知识讲解_基本不等式_基础

知识讲解_基本不等式_基础
知识讲解_基本不等式_基础

基本不等式

【学习目标】

1. 理解基本不等式的内容及其证明.

2. 能应用基本不等式解决求最值、证明不等式、比较大小求取值范围等问题.

【要点梳理】

要点一、基本不等式

1.对公式222a b ab +≥

及2

a b +≥. (1)成立的条件是不同的:前者只要求,a b 都是实数,而后者要求,a b 都是正数;

(2)取等号“=” 的条件在形式上是相同的,都是“当且仅当a b =时取等号”.

2.由公式222a b ab +≥

2a b +≥ ①2b a a b

+≥(,a b 同号); ②2b a a b

+≤-(,a b 异号);

③2

0,0)112a b a b a b +≤≤>>+或22

2()(0,0)22a b a b ab a b ++≤≤>> 要点诠释: 22

2a b ab +≥可以变形为:222a b ab +≤

,2a b +≥可以变形为:2()2a b ab +≤.

a +

b 2

的证明 方法一:几何面积法 如图,在正方形ABCD 中有四个全等的直角三角形

.

设直角三角形的两条直角边长为a 、b

这样,4个直角三角形的面积的和是2ab ,正方形ABCD 的面积为22

a b +.由于4个直角三角形的面积小于正方形的面积,所以:222a b ab +≥.当直角三角形变为等腰直角三角形,即a b =时,正方形EFGH 缩为一个点,这时有222a b ab +=.

得到结论:如果+,R a b ∈,那么222a b ab +≥(当且仅当a b =时取等号“=”)

特别的,如果0a >,0b >,a 、b ,可得:

如果0a >,0b >,则a b +≥a b =时取等号“=”).

通常我们把上式写作:如果0a >,0b >2

a b +≤

,(当且仅当a b =时取等号“=”) 方法二:代数法

∵2222()0a b ab a b +-=-≥,

当a b ≠时,2()0a b ->;

当a b =时,2()0a b -=.

所以22()2a b ab +≥,(当且仅当a b =时取等号“=”).

要点诠释:

特别的,如果0a >,0b >,a 、b ,可得:

如果0a >,0b >,则a b +≥a b =时取等号“=”).

通常我们把上式写作:

如果0a >,0b >2

a b +≤,(当且仅当a b =时取等号“=”).

2

a b +≤的几何意义 如图,AB 是圆的直径,点C 是AB 上的一点,AC a =,BC b =,过点C 作DC AB ⊥交圆于点D ,连接AD 、BD .

易证~Rt ACD Rt DCB ??,那么2CD CA CB =?,即CD =这个圆的半径为2b a +,它大于或等于CD ,即ab b a ≥+2

,其中当且仅当点C 与圆心重合,即a b =时,等号成立.

要点诠释:

1.在数学中,我们称2

b a +为,a b 的算术平均数,称ab 为,a b 的几何平均数. 因此基本不等式可叙

述为:两个正数的算术平均数不小于它们的几何平均数.

2.如果把2

b a +看作是正数,a b 的等差中项,ab 看作是正数,a b 的等比中项,那么基本不等式可以叙述为:两个正数的等差中项不小于它们的等比中项.

2

a b +≤求最大(小)值 在用基本不等式求函数的最值时,应具备三个条件:一正二定三取等.

① 一正:函数的解析式中,各项均为正数;

② 二定:函数的解析式中,含变数的各项的和或积必须有一个为定值;

③ 三取等:函数的解析式中,含变数的各项均相等,取得最值.

要点诠释:

1.两个不等式:22

2a b ab +≥与2

a b +≥a ,b 都是实数,后者

要求a ,b 都是正数.如22(3)(2)2(3)(2)-+-≥?-?-是成立的,而(3)(2)2-+-≥的.

2.两个不等式:222a b ab +≥与

2a b +≥对于“当且仅当……时,取“=”号这句话的含义要有正确的理解.

当a=b 取等号,其含义是2a b a b +=?

=

仅当a=b 取等号,其含义是

2a b a b +==.

综合上述两条,a=b 是2

a b +=. 3.基本不等式的功能在于“和积互化”.若所证不等式可整理成一边是和,另一边是积的形式,则考虑使用平均不等式;若对于所给的“和式”中的各项的“积”为定值,则“和”有最小值,对于给出的“积式”中的各项的“和”为定值,则“积”有最大值.

4.利用两个数的基本不等式求函数的最值必须具备三个条件:

①各项都是正数;

②和(或积)为定值;

③各项能取得相等的值.

5.基本不等式在解决实际问题中有广泛的应用,在应用时一般按以下步骤进行:

①先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数;

②建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题;

③在定义域内,求出函数的最大或最小值;

④写出正确答案.

【典型例题】

类型一:对公式222a b ab +≥

2a b +≥ 例1.下列结论正确的是( )

A .当x >0且x ≠1时,1lg 2lg x x +

≥ B .当x >0

2≥ C .当x ≥2时,1x x

+的最小值为2 D .当0

-无最大值 【思路点拨】

利用基本不等式求最值,要注意使用的条件“一正、二定、三相等”,三个条件缺一不可。

【答案】 B

【解析】 A 中,当x>0且x≠1时,lg x 的正负不确定, ∴1lg 2lg x x +≥或1lg 2lg x x

+≤-; C 中,当x≥2时,min 152

x x ?

?+= ???; D 中,当0

在(0,2]上递增,max 132x x ??-= ???.故选B. 【总结升华】

在用基本不等式求函数的最值时,必须同时具备三个条件:一“正”二“定”三“取等”,缺一不可. 举一反三:

【变式1】0a >,0b >,给出下列推导,其中正确的有 (填序号).

