sjs7-第七章 二维小波变换(2)

14

实例1

15

16

小波变换用于图象特征抽取

第1级斜线细节

第1级

水平细节

第1级垂直细节

水平细节

近似图象

垂直细节

斜线细节

17

实例2

第1级L 1斜线细节

第1级L 1水平细节

第1级L 1垂直细节

第2级L 2细节

近似图象

第3级L 3小波系数分级方块表示法

第3 级L

3分辨率

第2 级L

2分辨率

第1 级L

1分辨率

小波系数分级树形表示法

18

举例:8×8的Harr小波变换

19

小波变换程序

小波滤波器构造和消噪程序(2个) 1.重构 % mallet_wavelet.m % 此函数用于研究Mallet算法及滤波器设计 % 此函数仅用于消噪 a=pi/8; %角度赋初值 b=pi/8; %低通重构FIR滤波器h0(n)冲激响应赋值 h0=cos(a)*cos(b); h1=sin(a)*cos(b); h2=-sin(a)*sin(b); h3=cos(a)*sin(b); low_construct=[h0,h1,h2,h3]; L_fre=4; %滤波器长度 low_decompose=low_construct(end:-1:1); %确定h0(-n),低通分解滤波器for i_high=1:L_fre; %确定h1(n)=(-1)^n,高通重建滤波器 if(mod(i_high,2)==0); coefficient=-1; else coefficient=1; end high_construct(1,i_high)=low_decompose(1,i_high)*coefficient; end high_decompose=high_construct(end:-1:1); %高通分解滤波器h1(-n) L_signal=100; %信号长度 n=1:L_signal; %信号赋值 f=10; t=0.001; y=10*cos(2*pi*50*n*t).*exp(-20*n*t); figure(1); plot(y); title('原信号'); check1=sum(high_decompose); %h0(n)性质校验 check2=sum(low_decompose); check3=norm(high_decompose); check4=norm(low_decompose); l_fre=conv(y,low_decompose); %卷积 l_fre_down=dyaddown(l_fre); %抽取,得低频细节 h_fre=conv(y,high_decompose); h_fre_down=dyaddown(h_fre); %信号高频细节 figure(2);

二维离散小波分解的C语言实现 论文

高等教育自学考试毕业论文(设计)题目:二维离散小波分解的C语言实现 摘要 小波变换用于图像处理是小波变换应用效果比较突出的领域之一。由于图像是二维信号,因此首先需要把小波变换由一维推广到二维。本文在一维离散Mallat算法的基础上,用C语言实现了二维图像的离散小波变换。这种二维变换是行列可分离的变换方式,即二维分解可以通过行和列依次作一维分解实现。对图像作二维离散小波分解后得到一个低频子带和一系列高频子带,分别反映图像的基本信息和细节信息。用这些子带也可以实现图像的重构。

目录 第一章绪论 (1) 1. 1小波理论与应用技术的发展概况 (1) 1. 2图像技术的发展历程及面临的问题 (2) 1. 3小波的特点及其在图像处理中的应用 (2) 第二章Mallat算法由一维到二维的推广 (4) 2. 1小波级数 (4) 2. 2 Mallat算法 (5) 2. 3二维离散小波变换 (7) 2. 4二维离散小波变换后的系数分布 (8) 第三章二维Mallat算法的C语言实现 (10) 3. 1基本模块 (10) 3.2 单层分解与重构 (10)

3.3金字塔结构的多层分解和重构 (11) 3.4小波系数的数据结构 (14) 3.5 结果与分析 (14) 参考文献 (19) 致谢 (20)

