运算放大器的电路仿真设计

运算放大器的电路仿真设计
运算放大器的电路仿真设计

运算放大器的电路仿真设计

一、电路课程设计目的

○1深入理解运算放大器电路模型,了解典型运算放大器的功能,并仿真实现它的功能;

○2掌握理想运算放大器的特点及分析方法(主要运用节点电压法分析);

○3熟悉掌握Multisim软件。

二、实验原理说明

(1)运算放大器是一种体积很小的集成电路元件,它包括输入端和输出端。它的类型包括:反向比例放大器、加法器、积分器、微分器、

电压跟随器、电源变换器等。

(2)

(3)理想运放的特点:根据理想运放的特点,可以得到两条原则:

(a)“虚断”:由于理想运放,故输入端口的电流约为零,可近似视为断路,称为“虚断”。

(b)“虚短”:由于理想运放A,,即两输入端间电压约为零,可近似视为短路,称为“虚短”。

已知下图,求输出电压。

理论分析:

由题意可得:(列节点方程)

011

(1)822A U U +-=

0111

()0422

B U U +-= A B U U =

解得:

三、 电路设计内容与步骤

如上图所示设计仿真电路。

仿真电路图:

V18mV

R11Ω

R22Ω

R32Ω

R44Ω

U2

DC 10MOhm

0.016

V +

-

U3

OPAMP_3T_VIRTUAL

U1

DC 10MOhm

0.011

V +

-

根据电压表的读数,,

与理论结果相同。

但在试验中,要注意把电压调成毫伏级别,否则结果误差会很大,

致结果没有任何意义。如图所示,电压单位为伏时的仿真结果:

V18 V

R11Ω

R22Ω

R32Ω

R44Ω

U2

DC 10MOhm

6.458

V +

-

U3

OPAMP_3T_VIRTUAL

U1

DC 10MOhm

4.305

V +

-

,与理论结果相差甚远。

四、 实验注意事项

1)注意仿真中的运算放大器一般是上正下负,而我们常见的运放是上负下正,在仿真过程中要注意。

2)由于运算放大器的工作范围是有限的,因此,在仿真时要把Ua和Ub的范围在毫伏或者更小的单位内,使运放在其线性范围内工作,这样结果才会更准确。

五、电路课程设计总结

通过本次试验,我验证了理想运算放大器在线性工作区内“虚短虚断”的性质,学会了用模拟软件对含理想运算放大器电路的分析,加深了对含理想运算放大器电路的理解。

在模拟中,我曾多次出错,得不到理想的结果,原因有:接线时没注意到理想放大器的正负极,电压源过大,超出理想放大器线性工作范围,问过老师后,我对自己的电路进行修改,得到理想的结果。

如有侵权请联系告知删除,感谢你们的配合!

基于Spectre运算放大器的设计

《集成电路CAD》课程设计报告 课题:基于Spectre运算放大器的设计 一:课程设计目标及任务 利用Cadence软件设计使用差分放大器,设计其原理图,并画出其版图,模拟器各项性能指标,修改宽长比,使其最优化。 二:运算放大器概况 运算放大器(operational amplifier),简称运放(OPA),如图1.1所示: 图1.1运放示意图 运算放大器最早被设计出来的目的是将电压类比成数字,用来进行加、减、乘、除的运算,同时也成为实现模拟计算机的基本建构方块。然而,理想运算放大器的在电路系统设计上的用途却远远超过加减乘除的计算。今日的运算放大器,无论是使用晶体管或真空管、分立式元件或集成电路元件,运算放大器的效能都已经接近理想运算放大器的要求。早期的运算放大器是使用真空管设计的,现在多半是集成电路式的元件。但是如果系统对于放大器的需求超出集成电路放大器的需求时,常常会利用分立式元件来实现这些特殊规格的运算放大器。 三:原理图的绘制及仿真

3.1原理图的绘制 首先在Cadence电路编辑器界面绘制原理图如下: 图3.1电路原理图 原理图中MOS管的参数如下表: Instance name Model W/m L/m Multiplier Library Cell name View name M1 nmosl 800n 500n 1 Gpdk180 nmos symbol M2 nmosl 800n 500n 1 Gpdk180 nmos symbol M3 pmosl 1.1u 550n 1 Gpdk180 pmos symbol M4 pmosl 1.1u 550n 1 Gpdk180 pmos symbol M5 nmosl 800n 500n 1 Gpdk180 nmos symbol

高频功率放大器的设计及仿真

东北大学秦皇岛分校电子信息系 综合课程设计 高频功率放大器的设计及仿真 专业名称电子信息工程 班级学号5081112 学生姓名姜昊昃 指导教师邱新芸 设计时间2011.06.20~2011.07.01

课程设计任务书 专业:电子信息工程学号:5081112学生姓名(签名): 设计题目:高频功率放大器的设计及仿真 一、设计实验条件 Multisim软件 二、设计任务及要求 1.设计一高频功率放大器,要求的技术指标为:输出功率Po≥125mW,工作 中心频率fo=6MHz,η>65%; 2.已知:电源供电为12V,负载电阻,RL=51Ω,晶体管用2N2219,其主要参 数:Pcm=1W,Icm=750mA,V CES=1.5V, f T=70MHz,hfe≥10,功率增益Ap≥13dB(20倍)。 三、设计报告的内容 1.设计题目与设计任务(设计任务书) 2.前言(绪论)(设计的目的、意义等) 3.设计主体(各部分设计内容、分析、结论等) 4.结束语(设计的收获、体会等) 5.参考资料 四、设计时间与安排 1、设计时间:2周 2、设计时间安排: 熟悉实验设备、收集资料:2 天 设计图纸、实验、计算、程序编写调试:4 天 编写课程设计报告:3 天 答辩:1 天

