目标检测综述

目标检测综述
目标检测综述

一、传统目标检测方法

如上图所示,传统目标检测的方法一般分为三个阶段:首先在给定的图像上选择一些候选的区域,然后对这些区域提取特征,最后使用训练的分类器进行分类。下面我们对这三个阶段分别进行介绍。

(1) 区域选择这一步是为了对目标的位置进行定位。由于目标可能出现在图像的任何位置,而且目标的大小、长宽比例也不确定,所以最初采用滑动窗口的策略对整幅图像进行遍历,而且需要设置不同的尺度,不同的长宽比。这种穷举的策略虽然包含了目标所有可能出现的位置,但是缺点也是显而易见的:时间复杂度太高,产生冗余窗口太多,这也严重影响后续特征提取和分类的速度和性能。(实际上由于受到时间复杂度的问题,滑动窗口的长宽比一般都是固定的设置几个,所以对于长宽比浮动较大的多类别目标检测,即便是滑动窗口遍历也不能得到很好的区域)

(2) 特征提取由于目标的形态多样性,光照变化多样性,背景多样性等因素使得设计一个鲁棒的特征并不是那么容易。然而提取特征的好坏直接影响到分类的准确性。(这个阶段常用的特征有SIFT、HOG等)

(3) 分类器主要有SVM, Adaboost等。

总结:传统目标检测存在的两个主要问题:

一是基于滑动窗口的区域选择策略没有针对性,时间复杂度高,窗口冗余;

二是手工设计的特征对于多样性的变化并没有很好的鲁棒性。

二、基于Region Proposal的深度学习目标检测算法

对于传统目标检测任务存在的两个主要问题,我们该如何解决呢?

对于滑动窗口存在的问题,region proposal提供了很好的解决方案。region

proposal(候选区域)是预先找出图中目标可能出现的位置。但由于region proposal 利用了图像中的纹理、边缘、颜色等信息,可以保证在选取较少窗口(几千个甚至几百个)的情况下保持较高的召回率。这大大降低了后续操作的时间复杂度,并且获取的候选窗口要比滑动窗口的质量更高(滑动窗口固定长宽比)。比较常用的region proposal算法有selective Search和edge Boxes,如果想具体了解region proposal可以看一下PAMI2015的“What makes for effective detection proposals?”

有了候选区域,剩下的工作实际就是对候选区域进行图像分类的工作(特征提取+分类)。对于图像分类,不得不提的是2012年ImageNet大规模视觉识别挑战赛(ILSVRC)上,机器学习泰斗Geoffrey Hinton教授带领学生Krizhevsky使用卷积神经网络将ILSVRC分类任务的Top-5 error降低到了15.3%,而使用传统方法的第二名top-5 error高达26.2%。此后,卷积神经网络占据了图像分类任务的绝对统治地位,微软最新的ResNet和谷歌的Inception V4模型的top-5 error降到了4%以内多,这已经超越人在这个特定任务上的能力。所以目标检测得到候选区域后使用CNN对其进行图像分类是一个不错的选择。 2014年,RBG(Ross B. Girshick)大神使用region proposal+CNN代替传统目标检测使用的滑动窗口+手工设计特征,设计了R-CNN框架,使得目标检测取得巨大突破,并开启了基于深度学习目标检测的热潮。

1. R-CNN (CVPR2014, TPAMI2015) (Region-based Convolution Networks for Accurate Object d etection and Segmentation)

上面的框架图清晰的给出了R-CNN的目标检测流程:

(1)输入测试图像

(2)利用selective search算法在图像中提取2000个左右的region proposal。

(3)将每个region proposal缩放(warp)成227x227的大小并输入到CNN,将CNN的fc7层的输出作为特征。

(4)将每个region proposal提取到的CNN特征输入到SVM进行分类。

上面的框架图是测试的流程图,要进行测试我们首先要训练好提取特征的CNN模型,以及用于分类的SVM:使用在ImageNet上预训练的模型(AlexNet/VGG16)进行微调得到用于特征提取的CNN模型,然后利用CNN模型对训练集提特征训练SVM。

对每个region proposal缩放到同一尺度是因为CNN全连接层输入需要保证维度固定。

上图少画了一个过程——对于SVM分好类的region proposal做边框回归(bounding-box regression),边框回归是对region proposal进行纠正的线性回归算法,为了让region proposal提取到的窗口跟目标真实窗口更吻合。因为region proposal提取到的窗口不可能跟人手工标记那么准,如果region proposal跟目标位置偏移较大,即便是分类正确了,但是由于IoU(region proposal与Ground Truth 的窗口的交集比并集的比值)低于0.5,那么相当于目标还是没有检测到。

小结:R-CNN在PASCAL VOC2007上的检测结果从DPM HSC的34.3%直接提升到了66%(mAP)。如此大的提升使我们看到了region proposal+CNN的巨大优势。但是R-CNN框架也存在着很多问题:

(1) 训练分为多个阶段,步骤繁琐: 微调网络+训练SVM+训练边框回归器

(2) 训练耗时,占用磁盘空间大:5000张图像产生几百G的特征文件

(3) 速度慢: 使用GPU, VGG16模型处理一张图像需要47s。针对速度慢的这个问题,SPP-NET给出了很好的解决方案。

2. SPP-NET (ECCV2014, TPAMI2015) (Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition) 先看一下R-CNN为什么检测速度这么慢,一张图都需要47s!仔细看下R-CNN 框架发现,对图像提完region proposal(2000个左右)之后将每个proposal当成一张图像进行后续处理(CNN提特征+SVM分类),实际上对一张图像进行了2000次提特征和分类的过程!有没有方法提速呢?好像是有的,这2000个region proposal不都是图像的一部分吗,那么我们完全可以对图像提一次卷积层特征,然后只需要将region proposal在原图的位置映射到卷积层特征图上,这样对于一张图像我们只需要提一次卷积层特征,然后将每个region proposal的卷积层特征输入到全连接层做后续操作。(对于CNN来说,大部分运算都耗在卷积操作上,这样做可以节省大量时间)。现在的问题是每个region proposal的尺度不一样,直接这样输入全连接层肯定是不行的,因为全连接层输入必须是固定的长度。SPP-NET恰好可以解决这个问题:

上图对应的就是SPP-NET的网络结构图,任意给一张图像输入到CNN,经过卷积操作我们可以得到卷积特征(比如VGG16最后的卷积层为conv5_3,共产生512张特征图)。图中的window是就是原图一个region proposal对应到特征图的区域,只需要将这些不同大小window的特征映射到同样的维度,将其作为全连接的输入,就能保证只对图像提取一次卷积层特征。SPP-NET使用了空间金字塔

采样(spatial pyramid pooling):将每个window划分为4*4, 2*2, 1*1的块,然后每个块使用max-pooling下采样,这样对于每个window经过SPP层之后都得到了一个长度为(4*4+2*2+1)*512维度的特征向量,将这个作为全连接层的输入进行后续操作。小结:使用SPP-NET相比于R-CNN可以大大加快目标检测的速度,但是依然存在着很多问题:

(1) 训练分为多个阶段,步骤繁琐: 微调网络+训练SVM+训练训练边框回归器

(2) SPP-NET在微调网络的时候固定了卷积层,只对全连接层进行微调,而对于一个新的任务,有必要对卷积层也进行微调。(分类的模型提取的特征更注重高层语义,而目标检测任务除了语义信息还需要目标的位置信息)针对这两个问题,RBG又提出Fast R-CNN, 一个精简而快速的目标检测框架。

3. Fast R-CNN(ICCV2015)

有了前边R-CNN和SPP-NET的介绍,我们直接看Fast R-CNN的框架图:

与R-CNN框架图对比,可以发现主要有两处不同:一是最后一个卷积层后加了一个ROI pooling layer,二是损失函数使用了多任务损失函数(multi-task loss),将边框回归直接加入到CNN网络中训练。

