电能计量装置错接线方式下更正系数的确定1

电能计量装置错接线方式下更正系数的确定1
电能计量装置错接线方式下更正系数的确定1

电能计量装置错接线方式下更正系数的确定

摘要电能计量装置的错误接线引起计量的不正确。本文提出了根据正确和错误接线所对应的功率表达式之比,来求取更正系数,最后确定应追回的少收电费。

关键词电能计量错接线更正系数确定

电能计量装置发现有错接线可能时,可以通过六角图测试法相量分析后来确定错接线方式。

例:某一错接线三相三线计量方式所对应的功率表达式:

P=ULIph[cos(90°+φa)+cos(30°+φc)]=31/2ULIphcos(60°+φ) 三相三线正确的功率表达式

P0=31/2ULIphcosφ

以上式中P为三相三线错接线所对应的计量功率;P0为正确接线所对应的计量功率;UL为线电压;Iph为相电流,cosφ为负载的功率因数,φa=φc=φ。

更正系数Gx=P0/P=(31/2ULIphcosφ)/[31/2ULIphcos(60°+φ)]=2/(1-31/2tgφ)

得出更正系数的表达式,还需确定负载的功率因数,才能确定更正系数,该方法存在二个问题,①负荷的功率因数难以确定,由于原有功、无功电量是错接线方式计量的电量,使用该数据计算得到的功率因数,显然是错误的。②计量电能表在正确的接线方式下,由于环境的温度、湿度、电压、频率、工作位置、外磁场、功率因数等影响量的变化,该表的误差特性曲线也会发生变化。那么,在错接线方式下的计量电能表,同样应该考虑由影响量变化引起的误差特性曲线的变化,尤其是当出现缺少一个驱动力矩的错接线方式时,由不平衡误差为主要部分的相对误差的变化值更大,为此本人采用标准电能表在现场实测错接线的更正系数来直接获取更正系数,来解决以上的两个问题。

1解决问题的实测方法

1.1当计量装置用TA、TV无损坏时产生的错接线时。首先,采用六角图测试法,对错接线进行相量分析,确定该电能计量装置的错接线方式,然后,保护其计量电能表的错接线状态。在该错接线方式下,若计量二次回路能够分离为正确二次接线和错误的二次接线,那么,使用等级精度不大于0.2级的计量电能表的作为标准电能表,接入正确的二次回路中,这样标准电能表所接入的接线方式是正确的电能计量接线方式,而计量电能表所接入的接线方式是错误的计量接线方式,用正确接线方式下的标准电能表来校验错误接线方式下的计量电能表的相对误差,通过计算就得到计量电能表错接线的更正系数。

1.2当计量用TA、TV被损坏时产生的错接线:

(1)用与1.1相同的方法确定错接线方式。

(2)调换被损坏的TA、TV,恢复正确的接线方式。

(3)根据确定的错接线方式,在联合接线盒与计量电能表接线盒二次接线模拟错接线方式。使计量电能表仍保持原来的错接线方式计量。而此时联合接线盒与TA、TV的二次接线端之间的二次接线为正确接线,使用与1.1相同的校验方法,就得到错接线方式的更正系数。

1.3当错误接线方式下,正确接线与错误接线无法同时在同一计量二次回路存在时,也就是当错接线存在时,正确的计量接线方式就无法恢复,或当计量二次接线被纠正为正确的线方式时,错误的接线方式就无法模拟时,采取六角图测试法,确定错接线方式,计算更正系数。然后,使用标准电能表,接入错接线方式下的计量回路中,用错接线方式下的标准电能表来校验错接线方式下的计量电能表的相对误差,通过计算可以得到该错接线方式的更正系数。当标准电能表接入错接线回路,若某一驱动元件发生倒走,即负力矩时,不管被检的计量电能表是否反转,为了保证标准表应有的准确度,则通过反接标准电能表电流的方法,

使之正转。注意标准表的最后读数应加上一个负号。

2实测方法的误差分析

设正确接线方式的标准表计量的功率为P0,错接线方式下的标准表计量的功率为P,错接线方式下计量电能表的功率P′,计量电能表存在计量误差时的更正系数为G′X,不存在计量误差时的更正系数为GX,那么用标准电能表在正确接线方式下校验错误接线下的计量电能表的相对误差为ε%时,更正系数的计算:

因为ε%=(P′-P0)/P0×100%

又G′X=P0/P′

所以ε%=[(P0/G′X)-P0]/P0×100%

ε%=(1/G′X)-1得G′X=1/(1+ε%)

以上表达式可以看出,该更正系数,包括二个方面:

(1)计量电能表由错接线方式引起的相对误差;

(2)错接线下计量电能表的相对误差。

用标准电能表在错接线方式下校验错接线方式下计量电能表的相对误差时,更正系数的计算:

ε%=(P′-P0)/P0×100%,P′=P(1+γ%)

G′X=P0/P′=P0/P(1+γ%)

由于GX=P0/P=1/(1+ε%)

则G′X=1/[(1+ε%)(1+γ%)

从以上表达式可以看出,该更正系数,包括二个方面:

(1)计量电能表由错接线方式引起的相对误差;

(2)错接线下计量电能表的相对误差。

3例证

某高供高计用户电能计量用TA变比100A/5A、TV变100kV/0.1kV、倍率2000。该用户开工生产后,发现其用电单耗明显少于同类企业的用电单耗,怀疑该用户存在计量装置错接线的可能和窃电的嫌疑,立即赴现场检查,计量柜封印都完好无损,排除人为窃电的可能,随后进行六角图测试,相量分析后,确定该电能计量装置的错接线方式为第一元件,第二元件即是A相电流反接造成的错接线的方式,相量图如图1所示。

根据错误接线方式计算确定更正系数,错误接线的功率表达式

P=UAB(-IA)[cos(180°+30°+φA)]+UCBIC[cos(30°-φC)]=UABIA[cos(30°+φA)]+UCBIC[cos(30°-φC)]=ULIphsinφGX=[31/2ULIphcosφ]/(ULIphsinφ)=31/2tgφ

现场实测(改正为正确接线时):cosφ=0.78tgφ=0.80GX=3.1/2/0.80=2.165 实测法:使用0.1级电子式标准电能表表,电能常数为8×10.6脉冲/kWh,被实测的计量电能表电能常数为1800r/kWh、等级1.0级,现场校验方法使用1.1实测方法,根据相量分析确定的电能计量装置的错接线方式,那么标准表A相电流需反接输入,才能使标准表的接线在正确接线方式下来校验错误接线下的计量电能表的相对误差来更正系数。

算得标准数=(标准电能表的方式常数×N)/被校电能表的常数=(8×106×N)/1800=4444.4×N

当N选定被检表10r或10个脉冲时,标准数=44444脉冲

实测标准数的脉冲为98100个脉冲根据电能表现场校验的相对误差的计算法,相对误差=(算得标准数-实测标准数)×N/实测标准数×100%

那么相对误差:

ε=(44444-98100)/98100×100%=-54.695%

被校电能表为1.0级,如误差按0.1计,则相对误差ε=-54.70%

GX=1(1+ε)=1/[1+(-54.70%)]=2.208

该电能计量表自投入运行以来,累计抄见示数为52个数字,累计电量为:

52×TA变比×TV变比=52×2000=104000(kWh)

由于该用户是新开工用户,那么可以判定错接线发生之日就为该用户的装表接电之日,那么该用户的退补方法按计算法为:

应补电量=GX×累计电量-累计电量

=(GX-1)×累计电量

=(2.165-1)×104000=121160(kWh)

按实测法为:

应补电量=GX×累计电量-累计电量

=(GX-1)×累计电量

=(2.208-1)×104000=125632(kWh)

比较两方法,可得到少补电量=125632-121160=4472(kWh),上述例子说明,通过实测法不仅可以挽回少补的电量损失,而主要的通过实测法还可以对计算法得到的更正系数进行验证,检验六角图相量分析法确定的错误接线,是否符合现场实际的情况,把握退补电量最后一关,确保退补电量工作万元一失。

4现场实测工作的注意事项

(1)现场实测工作至少由2人担任,严格遵守《安规》有关规定进行工作。

(2)实测时,现场的负荷必须达到《电能计量装置检验规》SD109-83规定的电能表现场检验条件。若现场运行的负载很不稳定,那么可以查阅该用户运行值班记录,选择一个负载曲线比较平坦的时段内进行实测,偶尔短时间的冲击负荷以及大负荷的起动,不是适合校验的。

(3)实测时,标准表的正确接线方式,必须是通过六角图测试法经相量分析后,确认为正确的标准接线方式时,才可用正确接线方式下的标准电能表,校验错接线方式下的计量电能表的相对误差,来获取更正系数。

5结论

由于电能表的错误接线,使电费收入减少。在改为正确接线后,利用本办法求得误差?ε,即更正系数,可以为电业部门挽回少收电费的损失。

本帖地址:https://www.360docs.net/doc/401171690.html,/DQ_BBS/dispbbs.asp?ID=402500

三相三线电能计量装置错误接线检查作业指导书.doc

三相三线有功电能表错误接线检查作业指导书 一、任务要求: 1、遵守安全工作规程,正确使用仪表; 2、画出向量图,描述故障错误; 3、列出各元件功率表达式及总的功率表达式; 4、求出更正系数 二、适用范围: 电压互感器采用两台单相互感器按V/v 0方式连接,电流互感器采用分开四线制连接方式。所接负载为一块三相三线有功电能表和一块三相三线(60°)无功电能表、电压回路阻抗对称的感性负载(容性负载的分析方法可类推)功率因数COS Φ>0.5(Φ<60°)。 三、配备工具: 一块数字式相位伏安表(仅提供一组电压测试线和一个电流钳)。 四、相关知识: (一)三相三线有功电能表正确接线的相量图 (二)正确功率表达式: )30cos(1u u uv I U P ?+?= )30cos(2w w wv I U P ?-?= ???cos 3)30cos()30cos( 210UI I U I U P P P w w wv u u uv =-?++?=+= )090:900:(οοοο≤≤-≤≤??容性时感性时 (三)电压互感器一次断线、二次断线、二次极性反接情况的电路分析。 1、电压互感器V 型接线一、二次断线时二次侧线电压数值表:

下表列出了当一次断和二次断电压时,二次侧各相与相间电压的数值。 序号故障 断线 情况 故障断线接线图 (实线为有功电能表, 虚线为无功电能表) 电压互感器一、二次断线时二次侧电压(V) 二次侧不接 电能表(空载) 二次侧接一只 有功电能表 二次侧接一只有功 电能表和一只无功电 能表 Uuv Uwv Uwu Uuv Uwv Uwu Uuv Uwv Uwu 1 一次 侧U 相断 相 0 100 100 0 100 100 50 100 50 2 一 次侧V 相断 相 50 50 100 50 50 100 50 50 100 3 一 次侧 W相 断相 100 0 100 100 0 100 100 33 67 4 二次 侧u相 断相 0 100 0 0 100 100 50 100 50 5 二 次侧 v相断 相 0 0 100 50 50 100 67 33 100 6 二 次侧w 相断 相 100 0 0 100 0 100 100 33 67

电能计量装置错误接线判断与分析

电能计量装置错误接线判断与分析 【摘要】电能计量装置错误的接线将会直接影响计量用电的精确性,本文以三相二元件接线为例针对用电计量装置接线错误的判断进行分析。 【关键词】电能表;错误接线;判断;反接 电能计量装置作为供电企业计收电量的重要工具,它的准确与否直接关系到供用电双方的经济利益,随着社会用电量日益增多,电能计量装置的准确性越来越受到人们重视。因电能表本身精确度的超差,一般造成电能表的误差可以很少,但因电能表的接线错误会导致整套计量装置少计、不计或反记的误差,将给供用电双方带来极大的经济损失。因此,为了保证电能计量装置的准确性,电能表必须做到接线正确,确保电能表在正确的接线状态下计量电量。 电能表的测量电路是由其端钮盒中的铜接头引入的,电流线路输入相电流,电压线路输入线电压。下面以三相二元件接线为例介绍电能表原理接线图和向量图。 1 电能表正确接线 在三相三线制电路中,不论对称与否,都可以采用两个功率表的方法测量三相功率,称为二瓦计法。下图是一种三相二元件接线方式,使线电流从*端分别流入两个功率表的电流线圈,它们的电压线圈的非*端共同接到非电流线圈所在的第三条端线上,两个功率表读数的代数和为三相三线制中电路吸收的平均功率。 设两个功率表的读书分别用P1和P2表示,则有P1=Re[ab*a*],P2=Re[cb*c*], 所以P1+P2=Re[ab*a*+cb*c*]=Uab*Ia*cos()+Ucb*Ic*cos()=UIcos 2 电能表错误接线分析 电能表的错误接线(包括断线)造成输入量的错误,将会导致电能表数的不正确,从而使电能计量失准。电能表错误接线的种类很多,一般包括:电压、电流回路短路或断路;电压、电流互感器极性接反;电能表的电压、电流元件相位错误等等。下面就几种常见的情况进行分析说明。 2.1 电压回路断线 假设a相电压回路断线,则测量第一元件,有Uab=0, P=P1+P2=Re[ab*a*+cb*c*]