1.设计题目与设计任务(设计任务书) 1.1 设计题目 高频功率放大器的设计及仿真 1.2 设计任务 要求设计一个技术指标为输出功率Po≥125mW,工作中心频率fo=6MHz η>65%的高频功率放大器。 2. 前言(绪论) 我们通过“模电”课程知道,当输入信号为正弦波时放大器可以按照电流的导通角的不同,将其分为甲类、乙类、甲乙、丙类等工作状态。甲类放大器电流的导通角为360度,适用于小信号低功率放大;乙类放大器电流的导通角约等于180度;甲乙类放大器电流的导通角介于180度与360度之间;丙类放大器电流的导通角则小于180度。乙类和丙类都适用于大功率工作。 丙类工作状态的输出功率和效率是上述几种工作状态中最高的。高频功率放大器大多工作于丙类。但丙类放大器的电流波形失真太大,因而只能用于采用调谐回路作为负载的谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然极近于正弦波形,失真很小。 可是若仅仅是用一个功率放大器,不管是甲类或者丙类,都无法做到如此大的功率放大。 综上,确定此高频电路由两个模块组成:第一模块是两级甲类放大器;第二模块是一工作在丙类状态的谐振放大器,它作为功放输出级,最好能工作在临界状态。此时,输出交流功率达到最大,效率也较高,一般认为此工作状态为最佳工作状态。 3. 系统原理 3.1 高频功率放大器知识简介 在通信电路中,为了弥补信号在无线传输过程中的衰耗要求发射机具有较大的功率输出,通信距离越远,要求输出功率越大。为了获得足够大的高频输出功率,必须采用高频功率放大器。高频功率放大器是无线电发射设备的重要组成部分。在无线电信号发射过程中,发射机的振荡器产生的高频振荡信号功率很小,

运算放大器的电路仿真设计

运算放大器的电路仿真设计 一、电路课程设计目的 错误!深入理解运算放大器电路模型,了解典型运算放大器的功能,并仿真实现它的功能; 错误!掌握理想运算放大器的特点及分析方法(主要运用节点电压法分析); ○3熟悉掌握Multisim软件。 二、实验原理说明 (1)运算放大器是一种体积很小的集成电路元件,它包括输入端和输出端。它的类型包括:反向比例放大器、加法器、积分器、微分器、电 压跟随器、电源变换器等. (2) (3)理想运放的特点:根据理想运放的特点,可以得到两条原则: (a)“虚断”:由于理想运放,故输入端口的电流约为零,可近似视为断路,称为“虚断”。 (b)“虚短”:由于理想运放A,,即两输入端间电压约为零,可近似视为短路,称为“虚短”. 已知下图,求输出电压。

理论分析: 由题意可得:(列节点方程) 011(1)822A U U +-= 0111 ()0422 B U U +-= A B U U = 解得: 三、 电路设计内容与步骤 如上图所示设计仿真电路. 仿真电路图:

V18mV R11Ω R22Ω R32Ω R44Ω U2 DC 10MOhm 0.016 V + - U3 OPAMP_3T_VIRTUAL U1 DC 10MOhm 0.011 V + - 根据电压表的读数,, 与理论结果相同. 但在试验中,要注意把电压调成毫伏级别,否则结果误差会很大, 致结果没有任何意义。如图所示,电压单位为伏时的仿真结 果:V18 V R11Ω R22Ω R32Ω R44Ω U2 DC 10MOhm 6.458 V + - U3 OPAMP_3T_VIRTUAL U1 DC 10MOhm 4.305 V + - ,与理论结果相差甚远。 四、 实验注意事项 1)注意仿真中的运算放大器一般是上正下负,而我们常见的运放是上负下正,在仿真过程中要注意。

高输入阻抗放大电路的设计仿真与实现

课程设计任务书 学生姓名:专业班级:电信1101班 指导教师:工作单位:信息工程学院 题目: 高输入阻抗放大电路的设计仿真与实现 初始条件: 可选元件:运算放大器,三极管,电阻、电位器、电容、二极管若干,直流电源Vcc= +12V,V EE= -12V,或自选元器件。 可用仪器:示波器,万用表,直流稳压源,毫伏表等。 要求完成的主要任务: (1)设计任务 根据要求,完成对高输入阻抗放大电路的设计、装配与调试,鼓励自制稳压电源。(2)设计要求 ①电压增益>=100,输入信号频率<100HZ,共模抑制比≥60dB; ② 选择电路方案,完成对确定方案电路的设计; ③ 利用Proteus或Multisim仿真设计电路原理图,确定电路元件参数、掌握电 路工作原理并仿真实现系统功能; ④ 安装调试并按规范要求格式完成课程设计报告书; ⑤ 选做:利用仿真软件的PCB设计功能进行PCB设计。 时间安排: 1、前半周,完成仿真设计调试;并制作实物。 2、后半周,硬件调试,撰写、提交课程设计报告,进行验收和答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (3) 1.电路方案选择 (4) 2.高输入阻抗放大电路设计 (5) 2.1差分放大电路 (5) 2.1.1零点漂移 (5) 2.1.2差模信号与共模信号 (5) 2.1.3.共模抑制比 (6) 2.1.4差分放大电路的分析 (6) 2.2镜像恒流源 (7) 2.2.1镜像电流源电路特点 (8) 2.2.2镜像电流源电路分析 (8) 2.3同向比例放大电路 (8) 2.4电压串联负反馈 (9) 2.5电路原理设计图 (10) 3.直流稳压电源的设计 (10) 3.1理论分析 (10) 3.2原理图 (11) 3.3直流稳压电源仿真结果 (11) 4高输入阻抗放大电路仿真 (12) 5实物安装和调试 (17) 5.1布局焊接 (17) 5.2调试方法 (17) 5.3测试结果分析 (17) 5.4实物展示 (18) 6. PCB制作 (19) 7.个人总结 (23) 参考文献 (24)