(1) ROI pooling layer实际上是SPP-NET的一个精简版,SPP-NET对每个proposal使用了不同大小的金字塔映射,而ROI pooling layer只需要下采样到一

个7x7的特征图。对于VGG16网络conv5_3有512个特征图,这样所有region proposal对应了一个7*7*512维度的特征向量作为全连接层的输入。

(2) R-CNN训练过程分为了三个阶段,而Fast R-CNN直接使用softmax替代SVM分类,同时利用多任务损失函数边框回归也加入到了网络中,这样整个的训练过程是端到端的(除去region proposal提取阶段)。

(3) Fast R-CNN在网络微调的过程中,将部分卷积层也进行了微调,取得了更好的检测效果。

小结:Fast R-CNN融合了R-CNN和SPP-NET的精髓,并且引入多任务损失函数,使整个网络的训练和测试变得十分方便。在Pascal VOC2007训练集上训练,在VOC2007测试的结果为66.9%(mAP),如果使用VOC2007+2012训练集训练,在VOC2007上测试结果为70%(数据集的扩充能大幅提高目标检测性能)。使用VGG16每张图像总共需要3s左右。

缺点:region proposal的提取使用selective search,目标检测时间大多消耗在这上面(提region proposal 2~3s,而提特征分类只需0.32s),无法满足实时应用,而且并没有实现真正意义上的端到端训练测试(region proposal使用selective search先提取处来)。那么有没有可能直接使用CNN直接产生region proposal并对其分类?Faster R-CNN框架就是符合这样需要的目标检测框架。

4. Faster R-CNN(NIPS2015) (Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks)

在region proposal + CNN分类的这种目标检测框架中,region proposal质量好坏直接影响到目标检测任务的精度。如果找到一种方法只提取几百个或者更少的高质量的预选窗口,而且召回率很高,这不但能加快目标检测速度,还能提高目标检测的性能(假阳例少)。RPN(Region Proposal Networks)网络应运而生。 RPN 的核心思想是使用卷积神经网络直接产生region proposal,使用的方法本质上就是滑动窗口。RPN的设计比较巧妙,RPN只需在最后的卷积层上滑动一遍,因为anchor机制和边框回归可以得到多尺度多长宽比的region proposal。

我们直接看上边的RPN网络结构图(使用了ZF模型),给定输入图像(假设分辨率为600*1000),经过卷积操作得到最后一层的卷积特征图(大小约为40*60)。在这个特征图上使用3*3的卷积核(滑动窗口)与特征图进行卷积,最后一层卷积层共有256个feature map,那么这个3*3的区域卷积后可以获得一个256维的特征向量,后边接cls layer和reg layer分别用于分类和边框回归(跟Fast R-CNN 类似,只不过这里的类别只有目标和背景两个类别)。3*3滑窗对应的每个特征区域同时预测输入图像3种尺度(128,256,512),3种长宽比(1:1,1:2,2:1)的region proposal,这种映射的机制称为anchor。所以对于这个40*60的feature map,总共有约20000(40*60*9)个anchor,也就是预测20000个region proposal。这样设计的好处是什么呢?虽然现在也是用的滑动窗口策略,但是:滑动窗口操作是在卷积层特征图上进行的,维度较原始图像降低了16*16倍(中间经过了4次2*2的pooling操作);多尺度采用了9种anchor,对应了三种尺度和三种长宽比,加上后边接了边框回归,所以即便是这9种anchor外的窗口也能得到一个跟目标比较接近的region proposal。 NIPS2015版本的Faster R-CNN使用的检测框架是RPN网络+Fast R-CNN网络分离进行的目标检测,整体流程跟Fast R-CNN一样,只是region proposal现在是用RPN网络提取的(代替原来的selective search)。同时作者为了让RPN的网络和Fast R-CNN网络实现卷积层的权值共享,训练RPN 和Fast R-CNN的时候用了4阶段的训练方法:

(1) 使用在ImageNet上预训练的模型初始化网络参数,微调RPN网络;

(2) 使用(1)中RPN网络提取region proposal训练Fast R-CNN网络;

(3) 使用(2)的Fast R-CNN网络重新初始化RPN, 固定卷积层进行微调;

(4) 固定(2)中Fast R-CNN的卷积层,使用(3)中RPN提取的region proposal微调网络。

权值共享后的RPN和Fast R-CNN用于目标检测精度会提高一些。

使用训练好的RPN网络,给定测试图像,可以直接得到边缘回归后的region proposal,根据region proposal的类别得分对RPN网络进行排序,并选取前300个窗口作为Fast R-CNN的输入进行目标检测,使用VOC07+12训练集训练,VOC2007测试集测试mAP达到73.2%(selective search + Fast R-CNN是70%),目标检测的速度可以达到每秒5帧(selective search+Fast R-CNN是2~3s一张)。需要注意的是,最新的版本已经将RPN网络和Fast R-CNN网络结合到了一起——将RPN获取到的proposal直接连到ROI pooling层,这才是一个真正意义上的使用一个CNN网络实现端到端目标检测的框架。

小结:Faster R-CNN将一直以来分离的region proposal和CNN分类融合到了一起,使用端到端的网络进行目标检测,无论在速度上还是精度上都得到了不错的提高。然而Faster R-CNN还是达不到实时的目标检测,预先获取region proposal,然后在对每个proposal分类计算量还是比较大。比较幸运的是YOLO这类目标检测方法的出现让实时性也变的成为可能。总的来说,从R-CNN, SPP-NET, Fast R-CNN, Faster R-CNN一路走来,基于深度学习目标检测的流程变得越来越精简,精度越来越高,速度也越来越快。可以说基于region proposal的R-CNN系列目标检测方法是当前目标最主要的一个分支。

三、基于回归方法的深度学习目标检测算法

Faster R-CNN的方法目前是主流的目标检测方法,但是速度上并不能满足实时的要求。YOLO一类的方法慢慢显现出其重要性,这类方法使用了回归的思想,既给定输入图像,直接在图像的多个位置上回归出这个位置的目标边框以及目标类别。

1. YOLO (CVPR2016, oral) (You Only Look Once: Unified,

Real-Time Object Detection)

我们直接看上面YOLO的目标检测的流程图:

(1) 给个一个输入图像,首先将图像划分成7*7的网格

(2) 对于每个网格,我们都预测2个边框(包括每个边框是目标的置信度以及每个边框区域在多个类别上的概率)

(3) 根据上一步可以预测出7*7*2个目标窗口,然后根据阈值去除可能性比较低的目标窗口,最后NMS去除冗余窗口即可。

可以看到整个过程非常简单,不需要中间的region proposal在找目标,直接回归便完成了位置和类别的判定。

那么如何才能做到直接在不同位置的网格上回归出目标的位置和类别信息呢?上面是YOLO的网络结构图,前边的网络结构跟GoogLeNet的模型比较类似,主要的是最后两层的结构,卷积层之后接了一个4096维的全连接层,然后后边又全连接到一个7*7*30维的张量上。实际上这7*7就是划分的网格数,现在要在每个网格上预测目标两个可能的位置以及这个位置的目标置信度和类别,也就是每个网格预测两个目标,每个目标的信息有4维坐标信息(中心点坐标+长宽),1个是目标的置信度,还有类别数20(VOC上20个类别),总共就是(4+1)*2+20 = 30维的向量。这样可以利用前边4096维的全图特征直接在每个网格上回归出目标检测需要的信息(边框信息加类别)。

小结:YOLO将目标检测任务转换成一个回归问题,大大加快了检测的速度,使得YOLO可以每秒处理45张图像。而且由于每个网络预测目标窗口时使用的是全图信息,使得false positive比例大幅降低(充分的上下文信息)。但是YOLO 也存在问题:没有了region proposal机制,只使用7*7的网格回归会使得目标不能非常精准的定位,这也导致了YOLO的检测精度并不是很高。

