 接口将数据及程序装入各个机器人控制器中。

机器人制作与编程

机器人制作与程序设计 前 言 我们现在已经身处于信息发达的时代,当今世界的微电子软、硬件技术的发展一日千里。各种各样的智慧家居电器如洗衣机、空调、微波炉、冰箱、数码相机等等层出不穷,已越来越多地为广大民众所普遍使用,让我们的生活倍感舒适和安逸。 顺应时代的潮流,青少年学生应更多地了解身边的科技发展,跟上时代的步伐。本课程的开设是以电脑机器人为教学媒体,通过电脑机器人的制作活动,以兴趣带动学习,使学生掌握最新的微电脑控制技术及相关技能,适应当今社会对人才的需求。 电脑机器人是集机械设计、微电子技术、软件技术及人工智能技术于一体科学结晶。青少年学生往往对其充满好奇和探究的欲望,正因如此,本课程可以通过一系列由浅入深的设计项目,让学生边做边学,在快乐中学习,在探究中去主动思考,从而学习到程序、电子、机械等软硬件的综合知识。 需要一提的是:尽管在完成本课程的学习后,学生可以参与各类的机器人竞赛,但本课程并非以参与竞赛为目的而开设的。参与竞赛只是作为一种提高学习兴趣和检验学习效果的手段,本课程开设的真正意义是在于培养具备综合素质的理工科后备人才,让学生尽早了解身边的科学,明白学以致用的目的。 编者 2010年07月第三版

机器人制作与程序设计

机器人制作与程序设计 == 目录 == 前 言 (1) 第一章 进入智能机器人世界 (1) 1.1认识机器人 (1) 1.1.1 机器人——Robot一词的来源 (1) 1.1.2 什么是机器人? (1) 1.1.3 机器人的基本的机能 (2) 1.1.4 机器人构成的基本条件 (2) 1.2机器人的种类 (4) 1.3习题 (5) 第二章 认识机器人的组成 (6) 2.1机器人的硬件组成 (6) 2.2机器人思维器官:机器人控制模块 (7) 2.3动作器官 (9) 2.4感觉器官 (10) 2.5创造思想的工具——R OBO EXP (10) 2.5.1 主窗体界面 (11) 2.5.2 应用程序编辑界面 (11) 2.5.3 机器人快车工具栏说明 (12) 2.6R OBO EXP安装与升级 (13) 2.6.1 系统要求 (13) 2.6.2 《RoboEXP机器人快车》的安装 (13) 2.6.3 《RoboEXP机器人快车》软件的卸载 (16) 2.6.4 《RoboEXP机器人快车》软件的升级 (17) 第三章 照明机器人 (18) 3.1基础知识 (18) 3.1.1 发光模块 (18) 3.1.2 新建应用程序 (19) 3.1.3 模块的操作 (20) 3.1.4 线的操作 (22) 3.1.5 硬件信息 (24) 3.1.6 保存机器人程序 (26) 3.1.7 编译操作 (26) 3.1.8 下载操作 (28) 3.2照明机器人制作 (29)

多智能体系统及其协同控制研究进展

多智能体系统及其协同控制研究进展 摘要::对多智能体系统及其协同控制理论研究和应用方面的发展现状进行了简要概述.首先给出Agent及多Agent 系统的概念和特性等,介绍了研究多Agent系统协同控制时通常用到的代数图论;然后综述了近年来多Agent系统群集运动和协同控制一致性方面的研究状况,并讨论了其在军事、交通运输、智能机器人等方面的成功应用;最后,对多Agent系统未来的发展方向进行了探讨和分析,提出几个具有理论和实践意义的研究方向,以促使多Agent系统及其协同控制理论和应用的深入研究. 关键词:多Agent系统(MAS);协同控制;代数图论;群集运动;一致性协议 Advances in Multi-Agent Systems and Cooperative Control Abstract: Progress in multi-Agent systems with cooperative controlwas reviewed in terms of theoretical research and its applications. Firs,t concepts and features used to define Agents and multi-Agents were analyzed. Then graph theory was introduced, since it is often used in research on cooperative control of multi-Agent systems. Then advances in swarming/flocking as well as the means used to derive a consensus among multi-Agents under cooperative control were summarized. The application of these abilitieswas discussed for the military, transportation systems,and robotics. Finally, future developments for multi-Agent systemswere considered and significant research problems proposed to help focus research on key questions formulti-Agent systemswith cooperative control. Key words:Multi-Agent system (MAS) ; Cooperative control; Graph theory; Swarming/ flocking; Consensus protocol 分布式人工智能是人工智能领域中一个重要的研究方向,而多Agent系统(multi-Agent systemMAS)则是其一个主要的分支. 20世纪90年代,随着计算机技术、网络技术、通信技术的飞速发展,Agent及MAS的相关研究已经成为控制领域的一个新兴的研究方向.由于Agent体现了人类的社会智能,具有很强的自治性和适应性,因此,越来越多的研究人员开始关注对其理论及应用方面的研究.目前,人们已经将MAS的相关技术应用到交通控制电子商务、多机器人系统、军事等诸多领域.而在MAS中,Agent之间如何在复杂环境中相互协调,共同完成任务则成为这些应用的重要前提.近年来,从控制的角度对MAS进行分析与研究已经成为国内外众多学术机构的关注热点,人们在MAS协同控制问题上做了大量的研究工作,特别是在MAS群集运动控制和协同控制一致性问题方面取得了很大的进展.目前对MAS的研究总体上来说还处于发展的初步阶段,离真正的实用化还有一定的距离;但其广泛的应用性预示着巨大的发展潜力,这必将吸引更多专家、学者投入到这一领域的研究工作中,对MAS的理论及应用做进一步探索.根据上述目的,本文主要概述了多智能体系统(MAS)在协同控制方面的研究现状及其新进展. 1Agent与MAS的相关概念 1.1Agent的概念 Agent一词最早可见于Minsky于1986年出版的《Social of Mind》一书中.国内文献中经常将Agent翻译为:智能体、主体、代理等,但最常见的仍是采用英文“Agent”;因为Agent的概念尚无统一标准,人们对于