第一章绪论 1. 1小波理论与应用技术的发展概况 小波分析是当前数学中一个迅速发展的新领域,它同时具有理论深刻和应用十分广泛的双重意义。小波分析的应用是与小波分析的理论研究紧密地结合在一起的。现在,它已经在科技信息产业领域取得了令人瞩目的成就。电子信息技术是六大高新技术中重要的一个领域,它的重要方面是图像和信号处理。现今,信号处理已经成为当代科学技术工作的重要部分,信号处理的目的就是:准确的分析、诊断、编码压缩和量化、快速传递或存储、精确地重构(或恢复)。从数学地角度来看,信号与图象处理可以统一看作是信号处理(图像可以看作是二维信号),在小波分析地许多分析的许多应用中,都可以归结为信号处理问题。现在,对于其性质随实践是稳定不变的信号,处理的理想工具仍然是傅立叶分析。但是在实际应用中的绝大多数信号是非稳定的,而特别适用于非稳定信号的工具就是小波分析。 自1807年法国数学家Fourier从热传导理论提出Fourier分析以后,无论对数学史还是工程科学史的发展都起到了很大的影响和推动作用。Fourier分析的核心是通过Fourier变换引入频率的概念,并发展了频谱分析理论,使许多通过时域分析无法看清的现象在频域中一目了然。但Fourier变换是一种全时域变换,无法提取局部时时间段上的信号特征,为此数学家和工程师们提出了一种加时间窗的短时Fourier变换,最著名的是以Gaussian函数为窗口的Gabor变换,日后被发展为Morlet小波。因此,小波是一类能进行伸缩和平移操作的紧支局部函数,而小波分析就是以小波函数为变换核的一类积分变换的统称,本质上是对Fourier分析的继承与发展.1910年,Harr通过对双极函数进行伸缩操作,构造了一组最早的小波规范止交基:Harr小波基,提出了小波变换的原始思想。1936年Littlewood和Paley对Fourier级数建立了二进频率分量组理论(即L-P理论),后来的多分辨分析思想来源于此。接着科学家们在奇异积分算子、框架分解、小波级数、正交小波系、Besov空间等方面日益完善了小波理论,但都局限于数学理论研究方面。小波研究与应用的热潮始于20世纪80年代,1983年法国工程师Morlet在分析地震波的局部特性时,为解决Gabor变换在高频条件下不能很好地收集信号能量的问题,引入了小波概念,将Gabor变换中的Gaussian函数进行伸缩和平移,这就是Morlet小波。理论物理学家Grossmann对该小波的分解可行性作了研究,提出了确定函数的伸缩与平移展开理论,为小波分析理论的形成奠定了基础。随后,Meyer证明了一维小波函数的存在性,并构造了具有衰减性的光滑函数--Meyer小波,其二进伸缩和平移构成Q(R)的规范正交基。1987年Mallat将多分辨分析思想引入小波函数构造,完善了正交小波及其正交补一尺度函数理论,并研究了小波变换的离散化形式和滤波器组概念,提出了信号小波分解与重构的Mallat算法。比利时数学家Daubechies证明了紧支集正交小波基的存在性,并构造了Daubechies类正交小波基。近年来,为弥补单小波在解决高频段分辨率差、维护难、自由度不够、高维奇异性、缺乏方向性以及混和光滑函数类逼近等问题上的不足,小波理论在实践需要的推动下快速发展,产生了许多新的研究方向,如小波包(wavelets packet)、区间小波(interval Wavelets)、多小波(multiwavelets)、基于提升型(liftingscheme)的第二代小波以及脊波(ridgelet)、曲线波(curvelet)、双曲波(hyperbolic wavelet)等新兴小波理论受到广泛关注,这些将成为未来小波的主要研究方向。小波理论从诞生的那天起就注定它是一门应用性很强的学科,目前在信号分析、图像压缩机器视觉、模式识别、航空航天、量子力学、目标跟踪、系统辨识、自动控制、函数逼近数值计算甚至金融经济等领域都有小波技术的影子。数字图像的压缩己成为小波的顶级应用。 一言以蔽之,小波以其时频联合局部性和多分辨分析性能等优势正深刻改变着工程技术领域的一些传统研究和分析方法,图像技术等学科同样也深受其影响。

MATLAB小波变换指令及其功能介绍(超级有用)解读

MATLAB小波变换指令及其功能介绍 1 一维小波变换的 Matlab 实现 (1) dwt函数 功能:一维离散小波变换 格式:[cA,cD]=dwt(X,'wname') [cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维DFT 说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname' 对信号X 进行分解,cA、cD 分别为近似分量和细节分量; [cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信 号进行分解。 (2) idwt 函数 功能:一维离散小波反变换 格式:X=idwt(cA,cD,'wname') X=idwt(cA,cD,Lo_R,Hi_R) X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分 X=idwt(cA,cD,Lo_R,Hi_R,L) 说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经 小波反变换重构原始信号 X 。 'wname' 为所选的小波函数 X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。 X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。 2 二维小波变换的 Matlab 实现 二维小波变换的函数别可以实现一维、二维和 N 维 DFT 函数名函数功能

--------------------------------------------------- dwt2 二维离散小波变换 wavedec2 二维信号的多层小波分解 idwt2 二维离散小波反变换 waverec2 二维信号的多层小波重构 wrcoef2 由多层小波分解重构某一层的分解信号 upcoef2 由多层小波分解重构近似分量或细节分量 detcoef2 提取二维信号小波分解的细节分量 appcoef2 提取二维信号小波分解的近似分量 upwlev2 二维小波分解的单层重构 dwtpet2 二维周期小波变换 idwtper2 二维周期小波反变换 ----------------------------------------------------------- (1) wcodemat 函数 功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分 格式:Y=wcodemat(X,NB,OPT,ABSOL) Y=wcodemat(X,NB,OPT) Y=wcodemat(X,NB) Y=wcodemat(X) 说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵 Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16; OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现 一维、二维和 N 维 DFT OPT='row' ,按行编码 OPT='col' ,按列编码