可编程仪器放大器设计

可编程仪器放大器设计 ——低频电子线路课程设计实验报告 一.实验概述 采用通用运放LM324设计和模拟开关CD4051构成一个可编程增益放大器,其中放大器由仪器放大器(测量放大器)构成,增益控制部分由CD4051模拟开关和电阻构成。 二.技术指标 1.电压放大倍数:1.、2、4、8、16五档可控。 2.输入电阻:Ri>=100KΩ。 3.输入信号电压:正弦波,有效值50mv。 4.电源电压:±12v范围内可任选。 三.实验仪器 1.熟悉电路的工作原理。 2.根据技术指标通过分析计算确定电路行驶和元器件参数。 3.画出电路原理图(元器件标准化,电路图规范化)。 4.计算机仿真。 四.实验仪器 函数信号发生器、数字万用表、交流电压表、直流稳压源、LM324芯片、CD4051芯片、面包板、导线、电阻。 五.设计原理 1.模拟开关CD4051芯片 1)芯片管脚 CD4051芯片引脚图 2)芯片原理 CD4051芯片在电路中起模拟开关的作用,在电路中通过对开关A到G的控制实现对输入信号不同倍数的放大。 CD4051是单8通道数字控制模拟电子开关,有三个二进控制输入端A、B、C和INH输入,具有低导通阻抗和很低的截止漏电流。C、B、A依次为高、中、低位,控制X0到X7的输出。幅值为4.5~20V的数字信号可控制峰值至20V的模拟信号。这些开关电路在整个VDD-VSS和VDD-VEE电源范围内具有极低的静态功耗,与控制信

号的逻辑状态无关。当INH输入端=“1”时,所有的通道截止。三位二进制信号选通8通道中的一通道,可连接该输入端至输出。 3 2.放大电路LM324 1)芯片管脚 LM324芯片引脚图 2)芯片原理 LM324是一个四运算放大器。与单电源应用场合的标准运算放大器相比,它们有一些显著优点。该四放大器可以工作在低到3.0伏或者高到32伏的电源下,静态电流为MC1741的静态电流的五分之一。共模输入范围包括负电源,因而消除了在许多应用场合中采用外部偏置元件的必要性。每一个放大器有5个引出脚,其中“+”、“-”为

二级运算放大电路版图设计

1前言1 2二级运算放大器电路 1 2.1电路结构 1 2.2设计指标 2 3 Cadence仿真软件 3 3.1 schematic原理图绘制 3 3.2 生成测试电路 3 3.3 电路的仿真与分析 4 3.1.1直流仿真 4 3.1.2交流仿真 4 3.4 版图绘制 5 3.4.1差分对版图设计 6 3.4.2电流源版图设计 7 3.4.3负载MOS管版图设计 7 3.5 DRC & LVS版图验证 8 3.5.1 DRC验证 8 3.5.2 LVS验证 8 4结论 9 5参考文献 9

本文利用cadence软件简述了二级运算放大器的电路仿真和版图设计。以传统的二级运算放大器为例,在ADE电路仿真中实现0.16umCMOS工艺,输入直流电源为5v,直流电流源范围27~50uA,根据电路知识,设置各个MOS管合适的宽长比,调节弥勒电容的大小,进入stectre仿真使运放增益达到40db,截止带宽达到80MHz和相位裕度至少为60。。版图设计要求DRC验证0错误,LVS验证使电路图与提取的版图相匹配,观看输出报告,要求验证比对结果一一对应。 关键词:cadence仿真,设计指标,版图验证。 Abstract In this paper, the circuit simulation and layout design of two stage operational amplifier are briefly described by using cadence software. In the traditional two stage operational amplifier as an example, the realization of 0.16umCMOS technology in ADE circuit simulation, the input DC power supply 5V DC current source 27~50uA, according to the circuit knowledge, set up each MOS tube suitable ratio of width and length, the size of the capacitor into the regulation of Maitreya, the simulation of stectre amplifier gain reaches 40dB, the cut-off bandwidth reaches 80MHz and the phase margin of at least 60.. The layout design requires DRC to verify 0 errors, and LVS validation makes the circuit map matching the extracted layout, viewing the output report, and requiring verification to verify the comparison results one by one. Key words: cadence simulation, design index, layout verification.

心电放大器的设计与仿真

电子线路CAD短学期 设计报告 学院:电子信息学院 学号: 15041523 班级: 15040211 姓名:卢虎林 日期: 2017年3月11日

一、实验目的 通过一个实例来说明Pspice对设计方案和具体电路进行分析的过程,理解电路的自上而下的设计方法。 二、实验原理 设计一个心电图信号放大器。已知: (1)心电信号幅度在50μV~5mV之间,频率范围为0.032Hz~250Hz。 (2)人体内阻、检测电极板与皮肤的接触电阻(即信号源内阻)为几十千欧。 (3)放大器的输出电压最大值为-5V~+5V。 1、确定总体设计目标 由已知条件(1)可知该放大器的输入信号属于微弱信号,所要求的放大器应具有较高的电压增益和低噪声、低漂移特性。由已知条件(2)可知,为了减轻微弱心电信号源的负载,放大器必须有很高的输入阻抗。另外,为了减小人体接收的空间电磁场的各种信号(即共模信号),要求放大器应具有较高的共模抑制比。因此,最后决定的心电放大器的性能指标如下: 差模电压增益:1000(5V/5mV); 差模输入阻抗: >10MΩ; 共模抑制比:80dB; 通频带:0.05Hz~250Hz。 2、方案设计 根据性能指标要求,要采用多级放大电路,其中前置放大器的设计决定了输入阻抗,共模抑制比和噪声,可选用BiFET型运放,本设计采用了LF4111型运放(其中Avo=4 10 ,Rid≈4 10 Ω,Avc=2),由