一种智能机器人系统设计和实现.

一种智能机器人系统设计和实现 我们从广泛意义上理解所谓的智能机器人,它给人的最深刻的印象是一个独特的进行自我控制的"活物".其实,这个自控"活物"的主要器官并没有像真正的人那样微妙而复杂。智能机器人具备形形色色的内部信息传感器和外部信息传感器,如视觉、听觉、触觉、嗅觉。除具有感受器外,它还有效应器,作为作用于周围环境的手段。这就是筋肉,或称自整步电动机,它们使手、脚、长鼻子、触角等动起来。我们称这种机器人为自控机器人,以便使它同前面谈到的机器人区分开来。它是控制论产生的结果,控制论主张这样的事实:生命和非生命有目的的行为在很多方面是一致的。正像一个智能机器人制造者所说的,机器人是一种系统的功能描述,这种系统过去只能从生命细胞生长的结果中得到,现在它们已经成了我们自己能够制造的东西了 嵌入式是一种专用的计算机系统,作为装置或设备的一部分。通常,嵌入式系统是一个控制程序存储在ROM中的嵌入式处理器控制板。事实上,所有带有数字接口的设备,如手表、微波炉、录像机、汽车等,都使用嵌入式系统,有些嵌入式系统还包含操作系统,但大多数嵌入式系统都是是由单个程序实现整个控制逻辑。嵌入式技术近年来得到了飞速的发展,但是嵌入式产业涉及的领域非常广泛,彼此之间的特点也相当明显。例如很多行业:手机、PDA、车载导航、工控、军工、多媒体终端、网关、数字电视…… 1 智能机器人系统机械平台的搭建 智能机器人需要有一个无轨道型的移动机构,以适应诸如平地、台阶、墙壁、楼梯、坡道等不同的地理环境。它们的功能可以借助轮子、履带、支脚、吸盘、气垫等移动机构来完成。在运动过程中要对移动机构进行实时控制,这种控制不仅要包括有位置控制,而且还要有力度控制、位置与力度混合控制、伸缩率控制等。智能机器人的思考要素是三个要素中的关键,也是人们要赋予机器人必备的要素。思考要素包括有判断、逻辑分析、理解等方面的智力活动。这些智力活动实质上是一个信息处理过程,而计算机则是完成这个处理过程的主要手段。 机器人前部为一四杆机构,使前轮能够在一定范围内调节其高度,主要功能是在机器人前部遇障碍时,前向连杆机构随车轮上抬,而遇到下凹障碍时前车轮先下降着地,以减小震动,提高整机平稳性。在主体的左右两侧,分别配置了平行四边形侧向被动适应机构,该平行四边形机构与主体之间通过铰链与其相连接,是小车行进的主要动力来源。利用两侧平行四边形可任意角度变形的特点,实现自适应各种障碍路面的效果。改变平行四边形机构的角度,可使左右两侧车轮充分与地面接触,使机器人的6个轮子受力尽量均匀,加强机器人对不同路面的适应能力,更加平稳地越过障碍,并且更好地保证整车的平衡性。主体机构主要起到支撑与连接机器人各个部分的作用,同时,整个机器人