小波变换详解

基于小波变换的人脸识别 近年来,小波变换在科技界备受重视,不仅形成了一个新的数学分支,而且被广泛地应用于模式识别、信号处理、语音识别与合成、图像处理、计算机视觉等工程技术领域。小波变换具有良好的时频域局部化特性,且其可通过对高频成分采取逐步精细的时域取样步长,从而达到聚焦对象任意细节的目的,这一特性被称为小波变换的“变聚焦”特性,小波变换也因此被人们冠以“数学显微镜”的美誉。 具体到人脸识别方面,小波变换能够将人脸图像分解成具有不同分辨率、频率特征以及不同方向特性的一系列子带信号,从而更好地实现不同分辨率的人脸图像特征提取。 4.1 小波变换的研究背景 法国数学家傅立叶于1807年提出了著名的傅立叶变换,第一次引入“频率”的概念。傅立叶变换用信号的频谱特性来研究和表示信号的时频特性,通过将复杂的时间信号转换到频率域中,使很多在时域中模糊不清的问题,在频域中一目了然。在早期的信号处理领域,傅立叶变换具有重要的影响和地位。定义信号(t)f 为在(-∞,+∞)内绝对可积的一个连续函数,则(t)f 的傅立叶变换定义如下: ()()dt e t f F t j ωω-? ∞ -∞ += (4-1) 傅立叶变换的逆变换为: ()()ωωπ ωd e F t f t j ? +∞ ∞ -= 21 (4-2) 从上面两个式子可以看出,式(4-1)通过无限的时间量来实现对单个频率

的频谱计算,该式表明()F ω这一频域过程的任一频率的值都是由整个时间域上的量所决定的。可见,式(4-1)和(4-2)只是同一能量信号的两种不同表现形式。 尽管傅立叶变换可以关联信号的时频特征,从而分别从时域和频域对信号进行分析,但却无法将两者有效地结合起来,因此傅立叶变换在信号的局部化分析方面存在严重不足。但在许多实际应用中,如地震信号分析、核医学图像信号分析等,研究者们往往需要了解某个局部时段上出现了哪个频率,或是某个频率出现在哪个时段上,即信号的时频局部化特征,傅立叶变换对于此类分析无能为力。 因此需要一种如下的数学工具:可以将信号的时域和频域结合起来构成信号的时频谱,描述和分析其时频联合特征,这就是所谓的时频局部化分析方法,即时频分析法。1964年,Gabor 等人在傅立叶变换的基础上引入了一个时间局部化“窗函数”g(t),改进了傅立叶变换的不足,形成窗口化傅立叶变换,又称“Gabor 变换”。 定义“窗函数”(t)g 在有限的区间外恒等于零或很快地趋于零,用函数(t )g -τ乘以(t)f ,其效果等同于在t =τ附近打开一个窗口,即: ()()()dt e t g t f G t j f ωττω-+∞ ∞--=?, (4-3) 式(4-3)即为函数f(t)关于g(t)的Gabor 变换。由定义可知,信号(t)f 的Gabor 变换可以反映该信号在t =τ附近的频谱特性。其逆变换公式为: ()()()ττωτωπ ωd G t g e d t f f t j ,21 ? ?+∞ ∞ --- = (4-4) 可见()τω,f G 的确包含了信号(t)f 的全部信息,且Gabor 窗口位置可以随着 τ的变化而平移,符合信号时频局部化分析的要求。 虽然Gabor 变换一定程度上克服了傅立叶变换缺乏时频局部分析能力的不

用matlab小波分析的实例

1 绪论 1.1概述 小波分析是近15年来发展起来的一种新的时频分析方法。其典型应用包括齿轮变速控制,起重机的非正常噪声,自动目标所顶,物理中的间断现象等。而频域分析的着眼点在于区分突发信号和稳定信号以及定量分析其能量,典型应用包括细胞膜的识别,金属表面的探伤,金融学中快变量的检测,INTERNET的流量控制等。 从以上的信号分析的典型应用可以看出,时频分析应用非常广泛,涵盖了物理学,工程技术,生物科学,经济学等众多领域,而且在很多情况下单单分析其时域或频域的性质是不够的,比如在电力监测系统中,即要监控稳定信号的成分,又要准确定位故障信号。这就需要引入新的时频分析方法,小波分析正是由于这类需求发展起来的。 在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,这对于某些应用来说是很恰当的,因为信号的频率的信息对其是非常重要的。但其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor变换,时频分析,小波变换等。其中短时傅立叶变换是在傅立叶分析基础上引入时域信息的最初尝试,其基本假定在于在一定的时间窗内信号是平稳的,那么通过分割时间窗,在每个时间窗内把信号展开到频域就可以获得局部的频域信息,但是它的时域区分度只能依赖于大小不变的时间窗,对某些瞬态信号来说还是粒度太大。换言之,短时傅立叶分析只能在一个分辨率上进行。所以对很多应用来说不够精确,存在很大的缺陷。 而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,具有多分辨率分析的特点,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整,在一般情况下,在低频部分(信号较平稳)可以采用较低的时间分辨率,而提高频率的分辨率,在高频情况下(频率变化不大)可以用较低的频率分辨率来换取精确的时间定位。因为这些特定,小波分析可以探测正常信号中的瞬态,并展示其频率成分,被称为数学显微镜,广泛应用于各个时频分析领域。 全文介绍了小波变换的基本理论,并介绍了一些常用的小波函数,它们的主要性质包括紧支集长度、滤波器长度、对称性、消失矩等,都做了简要的说明。在不同的应用场合,各个小波函数各有利弊。 小波分析在图像处理中有非常重要的应用,包括图像压缩,图像去噪,图像融合,图像分解,图像增强等。文中给出了详细的程序范例,用MATLAB实现了基于小波变换的图像处理。 小波分析在图像处理中有非常重要的应用,包括图像压缩,图像去噪,图像融合,图像分解,图像增强等。文中给出了详细的程序范例,用MATLAB实现了基于小波变换的图像处理。 小波分析在图像处理中有非常重要的应用,包括图像压缩,图像去噪,图像融合,图像分解,图像增强等。文中给出了详细的程序范例,用MATLAB实现了基于小波变换的图像处理。 1.2 傅立叶变换与小波变换的比较 小波分析是傅立叶分析思想方法的发展与延拓。它自产生以来,就一直与傅立叶分析