(1

)a b ++

(2)1

1()()a b a b ++的最小值为4;

(3)14

a a ++的最小值为2-. 【答案】(1);(2)

(1)∵0a >,0b >

,∴a b +≥≥

(当且仅当2a b ==时取等号). (2)∵0a >,0b >

,∴1

1()()4a b a b ++≥=(当且仅当a b =时取等号).

(3)∵0a >,∴11444244a a a a +

=++-≥=-++, (当且仅当144

a a +=+即413a a +==-,时取等号) ∵0a >,与3a =-矛盾,∴上式不能取等号,即124

a a +>-+ 【变式2】给出下面四个推导过程:

① ∵,a b R +∈,∴2a b b a +≥=;

② ∵,x y R +∈,∴lg lg x y +≥

③ ∵a R ∈,0a ≠,∴ 44a a +≥=;

④ ∵,x y R ∈,0xy <,∴[()()]2x y x y y x y x +=--+-≤-=-. 其中正确的推导为( )

A.①②

B.②③

C.③④

D.①④

【答案】D

【解析】①∵,a b R +∈,∴

,b a R a b +∈,符合基本不等式的条件,故①推导正确. ②虽然,x y R +∈,但当(0,1)x ∈或(0,1)y ∈时,lg ,lg x y 是负数,∴②的推导是错误的.

③由,a R ∈不符合基本不等式的条件,∴44a a +≥=是错误的. ④由0,xy <得,y x x y 均为负数,但在推导过程中,将整体x y y x

+提出负号后,()()x y y x -+-均变为正数,符合基本不等式的条件,故④正确.选D.

类型二:利用基本不等式证明不等式

例2.已知3a >,求证:473

a a +≥- 【思路点拨】

对于“和”式求最小值时,要设法配凑得“积”为定值,常采用“配分母”的办法.

【解析】44(3)333733a a a a +=+-+≥==-- (当且仅当

433a a =--即5a =,等号成立).

【总结升华】注意凑出条件,再利用基本不等式证明.

举一反三:

【变式】已知x 、y 都是正数,求证:2y x x y

+≥. 【答案】∵x 、y 都是正数 ,∴0x y

>,0y x >,

∴2x y y x +≥=(当且仅当y x x y =即x y =时,等号成立) 故2y x x y

+≥. 例3. 已知a 、b 、c 都是正数,求证:()()()8a b b c c a abc +++≥

【思路点拨】要把基本不等式和不等式左右两边的结构形式一起来考虑。

【解析】∵a 、b 、c 都是正数

∴0a b +≥> (当且仅当a b =时,取等号)

0b c +≥> (当且仅当b c =时,取等号)

0c a +≥> (当且仅当c a =时,取等号)

∴()()()8a b b c c a abc +++≥=(当且仅当a b c ==时,取等号)

即()()()8a b b c c a abc +++≥.

【总结升华】

1. 在运用ab b a ≥+2

时,注意条件a 、b 均为正数,结合不等式的性质,进行变形. 2. 三个式子必须都为非负且能同时取得等号时,三个式子才能相乘,最后答案才能取得等号.

3. 在利用基本不等式证明的过程中,常常要把数、式合理的拆成两项或多项或恒等地变形配凑成适当的数、式,以便于利用基本不等式.

举一反三:

【高清课堂:基本不等式392186 例题3】

【变式】已知a >0,b >0,c >0,求证:

bc ca ab a b c a b c

++≥++. 【答案】证明: ∵a >0,b >0,c >0,

∴2bc ac c a b +≥=,

2ac ab a b c +≥=,

2bc ab b a c +≥=. ∴bc ca ab a b c a b c

++≥++. 类型三:利用基本不等式求最值 例4. 若实数x ,y 满足xy =1,则x 2+2y 2的最小值为 .

【思路点拨】要求最小值的式子中有两个未知数x 、y,先利用已知条件转化为一个未知数,然后利用

a b +≥求最小值。 【答案】22

【解析】∵xy =1,∴x y 1=

∴222222222222=?≥+

=+x x x x y x 当且仅当222x

x =,即42±=x 时取等号, 故答案为:22

【总结升华】

1. 形如()B f x Ax x

=+(0x >,0A >,0B >)的函数的最值可以用基本不等式求最值; 2. 利用基本不等式求最值时,每一项都必须为正数,若为负数,则添负号变正.

举一反三:

【变式1】若0x <,求9()4f x x x

=+的最大值. 【答案】因为0x <,所以0x ->, 由基本不等式得:

99

()(4)(4)()12f x x x x x -=-+=-+-≥==, (当且仅当94x x -=-即32

x =-时, 取等号) 故当32x =-时,9()4f x x x =+取得最大值12-. 【变式2】已知0x ≠,当x 取什么值时,函数2281()f x x x =+

的值最小?最小值是多少?

【答案】∵0x ≠,∴20x >,∴2281()18f x x x =+≥

(当且仅当2

2

81x x =即3x =±时,取等号) 故当3x =±时,2281x x +的值最小为18. 例5. 已知x >0,y >0,且191x y

+=,求x+y 的最小值. 【思路点拨】

要求x y +的最小值,根据基本不等式,应构建某个积为定值,这需要对条件进行必要的变形,下面给出三种解法,请认真体会.

【解析】

方法一:∵191x y +=,∴199()10y x x y x y x y x y ??+=+?+=++ ???

∵x >0,y >0,∴96y x x y +≥= (当且仅当9y x x y

=,即y=3x 时,取等号) 又191x y

+=,∴x=4,y=12 ∴当x=4,y=12时,x+y 取最小值16.

方法二:由191x y +=,得9

y x y =- ∵x >0,y >0,∴y >9

99991(9)109999

y y x y y y y y y y y y -++=+=+=++=-++---- ∵y >9,∴y -9>0,

∴9969y y -+≥=- (当且仅当999y y -=

-,即y=12时,取等号,此时x=4) ∴当x=4,y=12时,x+y 取最小值16.

