相互独立事件同时发生的概率 典型例题

相互独立事件同时发生的概率 典型例题
相互独立事件同时发生的概率 典型例题

典型例题

例1 掷三颗骰子,试求:

(1)没有一颗骰子出现1点或6点的概率;

(2)恰好有一颗骰子出现1点或6点的概率.

分析:我们把三颗骰子出现1点或6点分别记为事件,由已知,

是相互独立事件.问题(1)没有1颗骰子出现1点或6点相当于,

问题(2)恰有一颗骰子出现1点或6点可分为三类:,三个事件为互斥事件.问题(1)可以用相互独立事件的概率公式求解,问题(2)可以用互斥事件的概率公式求解.

解:记“第1颗骰子出现1点或6点”为事件,由已知是相互独立事件,且.

(1)没有1颗骰子出现1点或6点,也就是事件全不发生,即事件,所以所求概率为:

(2)恰好有1颗骰子出现1点或6点,即发生不发生不发生或

不发生发生不发生或不发生不发生发生,用符号表示为事件

,所求概率为:

说明:再加上问题:至少有1颗骰子出现1点或6点的概率是多少?我们逆向思考,其对立事件为“没有一颗骰子出现1点或6点,即问题(1)中的事件,

所求概率为,在日常生活中,经常遇到几个独立事件,要求出至少有一个发生的概率,比如例1中的至少有1个人译出密码的概率,再比如:有两门高射炮,每一门炮击中飞机的概率都是0.6,求同时发射一发炮弹,击中飞机的概率是多少?把两门炮弹击中飞机分别记为事件A与B,击中飞机即 A与B至少有1个发生,所求概率为

例2 某工厂的产品要同时经过两名检验员检验合格方能出厂,但在检验时也可能出现差错,将合格产品不能通过检验或将不合格产品通过检验,对于两名

检验员,合格品不能通过检验的概率分别为,不合格产品通过检验的概

率分别为,两名检验员的工作独立.求:(1)一件合格品不能出厂的概率,(2)一件不合格产品能出厂的概率.

分析:记“一件合格品通过两名检验员检验”分别记为事件和事件,问题(1)一件合格品不能出厂相当于一件合格品至少不能通过一个检验员检验,逆向考虑,其对立事件为合格品通过两名检验,即发生,而的概率可以用相互独立事件的概率公式求解.我们把“一件不合格品通过两名检验员检

验”分别记为事件和事件,则问题(2)一件不合格品能出厂相当于一件

不合格品同时通过两名检验员检验,即事件发生,其概率可用相互独立事件概率公式求解.

解:(1)记“一件合格品通过第i名检验员检验”为事件,“一件合格品不能通过检验出厂”的对立事件为“一件合格品同时通过两名检验员检验”,即事件发生.

所以所求概率为

(2)“一件不合格品能通过第i名检验员检验”记为事件,“一

件不合格品能出厂”即不合格品通过两名检验员检验,事件发生,所求概率为:

例3 某大学的校乒乓球队与数学系乒乓球队举行对抗赛,校队的实力比系队强,当一个校队队员与系队队员比赛时,校队队员获胜的概率为0.6.现在校、系双方商量对抗赛的方式,提出了三种方案:(1)双方各出3人;(2)双方各出5人;(3)双方各出7人.三种方案中场次比赛中得胜人数多的一方为胜利.问:对系队来说,哪一种方案最有利?三种方案中,哪一种方案系队获胜的概率更大一些,哪一种方案对系队更有利.进行几场比赛相当于进行几次独立重复试验,可以用n次独立重复试验中某事件发生次的概率方式解题.

解:记一场比赛系队获胜为事件,事件的对立事件为校队获胜,所以

用方案(1),发生两次为系队胜,发生3次也为系队胜,所以系队胜的概率为:

用方案(2),发生3、4、5次为系队胜.

所以系队胜的概率为:

用方案(3),发生4、5、6、7次为系队胜.

所以系队胜的概率为:

比较可以看出,双方各出3个人对系队更有利,获胜概率为0.352.

实际上,对弱队而言,比赛场数越少,对弱队越有利,侥幸取胜的可能性越大.

说明:在日常生活中,经常出现方案的比较问题,或者方案是否合理的论证问题,比如产品抽查,抽检几件比较合理,因为抽多了浪费人力,抽少了容易让不合格产品出厂.设备维修安排几位维修工较合理,安排人员过多造成浪费,安排人员过少设备不能及时维修,这些问题都可以用本题的思维方法,先设计一个独立重复试验,然后抓某个事件发生的概率,看概率是否较小.

我们可以看例子:10台同样的设备,各自独立工作,设备发生故障的概率为0.01,现在安排1名维修工,试说明这种配备是否合理?10台设备各自独立工作,相当于10次独立重复试验,有1名维修工人,若两台以上机器发生故障则得不到及时维修,其对立事件为至多1台机器发生故障,我们可以得到多于1台机器发生故障的概率为:

从结果来看,得不到及时维修的概率很小,安排一人维修比较合理.