连续小波变换的概念

连续小波变换的概念swt,cwt,dwt 1。连续小波的概念。就是把一个可以称作小波的函数(从负无穷到正无穷积分为零)在某个尺度下与待处理信号卷积。改变小波函数的尺度,也就改变了滤波器的带通范围,相应每一尺度下的小波系数也就反映了对应通带的信息。本质上,连续小波也就是一组可控制通带范围的多尺度滤波器。 2。连续小波是尺度可连续取值的小波,里面的a一般取整数,而不像二进小波a取2的整数幂。从连续小波到二进小波再到正交离散小波,其实就是a、b都连续,a不连续、b连续,a、b都不连续的过程。操作他们的快速算法也就是卷积(快速傅里叶),多孔(a trous),MALLAT。在MATLAB里,也就是CWT,SWT,DWT。SWT称平稳小波变换、二进小波变换、或者非抽取小波变换。3。从冗余性上:CWT>SWT>DWT,前面两个都冗余,后面的离散小波变换不冗余。 4。从应用上:CWT适合相似性检测、奇异性分析;SWT适合消噪,模极大值分析;DWT适合压缩。 5。操作。就是在某个尺度上得到小波的离散值和原信号卷积,再改变尺度重新得到小波的离散值和原信号卷积。每一个尺度得到一个行向量存储这个尺度下的小波系数,多个尺度就是一个矩阵,这个矩阵就是我们要显示的时间-尺度图。 6。显示。“不要认为工程很简单”。我的一个老师说过的话。小波系数的显示还是有技巧的。很多人画出的图形“一片乌黑”就是个例子。第一步,一般将所有尺度下的小波系数取模;第二步,将每个尺度下的小波系数范围作映射,映射到你指定MAP的范围,比如如果是GRAY,你就映射到0-255;第三步,用IMAGE命令画图;第四步,设置时间和尺度坐标。MATLAB是个很专业的软件,它把这些做的很好,但也就使我们懒惰和糊涂,我是个好奇心重的人就研究了下。里面有个巧妙的函数把我说的(1,2)两个步骤封装在了一起,就是WCODEMAT,有兴趣的同学可以看看。 希望大家深入研究小波。 这里,还有要说的是,小波目前理论的热点: 1。不可分的小波或者具有可分性质的方向性小波; 2。XLET: CONTOURLET, WEDGELET, SHEARLET, BANDELET, RIDGELET, CURVELET; PLATELET. 3。多分辨率分析+多尺度几何分析的结合,才真正是我们所需要的。比如小波域的WEDGELET等等。 最后,几点建议: 1。理论研究和实际应用不同,工程上很多问题小波并不是最好的,在做项目的时候大家要实际情况,实际对待。

MATLAB小波变换指令及其功能介绍(超级有用).

MATLAB 小波变换指令及其功能介绍 1 一维小波变换的 Matlab 实现 (1 dwt函数 功能:一维离散小波变换 格式:[cA,cD]=dwt(X,'wname' [cA,cD]=dwt(X,Lo_D,Hi_D别可以实现一维、二维和 N 维 DFT 说明:[cA,cD]=dwt(X,'wname' 使用指定的小波基函数 'wname' 对信号X 进行分解,cA 、cD 分别为近似分量和细节分量; [cA,cD]=dwt(X,Lo_D,Hi_D 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。 (2 idwt 函数 功能:一维离散小波反变换 格式:X=idwt(cA,cD,'wname' X=idwt(cA,cD,Lo_R,Hi_R X=idwt(cA,cD,'wname',L函数 fft、fft2 和 fftn 分 X=idwt(cA,cD,Lo_R,Hi_R,L 说明:X=idwt(cA,cD,'wname' 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。 'wname' 为所选的小波函数 X=idwt(cA,cD,Lo_R,Hi_R 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。

X=idwt(cA,cD,'wname',L 和 X=idwt(cA,cD,Lo_R,Hi_R,L 指定返回信号 X 中心附近的 L 个点。 2 二维小波变换的 Matlab 实现 二维小波变换的函数别可以实现一维、二维和 N 维 DFT 函数名函数功能 --------------------------------------------------- dwt2 二维离散小波变换 wavedec2 二维信号的多层小波分解 idwt2 二维离散小波反变换 waverec2 二维信号的多层小波重构 wrcoef2 由多层小波分解重构某一层的分解信号 upcoef2 由多层小波分解重构近似分量或细节分量 detcoef2 提取二维信号小波分解的细节分量 appcoef2 提取二维信号小波分解的近似分量 upwlev2 二维小波分解的单层重构 dwtpet2 二维周期小波变换 idwtper2 二维周期小波反变换 ----------------------------------------------------------- (1 wcodemat 函数 功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式: Y=wcodemat(X,NB,OPT,ABSOL Y=wcodemat(X,NB,OPT Y=wcodemat(X,NB

