算法分析与设计选修课-贪心算法应用研究

算法分析与设计选修课-贪心算法应用研究
算法分析与设计选修课-贪心算法应用研究

武汉理工大学

算法设计与分析论文题目:贪心算法应用研究

姓名:吴兵

学院:信息工程

专业班级:电子133

学号: 1409721303131

任课教师:张小梅

目录

摘要 (1)

1.绪论 (2)

2贪心算法的基本知识概述 (3)

2.1 贪心算法定义 (3)

2.2 贪心算法的基本思路及实现过程 (3)

2.3贪心算法的核心 (3)

2.4贪心算法的基本要素 (4)

2.5 贪心算法的理论基础 (6)

2.6 贪心算法存在的问题 (7)

3贪心算法经典应用举例 (8)

3.1删数问题 (8)

3.2 汽车加油问题 (10)

3.3会场安排问题 (12)

4.总结 (16)

5.参考文献 (17)

摘要

在求最优解问题的过程中,依据某种贪心标准,从问题的初始状态出发,直接去求每一步的最优解,通过若干次的贪心选择,最终得出整个问题的最优解,这种求解方法就是贪心算法。从贪心算法的定义可以看出,贪心法并不是从整体上考虑问题,它所做出的选择只是在某种意义上的局部最优解,而由问题自身的特性决定了该题运用贪心算法可以得到最优解。贪心算法所作的选择可以依赖于以往所作过的选择,但决不依赖于将来的选择,也不依赖于子问题的解,因此贪心算法与其它算法相比具有一定的速度优势。如果一个问题可以同时用几种方法解决,贪心算法应该是最好的选择之一。本文讲述了贪心算法的含义、基本思路及实现过程,贪心算法的核心、基本性质、特点及其存在的问题。并通过贪心算法的特点举例列出了以往研究过的几个经典问题,对于实际应用中的问题,也希望通过贪心算法的特点来解决。

关键词:贪心算法最小生成树多处最优服务次序问题删数问题

1.绪论

为了满足人们对大数据量信息处理的渴望,为解决各种实际问题,计算机算法学得到了飞速的发展,线性规划、动态规划、贪心策略等一系列运筹学模型纷纷运用到计算机算法学中,产生了解决各种现实问题的有效算法。虽然设计一个好的求解算法更像是一门艺术而不像是技术 ,但仍然存在一些行之有效的、能够用于解决许多问题的算法设计方法 ,你可以使用这些方法来设计算法 ,并观察这些算法是如何工作的。一般情况下,为了获得较好的性能,必须对算法进行细致的调整。但是在某些情况下,算法经过调整之后性能仍无法达到要求,这时就必须寻求另外的方法来求解该问题。

当一个问题具有最优子结构性质和贪心选择性质时,贪心算法通常会给出一个简单、直观和高效的解法。贪心算法通过一系列的选择来得到一个问题的解。它所作的每一个选择都是在当前状态下具有某种意义的最好选择,即贪心选择;并且每次贪心选择都能将问题化简为一个更小的与原问题具有相同形式的子问题。尽管贪心算法对许多问题不能总是产生整体最优解,但对诸如最短路径问题、最小生成树问题,以及哈夫曼编码问题等具有最优子结构和贪心选择性质的问题却可以获得整体最优解。而且所给出的算法一般比动态规划算法更加简单、直观和高效。

2贪心算法的基本知识概述

2.1 贪心算法定义

贪心算法可以简单描述为:对一组数据进行排序,找出最小值,进行处理,再找出最小值,再处理。也就是说贪心算法是一种在每一步选择中都采取在当前状态下最好或最优的选择,从而希望得到结果是最好或最优的算法。

贪心算法是一种能够得到某种度量意义下的最优解的分级处理方法,通过一系列的选择来得到一个问题的解,而它所做的每一次选择都是当前状态下某种意义的最好选择,即贪心选择。即希望通过问题的局部最优解来求出整个问题的最优解。这种策略是一种很简洁的方法,对许多问题它能产生整体最优解,但不能保证总是有效,因为它不是对所有问题都能得到整体最优解,只能说其解必然是最优解的很好近似值。

2.2 贪心算法的基本思路及实现过程

2.2.1 贪心的基本思想

用局部解构造全局解,即从问题的某一个初始解逐步逼近给定的目标,以尽可能快地求得更好的解。当某个算法中的某一步不能再继续前进时,算法停止。贪心算法思想的本质就是分治,或者说:分治是贪心的基础。每次都形成局部最优解,换一种方法说,就是每次都处理出一个最好的方案。利用贪心策略解题,需要解决两个问题:(1)该题是否适合于用贪心策略求解;