b6相互独立事件概率求解

本文为自本人珍藏 版权所有 仅供参考 本文为本人珍藏,有较高的使用、参考、借鉴价值!! 本文为本人珍藏,有较高的使用、参考、借鉴价值!! 相互独立事件概率问题求解辨析 焦景会 055350 河北隆尧一中 事件A 、B 是相互独立事件,当且仅当事件A 和B 是否发生,相互之间没有影响。如果事件A 与B 相互独立,那么A 与B 、A 与B 、A 与B 也都是相互独立的。尤其在涉及“至多”或“至少”问题时,常先求此事件的对立事件的概率,再利用公式()1()P A P A =-求出所求事件的概率。这种解法,称为逆向思考方法。下面就相互独立事件概率问题举例分析如下。 一、 反面求解相互独立事件同时发生的概率 例1、加工某零件需3道工序,设第1、2、3道工序出现次品的概率分别为0.02,0.03,0.05,假设三道工序互不影响,求加工出来的零件是次品的概率。 解:由题中“三道工序互不影响”,可判定1、2、3道工序出现次品的事件是相互独立事件,可用相互独立事件的乘法公式。 设A=“加工出来的零件是次品”,i A =“第i 道工序出现次品”,则123A A A A =??, 由于三道工序互不影响,123()()()()P A p A P A P A ∴=??=(1-0.12)(1-0.03)(1-0.05)=0.90307。所以 ()1()10.903070.09693P A P A =-=-=。 点评:两个或多个相互独立事件同时发生的概率等于每个事件发生的概率积,结合“对立事件的概率和为1”,先求其对立事件的概率,然后再求原事件概率,采用这种解法可使问题变得简易。 二、用排列组合思想理解相互独立事件的概率 例2、甲乙两人各投篮3次,每次投中得分概率为0.6,0.7,求甲乙两人得分相同的概率。 解: 甲乙两人得分相同可以有;甲乙都中0、1、2、3次共四种情况。设甲投中0、1、2、3次概率分别为0123A A A A 、、、,乙投中0、1、2、3次概率分别为 0123B 、B 、B 、B , 则 0012233()()()()P P A B P A B P A B P A B =+++ 1 1 2 2 3 3 2 2 2 2 3 33 30.40.30.60.40.70.30.60.40.70.3C C C C =?+ ???+???3 30.60.70.321+?=。 点评:全面考虑各种可能性,然后利用公式()(1)k k n k n n P k p p C -=-。 三、通过分类或分步将复杂事件分解为简单事件

随机变量条件概率与事件相互独立

2. 2.1条件概率 一、复习引入: 探究: 三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小. 若抽到中奖奖券用“Y ”表示,没有抽到用“ Y ” ,表示,那么三名同学的抽奖结果共有三种可能:Y Y Y ,Y Y Y 和 Y Y Y .用 B 表示事件“最后一名同学抽到中奖奖券” , 则 B 仅包含一个基本事件Y Y Y .由古典概型计算公式可 知,最后一名同学抽到中奖奖券的概率为1()3 P B = . 思考:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到奖券的概率又是多少? 因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件只有Y Y Y 和Y Y Y .而“最后一名同学抽到中奖 奖券”包含的基本事件仍是Y Y Y .由古典概型计算公式可知.最后一名同学抽到中奖奖券的概率为 1 2 ,不妨记为P (B|A ) , 其中A 表示事件“第一名同学没有抽到中奖奖券”. 已知第一名同学的抽奖结果为什么会影响最后一名同学抽到中奖奖券的概率呢? 在这个问题中,知道第一名同学没有抽到中奖奖券,等价于知道事件 A 一定会发生,导致可能出现的基本事件必然在事件 A 中,从而影响事件 B 发生的概率,使得 P ( B|A )≠P ( B ) . 思考:对于上面的事件A 和事件B ,P ( B|A )与它们的概率有什么关系呢? 用Ω表示三名同学可能抽取的结果全体,则它由三个基本事件组成,即Ω={Y Y Y , Y Y Y ,Y Y Y } .既然已知事件A 必然发生,那么只需在A={Y Y Y , Y Y Y}的范围内考虑问题,即只有两个基本事件Y Y Y 和Y Y Y .在事件 A 发 生的情况下事件B 发生,等价于事件 A 和事件 B 同时发生,即 AB 发生.而事件 AB 中仅含一个基本事件Y Y Y ,因 此 (|)P B A = 12=() () n AB n A . 其中n ( A )和 n ( AB )分别表示事件 A 和事件 AB 所包含的基本事件个数.另一方面,根据古典概型的计算公式, ()() (),()()() n AB n A P AB P A n n = =ΩΩ 其中 n (Ω)表示Ω中包含的基本事件个数.所以, (|)P B A =()()()() ()()()() n AB n AB P AB n n A n P n Ω==ΩΩΩ. 因此,可以通过事件A 和事件AB 的概率来表示P (B| A ) . 条件概率 1.定义 设A 和B 为两个事件,P(A )>0,那么,在“A 已发生”的条件下,B 发生的条件概率(conditional probability ). (|)P B A 读作A 发生的条件下 B 发生的概率.

简单事件的概率

2.1简单事件的概率 教学目标: 1、在具体情境中进一步了解概率的意义. 2、进一步运用列举法(包括列表、画树状图)计算简单事件的概率教学重点:运用列举法(包括列表、画树状图)计算简单事件的概率. 教学难点:运用列举法(包括列表、画树状图)计算简单事件的概率. 教学过程 一、回顾和思考: 在数学中,我们把事件发生的可能性的大小称为事件发生的概率. 问:运用公式P(A)=m n 求简单事件发生的概率,在确定各种可能结果发生的可能性 相同的基础上,关键是求什么? 关键是求事件所有可能的结果总数n和其中事件A发生的可能的结果m(m≤n) 二、热身训练: 北京08奥运会吉祥物是“贝贝、晶晶、欢欢、迎迎、妮妮”.现将三张分别印有“欢欢、迎迎、妮妮”这三个吉祥物图案的卡片(卡片的形状大小一样,质地相同)放入盒子. (1)小玲从盒子中任取一张,取到印有“欢欢”图案的卡片的概率是多少? (2)小玲从盒子中取出一张卡片,记下名字后放回,再从盒子中取出第二张卡片,记下名字.用列表或画树状图列出小玲取到的卡片的所有情况,并求出小玲两次都取到印“欢欢”图案的卡片的概率. 三、新课教学: 1、例3.学校组织春游,安排给九年级3辆车,小明与小慧都可以从这3辆车中任选一辆搭乘.问小明与小慧同车的概率有多大? 问:你能用树状图表示本题中事件发生的不同结果吗?用列表法也试试吧 解:记这三辆车分别为甲、乙、丙,小明与小慧乘车的所有可能的结果列表如下: (各种结果发生的可能性相同) ∴P=3 9 = 1 3 . 答:小明与小慧同车的概率是1 3 . 2、书本34页课内练习2 3、例4.如图,转盘的白色扇形和红色扇形的圆心角分别为120°和240°.让转盘自由转动2次,求指针一次落在白色区域,另一次落在红色区域的概率. 问:1、转盘自由转动1次,指针落在白色区域、红色区域的可能性相同吗? 2、如何才能使转盘自由转动1次,指针落在各个扇形区域内的可能性都相同?