小波分解案列(程序)

简介 在数字图像处理中,需要将连续的小波及其小波变换离散化。一般计算机实现中使用二进制离散处理,将经过这种离散化的小波及其相应的小波变换成为离散小波变换(简称DWT)。实际上,离散小波变换是对连续小波变换的尺度、位移按照2的幂次进行离散化得到的,所以也称之为二进制小波变换。 虽然经典的傅里叶变换可以反映出信号的整体内涵,但表现形式往往不够直观,并且噪声会使得信号频谱复杂化。在信号处理领域一直都是使用一族带通滤波器将信号分解为不同频率分量,即将信号f(x)送到带通滤波器族Hi(x)中。 小波分解的意义就在于能够在不同尺度上对信号进行分解,而且对不同尺度的选择可以根据不同的目标来确定。 对于许多信号,低频成分相当重要,它常常蕴含着信号的特征,而高频成分则给出信号的细节或差别。人的话音如果去掉高频成分,听起来与以前可能不同,但仍能知道所说的内容;如果去掉足够的低频成分,则听到的是一些没有意义的声音。在小波分析中经常用到近似与细节。近似表示信号的高尺度,即低频信息;细节表示信号的高尺度,即高频信息。因此,原始信号通过两个相互滤波器产生两个信号。 通过不断的分解过程,将近似信号连续分解,就可以将信号分解成许多低分辨率成分。理论上分解可以无限制的进行下去,但事实上,分解可

以进行到细节(高频)只包含单个样本为止。因此,在实际应用中,一般依据信号的特征或者合适的标准来选择适当的分解层数。 实例 % By lyqmath % DLUT School of Mathematical Sciences 2008 % BLOG:https://www.360docs.net/doc/4018170983.html,/lyqmath clc; clear all; close all; load leleccum; % 载入信号数据 s = leleccum; Len = length(s); [ca1, cd1] = dwt(s, 'db1'); % 采用db1小波基分解 a1 = upcoef('a', ca1, 'db1', 1, Len); % 从系数得到近似信号 d1 = upcoef('d', cd1, 'db1', 1, Len); % 从系数得到细节信号 s1 = a1+d1; % 重构信号 figure; subplot(2, 2, 1); plot(s); title('初始电源信号'); subplot(2, 2, 2); plot(ca1); title('一层小波分解的低频信息'); subplot(2, 2, 3); plot(cd1); title('一层小波分解的高频信息'); subplot(2, 2, 4); plot(s1, 'r-'); title('一层小波分解的重构信号'); 结果 总结 小波分解可以使人们在任意尺度观察信号,只需所采用的小波函数的尺

离散小波变换

长期以来,离散小波变换(Discrete Wavelet Transform)在数字信号处理、石油勘探、地震预报、医学断层诊断、编码理论、量子物理及概率论等领域中都得到了广泛的应用。各种快速傅氏变换(FFT)和离散小波变换(DWT)算法不断出现,成为数值代数方面最活跃的一个研究领域,而其意义远远超过了算法研究的范围,进而为诸多科技领域的研究打开了一个崭新的局面。本章分别对FFT 和DWT 的基本算法作了简单介绍,若需在此方面做进一步研究,可参考文献[2]。 1.1 离散小波变换DWT 1.1.1 离散小波变换DWT 及其串行算法 先对一维小波变换作一简单介绍。设f (x )为一维输入信号,记)2(2)(2/k x x j j jk -=--φφ, )2(2)(2/k x x j j jk -=--ψψ,这里)(x φ与)(x ψ分别称为定标函数与子波函数,)}({x jk φ与 )}({x jk ψ为二个正交基函数的集合。记P 0f =f ,在第j 级上的一维离散小波变换 DWT(Discrete Wavelet Transform)通过正交投影P j f 与Q j f 将P j -1f 分解为: ∑∑+=+=-k k jk j k jk j k j j j d c f Q f P f P ψφ1 其中:∑ =-=-+1 1 2)(p n j n k j k c n h c ,∑=-=-+1 1 2)(p n j n k j k c n g d )12,...,1,0,,...,2,1(-==j N k L j ,这里,{h (n )}与{g (n )}分别为低通与高通权系数,它们由基函数)}({x jk φ与)}({x jk ψ 来确定,p 为权系数 的长度。}{0 n C 为信号的输入数据,N 为输入信号的长度,L 为所需的级数。由上式可见,每级一维DWT 与一维卷积计算很相似。所不同的是:在DWT 中,输出数据下标增加1时,权系数在输入数据的对应点下标增加2,这称为“间隔取样”。 算法 一维离散小波变换串行算法 输入:c 0 =d 0 (c 00 , c 10 ,…, c N-10 ) h=(h 0, h 1,…, h L-1) g=(g 0, g 1,…, g L-1) 输出:c i j , d i j (i=0, 1,…, N/2j-1 , j ≥0)