于单极同相放大器的共模抑制比无法达到设计要求(可通过Pspice 仿真波形看出),本设计采用了由三个LF411型运放构成的仪用放大器。 第二级放大器的任务是进一步提高放大电路的电压增益,使总增益达到1000。其次为了消除高、低噪声,需要设计一个带通滤波器。因为滤波器没有特殊要求,本设计可采用较简单的一阶高通滤波器和一阶低通滤波器构成的带通滤波器。 3、详细设计 根据上述设计方案,确定了心电放大电路的原理图,如图5-1所示。A1、A2、A3及相应的电阻构成前置放大器,其差模增益被分配为40,其中A1、A2构成的差放被分配为16,其计算公式为:Avd1=(Vo1-Vo2)/Vi=(R1+R2+R3)/R1,Avd2=Vo3/(Vo1-Vo2)=- R6/R4=1.6。 为了避免输入端开路时放大器出现饱和状态,在两个输入端到地之间分别串接两个电阻R11、R22,其取值很大,以满足差模输入阻抗的要求。第二级由 A4及相应的电阻、电容构成。在通带内,其被分配的差模增益应为(1000/40=25),即 Avd3=vo/vo3=1+R10/R9=25 取R9=1KΩ,R10=24KΩ。C1、R8 构成高通滤波器,要求 f =0.05Hz。取R8=1MΩ,则可算出C1=4.58μF,取标称值电容 C1=4.7μF,算得fL=1/(2л C1 R8)=0.034Hz。C2,R10构成低通滤波器,要求f =200Hz。取R10=24KΩ,可算出C2=0.03316μF,取标称值电容C2=0.033μF,最后算出f =1/(2л C2 R10)=251.95Hz。可见满足带宽要求。

运算放大电路实验报告

实验报告 课程名称:电子电路设计与仿真 实验名称:集成运算放大器的运用 班级:计算机18-4班 姓名:祁金文 学号:5011214406

实验目的 1.通过实验,进一步理解集成运算放大器线性应用电路的特点。 2.掌握集成运算放大器基本线性应用电路的设计方法。 3.了解限幅放大器的转移特性以及转移特性曲线的绘制方法。 集成运算放大器放大电路概述 集成电路是一种将“管”和“路”紧密结合的器件,它以半导 体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、 二极管、电阻和电容等元件及它们之间的连线所组成的完整电路 制作在一起,使之具有特定的功能。集成放大电路最初多用于各 种模拟信号的运算(如比例、求和、求差、积分、微分……)上, 故被称为运算放大电路,简称集成运放。集成运放广泛用于模拟 信号的处理和产生电路之中,因其高性价能地价位,在大多数情 况下,已经取代了分立元件放大电路。 反相比例放大电路 输入输出关系: i o V R R V 12-=i R o V R R V R R V 1 212)1(-+=

输入电阻:Ri=R1 反相比例运算电路 反相加法运算电路 反相比例放大电路仿真电路图

压输入输出波形图 同相比例放大电路 输入输出关系: i o V R R V )1(12+=R o V R R V R R V 1 2i 12)1(-+=

输入电阻:Ri=∞ 输出电阻:Ro=0 同相比例放大电路仿真电路图 电压输入输出波形图

差动放大电路电路图 差动放大电路仿真电路图 五:实验步骤: 1.反相比例运算电路 (1)设计一个反相放大器,Au=-5V,Rf=10KΩ,供电电压为±12V。

实验一-仪器放大器设计与仿真

南昌大学实验报告 学生姓名:刘 阳 学 号: 6110116158 专业班级: 电子165 实验类型: □验证 □综合 ■设计 □创新实验日期:12.22实验成绩: 实验八仪器放大器设计与仿真 一、实验目的 1、掌握仪器放大器的设计方法 2、理解仪器放大器对共模信号的抑制能力 3、熟悉仪器放大器的调试功能 4、掌握虚拟仪器库中关于测试模拟电路仪器的使用方法,如示波器,信号发生器等虚拟仪器的使用 二、实验原理 下图是由三个集成运放构成的仪器放大器电路。其中,集成运放U2C 组成减法电路,即差值放大器,集成运放U2A 和U2B 各对其相应的信号源组成对称的同相放大器,且645321R R R R R R ===,,。

由于v -→v +,因而加在RG (即R7)两端的电压为 ,相应通过RG 的电流G l l G R v v i 21-=,由于-i 0,因而 当R 3=R 2=R 时, 对于U2C 而言,U2B 加在反相输入端,U2A 加在同相输入端,利用叠加原理,合成的输出电压: 25 4134o -o o v R R v R R v += 由于R3=R5,R4=R6,因而 仪器放大器的差模电压增益: 因此改变电阻的值可以改变仪器放大器的差值电压增益,此仪器放大器的增益是负的,要使增益为正的,则可在输出时加一个反相器,即可得到增益为正的仪器放大器。 三、实验器材 Multisim 虚拟仪器中的函数发生器、运算放大器、示波器。 四、实验内容 1、采用运算放大器设计并构建一起放大器: (1)输入信号u i =2sinwt(mV)时,要求输出电压信号u o =0.4sinwt(V), A vd =200,f=1kHZ ; (2)输入阻抗要求R i >1M Ω。 2、用虚拟仪器库中关于测试模拟电路仪器,按设计指标进行调试。 主要虚拟仪器中的函数发生器、运算放大器、示波器。

运算放大器的仿真实验

实 验 报 告 册 指导教师邱刚 课程名称模拟电子技术基础 实验名称集成运算放大器的设计 实验类型设计 学院名称电子与信息工程专业电子与信息工程 年级班级 2011级电信3班学生姓名赵明贵 学号 201107014314 成绩 2012年11月29日