相互独立事件的概率

第79课 相互独立事件的概率 ●考试目标 主词填空 1.如果事件A (或B )是否发生的对事件B (或A )发生的概率没有影响,那么这样的事件叫做相互独 立事件.相互独立事件A 和B 同时发生,记作A ·B,其概率由相互独立事件概率的乘法公式: P (A ·B)=P(A)·P(B). 2.“互斥”事件A 与B ,要记住其判别的依据是A ∩B=;而“相互独立”事件A 与B ,是指它们中的任何一个发生与否对另一个事件发生的概率没有“影响”. 3.如果在1次试验中,某事件发生的概率为P ,那么在n 次独立重复试验中这个事件恰好发生k 次 的概率. P n (k )=k n k k n P P C --)1(. ● 题型示例 点津归纳 【例1】 甲、乙两人各进行一次射击,如果两人击中目标的概率是0.8.计算: (1)两人都击中目标的概率; (2)其中恰有1人击中目标的概率; (3)至少有1人击中目标的概率. 【解前点津】 “两人都击中目标”是事件A ·B ;“恰有1人击中目标”是A ·A B 或·B ;“至少有1人击中目标”是A ·B 或A ·A B 或·B . 【规范解答】 我们来记“甲射击一次击中目标”为事件A ,“乙射击一次击中目标”为事件B . (1)显然,“两人各射击一次,都击中目标”就是事件A ·B ,又由于事件A 与B 相互独立. ∴ P (A ·B )=P (A )·P (B )=0.8×0.8=0.64. (2)“两个各射击一次,恰好有一人击中目标”包括两种情况:一种是甲击中乙未击中(即A ·B ),另一种是甲未击中乙击中(即A ·B ),根据题意这两种情况在各射击一次时不可能同时发生,即事件A ·A B 与·B 是互斥的,所以所求概率为: P =)()()()()()(B P A P B P A P B A P B A P ?+?=?+? =0.8×(1-0.8)+(1-0.8)×0.8=0.16+0.16=0.32. (3) “两人各射击一次,至少有一人击中目标”的概率为: P =P (A ·B)+[P (A ·A P B ()+·B)]=0.64+0.32=0.96. 【解后归纳】 本题考查应用相互独立事件同时发生的概率的有关知识的正确应用. 【例2】如图,电路由电池A 、B 、C 并联组成.电池A 、B 、C 损坏的概率分别是0.3、0.2、0.2,求电路断电的概率. 【解前点津】 可规定A =“电池A 损坏”,B =“电池B 损坏”,C =“电池C 损坏”.这样,就有事

04事件的相互独立性(教案)

2. 2.2事件的相互独立性 教学目标: 知识与技能:理解两个事件相互独立的概念。 过程与方法:能进行一些与事件独立有关的概率的计算。 情感、态度与价值观:通过对实例的分析,会进行简单的应用。 教学重点:独立事件同时发生的概率 教学难点:有关独立事件发生的概率计算 授课类型:新授课 课时安排:4课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件 2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率m n 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A . 3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率; 4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形 5基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()P A n = 8.等可能性事件的概率公式及一般求解方法 9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的 10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+ 一般地:如果事件12,, ,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥 11.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=?=- 12.互斥事件的概率的求法:如果事件12,,,n A A A 彼此互斥,那么 12()n P A A A ++ +=12()()()n P A P A P A +++

初中《简单事件的概率》知识点

概率的简单应用 一、可能性 1、必然事件:有些事件我们能确定它一定会发生,这些事件称为必然事件. 2、不可能事件:有些事件我们能肯定它一定不会发生,这些事件称为不可能事件. 3、确定事件:必然事件和不可能事件都是确定的。 4、不确定事件:有很多事件我们无法肯定它会不会发生,这些事件称为不确定事件。 5、一般来说,不确定事件发生的可能性是有大小的。 常见考法:判断哪些事件是必然事件,哪些是不可能事件 例1:下列说法错误.. 的是( ) A .同时抛两枚普通正方体骰子,点数都是4的概率为 16 B .不可能事件发生机会为0 C .买一张彩票会中奖是可能事件 D .一件事发生机会为0.1%,这件事就有可能发生 二、简单事件的概率 1、概率的意义:表示一个事件发生的可能性大小的这个数叫做该事件的概率。 2、必然事件发生的概率为1,记作P (必然事件)=1,不可能事件发生的概率为0,记作P(不可能事件)=0,如果A 为不确定事件,那么0