小波变换理论及应用

2011-2012 学年第一学期 2011级硕士研究生考试试卷 课程名称:小波变换理论及应用任课教师:考试时间:分钟 考核类型:A()闭卷考试(80%)+平时成绩(20%); B()闭卷考试(50%)+ 课程论文(50%); C(√)课程论文或课程设计(70%)+平时成绩(30%)。 一、以图示的方式详细说明连续小波变换(CWT)的运算过程,分析小波变换的内涵;并阐述如何从多分辨率(MRA)的角度构造正交小波基。(20分) 二、综述小波变换理论与工程应用方面的研究进展,不少于3000字。(25分) 三、运用MATLAB中的小波函数和小波工具箱,分别对taobao.wav语音信号在加噪之后的taobao_noise.wav信号进行降噪处理,要求列出程序、降噪结果及降噪的理论依据。(25分) 四、平时成绩。(30分)

(一)连续小波变换(CWT )的运算过程及内涵 将平方可积空间中任意函数f (t )在小波基下展开,称这种展开为函数f (t )的连续小波变换(Continue Wavelet Transform ,简记CWT )其表达式为 t a b t t f a b a f W d )(*)(||1),(? ∞+∞--=ψψ ( 1.1) 其中,a ∈R 且a ≠0。式(1.19)定义了连续小波变换,a 为尺度因子,表示与频率相关的伸 缩,b 为时间平移因子。其中)(| |1)(,a b t a t b a -=ψψ为窗口函数也是小波母函数。 从式(1.1)可以得出,连续小波变换计算分以下5个步骤进行。 ① 选定一个小波,并与处在分析时段部分的信号相比较。 ② 计算该时刻的连续小波变换系数C 。如图1.5所示,C 表示了该小波与处在分析时段内的信号波形相似程度。C 愈大,表示两者的波形相似程度愈高。小波变换系数依赖于所选择的小波。因此,为了检测某些特定波形的信号,应该选择波形相近的小波进行分析。 图1.5 计算小波变换系数示意图 ③ 如图1.6所示,调整参数b ,调整信号的分析时间段,向右平移小波,重复①~②步骤,直到分析时段已经覆盖了信号的整个支撑区间。 ④ 调整参数a ,尺度伸缩,重复①~③步骤。 ⑤ 重复①~④步骤,计算完所有的尺度的连续小波变换系数,如图1.7所示。 图1.6 不同分析时段下的信号小波变换系数计算 图1.7 不同尺度下的信号小波变换系数计算 C =0.2247

小波变换算法应用

小波变换算法应用

《软件开发》 课程设计 题目:小波算法的设计 【题目要求:将小波算法在MATLAB中实现,并将其应用于数字图像处理中。】 学院:数学学院 专业班级:应用数学09-2班 姓名:李明 学号:20096312 指导教师:邢燕、何蕾 2013.3.5

小波算法的设计 一、小波变换背景 小波变换是当前应用数学中一个迅速发展的领域,是分析和处理非平稳信号的一种有力 工具。它是以局部化函数所形成的小波基作为基底而展开的,具有许多特殊的性能和优点。 小波分析是一种更合理的时频表示和子带多分辨分析,对它的研究开始于20世纪80年代, 理论基础奠基于20世纪80年代末。经过十几年的发展,它已在信号处理与分析、地震信号处理、信号奇异性监测和谱古迹、计算机视觉、语音信号处理、图像处理与分析,尤其是图像编码等领域取得了突破性进展,成为一个研究开发的前沿热点。 二、小波变换概念 小波变换是一窗口大小固定不变但其形状可改变的时频局部化分析方法。小波变换在信号的高频部分,可以取得较好的时间分辨率;在信号的低频部分,可以取得较好的频率分辨率,从而能有效地从信号〔语音、图像等)中提取信息。 设)(t f是平方可积分函数,即)( f ,则该 t (2R ) L

连续函数的小波变换定义为: dt a b t t f a b a WT f )()(1),(*-=?+∞ ∞-ψ 0≠a 式中)()(1 ,*t a b t a b a ψψ=-称为母小波)(t ψ(基本小波)生 成的位移和尺度伸缩,其中a 为尺度参数,b 为平移参数。 连续小波变换有明确的物理意义,尺度参数a 越大,则 )(a t ψ越宽,该函数的时间分辨率越低。)(t ab ψ前增加因子 a 1是为了使不同的a 下的)(t a b ψ能量相同。而),(b a WT f 在频域可以表示为ωωψωπωd e F a b a WT b j f )()(2),(*?=。)(ωψ是幅频特性比较集中 的带通函数,小波变换具有表征分析信号)(ωF 频域上局部性质的能力。采用不同的a 值做处理时,)(ωψ的中心频率和带宽都不同,但品质因数(中心频率/带宽)却不变。 三、小波变换需求分析