机器人程序设计报告

机器人程序设计报告 【软件使用说明】 本程序主要功能有:播放一段程序员预选制作好的机器人运动动画,用户可以通过细节窗口观察机器人,也可通过全局观察窗口观察机器人在整个场景中的运动。程序拥有一个主窗口,三个子窗口。其中主窗口拥有四个菜单选项,订制动画子窗口拥有一个菜单项。菜单项通过右键点击弹出。主窗口菜单功能介绍: 重播:可以让用户重复观看预制动画或者自制动画。 规定动作模式:此模式下可播放程序员事先制作好的一段动画。 自选动作播放模式:播放用户制作好的一段动画。 自选动作设计模式:在此模式下用户可通过自制动画窗口提供的功能制作机器人动画。 订制动画子窗口菜单功能介绍: 添加动作功能:当用户制作完成一个关键帧后可使用此菜单功能将关键帧加入到链表中。 【实验目的】 本实验目的: 1、通过编程深入理解的计算机图形学原理 2、掌握基本的图元绘制 3、熟悉程序的编写过程 4、了解程序与用户的交互过程 【实验内容】 编程实现以下功能: 1、制作一个三维场景,场景主体为机器人 2、机器人可在场景中作一些运动 3、机器人运动以动画的形式表现出来 4、向用户提供一个交互的平台使用户可以自己制作机器人动画 【原理解析】 1、文字界面。 文字界面是必要的一个模块,它可以帮助用户更好的去使用程序,也可以帮助程序员推销自己的软件。 英文输出: 通过glut库给定的void glutBitmapCharacter(void *font, int character)函数可以在窗口中显示单个英文字符,并且可以指定font(字体),既然可以显示单个字符,那么自然可以显示字符串,使用glRasterPos2i(int Posx,int Posy)函数可以指定当前需要显示的字符的位置,在显示完一个字符后此位置会自动水平移动,因此结合这两个函数可实现英文字符串的指定位置输出功能。 中文输出: 相对英文输出来说,中文输出有很多的优势。首先,程序员的母语是中文,那么当程序员如果能使用中文输出则可更贴切地表达想要传递给用户的信息,在某些时候甚至只能用中文才能表达清楚。其次,用户的母语也基本上是中文,并且英文水平也各不相同,在这样的情况下中文输出就显得更加必要了。再次,窗口用于文字输出的空间是有限的,这就使得精炼的或者说占用空间小的文字表达显得很重要,而这一点上中文明显优于英文。 中文显示的实现分下面几个步骤:

机器人控制技术论文

摘要 为使机器人完成各种任务和动作所执行的各种控制手段。作为计算机系统中的关键技术,计算机控制技术包括范围十分广泛,从机器人智能、任务描述到运动控制和伺服控制等技术。既包括实现控制所需的各种硬件系统,又包括各种软件系统。最早的机器人采用顺序控制方式,随着计算机的发展,机器人采用计算机系统来综合实现机电装置的功能,并采用示教再现的控制方式。随着信息技术和控制技术的发展,以及机器人应用范围的扩大,机器人控制技术正朝着智能化的方向发展,出现了离线编程、任务级语言、多传感器信息融合、智能行为控制等新技术。多种技术的发展将促进智能机器人的实现。 当今的自动控制技术都是基于反馈的概念。反馈理论的要素包括三个部分:测量、比较和执行。测量关心的变量,与期望值相比较,用这个误差纠正调节控制系统的响应。这个理论和应用自动控制的关键是,做出正确的测量和比较后,如何才能更好地纠正系统。 PID(比例-积分-微分)控制器作为最早实用化的控制器已有50多年历史,现在仍然是应用最广泛的工业控制器。PID控制器简单易懂,使用中不需精确的系统模型等先决条件,因而成为应用最为广泛的控制器。 它由于用途广泛、使用灵活,已有系列化产品,使用中只需设定三个参数(Kp,Ti 和Td)即可。在很多情况下,并不一定需要全部三个单元,可以取其中的一到两个单元,但比例控制单元是必不可少的。 关键词:机器人,机器人控制,PID,自动控制

目录 摘要.......................................................... I 第1章绪论................................................ - 1 - 1.1机器人控制系统 (1) 1.2机器人控制的关键技术 (1) 第2章机器人PID控制...................................... - 2 - 2.1PID控制器的组成 (2) 2.2PID控制器的研究现状 (2) 2.3PID控制器的不足 (3) 第3章 PID控制的原理和特点 ................................ - 4 - 3.1PID控制的原理 (4) 3.2PID控制的特点 (5) 第4章 PID控制器的参数整定 ................................ - 5 -后记...................................................... - 6 -

机器人设计方案

机器人设计方案 一、设计要求 设计一具有独立前进、转弯、后退、避障、救人等功能的救援机器人。 二、设计任务 1.电子控制组:设计好控制电路及原理图,各类传感器电路及稳压电源,并制作成独 立模块,按程序要求进行调试(超声波、雷达和红外线传感器的感应距离)。 2.机械设计组:设计机器人各部分结构(包括机械手、身躯、底盘)以及各类传感器 模块的安装。 3.程序设计组:按照具体设计要求进行编程及调试、烧录等工作。 4. 三、设计思路 机器人在封闭场地内利用红外线传感器自动搜索安装了红外线发射管的洋娃娃。一旦发现目标便向目标靠近,途中发现障碍物则侧移距离L或转弯角度a然后继续前进,当机器人与洋娃娃之间距离达到S(此时红外线传感器比超声波传感器或雷达优先级更高)时,触发控制机械臂抓向小人,机械臂的“手指”部分装有压力传感器(或轻触开关代替触觉传感器实现),当抓紧小人时触发单片机控制(入口设一200W白炽灯光感返回或者程序倒退返回)机器人返回,并翻转电机松开洋娃娃。 四、场地模拟 有一封闭场地并设立一入口, 机器人从入口出发,利用红外线 传感器搜索救援目标洋娃娃,没 有搜索到时则继续前进,遇到障 碍物时侧移并转弯绕过障碍物继 续前进,直到接近目标控制机械 臂抓紧小人并返回,途中屏蔽掉 红外线感应,只绕过障碍返回。 返回到达入口白炽灯处手部电机 反转松开小人并复位。