2. SSD (SSD: Singl e Shot MultiBox Detector)

上面分析了YOLO存在的问题,使用整图特征在7*7的粗糙网格内回归对目标的定位并不是很精准。那是不是可以结合region proposal的思想实现精准一些的定位?SSD结合YOLO的回归思想以及Faster R-CNN的anchor机制做到了这点。

上图是SSD的一个框架图,首先SSD获取目标位置和类别的方法跟YOLO一样,都是使用回归,但是YOLO预测某个位置使用的是全图的特征,SSD预测某个位置使用的是这个位置周围的特征(感觉更合理一些)。那么如何建立某个位置和其特征的对应关系呢?可能你已经想到了,使用Faster R-CNN的anchor机制。如SSD的框架图所示,假如某一层特征图(图b)大小是8*8,那么就使用3*3的滑窗提取每个位置的特征,然后这个特征回归得到目标的坐标信息和类别信息(图c)。

不同于Faster R-CNN,这个anchor是在多个feature map上,这样可以利用多层的特征并且自然的达到多尺度(不同层的feature map 3*3滑窗感受野不同)。

小结:SSD结合了YOLO中的回归思想和Faster R-CNN中的anchor机制,使用全图各个位置的多尺度区域特征进行回归,既保持了YOLO速度快的特性,也保证了窗口预测的跟Faster R-CNN一样比较精准。SSD在VOC2007上mAP可以达到72.1%,速度在GPU上达到58帧每秒。总结:YOLO的提出给目标检测一个新的思路,SSD的性能则让我们看到了目标检测在实际应用中真正的可能性。

四. 提高目标检测方法 R-CNN系列目标检测框架和YOLO目标检测框架给了我们进行目标检测的两个基本框架。

除此之外,研究人员基于这些框架从其他方面入手提出了一系列提高目标检测性能的方法。

(1) 难分样本挖掘(hard negative mining) R-CNN在训练SVM分类器时使用了难分样本挖掘的思想,但Fast R-CNN和Faster R-CNN由于使用端到端的训练策略并没有使用难分样本挖掘(只是设置了正负样本的比例并随机抽取)。

CVPR2016的Training Region-based Object Detectors with Online Hard Example Mining(oral)将难分样本挖掘(hard example mining)机制嵌入到SGD算法中,使得Fast R-CNN在训练的过程中根据region proposal的损失自动选取合适的region proposal作为正负例训练。实验结果表明使用OHEM(Online Hard Example Mining)机制可以使得Fast R-CNN算法在VOC2007和VOC2012上mAP提高4%左右。

(2) 多层特征融合 Fast R-CNN和Faster R-CNN都是利用了最后卷积层的特征进行目标检测,而由于高层的卷积层特征已经损失了很多细节信息(pooling 操作),所以在定位时不是很精准。HyperNet等一些方法则利用了CNN的多层特征融合进行目标检测,这不仅利用了高层特征的语义信息,还考虑了低层特征的细节纹理信息,使得目标检测定位更精准。

(3) 使用上下文信息在提取region proposal特征进行目标检测时,结合region proposal上下文信息,检测效果往往会更好一些。(Object detection via a multi-region & semantic segmentation-aware CNN model以及Inside-Outside Net等论文中都使用了上下文信息)

运动目标检测方法总结报告

摘要 由于计算机技术的迅猛发展,使得基于内容的视频信息的存取、操作和检索不仅成为一种可能,更成为一种需要。同时,基于内容的视频编码标准MPEG-4和基于内容的视频描述标准MPEG-7正在发展和完善。因此提取和视频中具有语义的运动目标是一个急需解决的问题。运动目标提取和检测作为视频和图像处理领域的重要研究领域,有很强的研究和应用价值。运动检测就是将运动目标从含有背景的图像中分离出来,如果仅仅依靠一种检测算法,难以从复杂的自然图像序列中完整地检测出运动的目标。较高的检测精度和效率十分重要,因此融合多种检测方法的研究越来越受到重视。本文介绍了几种国内外文献中的经典的视频运动目标的检测和提取算法,并对各种方法进行了评价和总结。首先介绍了基本的运动目标检测的基本知识和理论,然后介绍了基本的几种目标检测方法及其各种改进方法。对今后的运动目标检测提取的相关研究提供一定的参考。 关键词:运动目标检测光流法帧差法背景建模方法

ABSTRACT Because of the rapid development of computer technology, it is possible to access, operate and retrieve the video information based on the content of the video. At the same time, based on the content of the video coding standard MPEG-4 and content-based video description standard MPEG-7 is developing and improving. Therefore, it is an urgent problem to be solved in the extraction and video. Moving object extraction and detection is a very important field of video and image processing, and has a strong research and application value. Motion detection is to separate moving objects from the image containing background, if only rely on a detection algorithm, it is difficult to from a complex natural image sequences to detect moving target. Higher detection accuracy and efficiency are very important, so the study of the fusion of multiple detection methods is becoming more and more important. In this paper, the detection and extraction algorithms of the classical video moving objects in the domestic and foreign literatures are introduced, and the methods are evaluated and summarized. Firstly, the basic knowledge and theory of basic moving target detection is introduced, and then the basic method of target detection is introduced. To provide a reference for the research on the extraction of moving target detection in the future. Keywords: Visual tracking Optical flow method Frame Difference Background modeling method

雷达运动目标检测大作业

非均匀空时自适应处理 摘要 本文首先依次介绍了在非均匀环境下的STAP处理法,包括降维、降秩以及LSMI方法,接着重点分析了直接数据域(DDD)方法的原理及实现过程,最后针对直接数据域方法进行了仿真实验。 引言 机载雷达对运动目标检测时, 面临的主要问题是如何抑制强大的地面杂波和各种类型的干扰,空时自适应处理(STAP)是解决该问题的关键技术。STAP 技术通过对杂波或干扰训练样本分布特性的实时学习来来形成空域—时域二维自适应权值,实现对机载雷达杂波和干扰的有效抑制。 STAP技术在形成自适应权值时,需要计算杂波协方差矩阵R。实际系统的协方差矩阵是估计得到的,即先在待检测距离单元的临近单元测得K个二维数 据矢量样本V i(i=1,2…K),再计算R的估计值?=Σ i=1K V i V i H∕K,然后可得自 适应权值W=μR^-1S,其中μ为常数,S为空时导向矢量。临近训练样本的选择必须满足独立同分布(IID)条件。同时,为了使由杂波协方差矩阵估计引起的性能损失控制在3dB内,要求均匀训练样本数K至少要2倍于其系统自由度(DOF)。如果所选样本非均匀,则形成的权值无法有效对消待检测单元中所含有的杂波和干扰,从而大大降低对运动目标的检测性能。 在实际应用中, 机载雷达面临的杂波环境往往是非均匀的, 这对经典的S T A P 技术带来了极大的挑战。针对这一难题, 许多新的适用于非均匀杂波环境的S T A P 方法不断被提出。 1、解决非均匀样本的方法 1.1、降维方法 降维方法的最初目的是为了减少空时自适应处理时所需的巨大运算量, 但后来发现该类方法同时大大减少了对均匀训练样本数的需求, 对非均匀情况下杂波抑制起到了积极的作用。降维方法将每次自适应处理所需要抑制的杂波范围限制在某一个较小杂波子空间内, 根据RMB准则和Brennan定理, 自适应处理时所需要的均匀训练样本数由2 倍于整体系统自由度减至降维后2 倍于子空间系统自由度。降维程度越高, 对均匀训练样本的需求就越少。降维方法属固定结构方法, 无法充分利用杂波的统计特性。当辅助波束与杂波谱匹配很好时, 处理性能往往很好。反之, 则性能下降。 1.2、降秩方法 与固定结构降维方法相反, 降秩方法充分利用回波中杂波的分布特性, 每次处理选取完备杂波空间来形成自适应权值对消杂波分量, 可看作依赖回波数据的自适应降维方法。该类方法在形成权值过程中利用的信息中不含噪声分量, 所以避免了小样本情况下噪声发散带来的性能下降问题, 故减少了对均匀训练样本数的需求。同样, 该类方法在满足信杂噪比损失不超过 3 d B 条件时所需的训练样本数约为 2 倍的杂波子空间的维数。从处理器结构上来看, 降秩方法可