相互独立事件同时发生的概率典型例题

典型例题 例1 掷三颗骰子,试求: (1)没有一颗骰子出现1点或6点的概率; (2)恰好有一颗骰子出现1点或6点的概率. 分析:我们把三颗骰子出现1点或6点分别记为事件,由已知,是相互独立事件.问题(1)没有1颗骰子出现1点或6点相当于,问题(2)恰有一颗骰子出现1点或6点可分为三类:,三个事件为互斥事件.问题(1)可以用相互独立事件的概率公式求解,问题(2)可以用互斥事件的概率公式求解. 解:记“第1颗骰子出现1点或6点”为事件,由已知是相互独立事件,且. (1)没有1颗骰子出现1点或6点,也就是事件全不发生,即事件,所以所求概率为: . (2)恰好有1颗骰子出现1点或6点,即发生不发生不发生或 不发生发生不发生或不发生不发生发生,用符号表示为事件 ,所求概率为:

说明:再加上问题:至少有1颗骰子出现1点或6点的概率是多少我们逆向思考,其对立事件为“没有一颗骰子出现1点或6点,即问题(1)中的事件, 所求概率为,在日常生活中,经常遇到几个独立事件,要求出至少有一个发生的概率,比如例1中的至少有1个人译出密码的概率,再比如:有两门高射炮,每一门炮击中飞机的概率都是,求同时发射一发炮弹,击中飞机的概率是多少把两门炮弹击中飞机分别记为事件A与B,击中飞机即 A与B至少有1个发生,所求概率为 . 例2 某工厂的产品要同时经过两名检验员检验合格方能出厂,但在检验时也可能出现差错,将合格产品不能通过检验或将不合格产品通过检验,对于两名检验员,合格品不能通过检验的概率分别为,不合格产品通过检验的概率分别为,两名检验员的工作独立.求:(1)一件合格品不能出厂的概率,(2)一件不合格产品能出厂的概率. 分析:记“一件合格品通过两名检验员检验”分别记为事件和事件,问题(1)一件合格品不能出厂相当于一件合格品至少不能通过一个检验员检验,逆向考虑,其对立事件为合格品通过两名检验,即发生,而的概率可以用相互独立事件的概率公式求解.我们把“一件不合格品通过两名检验员检验”分别记为事件和事件,则问题(2)一件不合格品能出厂相当于一件不合格品同时通过两名检验员检验,即事件发生,其概率可用相互独立事件概率公式求解. 解:(1)记“一件合格品通过第i名检验员检验”为事件,“一件合格品不能通过检验出厂”的对立事件为“一件合格品同时通过两名检验员检验”,即事件发生.

九年级上 简单事件的概率

VIP 学科优化教(学)案 教学部主管: 时间: 年 月 1.二次函数2 3y x bx =++的对称轴是2x =,则b =_______。 2.已知抛物线y=-2(x+3)2+5,如果y 随x 的增大而减小,那么x 的取值范围是_______. 3.一个函数具有下列性质:①图象过点(-1,2),②当x <0时,函数值y 随自变量x 的增大而增大;满足上述两条性质的函数的解析式是 (只写一个即可)。 4.抛物线22(2)6y x =--的顶点为C ,已知直线3y kx =-+过点C ,则这条直线与两坐标轴所围成的三角形面积为 。 5. 二次函数2241y x x =--的图象是由22y x bx c =++的图象向左平移1个单位,再向下平移2个单位得到的,则b= ,c= 。 6.如图,一桥拱呈抛物线状,桥的最大高度是16米,跨度是40米,在线段AB 上离中心M 处5米的地方,桥的高度是 . ㈠承上启下 知识回顾

【课本相关知识点】 1、在一定条件下一定发生的事件叫作必然事件;在一定条件下一定不会发生的事件叫作不可能事件;在一定条件下可能发生,也可能不发生的事件叫作不确定事件或随机事件。 2、为了确定简单事件发生的各种可能的结果,通常用列表、画树状图法。当实验包含两步时,用列表法与画树状图法求发生的结果数均比较方便;但当实验存在三步或三步以上时,用画树状图的方法求事件发生的结果数较为方便。 题型一、识别事件类型 例1、下列事件是必然事件的是( ) A. 水加热到100℃就要沸腾 B. 如果两个角相等,那么它们是对顶角 C.两个无理数相加,一定是无理数 D. 如果 ,那么a=0,b=0 练习.(2013?武汉)袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是( ) A .摸出的三个球中至少有一个球是黑球 B .摸出的三个球中至少有一个球是白球 C .摸出的三个球中至少有两个球是黑球 D .摸出的三个球中至少有两个球是白球 题型二、用列表、画树状图法确定简单事件发生的各种可能的结果 例2、(2011?成都)某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容.规定:每位考生先在三个笔试题(题签分别用代码B 1、B 2、B 3表示)中抽取一个,再在三个上机题(题签分别用代码J 1、J 2、J 3表示)中抽取一个进行考试。小亮在看不到题签的情况下,分别从笔试题和上机题中随机地各抽取一个题签.用树状图或列表法表示出所有可能的结果 练习.(2013?江西)甲、乙、丙三人聚会,每人带了一个从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件。将“甲、乙、丙3人抽到的都不是自己带来的礼物”记为事件A ,请列出事件A 的所有可能的结果。 题型三、比较事件发生的可能性的大小 例3、在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4。随机地摸出一张纸牌然后放回,再随机摸取出一张纸牌。甲、乙两个人进行游戏,如果两次摸出纸牌上数字之和为奇数,则甲胜;如果两次摸出纸牌上数字之和为偶数,则乙胜。这是个公平的游戏吗?请说明理由。 练习1.(2011江苏淮安)有牌面上的数都是2,3,4的两组牌,从每组牌中各随机摸出一张,请用画树状图或列表的方法,求摸出的两张牌的牌面上的数之和为多少的可能性最大。 ㈡紧扣考点 专题讲解