五、机器人运作流程图:

六、电路模块设计 1.超声波发射电路: 2.超声波接收电路:

3.红外线发射电路: 4.红外线接受电路 5.直流电机的驱动电路

6. 5V与12V直流电源电路 7.压力或触觉传感器 8. 步进电机驱动电路(1):

多机器人协作系统的设计与实现

随着科学技术的不断发展,机器人的能力不断提高,机器人的应用领域和范围在不断的扩展,与此同时,机器人的工作环境以及任务复杂度也在逐步上升,单个机器人越来越难以满足需求,而多机器人系统凭着其在任务适用性、经济性、最优性、鲁棒性、可扩展性等方面表现出极大的优越性,目前已成为机器人领域最为热门的研究课题之一,多机器人协调合作作为一种全新的机器人应用形式,正日益受到国内外的关注。 自上世纪40年代中,Walter Wiener和Shannon在研究龟型机器人时,就发现这些简单个体在互相作用中能反映出“复杂的群体行为”其后,80年代末建立了首个多智能体的多机器人系统,多机器人系统在应用和理论研究上都有了长足进展。[1]多机器人系统的最重要特征和关键指标最早由Noreils定义为:多个机器人协同工作,完成单个机器人无法完成的任务,或改善工作过程,并获得更优的系统性能。由此也能看出对比单个机器人,多机器人系统的巨大优势。正因为多机器人系统有着如此众多的优点,欧美各国都在多机器人系统领域上大量投入,如:美国国防高级研究计划局涉及到多机器人作战平台研究包括MARS-2020、TASK、TMR和SDR等,欧盟也很早开始研究多机器人协同搬运的MARTHA 项目,日本则将精力更多投入在仿生多机器人系统上。[2]相比国外,国内的多机器人系统研究起步较晚,但发展速度很快,各大高校都展开了各自的研究工作,并在国际多机器人足球赛上屡获佳绩,证明我国在多机器人的技术研究方面有了巨大进步。 根据协作机制的不同,多机器人系统可分为:无意识协作和有意识协作两类,无意识协作乃是数量众多的简单个体通过本地交换得到全局突现行为,从而获得高层协作行为,有意识协作则是,拥有全局目标且数量较少、个体智能水平较高的个体组成的多机器人系统,主要依赖规划提高效率,对通信要求较高,对协调控制机制依赖性大。无意识协作系统主要是模仿社会性生物群落的运行机制,适用于大空间、无时间要求的重复性任务,而有意识协作适用于更加复杂的任务。[2] 对于有意识协作的多机器人系统而言,必须具备以下三个特点:合理的系统体系结构、正确的环境感知能力、优化的决策控制能力。首先,系统体系结构定义了整个系统内的各机器人之间的相互关系和功能分配,确定了系统和各机器人之间的信息流通关系及其逻辑上的拓扑结构,决定了任务分解和角色分配、规划及执行等操作的运行机制,提供了机器人活动和交互的框架。在这方面国外提出了许多系统结构,如:日本Asama等提出的ACTRESS系统结构,美国学者Beni等研究的SW ARM系统结构等。[2] 然而对于任意一个系统体系结构,都必须有良好的组织结构、通信方式和控制结构,多机器人系统的组织结构可分为:集中控制结构和分散控制结构,而分散控制结构又可分为分布控制结构以及混合控制结构,集中式结构适合强协调任务,主机器人拥有完全控制权,此种结构实时性和动态性差,结构不灵活、鲁棒性差。分布式结构适合弱协调任务,该结构提高了拓展性和鲁棒性,但对通信要求较高,不保证全局最优解。混合式结构是集中式和分布结构的互补,提高了系统的灵活性和协调效率,但复杂性高,不易实现。[3] 对于通信方面来说,机器人之间的通信方式可分为隐式通行和显式通信,隐式通信利用机器人的行为对产生环境的变化来影响其他机器人的行为,显式通信则需要专用硬件通信设备以及复杂的信息表示模型。控制结构则可分为:反应式和慎思式。多机器人系统要实现优化决策,并获得良好的协调控制性能,必须依赖于准确可靠的环境感知能力,现在热门的重点是信息融合以及协同定位。多机器人的协作是从系统整体规划上减小冲突概率,减少资源浪费,保证系统的最优性.协作机制可以存在于机器人的控制结构、通信机制和相互作用中,并主要表现为任务分配问题机器人的任务分配问题在不同情况下可分别看作最优分配问、整数线性规划问题、调度问题、网络流问题和组合优化问题[4],其解决方法主要有基于行为的分配方法、市场机制方法、群体智能方法、基于线性规划的方法、基于情感招募的方法和基于空闲链的方法等。