【总结升华】方法一是条件最值常用的变形方法,方法二利用了代数消元的方式变为函数的最值来求. 举一反三:

【变式1】 (2015 福建)若直线1(00)x y a b a b

+=>>,过点(1,1),则a+b 的最小值等于( )

A .2

B .3

C .4

D .5 【答案】由已知得

111a b

+=, 则11()()2b a a b a b a b a b +=++=++,

因为a >0,b >0,所以2,+≥=b a a b

因为a >0,b >0,所以

2,+≥=b a a b 故a+b ≥4,当b a a b

=,即a=b=2时取等号. 【高清课堂:基本不等式392186 例题1】 【变式2】已知x >0,y >0,且2x +y =1,则

11x y +的最小值为________;

【答案】 3+【变式3】(2016 湖南校级模拟)设二次函数f (x )=ax 2-4x +c (x ∈R )的值域为[0,+∞),则19c a +的最小值为( )

A .3

B .92

C .5

D .7 【答案】由题意知,a >0,Δ=1-4ac =0,∴ac =4,c >0,

则1923c a +≥=,当且仅当19c a =时取等号, 则

19c a +的最小值是3。 故选A 。

类型四:利用基本不等式解应用题

例6. 围建一个面积为360m 2的矩形场地,要求矩形场地的

一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧

墙对面的新墙上要留一个宽度为2m 的进出口,如图所示,已知

旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙

长度为x(单位:m),修建此矩形场地围墙的总费用为y (单位:元).

(Ⅰ)将y 表示为x 的函数:

(Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.

【思路点拨】

对于应用题要通过阅读、理解所给定的材料寻找量与量之间的内在联系建立起数学模型,然后利用不等式的知识解决题目所提出的问题。

【解析】(Ⅰ)设矩形的另一边长为a m ,

则45180(2)2180225360360y x x a x a =+-+?=+-

由已知xa=360,得a=x

360, 所以y=225x+2

360360(0)x x

-> (Ⅱ

)2

3600,22510800x x x

>∴+≥= 104403603602252≥-+=∴x x y .当且仅当225x=x

2

360时,等号成立. 即当x=24m 时,修建围墙的总费用最小,最小总费用是10440元.

【总结升华】

用均值不等式解决此类问题时,应按如下步骤进行:

(1)理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数;

(2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题;

(3)在定义域内,求出函数的最大值或最小值;

(4)正确写出答案.

举一反三:

【变式1】某游泳馆出售冬季学生游泳卡,每张卡240元.并规定不记名,每卡每次只限1人,每天只限1次.某班有48名学生,教师准备组织学生集体冬泳,除需要购买若干张游泳卡外,每次去游泳还要包一辆汽车,无论乘坐多少学生,每次的包车费为40元.要使每个学生游8次,每人最少交多少钱?

【答案】设购买x 张游泳卡,活动开支为y 元, 则488402403840.y x x

?=?+≥(当且仅当x=8时取“=”) 此时每人最少交80元.

【变式2】 某单位用木料制作如图所示的框架, 框架的下部是边长分别为x 、y (单

位:m )的矩形.上部是等腰直角三角形. 要求框架围成的总面积为28m . 问x 、y 分别

为多少(精确到0.001m) 时用料最省? 【解析】由题意可得1822

x x y x ?+?=,

∴2

884(04

x x y x x x -==-<<

.

于是,框架用料长度为2222

l x y x =++?

316(2x x =+≥=

当3

16(2x x +=

,即8x ==-.

此时, 2.343x ≈

, 2.828y =≈.

故当x 约为2.343 m ,y 约为2.828 m 时用料最省.

高中不等式知识点总结

1.不等式的解法 (1)同解不等式((1)f x g x ()()>与f x F x g x F x ()()()()+>+同解; (2)m f x g x >>0,()()与mf x mg x ()()>同解, m f x g x <>0,()()与mf x mg x ()()<同解; (3) f x g x () () >0与f x g x g x ()()(()?>≠00同解); 2.一元一次不等式 ax b a a a >?>=≠()或ax bx c a 200++<≠?()分a >0 及a <0情况分别解之,还要注意?=-b ac 2 4的三种情况,即?>0或 ?=0或?<0,最好联系二次函数的图象。 4.分式不等式 分式不等式的等价变形: )()(x g x f >0?f(x)·g(x)>0,) () (x g x f ≥0??? ?≠≥?0 )(0 )()(x g x g x f 。 5.简单的绝对值不等式 解绝对值不等式常用以下等价变形: |x|0), |x|>a ?x 2>a 2?x>a 或x<-a(a>0)。 一般地有: |f(x)|g(x)?f(x)>g (x)或f(x)?()()()11当时,a f x g x >>; ()()()201当时,<<?(1)当a >1时, g x f x g x ()()()>>?? ???0;(2)当01<在平面直角坐标系中表示0Ax By C ++=某一侧所有点组成的平面区域。我们把直线画成虚 线以表示区域不包括边界直线。当我们在坐标系中画不等式

(完整版)不等式及其基本性质知识点复习及例题讲解

不等式的概念及其基本性质 一、知识点复习: 1. 用 不等号 连接起来的式子叫不等式;常见的不等号有“>,≥,<,≤,≠”。 2.不等式的基本性质: (1)不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。 如果a b >,那么c b c a +>+,c b c a ->-; (2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。 如果)0(>>c b a ,那么ac bc >,a b c c >; (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。 如果)0(<>c b a ,那么bc ac <, c b c a <; (4)如果a b >,那么b a <; (5)如果a b >,b c >,那么a c >。 二、经典题型分类讲解: 题型1:考察不等式的概念 1. (2017春金牛区校级月考)式子:①02>;②14≤+y x ;③03=+x ;④7-y ;⑤35.2>-m 。其中不等式有( ) A 、1个 B 、2个 C 、3个 D 、4个 题型2:考察不等式的性质 2.(2017连云港四模)已知b a >,下列关系式中一定正确的是( ) A 、22b a < B 、b a 22< C 、22+<+b a D 、b a -<- 3. 若0a b <<,则下列式子:12a b +<+ , 1a b > , a b ab +< , 11a b <,其中正确的有( ) A 、1个 B 、2个 C 、3个 D 、4个 4.下列说法不一定成立的是( ) A .若a b >,则a c b c +>+ B .若a c b c +>+,则a b > C .若a b >,则22ac bc > D .若22ac bc >,则a b >