关于三维图像目标识别文献综述

关于三维目标识别的文献综述 前言: 随着计算机技术和现代信息处理技术的快速发展,目标识别已经迅速发展成为一种重要的工具与手段,目标识别是指一个特殊目标(或一种类型的目标)从其它目标(或其它类型的目标)中被区分出来的过程。它既包括两个非常相似目标的识别,也包括一种类型的目标同其他类型目标的识别。目标识别的基本原理是利用雷达回波中的幅度、相位、频谱和极化等目标特征信息,通过数学上的各种多维空间变换来估算目标的大小、形状、重量和表面层的物理特性参数,最后根据大量训练样本所确定的鉴别函数,在分类器中进行识别判决。它属于模式识别的范畴,也可以狭义的理解为图像识别。三维目标识别是以物体表面朝向的三维信息来识别完整的三维物体模型目标识别需要综合运用计算机科学、模式识别、机器视觉以及图像理解等学科知识。目标识别技术已广泛应用于国民经济、空间技术和国防等领域。 正文: 图像识别总的来说主要包括目标图像特征提取和分类两个方面。但是一般情况下,图像受各种因素影响,与真实物体有较大的差别,这样,就需要经过预处理、图像分割、特征提取、分析、匹配识别等一系列过程才能完成整个识别过程。 目前,最主流的三种三维物体识别研究思路是: 1)基于模型或几何的方法;

2)基于外观或视图的方法; 3)基于局部特征匹配的方法; 一、基于模型或几何的方法: 这种方法所识别的目标是已知的,原理就是利用传感器获得真实目标的三维信息并对信息进行分析处理,得到一种表面、边界及连接关系的描述,这里,三维物体识别中有两类最经常使用的传感器:灰度传感器和深度传感器,前者获取图像的每个像素点对应于一个亮度测量,而后者对应于从传感器到可视物体表面的距离;另一方面,利用CAD建立目标的几何模型,对模型的表面、边界及连接关系进行完整的描述。然后把这两种描述加以匹配就可以来识别三维物体。其流程如下图所示: 传感器数据获取过程,就是从现实生活中的真实物体中产生待识别的模型。分析/建模过程,是对传感器数据进行处理,从中提取与目标有关的独立应用特征。模型库的建立一般式在识别过程之前,即首先根据物体的某些特定特征建立一些关系以及将这些信息汇总成一个库。在模型匹配过程,系统通过从图像中抽取出的物体关系属性图,把物体描述与模型描述通过某种匹配算法进行比较、分析,最终得到与物体最相似的一种描述,从而确定物体的类型和空间位置。 基于模型的三维物体识别,需要着重解决以下4个问题:

目标识别技术

目标识别技术 摘要: 针对雷达自动目标识别技术进行了简要回顾。讨论了目前理论研究和应用比较成功的几类目标识别方法:基于目标运动的回波起伏和调制谱特性的目标识别方法、基于极点分布的目标识别方法、基于高分辨雷达成像的目标识别方法和基于极化特征的目标识别方法,同时讨论了应用于雷达目标识别中的几种模式识别技术:统计模式识别方法、模糊模式识别方法、基于模型和基于知识的模式识别方法以及神经网络模式识别方法。最后分析了问题的可能解决思路。 引言: 雷达目标识别技术回顾及发展现状 雷达目标识别的研究始于"20世纪50年代,早期雷达目标特征信号的研究工作主要是研究达目标的有效散射截面积。但是,对形状不同、性质各异的各类目标,笼统用一个有效散射面积来描述,就显得过于粗糙,也难以实现有效识别。几十年来,随着电磁散射理论的不断发展以及雷达技术的不断提高,在先进的现代信号处理技术条件下,许多可资识别的雷达目标特征信号相继被发现,从而建立起了相应的目标识别理论和技术。 随着科学技术的飞速发展,一场以信息技术为基础、以获取信息优势为核心、以高技术武器为先导的军事领域的变革正在世界范围内兴起,夺取信息优势已成为夺取战争主动权的关键。电子信息装备作为夺取信息优势的物质基础,是推进武器装备信息化进程的重要动力,其总体水平和规模将在很大程度上反映一个国家的军事实力和作战能力。 雷达作为重要的电子信息装备,自诞生起就在战争中发挥了极其重要的作用。但随着进攻武器装备的发展,只具有探测和跟踪功能的雷达也已经不能满足信息化战争的需要,迫切要求雷达不仅要具有探测和跟踪功能,而且还要具有目标识别功能,雷达目标分类与识别已成为现代雷达的重要发展方向,也是未来雷达的基本功能之一。目标识别技术是指:利用雷达和计算机对遥远目标进行辨认的技术。目标识别的基本原理是利用雷达回波中的幅度、相位、频谱和极化等目标特征信息,通过数学上的各种多维空间变换来估算目标的大小、形状、重量和表面层的物理特性参数,最后根据大量训练样本所确定的鉴别函数,在分类器中进行识别判决。目标识别还可利用再入大气层后的大团过滤技术。当目标群进入大气层时,在大气阻力的作用下,目标群中的真假目标由于轻重和阻力的不同而分开,轻目标、外形不规则的目标开始减速,落在真弹头的后面,从而可以区别目标。 所谓雷达目标识别,是指利用雷达获得的目标信息,通过综合处理,得到目标的详细信息(包括物理尺寸、散射特征等),最终进行分类和描述。随着科学技术的发展,武器性能的提高,对雷达目标识别提出了越来越高的要求。 目前,目标识别作为雷达新的功能之一,已在诸如海情监控系统、弹道导弹防御系统、防空系统及地球物理、射电天文、气象预报、埋地物探测等技术领域发挥出很大威力。为了提高

雷达的目标识别技术

雷达的目标识别技术 摘要: 对雷达自动目标识别技术和雷达目标识别过程进行了简要回顾,研究了相控阵雷达系统中多目标跟踪识别的重复检测问题提出了角度相关区算法,分析了实现中的若干问题,通过在相控阵雷达地址系统中进行的地址实验和结果分析表明:采用角度相关区算法对重复检测的回波数据进行处理时将使识别的目标信息更精确从而能更早地形成稳定的航迹达到对目标的准确识别。 一.引言 随着科学技术的发展,雷达目标识别技术越来越引起人们的广泛关注,在国防及未来战争中扮演着重要角色。地面雷达目标识别技术目前主要有-Se方式,分别是一维距离成象技术、极化成象技术和目标振动声音频谱识别技术。 1.一维距离成象技术 一维距离成象技术是将合成孔径雷达中的距离成象技术应用于地面雷达。信号带宽与时间分辨率成反比。例如一尖脉冲信号经过一窄带滤波器后宽度变宽、时间模糊变大。其基本原理如图1所示。 2.极化成象技术 电磁波是由电场和磁场组成的。若电场方向是固定的,例如为水

平方向或垂直方向,则叫做线性极化电磁波。线性极化电磁波的反射与目标的形状密切相关。当目标长尺寸的方向与电场的方向一致时,反射系数增大,反之减小。根据这一特征,向目标发射不同极化方向的线性极化电磁波,分别接收它们反射(散射)的回波。通过计算目标散射矩阵便可以识别目标的形状。该方法对复杂形状的目标识别很困难。 3.目标振动声音频谱识别技术 根据多普勒原理,目标的振动、旋转翼旋转将引起发射电磁波的频率移动。通过解调反射电磁波的频率调制,复现目标振动频谱。根据目标振动频谱进行目标识别。 传统上我国地面雷达主要通过两个方面进行目标识别:回波宽度和波色图。点状目标的回波宽度等于入射波宽度。一定尺寸的目标将展宽回波宽度,其回波宽度变化量正比于目标尺寸。通过目标回波宽度的变化可估计目标的大小。目标往往有不同的强反射点,如飞机的机尾、机头、机翼以及机群内各飞机等,往往会在回波上形成不同形状的子峰,如图2所示。 这类波型图叫作波色图。根据波色图内子峰的形状,可获得一些目标信息。熟练的操作员根据回波宽度变化和波色图内子峰形状,进行目标识别。