实验四集成运算放大器的设计 运算放大器应用电路的设计与制作 一.实验目的 1.掌握运算放大器和滤波电路的基本工作原理; 2.掌握运用运算放大器实现滤波电路的原理方法; 3.会用Multisim10对电路进行仿真分析; 二.实验内容 1.讲解运算放大器和滤波电路的基本工作原理; 2.讲解用运算放大器实现滤波电路的原理方法; 3.用Multisim10对二阶有源低通滤波电路进行仿真分析; 三.实验仪器 Multisim10软件;电阻若干,导线若干,线路板一块,ua741运放两个,万用表,实验箱。 四.实验原理 集成运算放大器是高增益的直流放大器。在它的输入端和输出端之间加上不同的反馈网络,就可以实现各种不同的电路功能。可实现放大功能及加、减、微分、积分、对数、乘、除等模拟运算及其他非线性变换功能;将正、负两种反馈网络相结合,还可具有产生各种模拟信号的功能。 本实验着重以输入和输出之间施加线性负反馈网络后所具有的运算功能进行研究。理想运放在线性运用时具有以下重要特性: (1)理想运放的同相和反相输入端电流近似为零,即。 (2)理想运放在作线性放大时,两输入端电压近似相等,即:。 1.反相放大器 信号由反相端输入,电路如图3-1所示。在理想条件下,放大器的闭环增益。 增益要求确定之后,与的比值即确定,在选择其值时需注意:与不

运算放大器的设计与仿真

集成运算放大器放大电路仿真设计 1集成运算放大器放大电路概述 集成电路是一种将“管”和“路”紧密结合的器件,它以半导体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻和电容等元件及它们之间的连线所组成的完整电路制作在一起,使之具有特定的功能。集成放大电路最初多用于各种模拟信号的运算(如比例、求和、求差、积分、微分……)上,故被称为运算放大电路,简称集成运放。集成运放广泛用于模拟信号的处理和产生电路之中,因其高性价能地价位,在大多数情况下,已经取代了分立元件放大电路。 2 电路原理分析 2.1 电路如图1所示 R1 10kΩV1 500mV U1A TL082CD 3 2 4 8 1 R2 9.1kΩ RF 100kΩ V2 12 V V3 12 V XMM1 1 此电路为反向比例运算电路,这是电压并联负反馈电路。输入电压V1通过电阻R1作用于集成运放的反相输入端,故输出电压V0与V1反相。 图2 仿真结果图 输入输出关系理论输仿真输出值电路功能

其中 1 //2R RF R = 2.2电路如图3所示 R1 10kΩ Ui2 200mV U1A TL082CD 3 2 4 8 1 R24.7kΩ RF 100kΩ V212 V V312 V XMM1 Ui1 100mV R310kΩ 3 此电路为反相求和运算电路,其电路的多个输入信号均作用于集成运放的反相输入端,根据“虚短”和“虚断”的原则,0==p N u u ,节点N 的电流方程为F i i i =+31 所以)1 2 31( 0R Ui R Ui RF U +-= 输入输出关系 理论输出值 仿真输出值 电路功能 )1 2 31( 0R Ui R Ui RF U +-= -3V 2.999V 反相求和放大电路 其中RF R R R //3//12= 2.3电路如图5所示 出值 11 0V R RF V -= -5V -5V 反相比例运算电路

单管放大器的设计与仿真及误差分析

课程设计报告 题目:单管放大器的设计与仿真 学生姓名: 学生学号: 系别: 专业:电子信息工程 届别: 指导教师: 电气信息工程学院制 2013年3月

淮南师范学院电气信息工程学院2014届电子信息工程专业课程设计报告 目录 引言……………………………………………………………1任务与要求…………………………………………………2系统方案制定………………………………………………3系统方案设计与实现………………………………………4系统仿真和调试……………………………………………5数据分析……………………………………………………6总结…………………………………………………………7参考文献……………………………………………………8附录………………………………………………………… 第1 页

单管放大器的设计与仿真 学生: 指导教师: 电气信息工程学院电子信息工程专业 引言:放大现象存在于各种场合中,例如,利用放大镜放大微小的物体,这是光学中的放大;利用杠杆原理用小力移动重物,这是力学中的放大;利用变压器将低电压变换为高电压,这是电学中的放大。而作为电子电路中的放大晶体管放大器是放大电路的基础【1】,也是模拟电子技术、电工电子技术等课程的经典实验项目,实验内容涉及方面广泛。本文已常见的作为集成运放电路的中间级的共射放大电路为讨论对象,一方面,对具体包括模拟电路的一般设计步骤、单管共射放大电路设计方案的拟定、静态工作点的设置与电路元件参数的选取、放大电路性能指标的测量、稳定静态工作点的措施等做阐述。本文采用的是分压式电流负反馈偏置电路设计成的共发射极放大器,对分压式电流负反馈偏置电路能稳定静态工作点的原理作了说明,并将对晶体管放大器静态工作点的设置与调整方法、放大电路的性能指标与测试方法、放大器的调试技术做阐述。介绍模拟电子电路的一般设计方法和思路,以及Multsim 和Matlab软件的一些基本操作和仿真功能。

运算放大器构成的18种功能电路(带multisim仿真)

(1)反相比例放大器: 将输入加至反相端,同时将正相端子接地,由运放的虚短和虚断V U U 0==+-,又有102R U U R U U i -=---,得输出为:i U R R U 2 10-= 仿真电路为: 取:Ω==k R R 2221,tV U sin 21=,得到输出结果为:tV U sin 40-=输出波形为: (2)电压跟随器:

当同相比例放大器的增益为1时,可得到电压跟随器,其在两个电路的级联中具有隔离缓冲作用。可消除两级电路间的相互影响。 其仿真波形为: 取输入为4V,频率为1kHz的方波,得到输出结果为:

(3)同相比例放大器: 将INA133的2,5和1,3端子分别并联,以此运放作为基本放大器,反馈网络串联在输入回路中,且反馈电压正比于输入电压,引入串联电压负反馈。反馈电压1211U R R R U f += 由运放的虚短和虚断,有输出电压为:11 20)1(U R R U + = 其仿真电路为: 取tV U sin 21=,Ω==k R R 2212,得到结果为:tV U sin 60= 其输出波形为:

当方向比例放大器增益为1时可得到反相器电路,其仿真电路为: 取:tV U sin 21=,输出结果为:tV U U sin 210-=-= 仿真输出波形为:

将输入信号引至同相端,得到同相相加器 由INA133内置电阻设计如下电路,得到输出结果为:210U U U += 仿真电路为: 取tV U sin 21=,tV U sin 32=,由公式得到结果为:tV U sin 50= 仿真输出波形为:

基于Mulitisim的集成运算放大器应用电路仿真教材

电子课程实验报告题目:基于Mulitisim的集成运算放大器应用电路仿真

设计目的 1、集成运算放大电路当外部接入不同的线性或非线性元器件组成输入和负 反馈电路时,可以灵活地实现各种特定的函数关系,在线性应用方面,可组成比例、加法、减法、积分、微分等模拟运算电路。 2、本课程设计通过Mulitisim编写程序几种运算放大电路仿真程序,通过输 入不同类型与幅度的波形信号,测量输出波形信号对电路进行验证,并利用Protel软件对实现对积累运算放大电路的设计,并最终实现PC板图形式。 二、电路的理论知识 1.反相放大器 图1中所示的电路是最常见的运放电路,它显示出了如何在牺牲增益的条件下获得稳定,线性的放大器。标号为R f的反馈电阻用于将输出信号反馈作用于输入端,反馈电阻连接到负输入端表示电路为负反馈连接。输入电压V1通过输入电阻R1产生了一个输入电路i1。电压差△V加载在+、—输入端之间,放大器的正输入端接地。 图1 利用回路公式计算传输特性:

输入回路: V R i V ?+=111 (2) 反馈回路: V R i V f f out ?+-= (3) 求和节点 in f i i i +-=1 (4) 增益公式: V A V out ??-= (5) 由以上4个式子可以得到输出: Z R V Z i V in out /)/(/11-= (6) 式中,闭环阻抗Z=1/R f +1/AR f +1/R f 。 反馈电阻和输入电阻通常都较大)(Ωk 级,并且A 很大(大于100000),因此Z=1/R f 。更进一步,△V 通常很小(几微伏)且放大器的输入阻抗Z in 很大(大约ΩM 10),那么输入输入电流(I in =△V/Z in )非常小,可以认为为零。则传输曲线变为: 111)()/(V G V R R V f out -=-= (7) 式中,R f /R 1的比值称为闭环增益G ,负号表示输出反向。闭环增益可以通过选择两个电阻R f 和R 1来设定。 2.同相比例运放电路 同向比例运放电路组成如图2所示 ,将输入电阻R 1接地,并且将输入信号加载道+输入端。 图2 电压在通过由反馈电阻R f 和输入电阻R 1组成的分压电路的时候产生压降,中间位置的电压V -为: out f V R R R V ))/((11+=- (8) 根据理想运放的性质1,运放的输入电压△V 为零,因此V in =V -。重新排列公式

运算放大器参数的基本仿真方法示例(2nd edition)

运算放大器参数的基本仿真方法示例(2nd edition) 刘泰源,LTC1733 GROUP ROOM 237,SOC DESIGN CENTRE 目的:仿真一个两级的运放,熟悉模拟电路仿真软件的使用。 采用软件:workview ,hspice 2005.03 工艺库的说明:采用韩国MagnaChip 0.5umCMOS工艺库 对所采用电路描述:首先在workview中生成一个两级的运算放大器,并导出网表,第一级是差分的输入放大器,其作用是放大差模信号,抑制共模信号,第二级是一个共源放大器,提供更大的增益。在第一级里,m1、m2为差动输入管,m5提供由基准电压产生的偏置电流,m3、m4两管是一对电流镜,保证m3,m4两管为两个输入端提供相等的电流。第二级m8是负载管,m7是倒相器的输入管。 主要仿真的运算放大器特性: 增益,增益带宽,建立时间,摆率,ICMR,CMRR,PSRR,输出摆幅,失调电压 运放电路结构图: 图1运放电路

静态工作点的调节在整个模拟电路的设计中是非常重要的,因为不同功能的模块对器件的工作状态有不同的要求,在电路设计初期确定下的管子的工作状态就在这个阶段与以实现。实现的语句在hspice里面是.op语句。这个语句会在仿真生成的.lis文件里面形成一个关于管子工作状态的理解,查找.lis文件中的region关键字,就能找到各个管子工作点的列表。 静态工作点的调节: 采用的方法,先设计第一级的的工作点,再设计第二级的工作点。 第一级工作点设计要求五个管子都工作在饱和区,并且保证电路的对称,在vcc,in1,in2和bias上要加上适当的偏置电压。我设定的bias为 1.5v,in1=in2=2.5v,这个时候要注意调节各管子的宽长比使管子达到饱和,如果m3,m4是线形区,则应该调节减小m3,m4的宽长比,同时通过增加m5的宽长比增大偏置电流,如果m5处于线形区,则应该采取与上面所说的相反的方法,如果输入管处于线形区,要考虑输入的偏置电压是否合适,同时折中上面的调节方法。 在调整第一级进入管子都饱和后,加上第二级一起调整,目的是使两级的管子都进入饱和区,这里遇到的一个问题,就是第二级的两个管子很难同时到达饱和区,发现问题在于m3,m4管的vds太小,使第二级的m7管只能在线形区,减小m3,m4的宽长比和调节m5的偏置电流后,可以使两管都饱和。 在整个过程中,都需要保持偏置管和电流镜对管的对称性。 NOTE:(上述调节过程仅是一个参考,实际电路中BIAS电流不可能这么精确,所以,在实际情况中,调试电路的中的偏置电压更多的由实际偏置电路提供。) 1.开环增益: 1)输入差模信号,调节使各晶体管的工作点都处在饱和区,在输入端in1加入交流信号,in2加上偏置信号。 2)输入激励: vcc vcc 0 5 vbias bias 0 1.2 vin1 in1 0 2.5 vin2 in2 0 2.5 ac 1