电能计量装置选型与接线错误问题及处理措施探讨

电能计量装置选型与接线错误问题及处理措施探讨 发表时间:2019-03-25T16:48:36.937Z 来源:《基层建设》2018年第35期作者:朱成武孙溶森 [导读] 摘要:电能计量装置在现代社会发展中发挥着重要作用,同时电能计量装置选型与接线问题也变得越来越突出,如何做好电能计量装置选型与接线问题成为人们关注的焦点。 国网安徽省电力有限公司庐江县供电公司安徽庐江 231500 摘要:电能计量装置在现代社会发展中发挥着重要作用,同时电能计量装置选型与接线问题也变得越来越突出,如何做好电能计量装置选型与接线问题成为人们关注的焦点。本文首先对电能计量装置的相关概念以及发展趋势做了简单介绍,同时阐述了电力计量装置选型错误带来的问题并提出相应的解决措施,希望对相关人员有所帮助。 关键词:电能计量装置;接线错误;处理措施 1.电能计量装置的组成及分类 电能计量装置是连接电网与用电客户的桥梁,是实现对客户电能的计量的一种装置。对于低压用电,耗电量比较小,通常会采用直接接入式电表,这种接入方式误差会比较小,仅仅局限于电表本身产生的误差。相对于用电量较大的低压用户,在实际的过程中,则需要通过添加电流互感器。对于高压供电用户,电能计量表则需要接入电流、电压互感器。 电能计量装置,按照电能量的多少与计量的对象的主次程度,可以分成以下几类: 第一类是变压器容量为 10000 kVA 以上以及户月平均用电量 500 万 kWh 的高压计费用户,200 MW及以上发电机、发电企业上网电量、省级电网经营企业与其供电企业的供电关口计量点采用电能计量装置。第二类主要是2000 kVA 以上以及户月平均用电量 100 万 kWh 的高压计费用户,100 MW 及以上发电机、供电企业之间的电量交换点的电能计量装置。第三类主要是变压器容量在 315 kVA 及以上,用电量在 10 万 kWh 以上的计费用户采用电能计量装置。第四类主要是负荷容量在 315 kVA 以下的计费用户、考核用的电能计量装置。第五类主要是针对单相电力用户计费使用的电能计量装置。 2. 电力计量装置选型错误带来的问题及解决措施 2.1由于选型不正确导致的电能计量产生误差 电力计量装置的选型不正确。就必然会影响其使用效果。如果电力计量装置的安装现场为10kV 电能用户,采用正确的接线方式,为三相三线连接,电表的各项功能都能够得以发挥。但是,在实际操作中,就会存在互感器没有正确连接的现象。在电力计量装置的选型出现了错误,导致安装问题产生,影响了电表的正常运行。由于配置不正确,所安装的电表成为了三相四线制,导致计量误差是必然的。日常使用的电能计量装置产生故障,也多是由于接线不正确所导致的,二次回路的电压不稳定也是一个重要因素。 2.2电能计量误差的解决措施 (1)对错误加以确认。要对这些问题予以解决,需要采取的解决方式就是将错误原因查找出来,用公式计算出准确的接线方式。在处理电能差错时,要注意电能计量装置的检查人员、客户人员和电能用户都要到现场,将所存在的错误体现在书面报告中。 (2)追补电量。在追补电量的时候,需要将电能计量的差错告知电能用户,得到确认之后才可以进行追补。具体的操作中,设定三个电能用户为 A、B、C 电能用户的电能计量装置在选择性上不正确,可以通过安装三相三线且功能多样化的电能计量装置,将两者加以对比,以做好电量的追补工作。 A、B、C 电能用户的功率因各有不同,所产生的电量错误也各有不同。经过计算之后,就可以将更正系数计算出来,即 A、B、C 三个电能用户分别为 1.387、1.562、1.683。电流互感器的变化比例为 25:5;电压互感器的变化比例为10000:100,所获得的比值等于 500。通过电能计量化装置的自动化运行,就可以可以计算出 A、B、C 三个电能用户追补的电量为38.297kWh。其中,A 电能用户追补的电量为 13.256kWh;B 电能用户追补的电量为 10.508kWh;C 电能用户追补的电量为 14.461kWh。 3. 常见三相电能计量装置错误接线的带电检查和处理方法 电能计量装置包括电能表、电压互感器、电流互感、失压计时器、电能表箱(柜)、二次回路、计量终端等。为了能够使用电检查员、电能计量专业人员在现场找到并处理正确的处理问题,这里详细分析电能计量装置接线误差判断、分析及处理方法,对于单相电表的接线错误问题,由于接线简单,在此不作讨论。本文主要介绍了三相三线,三相四线通过互感器接入电能计量装置。由于三相三线电能表通过互感器接入,因为电压二次回路、电流两者组合在一起,加上极性反接和断线就有近一百多种错误接线方式,因此分析三相三线电能仪表的连接方法具有代表性,由于三相三线测量装置使用的是不完全星形连接,三相四线测量装置用于星形连接,因此两种不同的连接方式检查方法不同。下面详细介绍了两种接线方式的带电检查和处理方法。 3.1三相三线电能计量装置错误接线的带电检查和处理方法 第一步:确定电压序列:由于三相三线电能表采用的是两只电压互感器以及互感器连接组成的 V/V 接线,电压互感器的一次使用的是A-X-A-X 接线,二次使用 A-X-A-X 接线,第二、第三的 X-A 连接一起引出作为 b 相电压。具体检查方法:首先用相位伏安表或万用表找到 B 相的电压,将相位伏安表或万用表的档位选择电压,将表笔的一端接地,另一端连接测量的电压表 A,B,C 相电压端钮上测量它们电压,其中对接地电压为 0V 或接近 0V 的相位则判定为 B 相。将相位伏安表的档位选择 U1、U2 相电档,使用测试线以相位伏安表的U1、 U2 相电压公共端连接为 B 相,并与已找到的电能表 B 相电压端钮相连接,相位伏安表的 U1、U2 两端分别于电能表的另外两个电压端钮相连如果相位伏安表显示角度为 60°,则为逆相序,如果相位伏安表显示角度为 300°,则为正相序。第二步:相序更正:如果电压序列为逆相序,根据第一步骤判断的电压序列,将电能表的电压接线更换为 ABC 正相序。第三步:根据电压 UAB 查找 Ia,UCB 查找 Ic。首先,有必要确定该计量装置的负荷容性还是感性负荷以及潮流方向、功率因数。如果它是工业用户,则计量点位于用户侧进线柜中,潮流方向是流入在感性负载的情况下,例如UAB和IA 之间的角度大于30°小于120°,电流可以判断为A相,例如UCB和Ic之间的角度大于330°,小于 60°可以将电流判断为C相。UAB和Ia在容性负载的条件下小于30°大于300°,电流可以判断为A相,UCB 和Ic之间的角度大于30°,小于 120°,电流为 C 相。第四步:改正接线:根据上述步骤测得的 UAB 和 IA,UCB和Ic,IA,Ic 之间的夹角,分别确定电流IA,Ic,并将它们与电能表电流的进线接线 IA、Ic 端钮相接。 3.2三相四线的带电检查和处理方法 第一步:对电压零线进行确定:首先是将万用表选择电压档位,将万用表笔一端表笔接地,另外的一端分别测量仪表UA,UB,