目标检测综述教学内容

一、传统目标检测方法 如上图所示,传统目标检测的方法一般分为三个阶段:首先在给定的图像上选择一些候选的区域,然后对这些区域提取特征,最后使用训练的分类器进行分类。下面我们对这三个阶段分别进行介绍。 (1) 区域选择这一步是为了对目标的位置进行定位。由于目标可能出现在图像的任何位置,而且目标的大小、长宽比例也不确定,所以最初采用滑动窗口的策略对整幅图像进行遍历,而且需要设置不同的尺度,不同的长宽比。这种穷举的策略虽然包含了目标所有可能出现的位置,但是缺点也是显而易见的:时间复杂度太高,产生冗余窗口太多,这也严重影响后续特征提取和分类的速度和性能。(实际上由于受到时间复杂度的问题,滑动窗口的长宽比一般都是固定的设置几个,所以对于长宽比浮动较大的多类别目标检测,即便是滑动窗口遍历也不能得到很好的区域) (2) 特征提取由于目标的形态多样性,光照变化多样性,背景多样性等因素使得设计一个鲁棒的特征并不是那么容易。然而提取特征的好坏直接影响到分类的准确性。(这个阶段常用的特征有SIFT、HOG等) (3) 分类器主要有SVM, Adaboost等。 总结:传统目标检测存在的两个主要问题: 一是基于滑动窗口的区域选择策略没有针对性,时间复杂度高,窗口冗余; 二是手工设计的特征对于多样性的变化并没有很好的鲁棒性。 二、基于Region Proposal的深度学习目标检测算法 对于传统目标检测任务存在的两个主要问题,我们该如何解决呢? 对于滑动窗口存在的问题,region proposal提供了很好的解决方案。region

proposal(候选区域)是预先找出图中目标可能出现的位置。但由于region proposal 利用了图像中的纹理、边缘、颜色等信息,可以保证在选取较少窗口(几千个甚至几百个)的情况下保持较高的召回率。这大大降低了后续操作的时间复杂度,并且获取的候选窗口要比滑动窗口的质量更高(滑动窗口固定长宽比)。比较常用的region proposal算法有selective Search和edge Boxes,如果想具体了解region proposal可以看一下PAMI2015的“What makes for effective detection proposals?” 有了候选区域,剩下的工作实际就是对候选区域进行图像分类的工作(特征提取+分类)。对于图像分类,不得不提的是2012年ImageNet大规模视觉识别挑战赛(ILSVRC)上,机器学习泰斗Geoffrey Hinton教授带领学生Krizhevsky使用卷积神经网络将ILSVRC分类任务的Top-5 error降低到了15.3%,而使用传统方法的第二名top-5 error高达26.2%。此后,卷积神经网络占据了图像分类任务的绝对统治地位,微软最新的ResNet和谷歌的Inception V4模型的top-5 error降到了4%以内多,这已经超越人在这个特定任务上的能力。所以目标检测得到候选区域后使用CNN对其进行图像分类是一个不错的选择。 2014年,RBG(Ross B. Girshick)大神使用region proposal+CNN代替传统目标检测使用的滑动窗口+手工设计特征,设计了R-CNN框架,使得目标检测取得巨大突破,并开启了基于深度学习目标检测的热潮。 1. R-CNN (CVPR2014, TPAMI2015) (Region-based Convolution Networks for Accurate Object d etection and Segmentation)

【CN110133630A】一种雷达目标检测方法及应用其的雷达【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910344449.2 (22)申请日 2019.04.26 (71)申请人 惠州市德赛西威智能交通技术研究 院有限公司 地址 516006 广东省惠州市仲恺高新区和 畅五路西8号投资控股大厦 (72)发明人 孙靖虎 曾迪 黄力 温和鑫  盘敏容 蒋留兵  (74)专利代理机构 惠州创联专利代理事务所 (普通合伙) 44382 代理人 韩淑英 (51)Int.Cl. G01S 13/02(2006.01) G01S 13/08(2006.01) G01S 13/58(2006.01) G01S 7/41(2006.01) (54)发明名称 一种雷达目标检测方法及应用其的雷达 (57)摘要 本发明涉及一种雷达目标检测方法。本发明 提供了一种运行速度快、探测精度高的雷达目标 检测方法,本发明中,雷达的一帧检测中第二发 射波的发射次数可与第一发射波不同,可通过设 置较少的第二发射波的发射次数来缩短雷达的 检测帧周期;本发明中第二发射波只需要进行一 次一维FFT而无需进行二维FFT,降低了计算复杂 度, 提高了数据处理速度。权利要求书2页 说明书7页 附图4页CN 110133630 A 2019.08.16 C N 110133630 A

1.一种雷达目标检测方法,其特征在于,包括以下步骤: 步骤一、发射K1次周期为T1、的第一发射波,所述第一发射波被目标反射后被天线接收得到第一回波; 步骤二、对每个周期的第一回波进行N点采样一维FFT变换得到第一回波一维FFT结果; 步骤三、对所述第一回波一维FFT结果进行二维FFT变换得到坐标对应第一距离单元号、第一模糊速度号的距离多普勒谱,其中第一距离单元号为对单个周期的第一回波进行一维FFT采样的序号,第一模糊速度号为所述第一发射波的发射周期的序号;根据第一回波的目标检测距离、目标检测模糊速度与所述距离多普勒谱的峰值的对应关系求第一回波的目标检测距离及目标检测模糊速度; 步骤四、发射K2次与所述第一发射波频率互质的周期为T2的第二发射波,所述第二发射波被目标发射后被所述天线接收得到第二回波,对每个周期的第二回波进行N点采样一维FFT变换得到对应不同第二距离单元号、第二模糊速度号的第二回波一维FFT结果,其中第二距离单元号为对单个周期的第二回波进行一维FFT采样的序号,第二模糊速度号为所述第二发射波的发射周期的序号; 步骤五、根据步骤三得到的第一回波的目标检测模糊速度与目标真实速度可能值之间的关系求目标真实速度可能值的速度旋转因子,并将该速度旋转因子与步骤四得到的第二回波一维FFT结果形成关联,然后对该关联结果进行解模糊,再根据解模糊的结果对步骤2求得的第一回波的目标检测距离、目标检测模糊速度进行修正从而求得目标真实速度及目标真实距离;以及 步骤六、输出步骤四获得的目标真实速度及目标真实距离。 2.根据权利要求1所述的一种雷达目标检测方法,其特征在于,步骤三中求第一回波的目标检测距离及目标检测模糊速度方法为: 在所述距离多普勒中寻找峰值,该峰值对应的距离单元号、模糊速度号即为目标所处 的第一距离单元号 第一模糊速度号 再根据目标所处的第一距离单元号电磁波的传播速度C、第一发射波的射频带宽B1计算第一回波的目标检测距离以及 根据目标所处的第一模糊速度号所述天线中心频率对应的波长λ、步骤1中所述第一发射波的发射次数K1及周期T1计算第一回波的目标检测模糊速度 3.根据权利要求2所述的一种雷达目标检测方法,其特征在于,所述步骤五具体包括: 定义目标真实速度可能值的速度旋转因子V DFT : 式中V r为目标真实速度可能值;z为所述第二模糊速度号; 将第一回波的目标检测模糊速 度与目标真实速度可能值V r之间的关 系代入步骤4.1中目标真实速度可能值的速度旋转因子V DFT的定义公式中, 式中m为取值范围为[-d,d]的模糊数单元号,其中d为正整数,从而求得目标真实速度可能值的速度旋转因子; 权 利 要 求 书1/2页 2 CN 110133630 A