音频功率放大电路设计(附仿真)

南昌大学实验报告 学生姓名: 学号: 专业班级: 实验类型:□验证□综合□设计□创新 实验日期: 实验成绩: 音频功率放大电路设计 一、设计任务 设计一小功率音频放大电路并进行仿真。 二、设计要求 已知条件:电源9±V 或12±V ;输入音频电压峰值为5mV ;8Ω/0.5W 扬声器;集成运算放大器(TL084);三极管(9012、9013);二极管(IN4148);电阻、电容若干 基本性能指标:P o ≥200mW (输出信号基本不失真);负载阻抗R L =8Ω;截 止频率f L =300Hz ,f H =3400Hz 扩展性能指标:P o ≥1W (功率管自选) 三、设计方案 音频功率放大电路基本组成框图如下: 音频功放组成框图 由于话筒的输出信号一般只有5mV 左右,通过话音放大器不失真地放大声音 信号,其输入阻抗应远大于话筒的输出阻抗;滤波器用来滤除语音频带以外的干扰信号;功率放大器在输出信号失真尽可能小的前提下,给负载R L (扬声器)提 供一定的输出功率。 应根据设计要求,合理分配各级电路的增益,功率计算应采用有效值。基于 运放TL084构建话音放大器与宽带滤波器,频率要求详见基本性能指标。功率放大器可采用使用最广泛的 OTL (Output Transformerless )功率放大电路和OCL (Output Capacitorless )功率放大电路,两者均采用甲乙类互补对称电路,这种功放电路在具有较高效率的同时,又兼顾交越失真小,输出波形好,在实际电路中得到了广泛的应用。

对于负载来说,OTL电路和OCL电路都是射极跟随器,且为双向跟随,它们利用射极跟随器的优点——低输出阻抗,提高了功放电路的带负载能力,这也正是输出级所必需的。由于射极跟随器的电压增益接近且小于1,所以,在OTL电路和OCL电路的输入端必须设有推动级,且为甲类工作状态,要求其能够送出完整的输出电压;又因为射极跟随器的电流增益很大,所以,它的功率增益也很大,这就同时要求推动级能够送出一定的电流。推动级可以采用晶体管共射电路,也可以采用集成运算放大电路,请自行查阅相关资料。 在Multisim软件仿真时,用峰值电压为5mV的正弦波信号代替话筒输出的语音信号;用性能相当的三极管替代9012和9013;用8 电阻替代扬声器。由于三极管(9012、9013)最大功率为500mW,要特别注意工作中三极管的功耗,过大会烧毁三极管,最好不超过400mW。如制作实物,因扬声器呈感性,易引起高频自激,在扬声器旁并入一容性网络(几十欧姆电阻串联100nF电容)可使等效负载呈阻性,改善负载为扬声器时的高频特性。 四、电路仿真与分析 黄色为输入信号,蓝色为输出信号。输出信号峰峰值放大,且波形基本不失真。 输出阻抗用8Ω电阻替代,输出功率为236mW>200mW

实验十一 基于Multisim的仪器放大器的使用

南昌大学实验报告 学生姓名:学号:专业班级:电子信息类班 实验类型:□验证□综合 设计□创新实验日期:2018.10.26 实验成绩: 实验十一基于Multisim的仪器放大器设计 一、实验目的 1、掌握仪器放大器的设计方法; 2、理解仪器放大器对共模信号的抑制能力; 3、熟悉仪器放大器的调试方法; 4、掌握虚拟仪器库中关于测试模拟电路仪器的使用方法,如示波器、毫伏表、信号发生器等虚拟仪器的使用。 二、实验原理 仪器放大器是用来放大差模信号的高精密度放大器,它具有很大的共模抑制比、极高的输入电阻,且其增益能在大范围内可调。如下图1所示,其中,集成运放U3组成差值放大器集成运放U1、U2组成对称的同相放大器,且R1=R2=R,R3=R5,R4=R6。此时,仪器放大器的差模电压增益Avf=-R4/R3(1+2R/RG)。 仪器放大器的共模抑制比主要取决于第一级集成运放U1、U2的对称性和各电路电阻的匹配精度。如果U1、U2对称,且各电阻值得匹配误差为+0.001%,则仪器放大器的共模抑制比可达到100dB以上。 由于采用了对称的同相放大器,因而仪器放大器两端具有相同的输入电阻,且其值可达到几百MΩ以上。 图1 三、实验设备与器件 Multisim虚拟仪器库中的函数发生器、毫伏表、示波器、集成运放、电阻等。

四、实验内容 1.采用运算放大器设计并构建一仪器放大器,具体指标为: a)输入信号Ui=2mV时,要求输出电压信号Uo=0.4V,Avd=200,f=1KHz; b)输入阻抗Ri>1MΩ。 2.用虚拟仪器库中关于测试模拟电路仪器,按设计指标进行调试。 实验步骤: ①算,由Avd=Avf=-R4/R3(1+2R/RG)=200确定各电阻阻值; ②图1连接好电路; ③打开仿真开关,调节函数发生器使万用表2的示数为2mV; ④调节示波器使输入输出波形都能很好显示; ⑤观察万用表1的示数。 图2 仪器放大器设计电路 测量结果:

实验十一 集成运算放大器电路仿真设计实验(参考报告)