分析电能计量装置故障及错误接线检查

分析电能计量装置故障及错误接线检查 摘要:近几年来,随着社会经济的迅速发展以及综合国力的不断增强,电力企 业的服务工作不断深化。而电能计量装置的使用,除了为电力企业的经济效益提 供保障外,还在很大程度上为用电客户提供了优质服务。在整个电能计量装置中,工作人员能否对其进行正确的接线,不仅关系着整个装置的运行,同时还关系着 整个电力系统的运行。 关键词:电能计量装置;故障;错误接线 一、电能计量装置故障及错误接线检查的重要性 第一,电能计量装置故障和错误接线问题,与用户利益息息相关。作为贸易 结算依据的电能计量装置若存在故障或者错误接线,势必造成计量失准,存在多 计量或少计量的情况,有违电能计量“公平、合理、准确”的宗旨,对用户权益造 成侵蚀,造成用户用电成本失真,影响用户效益效率。第二,电能计量装置故障 和错误接线问题,与电力企业经济技术指标和经济效益相互关联,若电能计量装 置存在故障和错误接线,将会影响供售电量的统计,难以准确记录电力用户的实 际用电情况,致使线损等相关指标统计失准失真,影响着交易的公平性,容易造 成服务事件,影响供电企业服务社会的形象。 二、电能计量装置要求 电能计量装置的根本目的在于准确的记录用电居民的准确用电量,避免偷电、漏电的现象发生。而在电能计量装置安装的过程中,必须符合以下几方面要求: 一是安装人员要仔细检查电能表及互感器,确保其误差在装置运行的范围内,以 此来保障电能表与互感器的顺利运行。二是在互感器以及电能表的运行中,工作 人员要对互感器的变比、性能以及组别进行仔细的观察,同时还要保障互感器及 电能表倍率的准确性。三是在电能计量装置的过程中,工作人员还要确保电能表 的铭牌数据与线路电压、电流、频率以及相序等保持一致。四是在装置安装的过 程中,其铭牌上都有规定的额定值,由此对电流、电压互感器的二次负载范围做 出了规定。与此同时,电压互感器二次导线降压不能超过额定电压的0.5%。 三、电能计量装置故障及处理 3.1常见故障 电能计量装置常见故障类型有电流互感器故障、电压互感器故障、二次回路 故障、电能表故障、互感器极性错误、电流电压相位不对应等。电流、电压互感 器故障主要有二次电流、电压不平衡;内部响声异常,出现滋滋响声等;油浸式 互感器渗油、油面过低、油色异常,电压互感器一次保险熔断等。二次回路故障 包括电压二次回路短路,电流互感器二次回路开路,二次回路接触不良,二次回 路接触电阻过大等。电能表故障分为显示故障、计量故障、外观故障,其中显示 故障分为黑屏、花屏、彩虹现象、残像和拖尾、断续显示、乱码、漏液、显示错 误等;计量故障分为误差超差、潜动、不启动、停走、组合误差超差、时段转换 错误等;外观故障包括螺钉生锈、面板/外壳变色、液晶模糊、按键接触不良等。 3.2故障处理 第一,选择高精度、稳定性好的多功能电能表,随着科技发展浪潮的不断推进,电子技术也得到了一定的发展,通过对多功能电子表进行分析,可知其运行 趋于稳定状态,而且误差基本处于可控范围内,无较大的浮动,多功能电子表具 有多种功能,比如电能计量、失压记录、追补电量等,且荷载力强、能耗低,在 电能计量装置中发挥着巨大的影响力;第二,减小互感器合成误差,在电流、电

电能计量装置错接线方式下更正系数的确定

电能计量装置错接线方式下更正系数的确定 摘要电能计量装置的错误接线引起计量的不正确。本文提出了根据正确和错误接线所对应的功率表达式之比,来求取更正系数,最后确定应追回的少收电费。 关键词电能计量错接线更正系数确定 电能计量装置发现有错接线可能时,可以通过六角图测试法相量分析后来确定错接线方式。 例:某一错接线三相三线计量方式所对应的功率表达式: P=ULIph[cos(90°+φa)+cos(30°+φc)]=31/2ULIphcos(60°+φ) 三相三线正确的功率表达式 P0=31/2ULIphcosφ 以上式中P为三相三线错接线所对应的计量功率;P0为正确接线所对应的计量功率;UL为线电压;Iph为相电流,cosφ为负载的功率因数,φa=φc=φ。 更正系数Gx=P0/P=(31/2ULIphcosφ)/[31/2ULIphcos(60°+φ)]=2/(1-31/2tgφ) 得出更正系数的表达式,还需确定负载的功率因数,才能确定更正系数,该方法存在二个问题,①负荷的功率因数难以确定,由于原有功、无功电量是错接线方式计量的电量,使用该数据计算得到的功率因数,显然是错误的。②计量电能表在正确的接线方式下,由于环境的温度、湿度、电压、频率、工作位置、外磁场、功率因数等影响量的变化,该表的误差特性曲线也会发生变化。那么,在错接线方式下的计量电能表,同样应该考虑由影响量变化引起的误差特性曲线的变化,尤其是当出现缺少一个驱动力矩的错接线方式时,由不平衡误差为主要部分的相对误差的变化值更大,为此本人采用标准电能表在现场实测错接线的更正系数来直接获取更正系数,来解决以上的两个问题。 1解决问题的实测方法 1.1当计量装置用TA、TV无损坏时产生的错接线时。首先,采用六角图测试法,对错接线进行相量分析,确定该电能计量装置的错接线方式,然后,保护其计量电能表的错接线状态。在该错接线方式下,若计量二次回路能够分离为正确二次接线和错误的二次接线,那么,使用等级精度不大于0.2级的计量电能表的作为标准电能表,接入正确的二次回路中,这样标准电能表所接入的接线方式是正确的电能计量接线方式,而计量电能表所接入的接线方式是错误的计量接线方式,用正确接线方式下的标准电能表来校验错误接线方式下的计量电能表的相对误差,通过计算就得到计量电能表错接线的更正系数。 1.2当计量用TA、TV被损坏时产生的错接线: (1)用与1.1相同的方法确定错接线方式。 (2)调换被损坏的TA、TV,恢复正确的接线方式。 (3)根据确定的错接线方式,在联合接线盒与计量电能表接线盒二次接线模拟错接线方式。使计量电能表仍保持原来的错接线方式计量。而此时联合接线盒与TA、TV的二次接线端之间的二次接线为正确接线,使用与1.1相同的校验方法,就得到错接线方式的更正系数。 1.3当错误接线方式下,正确接线与错误接线无法同时在同一计量二次回路存在时,也就是当错接线存在时,正确的计量接线方式就无法恢复,或当计量二次接线被纠正为正确的线方式时,错误的接线方式就无法模拟时,采取六角图测试法,确定错接线方式,计算更正系数。然后,使用标准电能表,接入错接线方式下的计量回路中,用错接线方式下的标准电能表来校验错接线方式下的计量电能表的相对误差,通过计算可以得到该错接线方式的更