火焰检测原理

火焰检测原理 燃烧火焰具有各种特性,如发热程度、电离状态、火焰不同部位的辐射、光谱及火焰的脉动或闪烁现象、差压、音响等,均可用来检测火焰的“有”或“无”。以煤、油作为 燃料的锅炉在燃烧过程中会辐射红外线(IR)、可见光和紫外线(UV)。 所有的燃料燃烧都辐射一定量的紫外线和大量的红外线,且光谱范围涉及红外线、可见光及紫外线。因此,整个光谱范围都可以用来检测火焰的“有”或“无”。由于不同种类的燃料,其燃烧火焰辐射的光线强度不同,相应采用的火焰检测元件也会不一样。一般说来,煤粉火焰中除了含有不发光的CO2和水蒸气等三原子气体外,还有部分灼热发光的焦炭粒子和炭粒,它们辐射较强的红外线、可见光和一些紫外线,而紫外线往往容易被燃烧产物和灰粒吸收而很快被减弱,因此煤粉燃烧火焰宜采用可见光或红外线火焰检测器。而在用于暖炉和点火用的油火焰中,除了有一部分CO2和水蒸气外,还有大量的发光碳黑粒子,它也能辐射较强的可见光、红外线和紫外线,因此可采用对这三种火焰较敏感的检测元件进行测量。而可燃气体作为主燃料燃烧时,在火焰初始燃烧区辐射较强的紫外线,此时可采用紫外线火焰检测器进行检测。除辐射稳态电磁波外,所有的火焰均呈脉动变化。因此,单燃烧器工业锅炉的火焰监视可以利用火焰脉动变化特性,采用带低通滤波器(10—20Hz)的红外固体检测器(通常采用硫化铅)。但电站锅炉多燃烧器炉膛火焰的闪烁规律与单燃烧器工业锅炉不大一样,特别是在燃烧器的喉口部分,闪烁频率的范围要宽得多。硫化铅(PbS)感测器,这是一种硫化铅光敏电阻,其特点是对红外线辐射特别敏感。燃料在燃烧时,由化学反应产生闪烁的红外线辐射,使硫化铅光敏电阻感应,转变成电信号,再经放大器处理后,输出4-20mA 或0-10V的模拟量。在光谱中,红外线的波长为Page 3 of 43 600nm以上,而这种硫化铅感测器的光谱灵敏度为600nm-3000nm,对绝大部分红外线辐射都可以有效采集,同

雷达目标检测性能分析

雷达目标检测实例 雷达对Swerling起伏目标检测性能分析 1.雷达截面积(RCS)的涵义 2.目标RCS起伏模型 3.雷达检测概率、虚警概率推导 4.仿真结果与分析

雷达通过发射和接收电磁波来探测目标。雷达发射的电磁波打在目标上,目标会将入射电磁波向不同方向散射。其中有一部分向雷达方向散射。雷达截面积就是衡量目标反射电磁波能力的参数。

雷达截面积(Radar Cross Section, RCS)定义:22o 2 4π 4π4π4π()4πo i i P P R m P P R σ=== 返回雷达接收机单位立体角内的回波功率 入射功率密度 在远场条件下,目标处每单位入射功率密度在雷达接收机处每单位立体角内产生的反射功率乘以4π。 R 表示目标与雷达之间的距离,P o 、P i 分别为目标反射回 的总功率和雷达发射总功率

?目标RCS和目标的几何横截面是两个不同的概念?复杂目标在不同照射方向上的RCS不同 ?动目标同一方向不同时刻的RCS不同 飞机舰船 目标RCS是起伏变化的,目标RCS大小直接影响着雷达检测性能。为此,需用统计方法来描述目标RCS。基于此,分析雷达目标检测性能。

Swerling 模型是最常用的目标RCS 模型,它包括Swerling 0、I 、II 、III 、IV 五种模型。其中,Swerling 0型目标的RCS 是一个常数,金属圆球就是这类目标。Swerling Ⅰ/Ⅱ型: 1 ()exp()p σ σσσ =- 指数分布 Swerling Ⅰ:目标RCS 在一次天线波束扫描期间是完 全相关的,但本次和下一次扫描不相关(慢起伏),典型目标如前向观察的小型喷气飞机。 Swerling Ⅱ:目标RCS 在任意一次扫描中脉冲间不相关(快起伏),典型目标如大型民用客机。

目标检测方法简要综述

龙源期刊网 https://www.360docs.net/doc/3f13040956.html, 目标检测方法简要综述 作者:栗佩康袁芳芳李航涛 来源:《科技风》2020年第18期 摘要:目标检测是计算机视觉领域中的重要问题,是人脸识别、车辆检测、路网提取等领域的理论基础。随着深度学习的快速发展,与基于滑窗以手工提取特征做分类的传统目标检测算法相比,基于深度学习的目标检测算法无论在检测精度上还是在时间复杂度上都大大超过了传统算法,本文将简单介绍目标检测算法的发展历程。 关键词:目标检测;机器学习;深度神经网络 目标检测的目的可分为检测图像中感兴趣目标的位置和对感兴趣目标进行分类。目标检测比低阶的分类任务复杂,同时也是高阶图像分割任的重要基础;目标检测也是人脸识别、车辆检测、路网检测等应用领域的理论基础。 传统的目标检测算法是基于滑窗遍历进行区域选择,然后使用HOG、SIFT等特征对滑窗内的图像块进行特征提取,最后使用SVM、AdaBoost等分类器对已提取特征进行分类。手工构建特征较为复杂,检测精度提升有限,基于滑窗的算法计算复杂度较高,此类方法的发展停滞,本文不再展开。近年来,基于深度学习的目标检测算法成为主流,分为两阶段和单阶段两类:两阶段算法先在图像中选取候选区域,然后对候选区域进行目标分类与位置精修;单阶段算法是基于全局做回归分类,直接产生目标物体的位置及类别。单阶段算法更具实时性,但检测精度有损失,下面介绍这两类目标检测算法。 1 基于候选区域的两阶段目标检测方法 率先将深度学习引入目标检测的是Girshick[1]于2014年提出的区域卷积神经网络目标检测模型(R-CNN)。首先使用区域选择性搜索算法在图像上提取约2000个候选区域,然后使用卷积神经网络对各候选区域进行特征提取,接着使用SVM对候选区域进行分类并利用NMS 回归目标位置。与传统算法相比,R-CNN的检测精度有很大提升,但缺点是:由于全连接层的限制,输入CNN的图像为固定尺寸,且每个图像块输入CNN单独处理,无特征提取共享,重复计算;选择性搜索算法仍有冗余,耗费时间等。 基于R-CNN只能接受固定尺寸图像输入和无卷积特征共享,He[2]于2014年参考金字塔匹配理论在CNN中加入SPP-Net结构。该结构复用第五卷积层的特征响应图,将任意尺寸的候选区域转为固定长度的特征向量,最后一个卷积层后接入的为SPP层。该方法只对原图做一

(完整版)视频目标检测与跟踪算法综述

视频目标检测与跟踪算法综述 1、引言 运动目标的检测与跟踪是机器视觉领域的核心课题之一,目前被广泛应用在视频编码、智能交通、监控、图像检测等众多领域中。本文针对视频监控图像的运动目标检测与跟踪方法,分析了近些年来国内外的研究工作及最新进展。 2、视频监控图像的运动目标检测方法 运动目标检测的目的是把运动目标从背景图像中分割出来。运动目标的有效分割对于目标分类、跟踪和行为理解等后期处理非常重要。目前运动目标检测算法的难点主要体现在背景的复杂性和目标的复杂性两方面。背景的复杂性主要体现在背景中一些噪声对目标的干扰,目标的复杂性主要体现在目标的运动性、突变性以及所提取目标的非单一性等等。所有这些特点使得运动目标的检测成为一项相当困难的事情。目前常用的运动目标检测算法主要有光流法、帧差法、背景相减法,其中背景减除法是目前最常用的方法。 2.1帧差法 帧差法主要是利用视频序列中连续两帧间的变化来检测静态场景下的运动目标,假设f k(x, y)和f(k i)(x, y)分别为图像序列中的第k帧和第k+1帧中象素点(x,y)的象素值,则这两帧图像的差值图像就如公式2-1所示: Diff ki f k(x, y) f(k 1)(x, y)(2-1)2-1式中差值不为0的图像区域代表了由运动目标的运动所经过的区域(背景象素值不变),又因为相邻视频帧间时间间隔很小,目标位置变化也很小,所以运动目标的运动所经过的区域也就代表了当前帧中运动目标所在的区域。利用此原理便可以提取出目标。下图给出了帧差法的基本流程:1、首先利用2-1式得到第k帧和第k+1帧的差值图像Diff k 1;2、对所得到的差值图像Diff k 1二值化(如 式子2-2示)得到Qk+1 ;3、为消除微小噪声的干扰,使得到的运动目标更准 确,对Q k 1进行必要的滤波和去噪处理,后处理结果为M k 1。 1