基本不等式知识点和基本题型

基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+(2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式)若*,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 特别说明:以上不等式中,当且仅当b a =时取“=” 5、常用结论 (1)若0x >,则1 2x x +≥(当且仅当1x =时取“=”) (2)若0x <,则1 2x x +≤-(当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) (4)若R b a ∈,,则2 )2(2 22b a b a ab +≤ +≤ (5)若*,R b a ∈,则2 2111 22b a b a ab b a +≤+≤≤+ 特别说明:以上不等式中,当且仅当 b a =时取“=” (1)若,,,a b c d R ∈,则22222()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有:22222221231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥b a 112 + 2、已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++2 2 2 3、已知1a b c ++=,求证:2221 3 a b c ++≥ 4、已知,,a b c R +∈,且1a b c ++=,求证:abc c b a 8)1)(1)(1(≥--- 5、已知,,a b c R +∈,且1a b c ++=,求证:1111118a b c ?????? ---≥ ??????????? 6、选修4—5:不等式选讲

必修五-不等式知识点总结

不等式总结 一、不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>, (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0 (5)倒数法则:b a a b b a 110,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 二、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法 有两相异实根 有两相等实根注意:一般常用因式分解法、求根公式法求解一元二次不等式 顺口溜:在二次项系数为正的前提下:大于型取两边,小于型取中间 三、均值不等式

1.均值不等式:如果a,b 是正数,那么 ).""(2 号时取当且仅当==≥+b a ab b a 2、使用均值不等式的条件:一正、二定、三相等 3、平均不等式:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数),即 2112a b a b +≥+(当 a = b 时取等) 四、含有绝对值的不等式 1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离 2、则不等式:如果,0>a a x a x a x -<><=>>或|| a x a x a x -≤≥<=>≥或|| a x a a x <<-<=><|| a x a a x ≤≤-<=>≤|| 3.当0c >时, ||ax b c ax b c +>?+>或ax b c +<-, ||ax b c c ax b c +?∈,||ax b c x φ+?-<<,|| (0)x a a x a >>?>或x a <-. (2)定义法:零点分段法; (3)平方法:不等式两边都是非负时,两边同时平方. 五、其他常见不等式形式总结: ①分式不等式的解法:先移项通分标准化,则 ()()0() () 0()()0;0()0 () ()f x g x f x f x f x g x g x g x g x ≥?>?>≥??≠? ②无理不等式:转化为有理不等式求解 ()0()0()()f x g x f x g x ?≥????≥?? ?>? 定义域 ???<≥?????>≥≥?>0 )(0)()] ([)(0)(0)()()(2x g x f x g x f x g x f x g x f 或 ??? ??<≥≥?<2 )] ([)(0 )(0 )()()(x g x f x g x f x g x f

基本不等式知识点归纳.doc

基本不等式知识点总结 向量不等式: ||||||||||||a b a b a b -±+r r r r r r ≤≤ 【注意】: a b r r 、 同向或有0r ?||||||a b a b +=+u r u r u r u r ≥||||||||a b a b -=-u r u r u r u r ; a b r r 、反向或有0r ?||||||a b a b -=+u r u r u r u r ≥||||||||a b a b -=+u r u r u r u r ; a b r r 、不共线?||||||||||||a b a b a b -<±<+u r u r u r u r u r u r .(这些和实数集中类似) 代数不等式: ,a b 同号或有0||||||||||||a b a b a b a b ?+=+-=-≥; ,a b 异号或有0||||||||||||a b a b a b a b ?-=+-=+≥. 绝对值不等式: 123123a a a a a a ++++≤ (0)a b a b a b ab -≤-≤+≥时,取等 双向不等式:a b a b a b -±+≤≤ (左边当0(0)ab ≤≥时取得等号,右边当0(0)ab ≥≤时取得等号.) 放缩不等式: ①00a b a m >>>>,,则b m b b m a m a a m -+<<-+. 【说明】: b b m a a m +<+(0,0a b m >>>,糖水的浓度问题). 【拓展】:,则,,000>>>>n m b a b a n b n a m a m b a b <++<<++<1. ②,,a b c R + ∈, b d a c <,则b b d d a a c c +<<+; ③n N +∈ < < ④,1n N n +∈>,211111 11n n n n n - <<-+-. ⑤ln 1x x -≤(0)x >,1x e x +≥()x R ∈. 函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+ =b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab Y ; ②单调递增区间:(,-∞ ,)+∞; 单调递减区间:(0, ,[0).

不等式知识点整理

元一次不等式和一元一次不等式组 概念: 定义1:一般地,用符号“V” (或“W”),“>”(或“》”)连接的式子叫做不等式。 定义2:能使不等式成立的未知数的值,叫做不等式的解。(不等式的解有时有无数个,有时有有限个,有时无解。)定义3:一个含有未知数的不等式的所有解,组成这个不等式的解集,求不等式的解集的过程叫做解不等式。 定义5:左右两边都是整式,只含有一个未知数,并且未知数的最高次数是 1 的不等式,叫做一元一次不等式。 定义6:一般地, 关于同一未知数的几个一元一次不等式合在一起, 就组成一个一元一次不等式组。 定义7:一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。 定义8:求不等式组解集的过程,叫做解不等式组。 基本性质: 等式的基本性质”和“不等式的基本性质” 1)等式的基本性质:等式基本性质1:等式的两边都加上(或减去)同一个整式,等式仍旧成立女口果a=b, 那么a± c=b± c 等式基本性质2:等式的两边都乘以(或除以)同一个不为0的数,等式仍旧成女口果a=b,那么ac=bc, a*c = b*c (c工0)2)不等式的基本性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变. 不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.