电能计量装置错误接线检测与分析

电能计量装置错误接线检测与分析 电能计量装置在运行中经常会出现错误接线,错误接线会造成电量的差错、会出现不正确的计量或多或少,这样给用户或供电部门造成不必要的损失。电能计量装置正确接线是保证计量准确的必要条件。因此,电能计量装置接线检查也是一项很重要的任务。 标签:计量装置接线错误 电能表的计量准确性可以通过电能计量检定机构(国家授权由电力企业计量检定部门检定,一般是供电企业的计量中心)的校验得到保证,而现场接线的准确性,不仅取决于装表人员的工作责任心、业务水平及工作的熟练程度,而且由于电力客户法律、法规意识谈薄、有意窃电,致使计量装置错误接线,直接影响到计量的准确性。 对于现场接线的检查,一般采用电能表现场校验仪,采用六角图法检查分析判断,但其存在许多不足:①设备投资比较大、仪器较多、携带运输不方便;②接线较多、操作步骤复杂、使用不方便;③需提供操作电源,受现场环境影响较大;④当三相二元件有功电能表错误接线在48种以外时,仪器无法分析判断。为克服上述缺陷,我们在现场采用了手持式钳形相位表,对计量装置接线现场检查,依据现场检查结果进行分析判断,大大减少了投资和现场工作量,受到了现场检定人员的一致好评。使用该仪表可以在现场完成诸如感性、容性负荷的判别、电能表接线正确与否、电能表运行快慢判断、测量三相相序、判断变压器接线组别。可进行三相相电压、线电压、三相电流、相位差、相序及电阻的测量。 解决问题的实践过程描述 一、工作前,首先要完善好工作票制度和工作许可制度,认真填写好变电站第二种工作票,并履行好工作许可手续。完成后,可通过钳形相位表(以使用SMG2000相位表为例)?的相位测量档测量出三相负载的性质(阻性、感性、容性及相角)。 钳形相位表的使用方法: 1.将相位表的红笔和黑笔连线的另一端,按颜色分别插入相位表上标有“U1”的两侧插孔内。 2.将相位表电流卡钳连线的另一端,插入相位表上标有“I2”插孔内。此时应注意:使用相位表时I1和U2是一组,I2和U1是一组。 3.在使用相位表前应先对其进行“校准”。具体方法是:将相位表上的旋钮开关至“360°校”档。此时,相位表上的显示窗口应显示“360”,若显示值不是“360”时,可调节“W”校准螺丝,直至其显示值为“360”为止。

相位法对电能计量装置误接线分析..

3测量前准备工作 工作前,首先要完善好工作票制度和工作许可制度,认真填写好变电站第二种工作票,并履行好工作许可手续。完成后,可通过钳形相位表的相位测量档测量出三相负载的性质(阻性、感性、容性及相角)。 4.钳形相位表的使用方法(以使用SMG2000相位表为例) (1)将相位表的红笔和黑笔连线的另一端,按颜色分别插入相位表上标有“U1”的两侧插孔内。 (2)将相位表电流卡钳连线的另一端,插入相位表上标有“I2”插孔内。此时应注意:使用相位表时I1和U2是一组,I2和U1是一组。 (3)在使用相位表前应先对其进行“校准”。具体方法是:将相位表上的旋钮开关至“360°校”档。此时,相位表上的显示窗口应显示“360”,若显示值不是“360”时,可调节“W”校准螺丝,直至其显示值为“360”为止。 (4)在上述准备工作完成后,方可进行下一步的测量工作。 5.检查测量步骤 (1)电能计量装置外观检查:通过对电能计量装置外表、封印等的检查,初步判断电力客户是否依法用电,有无违约窃电现象。 (2)相关数据测量: ①三相相电压及线电压--用仪表的电压档可判断出电能表有无某元件失压、欠压现象; ②三相电流测量--用仪表的电流档,用钳表可依次测量出I1、I2、I1+I2的电流值,从而判断出电能表某相元件有无缺电流、电流反接或电流差现象; ③电压相序测量--用仪表的相位测量档测量接入电能表电压U12与U32之间的相位差,若为300°,则为正相序;若为60°,则为逆相序; ④接入电能表电流与电压间相位差测量--用仪表的相位测量档可测出U12与I1、I2之间的相位角及U32与I1、I2之间的相位角。 6.测量结果分析判断 通过所测结果,绘制出向量图,依据负载性质及功率因数范围,在图中定出b相位置(因三相二元件有功电能表中,b相不加电流即b相无电流)及a、c相位置,并依据三相相序判断出表头实际所加电压U12及U32,然后根据U12与I1、I2或U32与I1、I2间的相位关系,确定出实际表头所加电流,并准确判别出相位。据此可判断电能表二元件所加电压、电流错误接线形式,并写出电能表错误接线功率表达式,从而推算出错误接线更正系数,计算出实际电量。 7.工程实例 某10kV高压供电户,变压器总容量为2500kV A,装有150/5计量电流互感器两台、两相不完全星形接线,10/0.1kV电压互感器两台、V-V接线,三相二元件有功电能表一只。某日,电能表校表人员至现场检查,发现计量装置封印有伪造现象,电能表倒走。拆封后利用钳形相位表检测,测量数据如下: (1)实际负荷功率因数角φ=35°,为感性。 (2)电流测量值分别为:I1=3.5AI2=3.5AI1+I2=6A 因为这三个量的值不相等,其中一个量的值是其余任意一个量的倍,则说明有一相电流互感器极性接反了。 (3)电压测量值分别为:U12=102VU23=101VU31=100VU1=0VU2=102VU3=101V 因为在采用V/V形接法的电压二次回路里,规定的B相电压是要接地的,因此,对地为0V的那一相电压应该是B相电压,可判断出U1为B相电压. (4)相序测量:U12与U32间相位角为60° 因此可判断相序为逆相序。 (5)电压与电流间相位角测量值分别为:用钳形相位表的“φ”档测量各相电压对应电流的相位角。本例中所测得的相位角度为U12对I1为245°;U32对I1为185°;U12对I2为305°;U32

电能计量装置错误接线检查

目录 实例一错误现象为表尾电压正相序WUV;电流相序I u I w 方法一:使用相位表,采用对地测量电压的方法确定V 相电压,分析判断错误接线 方法二:使用相位表,采用不对地测量电压的方法,分析判断错误接线 方法三:利用在向量图上对电压电流进行分析,判断错误接线 实例二错误现象为表尾电压逆相序VUW;电流相序I u I w;U 相电流极性反 方法一:使用相位表,采用对地测量电压的方法确定V 相电压,分析判断错误接线 方法二:使用相位表,采用不对地测量电压的方法,分析判断错误接线 方法三:采用在相量图上对电压电流进行分析,判断错误接线 实例三错误现象为表尾电压正相序WUV;电流相序I w I u ;功率因数为容性 方法一:使用相位表,采用对地测量电压的方法确定V相电压,分析判断错误接线 方法二:使用相位表,采用不对地测量电压的方法确定V