(完整word版)基于图像处理的运动物体的跟踪与检测开题报告

1、课题来源 随着计算机技术的高速发展,运动物体的检测和跟踪在图像处理、计算机视觉、模式识别、人工智能、多媒体技术等领域越来越受到人们的关注。运动跟踪和检测的应用广泛,在智能监控和人机交互中,如:银行、交通、超市等场合常常使用运动跟踪分析技术,通过定位物体并对其行为进行分析,一旦发现物体有异常行为,监控系统就发出警报,提醒人们注意并即时的处理,改善了人工监督注意力分散、反应时间较慢、人力资源浪费等问题。运动目标的跟踪在虚拟现实、工业控制、军事设备、医学研究、视频监控、交通流量观测监控等很多领域也有重要的实用价值。特别在军事上,先进的武器导航、军事侦察和监控中都成功运用了自动跟踪技术。而跟踪的难点在于如何快速而准确的在每一帧图像中实现目标定位。正因如此,对运动目标的跟踪和检测的研究很有价值。 2、研究目的和意义 运动目标检测是图像处理与计算机视觉的一个分支,在理论和实践上都有重大意义,长久以来一直被国内外学者所关注。在实际中,视频监控利用摄像机对某一特定区域进行监视,是一个细致和连续的过程,它可以由人来完成,但是人执行这种长期枯燥的例行监测是不可靠,而且费用也很高,因此引入运动监测非常有必要。它可以减轻人的负担,并且提高了可靠性。概括起来运动监测主要包括三个内容:运动目标检测,方向判断和图像跟踪。运动目标检测是整个监测过程的基础,运动目标的提取准确与否,直接关系到后续高级过程的完成质量。3、国内外研究现状和发展趋势及综述 运动目标检测在国外已经取得了一些的研究成果,许多相关技术已经开始应用到实际系统中,但是国内研究相对落后,与国外还有较大差距。传统的视频目标提取大致可以分两类,一类以空间同性为准则,先用形态学滤波器或其他滤波器对图像作预处理;然后对该图像的亮度、色度或其他信息作空间上的分割以对区域作边缘检测;之后作运动估计,并合并相似的运动区域以得到最终的提取结果。如光流算法、主动轮廓模型算法。此类方法结果较为准确但是运算量相对较大。另一类算法主要以时间变化检测作为准则,这类算法主要通过帧差检测图像上的变化区域和不变区域,将运动物体与静止背景进行分割。此类方法运算量小,提取结果不如前类方法准确。此外,还有时空结合方法、时空亮度梯度信息结合的方法等等。 4、研究方法

雷达目标识别发展趋势

雷达目标识别发展趋势 雷达具备目标识别功能是智能化的表现,不妨参照人的认知过程,预测雷达目标识别技术的发展趋势: (1)综合目标识别 用于目标识别的雷达必将具备测量多种目标特征的手段,综合多种特征进行目标识别。我们人类认知某一事物时,可以通过观察、触摸、听、闻、尝,甚至做实验的方法认知,手段可谓丰富,确保了认知的正确性。 目标特征测量的每种手段会越来越精确,就如同弱视的人看东西,肯定没有正常人看得清楚,也就不能认知目标。 识别结果反馈给目标特征测量,使目标特征测量成为具有先验信息的测量,特征测量精度会有所提高,识别的准确程度也会相应提高。 雷达具备同时识别目标和背景的功能。人类在观察事物的时候,不仅看到了事物的本身,也看到了事物所处的环境。现有的雷达大多通过杂波抑制、干扰抑制等方法剔除了干扰和杂波,未来的雷达系统需要具备识别目标所处背景的能力,这些背景信息在战时也是有用的信息。 雷达具备自适应多层次综合目标识别能力。用于目标识别的雷达虽然需要具备测量多种目标特征的手段,但识别目标时不一定需要综合所有的特征,这一方面是因为雷达系统资源不允许,另一方面也是因为没有必要精确识别所有的目标。比如司机在开车时,视野中有很多目标,首先要评价哪几个目标有威胁,再粗分类一下,是行人还是汽车,最后再重点关注一下靠得太近、速度太快的是行人中的小孩子还是汽车中的大卡车。 (2)自学习功能 雷达在设计、实现、装备的过程中,即具备了设计师的基因,但除了优秀的基因之外,雷达还需要具有学习功能,才能在实战应用中逐渐成熟。 首先,要具有正确的学习方法,这是设计师赋予的。对于实际环境,雷达目标识别系统应该知道如何更新目标特征库、如何调整目标识别算法、如何发挥更好的识别性能。 其次,要人工辅助雷达目标识别系统进行学习,这就如同老师和学生的关系。在目标识别系统学习时,雷达观测已知类型的合作目标,雷达操作员为目标识别系统指出目标的类型,目标识别系统进行学习。同时还可以人为的创造复杂的电磁环境,使目标识别系统能更好地适应环境。 (3)多传感器融合识别 多传感器的融合识别必定会提高识别性能,这是毋容置疑的。这就好比大家坐下来一起讨论问题,总能讨论出一个好的结果,至少比一个人说的话更可信。但又不能是通过投票的方式,专家的话肯定比门外汉更有说服力。多传感器融合识别需要具备双向作用的能力。 并不是给出融合识别的结果就结束了,而是要利用融合识别的结果反过来提高各个传感器的识别性能,这才是融合识别的根本目的所在。反向作用在一定程度上降低了人工辅助来训练目标识别系统的必要性,也减少了分别进行目标识别试验的总成本。

氢火焰离子化检测器详细介绍包括原理等超详细!!!

氢火焰离子化检测器详细介绍(包括原理等超详细!!!)

————————————————————————————————作者: ————————————————————————————————日期: ?

1958年Mewillan和Harley等分别研制成功氢火焰离子化检侧器(FID),它是典型的破坏性、质量型检测器,是以氢气和空气燃烧生成的火焰为能源,当有机化合物进入以氢气和氧气燃烧的火焰,在高温下产生化学电离,电离产生比基流高几个数量级的离子,在高压电场的定向作用下,形成离子流,微弱的离子流(10-12~10-8A)经过高阻(106~1011Ω)放大,成为与进入火焰的有机化合物量成正比的电信号,因此可以根据信号的大小对有机物进行定量分析。 氢火焰检测器由于结构简单、性能优异、稳定可靠、操作方便,所以经过40多年的发展,今天的FID结构仍无实质性的变化。 其主要特点是对几乎所有挥发性的有机化合物均有响应,对所有径类化合物(碳数≥3)的相对响应值几乎相等,对含杂原子的烃类有机物中的同系物(碳数≥3)的相对响应值也几乎相等。这给化合物的定量带来很大的方便,而且具有灵敏度高(10-13~10-10g/s),基流小(10-14~10-13A),线性范围宽(106~107),死体积小(≤1μL),响应快(1ms),可以和毛细管柱直接联用,对气体流速、压力和很度变化不敏感等优点,所以成为应用最广泛的气相色谱检测器。 其主要缺点是需要三种气源及其流速控制系统,尤其是对防爆有严格的要求。 氢火焰离子化检测器的结构 氢火焰离子化检测器(FID)由电离室和放大电路组成,分别如图2-9(a),(b)所示。 FID的电离室由金属圆筒作外罩,底座中心有喷嘴;喷嘴附近有环状金属圈(极化极,又称发射极),上端有一个金属圆简(收集极)。两者间加90~300V的直流电压,形成电离电场加速电离的离子。收集极捕集的离子硫经放大器的高组产生信号、放大后物送至数据采集系统;燃烧气、辅助气和色谱柱由底座引入;燃烧气及水蒸气由外罩上方小孔逸出。 氮火焰离子化检测器晌应机理