不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变. 不等式的基本性质与等式的基本性质有哪些异同点不等式的基本性质有三条,等式的基本性质有两条;两个性质中在两边都加上(或都减去)同一个整式时,结果相似;在两边都乘以(或除以)同一个正数时,结果相似;在两边都乘以(或除以)同一个负数时,结果不同 三、相关知识归纳: 一)、将不等式的解集表示在数轴上时,要注意:1、指示线的方向, “>”向右, “<”向左. 2、不等式的解集在数轴上表示时,当解集的符号是“》”或“W”时,用实心圆点表示,当解集的符号是“>”或“V”时,用空心圆圈表示。 3、不等式的解与解集的联系与区别: 二者的区别在于, 不等式的解是指能使不等式成立的每一个值; 不等式的解集是指所有解的全体。联系是不等式的所有解组成一个解集, 或者说不等式的解集包含不等式的每一个解。 4、将不等式的解集表示在数轴上,一般分三步:一是正确地画数轴,注意数轴的三要素;二是确定界点,注意区分实心圆点还是空心圆圈;三是辨别方向,大于指向界点的右方, 小于指向界点的左方。 二)、解一元一次不等式的一般步骤: 1)去分母不等式性质2或3 注意: ①勿漏乘不含分母的项; ②分子是两项或两项以上的代数式时要加括号; ③若两边同时乘以一个负数,须注意不等号的方向要改变 2)去括号——去括号法则和分配律 注意: ①勿漏乘括号内每一项; ②括号前面是“-”号,括号内各项要变号 3)移项——移项法则(不等式性质1) 注意:移项要变号.

基本不等式学习知识梳理

基本不等式 【考纲要求】 1. 2 a b +≤ 的证明过程,理解基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等; 2. 2 a b +≤ 解决最大(小)值问题. 3.会应用基本不等式求某些函数的最值;能够解决一些简单的实际问题 【知识网络】 【考点梳理】 考点一:重要不等式及几何意义 1.重要不等式: 如果,R a b ∈,那么2 2 2a b ab +≥(当且仅当a b =时取等号“=”). 2.基本不等式: 如果,a b 是正数,那么 2a b +≥(当且仅当a b =时取等号“=”). 要点诠释:22 2a b ab +≥ 和2 a b +≥ (1)成立的条件是不同的:前者只要求,a b 都是实数,而后者要求,a b 都是正数;

(2)取等号“=” 的条件在形式上是相同的,都是“当且仅当a b =时取等号”。 (3)2 2 2a b ab +≥可以变形为:222a b ab +≤,2a b ab +≥可以变形为:2()2 a b ab +≤. 3.如图,AB 是圆的直径,点C 是AB 上的一点,AC a =,BC b =,过点C 作DC AB ⊥交圆于点D ,连接AD 、BD . 易证~Rt ACD Rt DCB ??,那么2 CD CA CB =?,即CD ab = . 这个圆的半径为2b a +,它大于或等于CD ,即ab b a ≥+2 ,其中当且仅当点C 与圆心重合,即a b =时,等号成立. 要点诠释:1.在数学中,我们称 2 b a +为,a b 的算术平均数,称ab 为,a b 的几何平均数. 因此基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 2.如果把 2 b a +看作是正数,a b 的等差中项,ab 看作是正数,a b 的等比中项,那么基本不等式可以叙述为:两个正数的等差中项不小于它们的等比中项. 考点二:基本不等式2 a b ab +≤的证明 1. 几何面积法 如图,在正方形ABCD 中有四个全等的直角三角形。 设直角三角形的两条直角边长为a 、b 22a b +4个直角三角形 的面积的和是2ab ,正方形ABCD 的面积为2 2 a b +。由于4个直角三角形的面积小于正方形的面积,所 以:22 2a b ab +≥。当直角三角形变为等腰直角三角形,即a b =时,正方形EFGH 缩为一个点,这时有2 2 2a b ab +=。

高中数学不等式知识点总结

弹性学制数学讲义 不等式(4课时) ★知识梳理 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则) b a b a b a b a 110;110>?<<> 2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2a b ab +≤ ②(基本不等式) 2a b ab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、

三相等”. ③(三个正数的算术—几何平均不等式) 33a b c abc ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号). ④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤ 3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 22. x a x a a x a

基本不等式知识点归纳

向量不等式: 【注意】:同向或有; 反向或有; 不共线.(这些和实数集中类似) 代数不等式: 同号或有; 异号或有. 绝对值不等式: 双向不等式: (左边当时取得等号,右边当时取得等号.) 放缩不等式: ①,则. 【说明】:(,糖水的浓度问题). 【拓展】:. ②,,则; ③,; ④,. ⑤,. 函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+ =b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab Y ; ②单调递增区间:(,-∞ ,)+∞; 单调递减区间:(0, ,[0). 基本不等式知识点总结 重要不等式