机器人与自动化技术

机器人与自动化技术 “机器人、无处不在的屏幕、语音交互,这些都将改变我们看待‘电脑’的方式。一旦看、听、阅读能力得到提升,你就可以以新的方式进行交互。”----比尔?盖茨在某电视节目中,预测未来科技领域的下一件大事时表示:机器人与自动化技术将成为未来发展的一大趋势,可以改变世界! 工业机器人的应用,正从汽车工业向一般工业延伸,除了金属加工、食品饮料、塑料橡胶、3C、医药等行业,机器人在风能、太阳能、交通运输、建筑材料、物流甚至废品处理等行业都可以大有作为。 当然,即将“改变世界”的机器人不仅仅具有代替人工的价值,在很多人类无法实现的领域也将出现机器人的身影。譬如,派送采矿机器人到月球和小行星上采挖稀土矿,将有望成为现实。 而更令比尔?盖茨寄予厚望的是机器人将像“电脑”一样改变人类的生活。 日本早稻田大学研究人员推出一种新型仿人型家务机器人。它集安全性、可靠性和灵巧性于一身,还具有仿人脸的外观。在工作时,它将一名男子抱下床,与他聊天并为他准备早餐。由于拥有和成年女性大小相当的灵巧双臂、双手,这种机器人能够用夹子将面包从面包机中取出,而丝毫不弄碎它。 英国阿伯丁大学启动了一项新的研究计划,在3年内研发出允许机器人与人类进行交谈,甚至讨论具体决定的系统……。 作为先进制造业中不可替代的重要装备,工业机器人已经成为衡量一个国家制造水平和科技水平的重要标志。 在机器人市场中,目前80%的市场份额仍由跨国公司占有,其中瑞典ABB、日本发那科FANUC、日本安川yaskawa和德国库卡KUKA四大企业则是市场第一梯队的“四大金刚”。其它有瑞士史陶比尔Staubli、德国克鲁斯CLOOS、德国百格拉、德国徕斯、德国斯图加特航空航天自动化集团(STUAA)、意太利瀚博士hanbs、意大利柯马COMAU、英国Auto Tech Robotics等。 目前国内生产机器人的企业主要有:中科院沈阳新松机器人自动化股份有限公司、芜湖埃夫特智能装备有限公司、上海新时达机器人有限公司、安川首钢机器人有限公司、哈工大海 尔机器人有限公司、南京埃斯顿机器人工程有限公司、广州数控设备有限公司、上海沃迪自动化装备股份有限公司等。 2015年,中国机器人市场需求预计将达35000台,占全球比重16.9%,成为全球规模最大的市场。 一、机器人的系统构成 由3大部分6个子系统组成。 3大部分是:机械部分、传感部分、控制部分。 6个子系统是:驱动系统、机械结构系统、感受系统、机器人-环境交互系统、人-机交互系统、控制系统。

关于智能扫地机器人的市场调查报告以及总体设计

关于智能扫地机器人的市场调查报告以及总体设计 杨浩荣王健聪 (北京理工大学珠海学院电气工程及其自动化系) 引言:机器人技术作为20世纪最伟大的发明之一,自上世纪60年代问世以来,已获得巨大的进步。在机器人技术不断成熟的今天,机器人在工业领域大放异彩的同时,它已快速地在农业、军事、服务等非工业领域不断拓展,并取得一定的成果。 关键词:市场需求智能扫地机器人寻路算法 Market research report on intelligent robot sweeps the floor, and the overall design Yang Haorong Wang Jianlin Abstract:robot technology as one of the greatest inventions of the 20th century, since the 1960 s, has acquired great progress. In today's robot technology continues to mature, to shine in the field of industrial robot at the same time, it has quickly in non-industrial sectors such as agriculture, military and service development, and achieved certain results. Key words: market demand intelligent sweeping robot pathfinding algorithm 1.市场需求及其调查: 作为新兴的朝阳产业,机器人出现的时间虽然短暂,但是对社会的影响是巨大的,对人类的影响也是深远的。其中,服务型机器人因更为贴近人类的生活已经有越来越多的大企业把目光投注到服务型机器人上,并制定了一些列的产品开发战略规划,产品内容包括从提供家庭日常服务的机器人到机器人玩具。尤其是玩具机器人,因为技术起点相对低,目前已成为诸多大的生产厂家的追逐热点。 服务型机器人,如今的定义尚未统一。服务型机器人的范围很广。 为了更高地了解人们对服务型机器人的了解与期望,我们进行了问卷调查,调查结果如下:

机器人课程设计报告

机器人课程设计报 告

智能机器人课程设计 总结报告 姓名: 组员: 指导老师: 时间:

一、课程设计设计目的 了解机器人技术的基本知识以及有关电工电子学、单片机、机械设计、传感器等相关技术。初步掌握机器人的运动学原理、基于智能机器人的控制理论,并应用于实践。经过学习,具体掌握智能机器人的控制技术,并使机器人能独立执行一定的任务。 基本要求:要求设计一个能走迷宫(迷宫为立体迷宫)的机器人。要求设计机器人的行走机构,控制系统、传感器类型的选择及排列布局。要有走迷宫的策略(软件流程图)。对于走迷宫小车控制系统设计主要有几个方面:控制电路设计,传感器选择以及安放位置设计,程序设计 二、总体方案 2.1 机器人的寻路算法选择 将迷宫看成一个m*n的网络,机器人经过传感器反馈的信息感知迷宫的形状,并将各个节点的与周围节点的联通性信息存储于存储器中,再根据已经构建好的地图搜索离开迷宫的路径。这里可选择回溯算法。对每个网格从左到右,每个网格具有4个方向,分别定义。并规定机器人行进过程中不停探测前方是否有障碍物,同时探测时按左侧规则,进入新网格后优先探测当前方向的左侧方向。探测过程中记录每个网格的四个方向上的状态:通路、不通或未知,探测得到不同状态后记记录,同时记录当前网

格的四个方向是否已被探测过。若某网格四个方向全部探测过则利用标志位表示该网格已访问。为了寻找到从起点到终点的最佳路径,记录当前网格在四个方向上的邻接网格序号,由此最后可在机器人已探测过的网格中利用Dijkstra算法找到最佳路径。并为计算方便,记录网格所在迷宫中行号、列号。并机器人探索过程中设置一个回溯网格栈记录机器人经过的迷宫网格序号及方向,此方向是从一个迷宫网格到下一个迷宫网格经过的方向。设置一个方向队列记录机器人在某网格内探测方向的顺序。设置一个回溯路径数组记录需要回溯时从回溯起点到回溯终点的迷宫网格序号及方向。 考虑到迷宫比较简单,且主要为纵横方向的直线,可采用让小车在路口始终左转或者始终右转的方法走迷宫,也就是让小车沿迷宫的边沿走。这样最终也能走出迷宫。本次课程设计采用此方法。即控制策略为机器人左侧有缺口时,向左进入缺口,当机器人前方有障碍是,向右旋转180°,其余情况保持前进。 2.2 传感器的选择 由于需要检测机器人左侧和前方是否有通路,采用红外传感器对机器人行进方向和左侧进行感知。红外避障传感器是依据红外线的反射来工作的。当遇到障碍物时,发出的红外线被反射面反射回来,被传感器接收到,信号输出引脚就会给出低电平提示信号。本机器人系统的红外避障信号采用直接检测的方式进行,直接读取引脚电平。传感器感应障碍物的距离阈值能够经过调节

机器人设计论文

绿化植树机器人设计 摘要: 这个机器人是针对大量绿色植树而设计的,利用机械四足作为其活动方式,机器人通过视频识别系统在有限范围内对地形与植被作出判断,然后通过自动行走系统移动到目标地点前面,再通过机械手取出携带的植物幼苗,通过这个可以360度旋转的机械臂进行种植工作,机械臂可以进行种植、培土、等工作。种植完成后还将用一层可分解的塑料薄膜覆盖植物幼苗,保证其在能够自行成长前的安全。 关键词: 绿化植树、四足行走、山坡作业、视频识别、机械臂操作 设计背景: 地球现在正面临着绿色植被在不断减少的危机,而人类也因为这样要面对日益严峻的环境问题。大量植树还原绿色植被是一个相当重要的手段来解决这个难题,但是依靠人力去做的话,效率始终不够高。所以在这里我想设计一个专门用于大作业量的绿化植树机器人。 设计思路: 这个机器人,是需要面对山坡这样的陡峭地形的,由于特殊的使用环境,机器人的活动方式要求能够灵活的应对颠簸不平的土地,机械四足需要能够根据不同的地势调整四足的高度,确保平稳的行走,这种活动方式才能使机器人轻松到达山崖大部分位置。移动起来必须十分的轻巧,以避免对其他植物的伤害。由于这个机器人对视频识别有着较高的要求,所以必须在这方面有所突破,同时当发现有杂草或者有害植物的时候,还可以通过高温蒸汽将其杀死,来保证种植的植物幼苗的生长。360度旋转的机械臂可以保证种植过程的顺利进行。 详细具体设计方案: 一.整体结构: 1.整个机器人分成上下两大部分,上部分是机械手臂,主要实现机器人的整个种植 操作,下部是机器人的机身和四足,包括:植物幼苗存放仓、红外线距离测量 仪、摄像头、电脑处理系统。 2.机器人是通过电力驱动的,所以必须携带储电池,也是安装在机身。 二.中央处理系统: 机器人的机身将安装一个中央处理系统,作为机器人的大脑,它主要调节机器人三 大系统:机械四足行走系统、机器人视觉系统、机械臂控制系统。中央处理系统要 接收和分析红外线距离测量仪、摄像头、机械臂传感器等反馈信息,以及控制四足 的行进系统、机械臂操作等。 三.机械四足行走系统: 1.机械四足的形状: 一开始的时候,我曾经很困惑于如何把握行走稳定与行走速度之间的平衡,后来设 想出仿人类四肢的关节加上圆形的脚盘这个方案,总体感觉可以满足行走的需要。 2.如何实现行进: 参考了机械小狗的设计,将机械四足连接在机器人的中央处理系统而成为一个整 体,接受中央处理系统的控制。每次改变一个机械足的位置,实现整个机器人的行

