采样控制系统的分析报告

采样控制系统的分析报告
采样控制系统的分析报告

东南大学自动控制实验室

实验报告

课程名称:热工过程自动控制原理

实验名称:采样控制系统的分析

院(系):能源与环境学院专业:热能动力姓名:范永学学号:03013409 实验室:实验组别:

同组人员:实验时间:2015.12.15 评定成绩:审阅教师:

实验八 采样控制系统的分析

一、实验目的

1. 熟悉并掌握Simulink 的使用;

2. 通过本实验进一步理解香农定理和零阶保持器ZOH 的原理及其实现方法;

3. 研究开环增益K 和采样周期T 的变化对系统动态性能的影响;

二、实验原理

1. 采样定理

图2-1为信号的采样与恢复的方框图,图中X(t)是t 的连续信号,经采样开关采样后,变为离散信号)(*t x 。

图2-1 连续信号的采样与恢复

香农采样定理证明要使被采样后的离散信号X *(t)能不失真地恢复原有的连续信号X(t),其充分条件为:

max 2ωω≥S

式中S ω为采样的角频率,max ω为连续信号的最高角频率。由于T S πω2=

,因而式可为 m ax

ωπ≤

T T 为采样周期。

2. 采样控制系统性能的研究

图2-2为二阶采样控制系统的方块图。

图2-2

采样控制系统稳定的充要条件是其特征方程的根均位于Z 平面上以坐标原点为圆心的单位圆内,且这种系统的动、静态性能均只与采样周期T 有关。

由图2-2所示系统的开环脉冲传递函数为:

]2

5.05.01[)1(25])2(2[)1(25])15.0()1(25[)(21212++--=+-=+-==---S S S Z Z S S Z Z S S e Z z G S T

]5.015.0)

1([)1(25221T e Z Z Z Z Z TZ Z Z ---+----= )

)(1()]21()12[(5.122222T T T T e Z Z Te e Z e T --------++-= 闭环脉冲传递函数为: )]

21(]12[5.12)1()]21(12[5.12)()(222222222T T T T T T T T Te e Z e T e Z e Z Te e Z e T z R z C ----------++-+++---++-=)( 5

.12)5.1125()5.115.1325()]21(12[5.12222222++-+-+--++-=-----T e Z e T Z Te e Z e T T T T T T )(

根据上式,根据朱利判据可判别该采样控制系统否稳定,并可用迭代法求出该系统的阶跃输出响应。

三、实验设备:

装有Matlab 软件的PC 机一台

四、实验内容

1. 使用Simulink 仿真采样控制系统

2. 分别改变系统的开环增益K 和采样周期T S ,研究它们对系统动态性能及稳态精度的影响。

五、实验步骤

5-1. 验证香农采样定理

利用Simulink 搭建如下对象,如图2-3。

图2-3

设定正弦波的输入角频率w = 5,选择采样时间T分别为0.01s、0.1s和1s,观察输入输出波形,并结合香农定理说明原因,感兴趣的同学可以自选正弦波频率和采样时间T的值.。

5-2.采样系统的动态特性

利用Simulink搭建如下二阶系统对象,如图2-4。

当系统的增益K=10,采样周期T分别取为0.003s,0.03s,0.3s进行仿真实验。

更改增益K的值,令K=20,重复实验一次。

感兴趣的同学可以自己设定采样时间以及增益K的值,要求能够说明系统的动态特性即可。

系统对象simulink仿真图:

图2-4

六、实验数据及分析

5-1. 验证香农采样定理

Simulink所搭建对象,如上面图2-3所示。

1正弦波的输入角频率w = 5,采样时间T为0.01s时,输入输出波形为

由香农定理推导得 , =5=0.628,此时T=0.01<0.628,由采样图可知,能够完全复现原有连续信号。

2正弦波的输入角频率w = 5,采样时间T为0.1s时,输入输出波形为

由香农定理推导得 , =5=0.628,此时T=0.1<0.628,由采样图可知,虽然不能够完全复现原有连续信号,但已能够大致复现。

3正弦波的输入角频率w = 5,采样时间T为1s时,输入输出波形为

由香农定理推导得 , =5=0.628,此时T=1>0.628,由采样图可知,完全不能复现原有连续信号。

5-2.采样系统的动态特性

系统的增益K=10时,系统对象simulink仿真图如上面图2-4所示。

当系统的增益K=10,采样周期T取为0.003s时

此时由于采样周期小,频率高,输入输出曲线几乎重合。

当系统的增益K=10,采样周期T取为0.03s时

此时由于采样周期变大,频率变小,采样器的负作用变大,减低了系统的稳定性裕量,波动相对于理想值变大,但此时系统依旧稳定。

当系统的增益K=10,采样周期T取为0.3s时

此时由于采样周期很大,频率很小,使系统出现不稳定的现象。

系统的增益K=20时,系统对象simulink仿真图:

相关主题
相关文档
最新文档