事件的相互独立性试题及答案

1 事件的互相独立性 1.若A 与B 相互独立,则下面不相互独立事件有( ) A.A 与A B.A 与B C.A 与B D A 与B 2.在某段时间内,甲地不下雨的概率为0.3,乙地不下雨的概率为0.4,假设在这段时间内两地是否下雨相互无影响,则这段时间内两地都下雨的概率是( ) A.0.12 B.0.88 C.0.28 D.0.42 3.甲、乙两人独立地解同一问题,甲解决这个问题的概率是P 1,乙解决这个问题的概率是P 2,那么恰好有1人解决这个问题的概率是( ) A.P 1P 2 B.P 1(1-P 2)+P 2(1-P 1) C.1-P 1P 2 D.1-(1-P 1)(1-P 2) 4.从应届高中生中选出飞行员,已知这批学生体型合格的概率为 31,视力合格的概率为61,其他几项标准合格的概率为5 1,从中任选一学生,则该生三项均合格的概率为(假设三项标准互不影响)( ) A.94 B.90 1 C.54 D. 95 5.一道数学竞赛试题,甲生解出它的概率为21,乙生解出它的概率为31,丙生解出它的概率为4 1,由甲、乙、丙三人独立解答此题只有一人解出的概率为____________. 6.一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率都是3 1,那么这位司机遇到红灯前,已经通过了两个交通岗的概率是_______________. 7.某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都“合格”则该课程考核“合格”.甲、乙、丙三人在理论考核中合格的概率分别为0.9、0.8、0.7;在实验考核中合格的概率分别为0.8、0.7、0.9.所有考核是否合格相互之间没有影响. (1)求甲、乙、丙三人在理论考核中至少有两人合格的概率; (2)求这三人该课程考核都合格的概率(结果保留三位小数).

简单事件的概率练习题

、选择题 1.下列事件是必然事件的是( A. 随机抛掷一枚均匀的硬币,落地后正面一定朝上 B. 打开电视体育频道,正在播放 NBA 求赛 拿出一支笔芯,则拿出黑色笔芯的概率是( A.- 3 3.同时抛掷两枚质地均匀的骰子,骰子的六个面分别刻有1到6的点数,朝上的 B. 从一个装有2个白球和1个红球的袋子中任取一球, C. 抛一枚硬币,出现正面的概率 D. 任意写一个整数,它能被2整除的概率 6. 一个均匀的立方体六个面上分别标有数 1,2,3, 这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等 1 于朝下一面上的数的-的概率是() 2 B.- 3 C.射击运动员射击一次,命中十环 D. 若a 是实数,则|a 0 2.盒子里有3支红色笔芯,2支黑色笔芯, 每支笔芯除颜色外均相同?从中任意 面的点数中,一个点数能被另一个点数整除的概率是 A. — B. 3 C. 口 18 4 18 4. 在一张边长为4cm 的正方形纸上做扎针随机试验, 形阴影区域,贝U 针头扎在阴影区域内的概率为 () 1 1 A. B. - C. D. - 16 4 16 4 5. 甲、乙两名同学在一次用频率去估计概率的试验中 23 36 纸上有一个半径为1cm 的圆 D. 统计了某一结果出现的频率,绘出的统计图如图所示, 则符合这一结果的试验可能是( A.掷一枚正六面体的骰子,出现1点的概率 取到红球的概率 D.- 3 C.- 2 4,5,6?右图是 4

7. 甲、乙、丙、丁四名运动员参加 4X 100米接力赛,甲必须为第一接力棒或第 四接棒的运动员,那么这四名运动员在比赛过程的接棒顺序有( ) A . 3 种 B . 4 种 C . 6 种 D . 12 种 8. 一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( 15 9. 在6件产品中,有2件次品,任取两件都是次品的概率是() A 、1 B 丄 C 、丄 D 、丄 5 6 行 15 10. 在拼图游戏中,从图中的四张纸片中,任取两张纸片,能拼成“小房子” (如 图所示)的概率等于( ) A. 1 B . L C . 1 D . 2 2 3 3 二、填空题 11. 一个瓷罐中装有1枚白色围棋棋子,1枚黑色棋子,现从罐中有返回地摸棋 子两次,摸到两个白子的概率为 ____________ ,先摸到白子,再摸到黑子的概率 为 . 12. 如图所示是两个各自分割均匀的转盘,同时转动两个转盘,转盘停止时(若 指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止) ,两个指 针所指区域的数字和为偶数的概率是 —— 13. 小明与小亮在一起做游戏时需要确定作游戏的先后顺序, 他们约定用“锤子、 剪刀、布”的方式确定,请问在一个回合中两个人都出“布”的概率是 — 14. 晓芳抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概 率为 _______ . 15. 在一副去掉大、小王的扑克牌中任取一张,则 P (抽到黑桃K )等于 _______ P (抽到9)等于 . 16. 单项选择题是数学试题的重要组成部分,当你遇到不会做的题目时,如果你 随便选一个答案(假设每个题目有4个选项),那么你答对的概率为 ______________ A. B. C. D. 15

人教A版(2019)数学必修(第二册):10.2 事件的相互独立性 教案

事件的相互独立性 【教学过程】 一、问题导入 预习教材内容,思考以下问题: 1.事件的相互独立性的定义是什么? 2.相互独立事件有哪些性质? 3.相互独立事件与互斥事件有什么区别? 二、基础知识 1.相互独立的概念 设A ,B 为两个事件,若P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立. 2.相互独立的性质 若事件A 与B 相互独立,那么A 与B -,A -与B ,A -与B -也都相互独立. ■名师点拨 (1)必然事件Ω,不可能事件?都与任意事件相互独立. (2)事件A ,B 相互独立的充要条件是P (AB )=P (A )·P (B ). 三、合作探究 1.相互独立事件的判断 一个家庭中有若干个小孩,假定生男孩和生女孩是等可能的,令A ={一个家庭中既 有男孩又有女孩},B ={一个家庭中最多有一个女孩}.对下述两种情形,讨论A 与B 的独立性:

(1)家庭中有两个小孩; (2)家庭中有三个小孩. 【解】(1)有两个小孩的家庭,男孩、女孩的可能情形为Ω={(男,男),(男,女),(女,男),(女,女)}, 它有4个基本事件,由等可能性知概率都为1 4. 这时A={(男,女),(女,男)}, B={(男,男),(男,女),(女,男)},AB={(男,女),(女,男)}, 于是P(A)=1 2,P(B)= 3 4,P(AB)= 1 2. 由此可知P(AB)≠P(A)P(B), 所以事件A,B不相互独立. (2)有三个小孩的家庭,小孩为男孩、女孩的所有可能情形为Ω={(男,男,男),(男,男,女),(男,女,男),(男,女,女),(女,男,男),(女,男,女),(女,女,男),(女,女,女)}. 由等可能性知这8个基本事件的概率均为1 8,这时A中含有6个基本事件,B中含有4个 基本事件,AB中含有3个基本事件. 于是P(A)=6 8= 3 4,P(B)= 4 8= 1 2,P(AB)= 3 8, 显然有P(AB)=3 8=P(A)P(B)成立. 从而事件A与B是相互独立的. 判断两个事件是否相互独立的两种方法 (1)根据问题的实质,直观上看一事件的发生是否影响另一事件发生的概率来判断,若没有影响,则两个事件就是相互独立事件; (2)定义法:通过式子P(AB)=P(A)P(B)来判断两个事件是否独立,若上式成立,则事件A,B相互独立,这是定量判断. 2.相互独立事件同时发生的概率 王敏某天乘火车从重庆到上海去办事,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列正点到达的概率;

简单事件的概率--课后作业

第二章简单事件的概率 A卷:基础知识部分 一、细心填一填 1.抛掷一枚各面分别标有1,2,3,4,5,6的普通骰子,写出这个实验中的一个可能事件:。 2.随意地抛掷一只纸可乐杯,杯口朝上的概率约是0.22,杯底朝下的概率约是0.38,则横卧的概率是; 3.在中考体育达标跳绳项目测试中,1分钟跳160次为达标,小敏记录了他预测时1分钟跳的次数分别为145,155,140,162,164,则他在该次预测中达标的概率是__________ 4.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为_______________ 5.从装有5个红球和3个白球的袋中任意取4个,那么取道的“至少有1个是红球”与“没有红球”的概率分别为和; 二、精心选一选 6.以下说法正确的是( ) A.在同一年出生的400人中至少有两人的生日相同 B.一个游戏的中奖率是1%,买100张奖券,一定会中奖 C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件 D.一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是 7.从一副扑克牌中抽出5张红桃、4张梅花、3张黑桃放在一起洗匀后,从中一次随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这件事件() A.可能发生 B.不可能发生 C.很有可能发生 D.必然发生 8.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只。则从中任意取一只,是二等品的概率等于() A. 1 12 B. 1 6 C. 1 4 D. 7 12 9.(2005年杭州市)有一对酷爱运动的年轻夫妇给他们12个月大的婴儿拼排3块分别写有”20”,”08”和”北京”的字块,如果婴儿能够排成”2008北京”或者”北京2008”,则他们就给婴儿奖励.假设婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率是 ( ) A.1 6 B. 1 4 C. 1 3 D. 1 2 10.下图的转盘被划分成六个相同大小的扇形,并分别标上1,2,3,4,5,6这六个数字,

事件的相互独立性的教案

事件的相互独立性的教 案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2.2.2事件的相互独立性 一、教学目标: 1、知识与技能: ①理解事件独立性的概念 ②相互独立事件同时发生的概率公式 2、过程与方法: 通过实例探究事件独立性的过程,学会判断事件相 互独立性的方法。 3、情感态度价值观:通过本节的学习,体会数学来源于实践又服务于 实践,发现数学的应用意识。 二、教学重点:件事相互独立性的概念 三、教学难点:相互独立事件同时发生的概率公式 四,教学过程: 1、复习回顾:(1)条件概率 (2)条件概率计算公式 (3)互斥事件及和事件的概率计算公式 2、思考探究: 三张奖券只有一张可以中奖,现分别由三名同学有放回地抽取,事件A 为“第一位同学没有抽到中奖奖券”,事件B 为“最后一名同学抽到中奖奖券”。 事件A 的发生会影响事件B 发生的概率吗? 分析:事件A 的发生不会影响事件B 发生的概率。于是: 3、事件的相互独立性 设A ,B 为两个事件,如果 P(AB)=P(A)P(B),则称事件A 与事件B 相互独立。 即事件A (或B )是否发生,对事件B (或A )发生的概率没有影响,这样两个事件叫做相互独立事件。 注:①如果A 与B 相互独立,那么A 与B ,B 与A ,A 与B 都是相互独立的。(举例说明) ②推广:如果事件12,,...n A A A 相互独立,那么 1212(...)()()...()n n P A A A P A P A P A = (|)()P B A P B =()()(|)P AB P A P B A =()()() P AB P A P B ∴=

2.2 简单事件的概率(一)