交通场景中运动目标的检测文献综述

交通场景中运动目标的检测文献综述 摘要:运动目标检测是数字图像处理技术的一个主要部分,是一种基于视频监控系统的运动目标检测方法。这种算法主要包括:图像预处理、运动目标的检测、运动速度的求取。运动目标分割是实现交通场景下车辆检测的前提。常用的分割方法可以分为背景差分法、帧间差分法和基于光流的分割方法等。 关键词:数字图像处理;运动目标;检测方法 1 前言 运动目标检测是数字图像处理技术的一个主要部分,近些年来,随着多媒体技术的迅猛发展和计算机性能的不断提高,动态图像处理技术日益受到人们的青睐,并且取得了丰硕的成果,广泛英语与交通管理、军事目标跟踪、生物医学等领域。 目前,以数字图像处理技术为核心的视频监视系统越来越广泛地应用到交通监管中,它利用摄像机来获取图像,由计算机完成对运动目标的自动检测,如果车辆交通违规时,自动发出预警,记录全程违章视频,这在很大程度上减轻了监控人员的劳动强度,克服可能的人为失误,而且节省大量存储空间,使存储的数据更为有效,为交通违规的后续处理提供了客观依据。 交通场景中运动目标的检测是本文的研究对象。结合图书馆书籍、网上资料以及现有期刊杂志的相关信息,初步建立起交通场景中运动目标检测课题研究的整体思路和方法。 2 正文 2.1运动目标 运动目标是常生活中常见的.如活动的动物、行驶的运载工具等。在现实生活中,尽管人类的视觉既能看见运动又能看见静止的物体,但是在交通这样的复杂场景中大量有意义的视觉信息都包含在这些运动之中,人们往往只对运动的

物体或目标感兴趣。因此,研究运动目标的检测问题,有着很大的现实意义和应用价值。 2.2运动目标检测的基本概念 目前我们主要是通过对动态图像进行分析处理来获取运动目标信息,从而实现对运动目标的检测,它是图像处理与计算机视觉应用研究领域的一个重要课题。,所谓动态图像是由一序列图像组成的,即图像序列。图像序列是用一个传感器(如摄像机、数码相机)采集的一组随时间变化的图像,不同时刻采集的二帧图像或多帧图像中包含了存在于相机与景物之间的相对运动信息。还有景物本身发生变化的运动信息等等,这些信息表现为图像帧之间的灰度变化或诸如点、线、区域等记号的位置和运动方向速度等属性的变化。 运动目标检测的目的就是从序列图像中将变化区域从背景图像中提取出来。我们首先用摄像机获取运动目标的视频影像,经视频采集卡将视频信号传输到计算机,利用计算机对其进行相关处理,从视频图像中按一定时间间隔获取序列图像,然后通过对这些序列图像进行特定的处理,就可以检测出我们感兴趣的运动目标。 运动目标检测和分析是一种基于视频监控系统的运动目标检测方法。这种算法主要包括:图像预处理、运动目标的检测、运动速度的求取。这种算法在帧差法的基础之上,提取出运动目标,并对其求取运动速度。这种技术可以用于各类图像监控系统,用来检测运动目标,对于现实应用有重要意义。 2.3运动目标检测的基本方法 由运动目标所形成的图像序列可分为两种情况:一种是静止背景,一种是运动背景。前一种情况通常发生在摄像机相对静止状态(如监视某一路口车流量的固定摄像机),后一种情况通常发生在摄像机也在相对运动状态(如装在卫星或飞机上的监视系统)。从处理方法上看,对前一种情况可采用消除背景的方法检测运动目标,处理起来比较简单,如简单的帧间差分或自适应背景对消方法。对后一种情况.处理起来比较复杂,一般是采用突出目标或消除背景的思想检测运动目标。若采用消除背景的方法,则通常需要先进行帧间稳像及配准;若采用突出

雷达目标识别

目标识别技术 2009-11-27 20:56:41| 分类:我的学习笔记| 标签:|字号大中小订阅 摘要: 针对雷达自动目标识别技术进行了简要回顾。讨论了目前理论研究和应用比较成功的几类目标识别方法:基于目标运动的回波起伏和调制谱特性的目标识别方法、基于极点分布的目标识别方法、基于高分辨雷达成像的目标识别方法和基于极化特征的目标识别方法,同时讨论了应用于雷达目标识别中的几种模式识别技术:统计模式识别方法、模糊模式识别方法、基于模型和基于知识的模式识别方法以及神经网络 模式识别方法。最后分析了问题的可能解决思路。 引言: 雷达目标识别技术回顾及发展现状 雷达目标识别的研究始于"20世纪50年代,早期雷达目标特征信号的研究工作主要是研究达目标的有效散射截面积。但是,对形状不同、性质各异的各类目标,笼统用一个有效散射面积来描述,就显得过于粗糙,也难以实现有效识别。几十年来,随着电磁散射理论的不断发展以及雷达技术的不断提高,在先进的现代信号处理技术条件下,许多可资识别的雷达目标特征信号相继被发现,从而建立起了相应的目标 识别理论和技术。 随着科学技术的飞速发展,一场以信息技术为基础、以获取信息优势为核心、以高技术武器为先导的军事领域的变革正在世界范围内兴起,夺取信息优势已成为夺取战争主动权的关键。电子信息装备作为夺取信息优势的物质基础,是推进武器装备信息化进程的重要动力,其总体水平和规模将在很大程度上反 映一个国家的军事实力和作战能力。 雷达作为重要的电子信息装备,自诞生起就在战争中发挥了极其重要的作用。但随着进攻武器装备的发展,只具有探测和跟踪功能的雷达也已经不能满足信息化战争的需要,迫切要求雷达不仅要具有探测和跟踪功能,而且还要具有目标识别功能,雷达目标分类与识别已成为现代雷达的重要发展方向,也是未来雷达的基本功能之一。目标识别技术是指:利用雷达和计算机对遥远目标进行辨认的技术。目标识别的基本原理是利用雷达回波中的幅度、相位、频谱和极化等目标特征信息,通过数学上的各种多维空间变换来估算目标的大小、形状、重量和表面层的物理特性参数,最后根据大量训练样本所确定的鉴别函数,在分类器中进行识别判决。目标识别还可利用再入大气层后的大团过滤技术。当目标群进入大气层时,在大气阻力的作用下,目标群中的真假目标由于轻重和阻力的不同而分开,轻目标、外形不规则的目标开始减 速,落在真弹头的后面,从而可以区别目标。 所谓雷达目标识别,是指利用雷达获得的目标信息,通过综合处理,得到目标的详细信息(包括物理尺寸、散射特征等),最终进行分类和描述。随着科学技术的发展,武器性能的提高,对雷达目标识别 提出了越来越高的要求。 目前,目标识别作为雷达新的功能之一,已在诸如海情监控系统、弹道导弹防御系统、防空系统及地球物理、射电天文、气象预报、埋地物探测等技术领域发挥出很大威力。为了提高我国的军事实力,适应未来反导弹、反卫、空间攻防、国土防空与对海军事斗争的需要,急需加大雷达目标识别技术研究的力度雷达目标识别策略主要基于中段、再入段过程中弹道导弹目标群的不同特性。从结构特性看,飞行中段

相关文档
最新文档