相电压,分析判断错误接线 方法三:使用相位表,利用向量图分析判断错误接线 实例四错误现象为表尾电压逆相序UWV;电流相序I u I w ;电流W相极性反;功率因数为容性 方法一:使用相位表,采用对地测量电压的方法确定V相电压,分析判断错误接线 方法二:使用相位表,采用不对地测量电压的方法确定V 相电压,分析判断错误接线 方法三:使用相位表,利用向量图分析判断错误接线 实例五错误现象为表尾电压正相序VWU;电流相序I u I w ;TV二次侧U相极性反 方法一:使用相位伏安表测量数据,分析TV二次侧不断相极性反时的错误接线 方法二:使用相位伏安表测量数据,分析TV二次侧不断相极性反时的错误接线 方法三:使用相位伏安表测量数据,利用原理图分析TV二次侧不断相极性反时的错误接线 实例六错误现象为表尾电压逆相序UWV;电流相序I w I u ;W相电流极性反;TV二次侧W相极性反 方法一:使用相位表测量数据,分析TV二次侧不断相极性反时的错误接线 方法二:使用相位表测量数据,分析TV二次侧不断相极性反

电能计量装置错误接线测试例题种

电能计量装置错误接线 测试例题种 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

电能计量装置错误接线测试例题 1、错误接线情况:U abc 、-I a 、I c U 2 = 0 V(接地) 当负载为感性时,相位表如下: 2、错误接线情况:U abc 、I a 、-I c U 2 = 0 V(接地) 当负载为感性时,相位表如下: 3、错误接线情况:U abc 、-I a 、-I c U 2 = 0 V(接地) 当负载为感性时,相位表如下: 4、错误接线情况:U abc 、I c 、I a U 2 = 0 V(接地) 当负载为感性时,相位表如下:

5、错误接线情况:U abc 、-I c 、I a U 2 = 0 V(接地) 当负载为感性时,相位表如下: 6、错误接线情况:U abc 、I c 、-I a U 2 = 0 V(接地) 当负载为感性时,相位表如下: 7、错误接线情况:U abc 、-I c 、-I a U 2 = 0 V(接地) 当负载为感性时,相位表如下: 8、错误接线情况:U bca 、-I a 、I c U 1 = 0 V(接地) 当负载为感性时,相位表如下:

9、错误接线情况:U bca 、I a 、-I c U 1 = 0 V(接地) 当负载为感性时,相位表如下: 10、错误接线情况:U bca 、-I a 、-I c U 1 = 0 V(接地) 当负载为感性时,相位表如下: 11、错误接线情况:U bca 、I c 、I a U 1 = 0 V(接地) 当负载为感性时,相位表如下: 12、错误接线情况:U bca 、-I c 、I a U 1 = 0 V(接地) 当负载为感性时,相位表如下: 13、错误接线情况:U bca 、I c 、-I a

电能计量装置错误接线判断方法(2013.6.4)

第一章电能计量装置计量准确要素 一、选择正确的计量方式 (一)变压器中性点接地方式 1中性点有效接地系统 中性点有效接地系统指变压器中性点直接接地,也称中性点直接接地系统,目前我国低压220V、110kV、220kV、330kV、500kV、1000kV等电压等级主要采用中性点有效接地系统,其接线方式如下: 2中性点绝缘系统 中性点绝缘系统指变压器中性点不接地,在我国6kV 和10kV电压等级多采用中性点绝缘系统,其接线方式如下:

3中性点谐振接地系统 中性点谐振接地系统指变压器中性点经消弧线圈(高阻抗)接地,在我国35kV多采用谐振接地系统,其接线方式如下: 4经电阻接地系统 经电阻接地系统指变压器中性点经过电阻接地,目前较少采用。 (二)电能计量方式与中性点接地方式 电能计量计量方式与电力系统中性点接地方式密切相关,计量方式不合理,会带来较大的线路附加计量误差。

1.中性点绝缘系统 电能计量装置应采用三相三线电能计量方式。采用三相 三线接线计量时,电能表测量功率c cb a ab i u i u p +=', 无论负载对称与否0=++c b a i i i ,线路附加计量误差: % 0%100)()(%100)()(%100])([)(%100)()(%100'(%)00=?+++-+=?+++---+= ?+++--+-+= ?++++-+= ?-= c c b b a a c cb a ab c cb a ab c c b b a a c c c b a b a a c cb a ab c c b b a a c c c a b a a c cb a ab c c b b a a c c b b a a c cb a ab i u i u i u i u i u i u i u i u i u i u i u i u i u i u i u i u i u i u i u i u i i u i u i u i u i u i u i u i u i u i u i u i u p p p r 从以上分析可以看出,无论负载对称与否,测量功率和负载功率依然保持一致,因此无任何线路附加计量误差。 2.中性点有效接地系统 电能计量装置应采用三相四线电能计量方式。 三相四线电路的负载功率c c b b a a i u i u i u p '+'+'=0

电能计量装置接线检查操作实施细则

2011年聊城供电公司 电能计量装置接线检查操作实施细则 2011年4月8日

1.比赛项目和内容 高压三相三线有功电能表现场接线检查 2.比赛程序和规则 2.1 比赛程序 2.1.1 抽签:确定选手参赛顺序和比赛所用模拟装置 2.1.2 按抽签顺序进行高压三相三线有功电能表现场接线检查技术比武 2.1.3 进行高压三相三线有功电能表现场接线检查技术比武的程序 2.1. 3.1 由技术组按照比赛题目在模拟装置上设置接线方式(三相电压、电流对称,负载性质为感性,功率因数角范围为0°~ 60°,电压互感器 V/v接线,电压V相接地,接线盒至电能表接线正确)。 2.1. 3.2 参赛选手携带仪表、工具按所抽模拟装置号进入比赛现场,裁判员发给“电能表现场接线检查记录”及计算用纸,参赛选手准备好后由总裁判发令比赛开始,裁判员开始计时,选手开始操作。 2.1. 3.3 参赛选手填写记录,根据测得数据画出错误接线相量图,写出检查判断结果,算出更正系数。 2.1. 3.4 参赛选手将试验接线盒复原并加封,交上记录,清理现场后报告裁判操作完毕,裁判员停止计时,参赛选手撤离现场。 2.2 比赛规则 2.2.1 选手实际操作时间为20分钟。 2.2.2 比赛前,由组委会统一安排选手集体熟悉比赛场地、比赛设施。 2.2.3 接线检查的方法不限,可以使用电压表、电流表、相序表、相位伏安表(不含相量图)、万用表,但不能使用三相测试仪器。 2.2.4 记录填写应使用蓝黑色钢笔或签字笔。

2.2.5 比赛过程中,不准查阅规程、资料等,裁判人员对选手提问一般不做解答。2.2.6 比赛过程中,如果赛场准备的电源、模拟盘等发生故障,排除故障时间扣除。选手自带的仪表、工具、接线等问题影响操作时,选手自行处理解决,时间不扣。 2.2.7 比赛中,遵守有关安全规定,保证人身及仪器、设备的安全。 3. 评分标准:质量分评分标准见附录。 4. 使用的设备、器材 4.1 高低压电能计量现场模拟装置二台(每台二人同时操作比赛),安装电能表为DSSD 型三相三线多功能电能表。 4.2 电子秒表5只。 4.3 “电能表现场接线检查记录”50份及计算用纸若干。 4.4 接线检查所用测量仪表、工具及计算绘图所用文具由参赛选手自备。 5.各项成绩折算比例和速度分计算方法 5.1实际操作总分120分,(其中操作质量100分,操作速度20分) 5.2实际操作速度分计算方法: 速度分=(20-自身时间)/(20-最快选手时间)×20