2.2 简单事件的概率(一) 1.必然事件的概率是( ) A. -1 B. 0 C. 0.5 D. 1 2.数学老师将全班分成7个小组开展小组合作学习,采用随机抽签确定一个小组进行展示活动,则第三个小组被抽到的概率是( ) A. 17 B. 13 C. 12 D. 110 3.某个密码锁的密码由三个数字组成,每个数字都是0~9这十个数字中的一个,只有当三个数字与所设定的密码数字及顺序完全相同时,才能将锁打开.如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是( ) A. 110 B. 19 C. 14 D. 12 4.在边长为1的正方形组成的网格中,有如图所示的A ,B 两点,在格点上任意放置 点C (能与A ,B 两点重合),恰好能构成△ABC 且使得△ABC 的面积为1的概率为( ) A.316 B.38 C.14 D.516 5.如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成, 一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为____ . 6.在如图所示的电路图中,闭合其中任意一个开关, 灯泡发光的概率是 . 7.现有3个45°的角,2个90°的角,从中任取3个角,能构成等腰直角三角形的概率是 . 8.有四张正面分别标有数字-3,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背 面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,求使关于x 的分式方程1-ax x -2+2=12-x 有正整数解的概率是 . 9.一个不透明的袋中装有5个黄球,13个黑球和22个红球,这些球除颜色外其他都相同. (1)求从袋中摸出一个球是黄球的概率. (2)现在从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄 球的概率不小于13,问:至少取出多少个黑球?

概率论与数理统计经典考试题型

概率论经典考试题型 一,选择题 1 设A 、B 为互不相容的事件,且()0,()0,P A P B >>下面四个结论中, 正确的是( ) (A)(|)0P B A > (B)(|)0P A B = (C)(|)()P A B P A =(D)()()()P AB P A P B = 如果A 、B 为互不相容的事件,且 ()0,()0,P A P B >>则上述不正确的是( ) 2 总体),(~2 σμN X ,n X X X ,,,21 是来自总体的样本, ∑==n k k X n X 1 1,则n X /σμ- ~ ( ) (A) ),(2σμN (B) )1,0(N (C) )(n t (D) )1(-n t 3. 已知相互独立的随机变量 ~(1,16), Y ~(2,9), (2)X N N D X Y -=则

。 4. 设3.0)(=A P , 6.0)(=B P , 且事件A 与B 互不相容, ()P A B ?=则 。 5. 已知随机变量X 的概率密度为 2,0,()0,0.x ae x f x x -?>=?≤? 则a = . 6. 设随机变量X 满足2(),()E X D X μσ==, 则由切比雪夫不等式,有{||3}P X μσ-≥≤ 。 7.设总体),(~2σμN X ,2,σμ未知, n X X X ,,,21 是来自总体 X 的样本, 则 μ的矩估计量是 ,2σ最大似然估 计量 。

8 电路由电池A 、B 及两个并联的电池C 、D 串联而成, 设电池A, B, C, D 损坏与否是 相互独立的, 且它们损坏的概率依次为0.3, 0.2, 0.2, 0.5, 求这个电路发生间断的概率. 9 已知(,)X Y 的联合分布率如下: 求(1)边缘分布率; (2))(),(X D X E ; (3) Z X Y =+的分布率。

概率论经典试题

第一章 概率论的基本概念课外习题 一.单项选择题 1. 设1)|()|(,1)(0,1)(0=+<<<

简单事件的概率测试题.

简单事件的概率测试题 A 卷(基础知识部分, 50分 一、细心填一填(每题 2分,共 10分 1.抛掷一枚各面分别标有 1, 2, 3, 4, 5, 6的普通骰子,写出这个实验中的一个可能事件:。 2. 随意地抛掷一只纸可乐杯, 杯口朝上的概率约是 0.22, 杯底朝下的概率约是0.38, 则横卧的概率是 ; 3.在中考体育达标跳绳项目测试中, 1分钟跳 160次为达标,小敏记录了他预测时 1分钟跳的次数分别为 145,155,140,162,164,则他在该次预测中达标的概率是 __________ 4.十字路口的交通信号灯每分钟红灯亮 30秒,绿灯亮 25秒,黄灯亮 5秒,当你抬头看信号灯时,是黄灯的概率为 _______________ 5. 从装有 5个红球和 3个白球的袋中任意取 4个, 那么取道的“至少有 1个是红球” 与“没有红球”的概率分别为和 ; 二、精心选一选(每题 3分,共 15分 6.以下说法正确的是 ( A. 在同一年出生的 400人中至少有两人的生日相同 B. 一个游戏的中奖率是 1%,买 100张奖券,一定会中奖 C. 一副扑克牌中,随意抽取一张是红桃 K ,这是必然事件 D. 一个袋中装有 3个红球、 5个白球,任意摸出一个球是红球的概率是 7. 从一副扑克牌中抽出 5张红桃、 4张梅花、 3张黑桃放在一起洗匀后, 从中一次随机抽出 10张,恰好红桃、梅花、黑桃 3种牌都抽到,这件事件 (

A .可能发生 B.不可能发生 C.很有可能发生 D.必然发生 8.设有 12只型号相同的杯子,其中一等品 7只,二等品 3只,三等品 2只。则从中任意取一只,是二等品的概率等于 ( A . 1 12 B. 1 6 C. 1 4 D. 7 12 9. (2005年杭州市有一对酷爱运动的年轻夫妇给他们 12个月大的婴儿拼排 3块分别写有” 20” , ” 08” 和” 北京” 的字块 , 如果婴儿能够排成” 2008北京” 或者” 北京2008” , 则他们就给婴儿奖励 . 假设婴儿能将字块横着正排 , 那么这个婴儿能得到奖励的概率是 ( A . 1 6 B.