小波变换的理解

由于小波变换的知识涵盖了调和分析,实变函数论,泛函分析及矩阵论,所以没有一定的数学基础很难学好小波变换.但是对于我们工科学生来说,重要的是能利用这门知识来分析所遇到的问题.所以个人认为并不需要去详细学习调和分析,实变函数论,泛函分析及矩阵论等数学知识.最重要是的理解小波变换的思想!从这个意义上说付立叶变换这一关必需得过!因为小波变换的基础知识在付立叶变换中均有提及,我觉得这也就是很多小波变换的书都将付立叶分析作为其重要内容的原因.所以我认为学习小波应从<数字信号处理>中的付立叶分析开始.当然也可从<信号与系统>这本书开始.然后再看杨福生老师的小波变换书.个人觉得他的书最能为工科学生所接受. 2信号的分解 付立叶级数将周期信号分解为了一个个倍频分量的叠加,基函数是正交的,也就是通常所说的标准正交基.通过分解我们就能将特定的频率成分提取出来而实现特定的各种需要,如滤波,消噪等.付立叶变换则将倍频谱转换为了连续谱,其意义差不多.小波变换也是一种信号分解思想:只不过它是将信号分解为一个个频带信号的叠加.其中的低频部分作为信号的近似,高频部分作为信号的细节.所谓的细节部分就是一组组小波分量的叠加,也就是常说的小波级数. 3小波变换的时频分析思想 付立叶变换将信号从时域变换到了频域,从整体上看待信号所包含的频率成分.对于某个局部时间点或时间段上信号的频谱分析就无能为力了,对于我们从事信号的奇异性检测的人来说,付立叶变换就失去了意义(包括加窗付立叶变换).因为我们要找的是信号的奇异点(时域方面)和奇异点处所包含的频带(频域方面)也就是说需要一种时频分析方法.当然能有纯时域的分析方法更好!(据说数学形态学能达到这种效果).小波变换之所以可以检测信号的奇异点,正在于它的"小".因为用小的波去近似奇异信号要比正弦波要好的多. 4小波变换的实质 小波变换的公式有内积形式和卷积形式,两种形式的实质都是一样的.它要求的就是一个个小波分量的系数也就是"权".其直观意义就是首先用一个时窗最窄,频窗最宽的小波作为尺子去一步步地"量"信号,也就是去比较信号与小波的相似程度.信号局部与小波越相似,则小波变换的值越大,否则越小!当一步比较完成后,再将尺子拉长一倍,又去一步步地比

小波分析实验:二维离散小波变换(Mallat快速算法)

小波分析实验:实验2二维离散小波变换(Mallat快速算法) 实验目的: 在理解离散小波变换原理和Mallat快速算法的基础上,通过编程对图像进行二维离散小波变换,从而加深对二维小波分解和重构的理性和感性认识,并能提高编程能力,为今后的学习和工作奠定基础。 实验工具: 计算机,matlab6.5

分解算法: 重构算法: “"二工必(刃- 2上*[十三g (刃- 2k )d [ * 分解算法写成矩阵的形式! (lb g 的长度为4) 4[0]如]力⑵ h[3] 0 0 0 ' [勺【0】? 记" h[0] h[\]h[2]山⑶ … ? ????? ? ? C J = 勺【1] ? ? 申[2] h[3] 0 0 0 -.^[0] ^[1]_ .勺[乃-1】_ >[0] g[l] g ⑵ g[3] 0 ? ? ? e= ? 0 ? g[0] g[l]g ⑵ ? ? g[3] ■ ? ?? ■ 0 ? D J = <[i] ■ ? 目2] ■ g[3] 0 0 …茎0] 畀] |g[0] g[l] g[2] g[3] 0 0 0 I 0 0 g[0] g[l]g[2] S [3] - 0 ? ????? ? ? ?????■ ? ? g[2] g[3] 0 0 0 ...g[0] g[l]J |_勺4-1[ 叨] I 二 ?(2?

于是Mallat分解公式为矩阵变换?丄 Cj- = PC^................. ⑶卩 D j = Q D J-L..... .......... ⑷ 重构算法写成矩阵变换:- C J_I =C$ + Dj------------------------------------ (5) 4 M N PPq. 一片『峰值信噪比计算公式:P沁沁逻竺皿E卢H耿V 屈E M {皿,00分别表示原始图像和重建图像,且 本实验采取的一些小技乐P (I)分SW法…

小波变换 mallat

实验目的:通过编程实现离散快速小波变换Mallat 算法,从而加深理解二维 小波变换的分解与合成,同时,提高编程能力和matlab 的应用,为以后的学习打下基础。 实验原理: 1、Mallat 快速算法 本实验使用离散快速小波变换快速算法Mallat 算法,算法原理如下 (1)1(2)j j k n n c h n k c -=-∑ (2) 1(2)j j k n n d g n k c -=-∑重构算法: (3) 1(2)(2)j j j n k k n n c h n k c g n k d -=-+-∑∑对于(1)、(2)等效于经过冲击响应为和的数字滤波器,然后再分别进 1 j n c -[]h n -[]g n -行“二抽取”,Mallat 分解算法的滤波器表示形式如下图 C j-1 d j (k) C j (k) 用滤波器表示如下图 d j C j C j-1(k) 2、 255*255 10lg PSNR MSE ='2 11 ()*M N ij ij i j f f MSE M N ==-= ∑∑ 分别表示原始图像和重建后的图像,。 {}ij f '{}ij f 1,1i M j N ≤≤≤≤3、边界延拓方法有零延拓、周期延拓、对称周期延拓、常数连续延拓等,本实验采用以上四种方法进行原图像的1/8延拓,并进行重构,各种延拓方法所对应的函数为yan0(x)、yancir (x )、yan(x)、yanc(x),在主程序中,需要某种延拓,便调用某种函数。