电能计量装置故障及错误接线检查分析

电能计量装置故障及错误接线检查分析 发表时间:2018-06-19T10:47:00.483Z 来源:《电力设备》2018年第4期作者:姜婉1 周建祥2 [导读] 摘要:电能计量装置故障和错误接线检查是防范计量装置故障和错误发生的根本和有效途径,是提升计量装置准确率、可靠率、可用率的强有力手段,同时对供电企业降低电能损耗、提升供电企业经济效益有着重要的意义。 (1国网本溪供电公司辽宁 117000;2国网营口供电公司辽宁 115000) 摘要:电能计量装置故障和错误接线检查是防范计量装置故障和错误发生的根本和有效途径,是提升计量装置准确率、可靠率、可用率的强有力手段,同时对供电企业降低电能损耗、提升供电企业经济效益有着重要的意义。本文根据笔者工作实践,对电能计量装置故障及错误接线检查进行了分析和探讨。 关键词:电能;计量装置;故障;错误接线 1 电能计量装置故障及错误接线检查的重要性 第一,电能计量装置故障和错误接线问题,与用户利益息息相关。作为贸易结算依据的电能计量装置若存在故障或者错误接线,势必造成计量失准,存在多计量或少计量的情况,有违电能计量“公平、合理、准确”的宗旨,对用户权益造成侵蚀,造成用户用电成本失真,影响用户效益效率。第二,电能计量装置故障和错误接线问题,与电力企业经济技术指标和经济效益相互关联,若电能计量装置存在故障和错误接线,将会影响供售电量的统计,难以准确记录电力用户的实际用电情况,致使线损等相关指标统计失准失真,影响着交易的公平性,容易造成优质服务事件,影响供电企业服务社会的形象。 2准备工作 在对电能计量装置故障及错误接线进行检查前,必须做好相关准备工作,准备有关电能计量装置的信息资料,如被检查的电能表规格、等级、表号、检定日期、检定人员、安装日期、上次抄表度数等;互感器的出厂编号、等级、检定日期、检定人员、铭牌变比、实际变比、封表箱的铅封号等,以便现场核对判断。还要准备钳形万用表、相序表、秒表,有条件的可准备相位伏安表或者现场校验仪等,另外在系统中调出用户近几个月的用电相关信息,以作为对故障的初步判断提供依据。 3 电能计量装置故障及错误接线检查措施 在实际检查过程中主要有以下方法及步骤: 3.1 外观检查及表计参数查看法 到达现场后对计量装置要做以下工作:第一,进行装置的封闭性检查、确认,检查计量屏(柜、箱)、端子排、联合接线盒、电能表端子盖、电流、电压互感器柜门、端钮盒封印是否齐全、完整;第二,对电流、电压互感器外观、表计显示界面进行检查,是否有破损、黑屏、按键失灵、异常响声、显示模糊、有无报警、异常代码显示等情况;第三,对电能表、电流电压互感器资产条码与所抄录系统条码进行核对,是否一致;第四,核对计量装置倍率与系统等级倍率,是否存在异常;第五,对表计运行参数进行检查,查看当前电流、电压、功率因数、功率等是否和现场运行负载情况相符;第六,查看表计电量、最大需量、失压、失流、编程、表计日期、时间进行检查,与所准备的数据记录进行比对等,来进行初步进行判断计量装置是否存在故障或错误接线情况。 3.2 力矩法 对于三相三线接线方式的电能计量装置利用力矩法来判断计量装置接线是否正确,如果三相电路对称,而且在测得三相电压相序为正相序和了解负荷性质的情况下,将电能表的接线端钮盒B相电压抽出或者在联合接线盒上断开B相电压回路,如目测机械表计转盘转慢一半或者是电子表脉冲闪烁频率慢了一半,则说明此时电能表接线正确,若表计的转盘或脉冲未转慢或闪烁未慢一半的话,则该计量装置存在错误接线情况。 3.3 分相断电压法和分相短接电流法 对于三相四线电能计量装置,我们可以采用分相断电压和分相短电流的方法来验证计量装置是否接线正确,在电能表端钮盒或联合接线盒处分别短接A、B、C相电流的进出线或断开A、B、C相电压,看机械电能表转盘转动的快慢和电子式电能表脉冲闪烁的快慢,如果负荷比较稳定且平衡时,当短接一相电流或断开一相电压,电表转速或脉冲闪烁快慢应为未断开或短接前的2/3,若在此情况下电能表转动或闪烁不慢反快,则说明该相存在电流反向的情况,当短接两相电流或断开两相电压,电表转速或脉冲闪烁快慢为未断开或短接前的1/3,若此时电能表停止了转动,则说明未断开或未短接相存在电压回路断路或电流回路断路的异常情况。 3.4 电能表现场校验法 在条件允许的情况下,我们可以通过电能现场校验仪来查看二次回路接线是否正确,同时可对电能表误差进行初步判断,利用现场校验仪进行现场校验,必须满足现场实际负荷不小于表计标定电流的10%,功率因数不低于0.5,电压满足现场条件,且负荷相对稳定;我们可以通过校验仪清楚看到电能计量装置的相量图和计量表计的误差,根据相量图来判断是否存在错误接线情况,根据表计误差和表计的准确度等级来判断表计是否存在超差情况,在现场校验时,不允许调整表计的误差。 3.5 相位伏安法 当以上方法均无法判断计量装置的故障或错误接线,我们可以采用相位伏安法,也称相量图法来进行判断,使用此法要求三相电压基本对称,负载电流、电压稳定,知道负载的性质及功率因数的大概范围,具体方法及步骤如下: 3.5.1 运行表计各元件电压测量:三相四线表计 U2:U5:U8:三相三线表计 U24:U64:在此处应注意,当计量装置三相三线接线时正常时,三个线电压Uab=Ubc=Uca=100V,如果测出的结果是Uab=0,Ubc=Uca=100V,则说明A相电压断开,Uab=Ubc=50V,Uca =100V,则说明B相电压断开,Uab=Uca=100V,Ubc=0,则说明C相电压断开。失压的原因可能是电压线圈损坏或电压回路接触不好等,当测得Uab=Ubc=100V,Uca=173V时,电压互感器A、C相有一相二次极性接反。 3.5.2 运行表计各元件电流测量: 三相四线表计 I1:I2:I3: 三相三线表计 I1:I2: 3.5.3 用相序表测定三相电压相序。根据所测定的电压和相序,找出的B相电压,确定其余两个电压端钮连接的电压线所属相别。 3.5.4 运行表计各元件电压、电流间相位角测量:三相四线表计 ?1:?2:?3:三相三线表计 ?1:?2:

三相三线电能表误接线对计量的影响分析

【摘要】三相三线电能表是在电力计量需求发展以及计量技术进步的条件下,在电力系统运行中应用的一种新计量装置。应用三相三线电能表在进行电能情况的计量过程中,由于电力系统中的电流互感器的相序以及极性错误问题,会容易造成三相三线电能表在进行接线计量应用中,出现误接线问题,从而对于电能表计量装置的计量结果造成一定的不利影响。本文将结合计量装置的计量准确性的重要作用意义,根据三相三线电能表误接线问题的具体情况,对于三相三线电能表误接线问题的计量影响进行分析论述,以提高三相三线电能表计量准确性。 【关键词】三相三线;电能表;误接线;计量结果;准确性 在电力运营中,电能计量装置的计量准确性对于电力企业以及电力用户的利益都有很大的影响,并且在一定程度上电能计量装置的电能计量结果准确性还对于电力能源的合理利用也具有一定的影响和作用。三相三线电能表是一种新型的电能计量装置,它多应用于10千伏以及以上的电压系统供电计量中。通常情况下,进行三相三线电能表的接线计量方法相对比较简单,但是在进行三相三线电能表接线过程中,由于电能计量装置中还带有电压互感器以及电流互感器,因此,在进行三相三线电能表安装接线过程中,就容易因为安装接线上的疏忽造成电能表误接线问题出现。通常情况下,三相三线电能表安装接线过程中,一旦出现误接线问题就容易导致电能表的电能计量结果存在误差和不准确情况,对于电能表的正常计量运转也会存在一定的影响,会出现不转动或者是反转情况。本文将结合三相三线电能表安装接线中可能发生的误接线问题与情况,对于电能表误接线问题的计量影响进行分析论述。 1.三相三线电能表误接线问题分析 通常情况下,在进行三相三线电能表等电能计量装置的安装过程中,电能表的安装接线过程比较简单,但是由于三相三线电能表是与电压互感器、电流互感器等连接在一起的,因此,在进行电能表的安装接线过程中,就会由于安装接线过程中疏忽问题,或者是对于电压互感器以及电流互感器的安装接线错误,直接影响到三相三线电能表的安装接线问题,导致误接线问题出现。三相三线电能表安装接线过程中,一旦出现误接线问题,就会表现为电能表运转过程中出现不转动或者是反转动情况,甚至会随着电压功率变化一会反转一会正转,但是不管是哪种情况的电能表转动,其转动计量的结果都是不准确的,具有较大的误差性。 其次,三相三线电能表在计量运转过程中,是与电压互感器以及电流互感器连接在一起的,而电压互感器的电压相序可以根据相序表进行判断,因此计量运转过程中出现错误的几率比较小,进行电力互感器安装接线过程中,一旦将电流互感器的二次接线连接错误,也容易造成电能表不转动或者是反向转动,但是,即使是电能表进行正方向的转动,转动计量的结果也是不准确的。 2.三相三线电能表误接线的计量影响分析 根据上示的三相三线电能表计量装置系统中的电流以及电压关系情况,在进行三相三线电能计量装置安装接线过程中,正确的线路连接方法为:首先,将有功电能表的第一元件线路接入到ua、ub和ia中,同时将有功电能表的第二元件接入到uc、ub和ic中;但是如果进行电能表的安装接线过程中,角度差额为60度时,对于无功电能表的线路连接正确的方法为,电能表的第一元件接入到ub、uc和ia中,第二元件接入到ua、uc和ic中,并且根据电能表的这一接线方式,就可以对于电力线路系统中电能表的有功功率p以及无功功率q进行计算求得。 根据上述三相三线电能表的安装接线原理以及公式结论,就可以对于不同安装接线环境下,电能表的安装接线正确方式以及电能表功率结果进行分析计算出,以用于对于电能表误接线情况下对于计量结果的影响分析。 2.1 电能表ac两相元件误接线影响分析

电能计量装置设计与现场检查课程设计

电能计量装置设计与现场检查课程设计 目的:通过对电能计量装置的合理设计与现场检查,可以减少计量差错和用户窃电的可能,对降低供电企业线损,提高经济效益有着重要的作用任务:自行查找有关电能计量装置原理的资料,并查阅其它相关信息,要求分析:电能计量装置的关键元件(流互的型号、接线方式,二次回路连接导线等)的选择与误差分析、对电能计量装置的巡视检查项目及解决措施。 一、计量装置设计1、计量装置的设置a) 发电站上网关口计量点一般设在产权分界处,如发电站与电网公司产权分界点在发电站侧的,应在发电站出线侧、发电机升压变高压侧(对三圈变增加中压侧)、启备变高压侧均按贸易结算的要求设置计量点。b) 局考核所属各供电所供电量的关口点一般设在35kV变电站的主变高压侧;所属各供电所相互间供电量的计量关口点一般设置在产权分界处。c) 其他贸易结算用计量点,设置在产权分界处。d)考虑到旁路代供的情况,各关口计量点的旁路也作为关口计量点。e) 10KV及以上电压供电的用户应配置防窃电高压计量装置,在用电客户配电线路高压计量装置前端T接口装设隔离刀闸,方便外校及处理计量装置的故障。2、计量方式对于非中性点绝缘系统的关口电能计量装置采用三相四线的计量方式,对于中性点绝缘系统的关口电能计量装置应采用三相三线的计量方式。3、电能表的配置a) 同一关口计量点应装设两只相同型号、相同规格、相同等级的电子式多功能电能表,其中一只定义为主

表,一只定义为副表。b) 安装于局所属变电站内电能表应具有供停电时抄表和通信用的辅助电源。c) 关口计量点应装设能计量正向和反向有功电量以及四象限无功电量的电能表。d) 电能表的标定电流值应根据电流互感器二次额定电流值进行选择,电能表的标定电流值不得大于电流互感器二次额定电流值。电能表的最大电流值应选择4倍及以上标定电流值。e) 10kV及以上贸易结算计量点,应配置具有失压报警计时功能的电能表或失压计时仪。4、互感器的配置a) 电压互感器选型应满足《广西电网公司系统主要电气设备选型原则》要求,110kV及以下计量用电压互感器应选用呈容性的电磁式电压互感器。b) 电压互感器二次应有独立的计量专用绕组。根据需要,宜选用具有四个二次绕组的电压互感器,即:计量绕组、测量绕组、保护绕组和剩余绕组。c) 电压互感器二次额定容量的选择参考下表选择: TV二次负荷核算值(VA) 0~10 10~20 20~30 30~50 50~70 70VA以上TV额定二次负荷取值(VA) 20 30 50 75 100 按1.5倍取对TV二次负荷处于0~10VA较小值时,考虑到选用过小的额定二次容量,不利于保证电压互感器的产品质量,电压互感器计量绕组的额定负荷宜选择20VA。一般情况下,电压互感器的计量、测量和保护绕组的额定负荷均应不大于50VA,如有充分的证据说明所接的负荷超过此值时,可按实际值确定。d) 互感器在实际负载下的误差不得大于其基本误差限。e) 对于非中性点绝缘系统的电压互感器,应采用Y0/y0的连接方式。对于中性点绝缘系统的电压互感器,35kV及以上的应采用Y/y的连接方式;35kV以下的宜采用V/V的连接方式。f) 贸易结算

相关文档
最新文档