实验三 集成运算放大器电路仿真设计实验(参考实验报告) 一、 实验目的(见实验指导书) 二、 实验设备(见实验指导书) 三、 实验原理(见实验指导书) 四、 实验内容(参考) 1、用μA741设计实现下列各种运算功能的电路,并完成各实验 (1)U o =4U i (注:根据公式U O = (1+1 R Rf )U i 、R 2=R 1∥R f 自己选定R 1、R 2、R f 参数) (注:U i 具体验证电压值自拟,但必须保证电压U O 低于运算放大器的工作电压±12V ) (2)U o =-2U i (注:根据公式U O = —Ui R Rf 1 、R 2=R 1∥R f 自己选定R 1、R 2、R f 参数) (注:U i 具体验证电压值自拟,但必须保证电压O 低于运算放大器的工作电压±12V )

(3)U o =-(U i1+U i2) (注:根据公式U o= —R f (2 2 11R U R U )、R 3= R 1∥R 2∥R f 自己选定R 1、R 2、R 3、R f 参数) (注:U 1、U 2具体验证电压值自拟,但必须保证电压U O 低于运算放大器的工作电压±12V ) 2﹑设计一个反相积分运算电路,将方波变换成三角波。 已知条件:方波幅值为2V ,周期为1ms 设计要求:三角波幅值为 1 V 。 (注:根据公式U o =-1/R 1C 1∫U i (t)dt 自己选定R 1、C 1参数;在实用电路中,为了防止低频信号增益过大,常在电容上并联一个电阻加以限制) 画出积分电路的输入和输出波形: 五、 总结和问题讨论(略)

用运算放大器组成万用表的设计 实验仿真

用运算放大器组成万用表的设计 一、 实验目的 综合利用所学知识,根据设计要求设计由运算放大器、二极管整流电流及电流表组成万用表电路图,搭出实际电路并组装调试,提高实验综合能力与实际动手能力。 熟悉万用表各种常见功能的测试电路原理与方法。 进一步体会运算放大器的应用,了解其优势。 二、 万用表工作原理 万用表基本功能包括测量直流电压与电流,交流电压与电流,以及电阻测量。用电表测量电路参数时电表的接入应不影响被测电路的原工作状态,这就要求电压表内阻无限大,电流表内阻为零。但实际上,万用表表头的可动线圈不可避免的有一定电阻,这将引起测量误差。此外,交流电表中的整流二极管的压降和非线性特性也会产生误差。在此试验中,根据运算放大器“虚断”与“虚短”的特点,使用运算放大器及相应电路组成一个具有基本功能的万用表,在很大程度上降低了上述误差,提高测量精度。此外更能得到实现自动调整线性刻度的欧姆表。 在实验中采用毫安表与运算放大器组成万用表,其基本原理是将交流量测量转化为直流量测量,将电压测量转化为电流测量,通过测量电流来实现万用表的测量功能,故此实验中最重要的是各转换电路,只需分析清楚各转化电路的作用及其工作原理就不难把握整个实验。 (1) 直流电压表 图1为直流电压表的原理图。 图1 图1仿真图 表头电流I 与被测电压Ui 的关系为: 1i R U I 应当指出:图1适用于测量电路与运算放大器共地的有关电路。此外,当被测电压较高时,在运放的输入端应设置衰减器。 (2) 直流电流表

图2 图2仿真图 表头电流I 与被测电流I1间关系为: -I1R1=(I1-I )R2 12 1 )I R R (1I + =∴ 可见,改变电阻比(R1/R2),可调节流过电流表的电流,以提高灵敏度。如果被测电流较大时,应给电流表表头并联分流电阻。 (3) 交流电压表 仿真图如图3

实验十一 基于multisim的仪器放大器设计

南昌大学实验报告 学生姓名: 学 号: 专业班级: 实验类型: □ 验证 □ 综合设计 □ 创新 实验日期: 实验成绩: 实验十一 基于multisim 的仪器放大器设计 实验目的 1.掌握仪器放大器的设计方法; 2.理解仪器放大器对共模信号的抑制能力; 3.掌握仪器放大器的调试方法; 4.掌握虚拟仪器库中关于测试模拟电路仪器的使用方法,如示波器、信号发生器等虚拟仪器的使用; 实验原理 仪表放大器电路的典型结构如右图所 示。它主要由两级差分放大器电路构成。 其中,运放A1,A2为同相差分输入方式, 同相输入可以大幅度提高电路的输入阻 抗,减小电路对微弱输入信号的衰减;差 分输入可以使电路只对差模信号放大,而 对共模输入信号只起跟随作用,使得送到 后级的差模信号与共模信号的幅值之比 (即共模抑制比CMRR)得到提高。这样在以 运放A3为核心部件组成的差分放大电路 中,在CMRR 要求不变情况下,可明显降 低对电阻R3和R4,Rf 和R5的精度匹配要求,从而使仪表放大器电路比简单的差分放大电路具有更好的共模抑制能力。在R1=R2,R3=R4,Rf=R5的条件下,图1电路的增益为:G=(1+2R1/Rg)(Rf/R3)。由公式可见,电路增益的调节可以通过改变Rg 阻值实现。 实验器材 741三片、电阻8只、万用表、示波器、函数信号发生器等 实验内容 1.采用运算放大器设计并构建一仪器放大器,指标如下: (1).输入信号i u =2mv 时,要求输出电压信号o u =0.4V ,Vd A =200,f=1kHz; (2)要求输入阻抗Ω>M R i 1; (3)共模抑制比的测量; 2.用虚拟仪器库中关于测试模拟电路仪器,按设计指标进行调试。 实验步骤 1.计算,由Vd A =vf A =-)/21(/4113R R R R f f +=200确定各电阻阻值(R=1f R 或2f R ); 2.按下图一和图二连接好电路图并设置各个元件的参数;

相关文档
最新文档