简单事件的概率

简单事件的概率 一.【课前检测】 1.下列事件是必然事件的是( ) A .通常加热到100℃,水沸腾 B .抛一枚硬币,正面朝上 C .明天会下雨 D .经过城市中某一有交通信号灯的路口,恰好遇到红灯 2.下列事件中,哪些是必然发生的,哪些是可能发生的,哪些是不可能发生的? (1)一个袋中只有10个红球,从中任取一球,然后放回袋中,混合均匀,再取一球,如此反复进行十次,十次全部取到白球; (2)从有理数中任取一数平方之后比0大; (3)有4名同学,其中有七年级的,有八年级的,也有九年级的,则他们中间有两名同学在同一年级。 (4)小红今年是20岁,明年18岁。 (5)下一次数学成绩超过80分。 3.有50张编有序号的卡片(从1号到50号);从中任取一张,求: (1)取到卡片号是7的倍数的情况有多少种? (2)取到卡片号是7的倍数的概率是多少? 二.【知识梳理】 1.事件的概率:表示一个事件发生的可能性大小的数,叫做该事件的概率,也可以是一个比值: 所有事件发生的次数 该事件发生的次数 . 2.概率的含义:随机事件A 的概率是n A P m )( ,表示试验很多次时,平均每n 次试验,事件A 发生m 次。 3.求一个事件的概率途径一般有3种:(1)是主观经验估计(又称主观概率);

(2)是试验估计(又称试验概率);(3)是根据树状图法或列表法分析、预测概率(又称理论概率)。 三.【重难点突破】 例1.随意地抛一粒豆子,恰好落在下图中的方格中(每个方格除颜色外完全一样),那么这粒豆子停在黑色方格中的概率是。 例2.布袋中放着22个红球和1个黑球,它们除颜色外没有其他区别,现在闭上眼睛从中摸出一个黑球的概率是。 例3.甲盒子中有编号为1、2、3的3个白色乒乓球,乙盒子中有编号为4、5、6的3个黄色乒乓球。现分别从每个盒子中随机地抽取1个乒乓球,则取出乒乓球的编号之和大于6的概率。 例4.在一个不透明的口袋中装有红、白、黑三种颜色的小球若干个,它们只有颜色不同,其中有白球2个、黑球1个。已知从中任意摸出1个球得到白球的概 率为2 1。 (1) 求口袋中有多少个红球; (2) 求从口袋中一次摸出2个球,得一红一白的概率,要求画出树状图。 四.【课堂练习】 1.下列说法不正确的是( ) A .某事件发生的概率为1,则它不一定必然会发生 B .某事件发生的概率为O ,则它必然不会发生 C .抛一个普通纸杯,杯口不可能向上 D .从一批产品中任取一个为次品是可能的 2.一个袋中有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色珠子的概率是( )

概率论典型例题第4章

第四章 大数定律与中心极限定理 例1.设随机变量X 和Y 的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式有≤≥+}6{Y X P 。 分析:切比雪夫不等式:2{}DX P X EX εε?≥≤或2{}1DX P X EX εε?<≥?, 显然需用到前一不等式,则只需算出()E X Y +与()D X Y +即可。 解:由于 0)(=+Y X E , ()2(,)2XY D X Y DX DY Cov X Y DX DY ρ+=++=++14212(0.5)3=++×××?=, 故由切比雪夫不等式 1216 )(}6{2=+≤≥+Y X D Y X P 。 注:还是用到第三章数字特征的一些性质。 除了切比雪夫不等式本身,这也是另外的知识点。 例2.设()0(0)g x x ><<+∞,且为非降函数。 设X 为连续型随机变量且[()]E g X EX ?存在。 试证对任意0ε>,有 [()] {}()E g X EX P X EX g εε??≥≤。 分析:证明的结论形式与切比雪夫不等式非常相似,利用切比雪夫不等式的证明思想试试看。 证明:设随机变量X 的概率密度为()f x ,则有 {}()x EX P X EX f x dx εε?≥?≥= ∫ 由于()0g x >,且非降,故当X EX ε?≥时,有 ()()g X EX g ε?≥,() 1()g X EX g ε?≥, 所以

(){}()()()x EX x EX g X EX P X EX f x dx f x dx g εεεε?≥?≥??≥= ≤∫∫ 1()()()g X EX f x dx g ε+∞?∞ ≤?∫ [()] ()E g X EX g ε?=。 注:这是切比雪夫不等式的推广。 当2()g x x =时,即为切比雪夫不等式。 例3.设随机变量序列12,,,n X X X L 相互独立,且都服从参数为2的指数分 布,则当n →∞时,21 1n n i i Y X n ==∑依概率收敛于 。 (A ) 0 (B ) 12 (C ) 14 (D ) 1 分析:出现依概率收敛就要考虑应用大数定律,题设给出的是一列独立同分布的随机变量序列,自然会想到辛钦大数定律。 解:由题设12,,,n X X X L 独立同分布于参数为2的指数分布,因此22212,,,n X X X L 也都独立同分布,且它们共同的期望值为 2 22111()422i i i EX DX EX ??=+=+=????。 根据辛钦大数定律,当n →∞时,21 1n n i i Y X n ==∑依概率收敛于其期望值12,故应选择选项B 。 注:几个大数定律条件、结论都非常相似,下面对其条件进行一下比较: 伯努利大数定律和辛钦大数定律都要求随机变量序列有独立性、同分布和有限数学期望。 切比雪夫大数定律对条件有所放宽,不要求同分布,但要求有某种独立性。 但是只有辛钦大数定律不要求方差存在。 同时要注意大数定律中所给的假设条件都是大数定律成立的充分条件,切不

相关文档
最新文档