1、和积不等式:(当且仅当时取到“”). 【变形】:①(当a = b 时,) 【注意】: , 2、均值不等式: 两个正数的调和平均数、几何平均数、算术平均数、均方根之间的关系,即“平方平均算术平均几何平均调和平均” *.若0x >,则1 2x x + ≥ (当且仅当1x =时取“=” ); 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) *.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 3、含立方的几个重要不等式(a 、b 、c 为正数): (,); *不等式的变形在证明过程中或求最值时,有广泛应用,如:当0>ab 时, ab b a 222≥+同时除以ab 得 2≥+b a a b 或b a a b -≥-11。 *,,b a 均为正数,b a b a -≥22 八种变式: ①222b a ab +≤ ; ②2 )2(b a ab +≤; ③2)2( 222b a b a +≤+ ④)(22 2 b a b a +≤+;⑤若b>0,则b a b a -≥22;⑥a>0,b>0,则b a b a +≥+4 11;⑦若a>0,b>0,则ab b a 4)11( 2≥+; ⑧ 若0≠ab ,则2 22)11(2111b a b a +≥+。 上述八个不等式中等号成立的条件都是“ b a =”。 最值定理 (积定和最小)

不等式知识点不等式基础知识

不等式的知识要点 1.不等式的基本概念 2.不等式的基本性质 (1)a b b a (对称性) (2)c a c b b a >?>>,(传递性) (3)c b c a b a +>+?>(加法单调性) (4)d b c a d c b a +>+?>>,(同向不等式相加) (5)d b c a d c b a ->-?<>,(异向不等式相减) (6)bc ac c b a >?>> 0,. (7)bc ac c b a 0,(乘法单调性) (8)bd ac d c b a >?>>>>0,0(同向不等式相乘) (9)0,0a b a b c d c d >><(异向不等式相除) 11(10),0a b ab a b >>? <(倒数关系) (11))1,(0>∈>?>>n Z n b a b a n n 且(平方法则) (12))(0*2N n a n ∈≥(开方法则) 3.几个重要不等式 (1)非负式:0,0||,2≥≥∈a a R a 则若;.0,0≥≥a a 则若 (2))2||2(2,2222ab ab b a ab b a R b a ≥≥+≥+∈+或则、若(当仅当a=b 时取等号) (3)二元均值不等式:如果a ,b 都是正数,那么 .2 a b +(当仅当a=b 时取等号) 常用为:a b +≥a=b 时取等号),2()2 a b ab +≤(当仅当a=b 时取等号) 极值定理:若,,,,x y R x y S xy P +∈+==则: ○ 1如果P 是定值, 那么当x=y 时,S 的值最小; ○ 2如果S 是定值, 那么当x =y 时,P 的值最大. 利用极值定理求最值的必要条件: 一正、二定、三相等. 不等式链:如果a ,b 都是正数,那么 2 112a b a b +≤+(当仅当a=b 时取等号) ,3 a b c a b c R +++∈(4)三元均值不等式:若、、则a=b=c 时取等号) 0,2b a ab a b >+≥(5)若则(当仅当a=b 时取等号) 4.几个著名不等式 (1)柯西不等式: 时取等号当且仅当(则 若n n n n n n n n b a b a b a b a b b b b a a a a b a b a b a b a R b b b b R a a a a ====+++++++≤++++∈∈ΛΛΛΛΛΛ332211223222122322212332211321321))(();,,,,,,,,

高中不等式知识点总结(2020年九月整理).doc

1 1.不等式的解法 (1)同解不等式((1)与同解; (2)与同解,与同解; (3)与同解); 2.一元一次不等式 情况分别解之。 3.一元二次不等式 或分及情况分别解之,还要注意的三种情况,即或或,最好联系二次函数的图象。 4.分式不等式 分式不等式的等价变形: )()(x g x f >0?f(x)·g(x)>0,) () (x g x f ≥0????≠≥?0 )(0 )()(x g x g x f 。 5.简单的绝对值不等式 解绝对值不等式常用以下等价变形: |x|0), |x|>a ?x 2>a 2?x>a 或x<-a(a>0)。 一般地有: |f(x)|g(x)?f(x)>g (x)或f(x)在平面直角坐标系中表示0Ax By C ++=某一侧所有点组成的平面区域。我们把直线画成虚线以表示区域不包括边界直线。当我们在坐标系中画不等式 0Ax By C ++≥所表示的平面区域时,此区域应包括边界直线,则把 直线画成实线。 说明:由于直线0Ax By C ++=同侧的所有点的坐标(,)x y 代入 Ax By C ++,得到实数符号都相同,所以只需在直线某一侧取一个特 殊点00(,)x y ,从00Ax By C ++的正负即可判断0Ax By C ++>表示直

1 线哪一侧的平面区域。特别地,当0C ≠时,通常把原点作为此特殊点。 (2)有关概念 引例:设2z x y =+,式中变量,x y 满 足条件43 35251x y x y x -≤-?? +≤??≥? ,求z 的最大值和最 小值。 由题意,变量,x y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些 平面区域的公共区域。由图知,原点(0,0)不在公共区域内,当 0,0x y ==时,20z x y =+=,即点(0,0)在直线0l :20x y +=上, 作一组平行于0l 的直线l :2x y t +=,t R ∈,可知:当l 在0l 的右上方时,直线l 上的点(,)x y 满足20x y +>,即0t >,而且,直线l 往右平移时,t 随之增大。 由图象可知,当直线l 经过点(5,2)A 时,对应的t 最大, 当直线l 经过点(1,1)B 时,对应的t 最小,所以, max 25212z =?+=,min 2113z =?+=。 在上述引例中,不等式组是一组对变量,x y 的约束条件,这组约束条件都是关于,x y 的一次不等式,所以又称 为线性约束条件。2z x y =+是要求最大值或最小值所涉及的变量,x y 的解析式,叫目标函数。又由于2z x y =+是 ,x y 的一次解析式,所以又叫线性目标函数。 一般地,求线性目标函数在线性约束条件下的最大值 或最小值的问题,统称为线性规划问题。满足线性约束条件的解(,)x y 叫做可行解,由所有可行解组成的集合叫做可行域。在上述问题中,可行域就是阴影部分表示的三角形区域。其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解。 O y x A C 430x y -+= 1x = 35250x y +-=