基于云平台的多用户多机器人的控制系统实现

Computer Science and Application 计算机科学与应用, 2019, 9(11), 2065-2076 Published Online November 2019 in Hans. https://www.360docs.net/doc/3e16457760.html,/journal/csa https://https://www.360docs.net/doc/3e16457760.html,/10.12677/csa.2019.911232 Implementation of Control System for Multi-User and Multi-Robot Based on Cloud Platform Xuling Jin1, Jianyong Feng2, Yunpeng Shen1, Yingjian Cao1, Jian Ye2 1Beijing University of Civil Engineering and Architecture, Beijing 2Institute of Computing Technology Chinese Academy of Sciences, Beijing Received: Nov. 1st, 2019; accepted: Nov. 12th, 2019; published: Nov. 19th, 2019 Abstract Along with the complexity and diversification of the robot service scene, the numerous data processing and analysis problems collected during the robot work process also need to be solved. To this end, a collaborative system of multi-user and multi-robot based on cloud platform is de-signed. The system transmits data through the http protocol, and the user sends a text command to the server through Android speech recognition, and the robot acquires the user’s command from the server, then executes and returns the result. The integration of cloud technology and multi-robot systems makes multi-robot systems feature improved energy efficiency, high real-time performance and low cost. Keywords Cloud Platform, Android, Robot Operating System (ROS) 基于云平台的多用户多机器人的控制系统 实现 靳旭玲1,冯建勇2,沈云鹏1,曹英健1,叶剑2 1北京建筑大学,北京 2中国科学院计算技术研究所,北京 收稿日期:2019年11月1日;录用日期:2019年11月12日;发布日期:2019年11月19日

基于PLC的机器人自动控制系统设计

基于PLC的机器人自动控制系统设计 基于PLC的机器人工作过程是以电磁阀部件为控制对象,以气缸方式驱动的一种特殊机器人运行装置。当中,对于PLC可编程序控制器的应用则是极为广泛与深入当中。应用PLC可编程序控制器进行机器人自动控制系统设计的最主要优势在于:编程操作简单、抗干扰性能突出、运行可靠性高、使用方便简单等特点。本文主要分析的方向是基于PLC的机器人自动控制系统设计操作,进一步确定该方面的可操作性以及进一步研究的价值。 标签:PLC;机器人;自动控制系统;设计 1 引言 在现代科学技术不断发展的背景之下,工业现场所涉及到的重体力劳动量不断提升。当中部分劳动任务的实现单单依靠人力是很难实现的。而为了良好的完成工业现场的相关生产作业任务,就需要通过对机器人装置的研究与应用来实现。基于PLC的机器人装置主要采取关节式结构,能够实现对人体手臂部分的活动动作加以模拟,在自动控制系统下的预定程序、轨迹、以及要求作用下,实现包括零部件抓取、搬运、以及装配在内的一系列动作。本文主要分析的方向是基于PLC的机器人自动控制系统设计操作,进一步确定该方面的可操作性以及进一步研究的价值。 2 目前基于PLC的机器人自动控制系统设计存在的问题 基于PLC的机器人自动控制系统是现今提出的一个机器人控制探究方向,考虑PLC的主要原因是PLC的可调整性以及可控制性较强,是采用编程、输入指令的方式控制,操作相对简单,运行复杂性较低,安全性稳定性相对较高,基于PLC编程基础下的机器人自动控制系统设计结果直接具备PLC的优势,实用性较高,操作要求较低,运行连续性以及运行可靠性高,这对于机器人自动控制系统的进一步发展较为有利,有实际的促进作用[1]。 基于PLC的机器人自动控制系统设计进展相对较为缓慢,主要原因包括技术方面的问题,PLC与机器人装置之间的衔接问题,实际情况探究问题,相关人才问题,为实际的发展机器人自动控制系统,需要对这些问题进行全面的分析,找出关键所在,技术方面的问题为机器人装置的种类较多,对于自动控制系统的要求不尽相同,对于PLC编程的调整要求较高,PLC编程操作相对简单,对于不同指令需要变化输入内容,对于自动控制系统设计类别较多而言进展的速度无法得到有效的提高;人才问题,即研究型人才、操作型人才、实验型人才以及技术型人才,人才的数量相对较为短缺,对于该方面人才的定义为需要全面的掌握了解PLC知识的全部,确定机器人自动控制系统的设计方向,对于机器人装置了解全面,对于机器人装置的相关技术以及原理有较为深入的了解分析,对于自动控制系统相关知识了解全面,同时掌握机器人自动控制系统的操作方法,对于机器人自动控制系统新技术以及新知识了解透彻,大部分工作人员没有达到以上