实验编程思路: 为使程序易于理解,在不考虑算法复杂度的情况下,分解程序采用简洁的循环计算出下一级的分解系数,程序采用的编程思想如下 [][][]11100[0][1][2][3][4][5]001[1]00[0][1][2][3]00[1][2][3][4][5]00[0][1]12j j j j j j c c h h h h h h c c h h h h n c n h h h h h h c ---?? ??????????????? ???=??????????????--?????????????? L L M M M M M M M M O O M L 以上矩阵等式左面是进行二抽样的结果,是分解的低频部分。同理,对 [0][1]2 j j n c c -L j 于分解的高频部分有如下矩阵形式: j [][][]11 100[0][1][2][3][4][5]0 01[1]00[0][1][2][3]00[1][2][3][4][5]00[0][1]12j j j j j d d g g g g g g d d g g g g n d n g g g g g g d ---???? ????????????? ???=? ?????? ???????--?????????????? L L M M M M M M M M O O M L 分解程序: lenx=size(x,2);%x 为一维向量 lenh=size(h,2);h=[h,zeros(1,(lenx-lenh))];g=[g,zeros(1,(lenx-lenh))]; r1(1)=sum(h.*x); r2(1)=sum(g.*x); for k=1:1:(lenx/2-1) %循环求出下一级低频和高频分量 h=[h(end-1:end),h(1:(end-2))]; r1(k+1)=sum(h.*x); g=[g(end-1:end),g(1:1:(end-2))]; r2(k+1)=sum(g.*x); end y=[r1,r2]; 对于重构算法,其等效形式为 [][][] 1(2)(2)j j j n n c n h n k c k g n k d k -=-+-∑∑上式等号右边部分实质上是对变量的数字卷积运算,程序采用频域相乘代替卷积,重建程k 序为 y=ifft(fft(c3,lenx).*fft(h,lenx))+ ifft(fft(d3,lenx).*fft(g,lenx));

小波变换的本质

为了应付老板的的一个任务而收集了几篇相关文章! 我是搞电力系统故障波形分析的,正上研二,导师定的方向是用小波变换进行信号的消噪及波形奇异点检测.出于研究方向的需要从去年年底开始接触小波.毕竟是工科出身,学起小波来觉得难度很大.不夸张地说常有学不下去的感觉.硬着头皮看了一段时间,终于觉得有点眉目,现将我从信号奇异性方面的理解写出来,请各位同仁批评指正,并希望能对刚接触小波的朋友有点帮助! 1学习小波变换所需的基础知识 由于小波变换的知识涵盖了调和分析,实变函数论,泛函分析及矩阵论,所以没有一定的数学基础很难学好小波变换.但是对于我们工科学生来说,重要的是能利用这门知识来分析所遇到的问题.所以个人认为并不需要去详细学习调和分析,实变函数论,泛函分析及矩阵论等数学知识.最重要是的理解小波变换的思想!从这个意义上说付立叶变换这一关必需得过!因为小波变换的基础知识在付立叶变换中均有提及,我觉得这也就是很多小波变换的书都将付立叶分析作为其重要内容的原因.所以我认为学习小波应从<数字信号处理>中的付立叶分析开始.当然也可从<信号与系统>这本书开始.然后再看杨福生老师的小波变换书.个人觉得他的书最能为工科学生所接受.2信号的分解 付立叶级数将周期信号分解为了一个个倍频分量的叠加,基函数是正交的,也就是通常所说的标准正交基.通过分解我们就能将特定的频率成分提取出来而实现特定的各种需要,如滤波,消噪等.付立叶变

换则将倍频谱转换为了连续谱,其意义差不多.小波变换也是一种信号分解思想:只不过它是将信号分解为一个个频带信号的叠加.其中的低频部分作为信号的近似,高频部分作为信号的细节.所谓的细节部分就是一组组小波分量的叠加,也就是常说的小波级数. 3小波变换的时频分析思想 付立叶变换将信号从时域变换到了频域,从整体上看待信号所包含的频率成分.对于某个局部时间点或时间段上信号的频谱分析就无能为力了,对于我们从事信号的奇异性检测的人来说,付立叶变换就失去了意义(包括加窗付立叶变换).因为我们要找的是信号的奇异点(时域方面)和奇异点处所包含的频带(频域方面)也就是说需要一种时频分析方法.当然能有纯时域的分析方法更好!(据说数学形态学能达到这种效果).小波变换之所以可以检测信号的奇异点,正在于它的"小".因为用小的波去近似奇异信号要比正弦波要好的多. 4小波变换的实质 小波变换的公式有内积形式和卷积形式,两种形式的实质都是一样的.它要求的就是一个个小波分量的系数也就是"权".其直观意义就是首先用一个时窗最窄,频窗最宽的小波作为尺子去一步步地"量"信号,也就是去比较信号与小波的相似程度.信号局部与小波越相似,则小波变换的值越大,否则越小!当一步比较完成后,再将尺子拉长一倍,又去一步步地比较,从而得出一组组数据.如此这般循环,最后得出的就是信号的小波分解(小波级数).当然这只是一种粗略的解释.

相关文档
最新文档