不等式知识点整理

不等式知识点整理 一、不等关系: 1.实数的大小顺序与运算性质之间的关系: 0>-?>b a b a ; 0<-? (自反性) (2)c a c b b a >?>>, (传递性) (3)c b c a b a +>+?> (可加性) (4)bc ac c b a >?>>0,; bc ac c b a 0, (可乘性) (5)d b c a d c b a +>+?>>, (同向加法) (6)bd ac d c b a >?>>>>0,0; (同向乘法) (7)n n n n b a b a n N n b a >>?>∈>>,1,,0。 (同向乘方) 3.常用的基本不等式和重要的不等式 (1)0,0,2≥≥∈a a R a , 当且仅当0a =取“=”. (2)ab b a R b a 2,,22≥+∈则(当且仅当a b =时取“=”) (3)+∈R b a ,,则ab b a 2≥+(当且仅当a b =时取“=”) 注:2 a b +——集几何平均数. (4)222()22 a b a b ++≥(当且仅当a b =时取“=”) (5)2222()33 a b c a b c ++++≥(当且仅当a b c ==时取“=”) (6)22222()()()a b c d ac bd ++≥+(当且仅当a b c d =时取“=”)(柯西不等式) 4、最值定理:设,0,x y x y >+≥由 (1)如积xy P =为定值,则当且仅当x y =时x y +有最小值 (2)如和x y S +=为定值,则当且仅当x y =时x y ?有最大值2()2 S . 即:积定和最小,和定积最大. 注:运用最值定理求最值的三要素:一正二定三相等. 5.含绝对值的不等式性质: b a b a b a +≤±≤±(注意等号成立的情况). 二、不等式的证明方法 1.比较法 (1)作差比较法:作差——变形(通分、因式分解等)——判别符号; (2)作商比较法:作商——变形(化为幂的形式等)——与1比大小.(分母要为正的) 2.综合法——由因导果(由前面结论)

初中不等式知识点总结

初中不等式知识点总结 一、不等式的概念 1、不等式 用不等号表示不等关系的式子,叫做不等式。 2、不等式的解集 对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。 对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。 求不等式的解集的过程,叫做解不等式。 二、不等式基本性质 1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。 2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。 3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。 三、一元一次不等式 1、一元一次不等式的概念 一般地,不等式中只含有一个未知数,未知数的次数是 1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。 2、一元一次不等式的.解法 一般步骤: (1)去分母; (2)去括号; (3)移项; (4)合并同类项; (5)将 x 项的系数化为 1。 四、一元一次不等式组 1、一元一次不等式组的概念 几个一元一次不等式合在一起,就组成了一个一元一次不等式组。 几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。 求不等式组的解集的过程,叫做解不等式组。 当任何数 x 都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。 2、一元一次不等式组的解法 (1)分别求出不等式组中各个不等式的解集。 (2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。

第九章不等式与不等式组 一、目标与要求 1.感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上; 2.经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想; 3.通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。 二、知识框架 三、重点 理解并掌握不等式的性质; 正确运用不等式的性质; 建立方程解决实际问题,会解"ax+b=cx+d"类型的一元一次方程; 寻找实际问题中的不等关系,建立数学模型; 一元一次不等式组的解集和解法。 四、难点 一元一次不等式组解集的理解; 弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式; 正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上。 五、知识点、概念总结 1.不等式:用符号"<",">","≤","≥"表示大小关系的式子叫做不等式。 2.不等式分类:不等式分为严格不等式与非严格不等式。 一般地,用纯粹的大于号、小于号">","<"连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)"≥","≤"连接的不等式称为非严格不等式,或称广义不等式。 3.不等式的解:使不等式成立的未知数的值,叫做不等式的解。 4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。 5.不等式解集的表示方法: (1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-1≤2的解集是x≤3 (2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形

一元一次不等式知识点总结

四、列一元一次方程解应用题的步骤有: 1、审清题意:应认真审题,分析题中的数量关系,找出问题所在。 2、设未知数:用字母表示题目中的未知数时一般采用直接设法,当直接设法使列方程有困难可采用间接设法,注意未知数的单位不要漏写。 3、找等量关系:可借助图表分析题中的已知量和未知量之间关系,列出等式两边的代数式,注意它们的量要一致,使它们都表示一个相等或相同的量。 4、列方程:根据等量关系列出方程。列出的方程应满足三个条件:各类是同类量,单位一致,两边是等量。 5、解方程:求出方程的解. 方程的变形应根据等式性质和运算法则。 6、检验解的合理性:不但要检查方程的解是否为原方程的解,还要检查是否符合应用题的实际意义,进行取舍,并注意单位。 7、作答:正确回答题中的问题。 五、常见的一元一次方程应用题: 1、和差倍分问题: (1)增长量=原有量×增长率; (2)现在量=原有量+增长量 2、等积变形问题: 常见几何图形的面积、体积、周长计算公式,依据形虽变,但面积不变。 (1)圆柱体的体积公式 V=底面积×高=S ·h = r 2h (2)长方开的面积 周长=2×(长+宽) S=长×宽 3、数字问题: 一般可设个位数字为a ,十位数字为b ,百位数字为c 。 十位数可表示为10b+a , 百位数可表示为100c+10b+a 。 然后抓住数字间或新数、原数之间的关系找等量关系列方程。 4、市场经济问题:( 以下“成本价”在不考虑其它因素的情况下指“进价” ) (1)商品利润=商品售价-商品成本价 (2)商品利润率=商品利润商品成本价 ×100% (3)售价=成本价×(1+利润率) (4)商品销售额=商品销售价×商品销售量 (5)商品的销售利润=(销售价-成本价)×销售量 (6)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售。或者用标价打x 折: 折后价(售价)=标价×10 x 计算。 5、行程问题:路程=速度×时间; 时间=路程÷速度; 速度=路程÷时间。 (1)相遇问题: 快行距+慢行距=原距 (2)追及问题: 快行距-慢行距=原距 (3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度 逆水(风)速度=静水(风)速度-水流(风)速度 抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系. 6、工程问题: (1)工作总量=工作效率×工作时间; 工作效率=工作总量÷工作时间 (2)完成某项任务的各工作总量的和=总工作量=1 (3)各组合作工作效率=各组工作效率之和 (4)全部工作总量之和=各组工作总量之和