机器人系统设计毕业版

2 机器人点焊系统电气控制部分的组成和原理 2.1 机器人点焊系统电气控制部分的组成 机器人点焊系统由机器人系统、夹具系统、转台系统和焊接系统构成,工作站采用PROFIBUS+数字I/O实现彼此通信[3]。该系统电气结构如图2.1所示。 图2.1 机器人点焊系统电气结构图 2.2 机器人点焊系统的电气控制原理 系统上电,初始化机器人的状态,主要包括机器人是否在原位,机器人工作是否完成;系统的水、气、光栅是否正常。系统和生产线控制器通讯,获取和机器人工作站有关的生产线的多个状态,如输送线是否处于自动状态;相关传感器的信号是否正常等。对于安全信号,则分等级处理,重要的安全信号通过和机器人的硬线连接,引起机器人急停;级别较低的安全信号通过PLC给机器人发“外

部停止”命令。系统的任务选择是由线控制器完成的,输送线控制器通过传感器来确定车型并通过编码方式向机器人点焊工作站发出相应的工作任务,点焊控制器接受任务并调用相应的机器人程序进行焊接。焊接过程中,系统检测机器人的工作状态,如机器人发生错误或故障,系统自动停止机器人及焊枪的动作。当机器人在车身不同的部位焊接时,需要不同的焊接参数。控制焊枪动作的焊接控制器中可存储多种焊接规范,每组焊接规范对应一组焊接工艺参数。机器人向PLC 发出焊接文件信号,PLC通过焊接控制器向焊枪输出需要的焊接工艺参数。车体焊接完成后,机器人可按设定的方式进行电极修磨。

3 机器人点焊系统电气控制部分硬件设计 3.1 安全保护系统 点焊机器人的工作范围必须符合安全要求,即必须在任何情况下都不会对人员或设备构成威胁。在机器人动作范围内,必须采取隔离措施保护,这些隔离保护措施可以是隔离栅栏,光栅,光幕,空间扫描装置等。本设计采用隔离栅栏和光栅的保护措施。另外,系统中设有急停回路,以便各种突发情况下将系统停止,确保人员和设备的安全。 机器人 引入机器 图3.1 安全门回路

机器人系统设计

机器人系统设计 1微动并联机器人[2]“微动并联机器人的研制”课题研制了1台六自由度微动机器人,以其为核心建立了一套包括三自由度粗动平台、 显微视觉系统、控制系统及周边辅助设备的实验平台,并重点围绕微 操作机器人的机构选型、误差、显微视觉及系统标定等方面做了较深 入的研究。具体阐述如下:(1)通过对国内外微动机构的分析与综合, 设计出了创意独特、两级解耦的串并联微动机器人,这在微动机器人 领域尚属首例。此串并联微动机器人有六个自由度,由上(3RPS机构)、下(3RRR机构)两机构并联串接而成[2],它具有上下机构运动解耦,运动学、动力学及误差分析简便,控制成本低,加速度大,可完成粗调、细调2种功能等特点。其具体技术指标如下:外形尺寸为 100mm×100mm×100mm,工作空间为40μm×40μm×24μm,运动分辨 率为0.2μm。(2)为了合理地分配精度,充分评估各项误差对末端执行器位姿的,我们利用矢量分析的方法建立了串并联机构结构参数误差 与位姿误差的数学模型,分析了各项结构误差对末端位姿的影响水准,并得出了若干对微操作机器人设计、加工及安装有普遍指导意义的结论。(3)对压电陶瓷驱动器的驱动特性、柔性铰链的机械性能、微动机 器人末端位姿的选择、微动机器人的控制方式及图像处理等,做了较 深入的研究,积累了很多有价值的经验。(4)提出了对实验环境的若干 改进措施。 2面向生物工程的微操作机器人系统大多数机器人是按照给定的程序 做简单重复的动作(如焊接、装配、搬运等),不需要太强的智能。而 对于微操作机器人来说,情况就有很大不同。因为被操作对象十分微小,操作人员不可能十分清楚它们的精确位置,况且外界环境的变化 使得它们的相对位置不定,微观世界里的物理法则及力学特性与宏观 世界也大相径庭,这就要求机器人有很强的自动识别能力和决策能力。同时,温度变化、机械振动、噪声波动、机械蠕变等不稳定因素扰动,以及非线性微动特性、传递累积误差的影响,也使得微操作机器人必 须具有很强的自我调整能力(即自我实时标定及补偿能力)。因此微操

相关文档
最新文档