基本不等式知识点归纳教学内容

基本不等式知识点归 纳

基本不等式知识点总结 向量不等式: ||||||||||||a b a b a b -±+r r r r r r ≤≤ 【注意】: a b r r 、同向或有0r ?||||||a b a b +=+u r u r u r u r ≥||||||||a b a b -=-u r u r u r u r ; a b r r 、反向或有0r ?||||||a b a b -=+u r u r u r u r ≥||||||||a b a b -=+u r u r u r u r ; a b r r 、不共线?||||||||||||a b a b a b -<±<+u r u r u r u r u r u r .(这些和实数集中类似) 代数不等式: ,a b 同号或有0||||||||||||a b a b a b a b ?+=+-=-≥; ,a b 异号或有0||||||||||||a b a b a b a b ?-=+-=+≥. 绝对值不等式: 123123a a a a a a ++++≤ (0)a b a b a b ab -≤-≤+≥时,取等 双向不等式:a b a b a b -±+≤≤ (左边当0(0)ab ≤≥时取得等号,右边当0(0)ab ≥≤时取得 等号.) 放缩不等式: ①00a b a m >>>>,,则b m b b m a m a a m -+<<-+. 【说明】: b b m a a m +<+(0,0a b m >>>,糖水的浓度问题). 【拓展】:,则,,000>>>>n m b a b a n b n a m a m b a b <++<<++<1. ②,,a b c R +∈, b d a c <,则b b d d a a c c +<<+; ③n N +∈ < < ④,1n N n +∈>,211111 11n n n n n - <<-+-. ⑤ln 1x x -≤(0)x >,1x e x +≥()x R ∈. 函数()(0)b f x ax a b x =+>、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+ =b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab Y ;

基本不等式知识点归纳

基本不等式知识点归纳 1基本不等式.ab空 2 (1) 基本不等式成立的条件: a . 0,b .0. (2) 等号成立的条件:当且仅当a =b时取等号. [探究]1.如何理解基本不等式中“当且仅当”的含义? 提示:①当a = b时,乞_卫_ ab取等号,即a = b= 皂卫hJ ab. 2 2 ②仅当a二b时,-—丄」ab取等号,即 -—=.-;:ab = a =b. 2 2 2?几个重要的不等式 2 2 b a a b 丄2ab(a,b R); 2(ab 0). a b 2 2 a + b 2 a +b 2 a +b ab 臥)(a,b R);( ) (a,b R) 2 2 2 3?算术平均数与几何平均数 设a 0,b 0,则a,b的算术平均数为』~卫,几何平均数为,ab,基本不等式可叙述为:两个正实数的算术 2 平均数不小于它的几何平均数. 4?利用基本不等式求最值问题 已知x 0, y - 0,则 (1) 如果积xy是定值p,那么当且仅当x=y时,x y有最小值是2「p.(简记:积定和最小). 2 (2) 如果和x y是定值p,,那么当且仅当x = y时,xy有最大值是—.(简记:和定积最大). [探究]2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理? 1 提示:当等号取不到时,可利用函数的单调性等知识来求解?例如,y=x 在x_2时的最小值,利用单调 x 5 性,易知X = 2时丫皿山二. 2 [自测?牛刀小试] 1.已知m?0, n ? 0,且mn =81,则m ? n的最小值为() A. 18 B. 36 C. 81 D . 243 解析:选 A 因为n>0, n>0,所以m+ n>2 mn= 2 81 = 18.

不等式知识点总结

期末复习之不等式知识点 2 3 1) (x – 2)(ax – 2)>0 (2)x2–(a+a2)x+a3>0; (3)2x2 +ax +2 > 0; 注: 解形如ax2+bx+c>0的不等式时分类讨论的标准有: 1、讨论a与0的大小; 2、讨论⊿与0的大小; 3、讨论两根的大小;运用的数学思想: 1、分类讨论的思想; 2、数形结合的思想; 3、等与不等的化归思想(4)含参不等式恒成立的问题: 例1.已知关于x的不等式 在(–2,0)上恒成立,求实数a的取值范围. ? ? ? ?? ? ? ? ? ? ≠ ≤ ? ? ≤ > ? ? > )x(g )x(g )x(f )x(g )x(f )x(g )x(f )x(g )x(f 22 (3)210 x a x a +-+-< ? ? ? ? ? 用图象 分离参数后用最值 函数 、 、 、 3 2 1

例2.关于x 的不等式 对所有实数x ∈R 都成立,求a 的取值范围. 4 第一步:在平面直角坐标系中作出可行域; 第二步:在可行域内找到最优解所对应的点; 第三步:解方程的最优解,从而求出目标函数的最大值或最小值。 5 (1),a b R ∈?222a b ab +≥(当且仅当a =b 时取“=”号). (2),a b R +∈?2 a b +≥当且仅当a =b 时取“=”号). (3),a b R +∈?22a b ab +??≤ ??? (当且仅当a =b 时取“=”号). 总结:已知y x ,都是正数,则有 (1)如果积xy 是定值p ,那么当且仅当y x =时和y x +有最小值p 2; (2)如果和y x +是定值s ,那么当且仅当y x =时积xy 有最大值24 1s . (3)用均值不等式求最值时,若不正,则要加负号,若不定,则要凑定值,若不等,则求导考虑单调性。 )1(log 22++-=ax ax y y z x =z ax by =+22y x z +=

相关文档
最新文档