(2)如何选择贪心标准,以得到问题的最优/较优解。

2.2.2贪心算法的实现过程

(1)应用同一规则F,将原问题变为一个相似的、但规模更小的子问题;

(2)从问题的某一初始解出发:While(能朝给定目标前进一步)求出可行解的一个解元素;

(3)由所有解元素组合成问题的一个可行解。

2.3贪心算法的核心

贪心算法的核心问题是选择能产生问题最优解的最优度量标准,即具体的贪心策略。

贪心策略是指从问题的初始状态出发,通过若干次的贪心选择而得出最优值(或较优解)的一种解题方法。其实,从“贪心策略”一词我们便可以看出,贪心策略总是做出在当前看来是最优的选择,也就是说贪心策略并不是从整体上加以考虑,它所做出的选择只是在某种意义上的局部最优解,而许多问题自身的特性决定了该题运用贪心策略可以得到最优解或较优解。

2.4贪心算法的基本要素

2.4.1贪心选择性质

所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。在动态规划算法中,每步所做的选择往往依赖于相关子问题的解。因而只有在解出相关子问题后,才能做出选择。而在贪心算法中,仅在当前状态下做出最好选择,即局部最优选择。然后再去解做出这个选择后产生的相应的子问题。贪心算法所做的贪心选择可以依赖于以往所做过的选择,但决不依赖于将来所做的选择,也不依赖于子问题的解。正是由于这种差别,动态规划算法通常以自底向上的方式解各子问题,而贪心算法则通常以自顶向下的方式进行,以迭代的方式做出相继的贪心选择,每做一次贪心选择就将所求问题简化为规模更小的子问题。

对于一个具体问题,要确定它是否具有贪心选择性质,必须证明每一步所做的贪心选择最终导致问题的整体最优解。首先考察问题的一个整体最优解,并证明可修改这个最优解,使其以贪心选择开始。做了贪心选择后,原问题简化为规模更小的类似子问题。然后,用数学归纳法证明,通过每一步做贪心选择,最终可得到问题的整体最优解。其中,证明贪心选择后的问题简化为规模更小的类似子问题的关键在于利用该问题的最优子结构性质。

2.4.2最优子结构性质

当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。运用贪心策略在每一次转化时都取得了最优解。问题的最优子结构性质是该问题可用

贪心算法或动态规划算法求解的关键特征。贪心算法的每一次操作都对结果产生直接影响,而动态规划则不是。贪心算法对每个子问题的解决方案都做出选择,不能回退;动态规划则会根据以前的选择结果对当前进行选择,有回退功能。动态规划主要运用于二维或三维问题,而贪心一般是一维问题。

2.4.3贪心算法的特点

贪心算法的最大特点就是快,通常是线性二次式,不需要多少额外的内存。一般二次方级的存储要浪费额外的空间,而且那些空间经常得不出正解。但是,使用贪心算法时,这些空间可以帮助算法更容易实现且更快执行。如果有正确贪心性质存在,那么一定要采用。因为它容易编写,容易调试,速度极快,并且节约空间。几乎可以说,此时它是所有算法中最好的。但是应该注意,贪心算法有两大难点:(1)如何贪心

怎样用一个小规模的解构造更大规模的解呢?总体上,这与问题本身有关。但是大部分都是有规律的。正因为贪心有如此性质,它才能比其他算法快。

具有应当采用贪心算法的问题,当“贪心序列”中的每项互异且当问题没有重叠性时,看起来总能通过贪心算法取得(近似)最优解的。或者,总有一种直觉在引导我们对一些问题采用贪心算法。其中“找零钱”这个问题就是一个例子。题中给出的硬币面值事实上具有特殊性,如果面值发生变化,可能贪心算法就不能返回最优解了。但是,值得指出的是,当一个问题具有多个最优解时,贪心算法并不能求出所有最优解。另外,我们经过实践发现,单纯的贪心算法是顺序处理问题的;而且每个结果是可以在处理完一个数据后即时输出的。

(2)贪心的正确性

要证明贪心性质的正确性,才是贪心算法的真正挑战,因为并不是每次局部最优解都会与整体最优解之间有联系,往往靠贪心算法生成的解不是最优解。这样,贪心性质的证明就成了贪心算法正确的关键。对某些问题贪心性质也许是错的,即使它在大部分数据中都是可行的,但还必须考虑到所有可能出现的特殊情况,并证明该贪心性质在这些特殊情况中仍然正确。而这样容易陷入证明不正确贪心性质的泥塘中无法自拔,因为贪心算法的适用范围并不大,而且有一部分极难证明,若是没有把握,最好不要冒险,还有其他算法会比它要保险。

2.5 贪心算法的理论基础

正如前文所说的那样,贪心策略是最接近人类认知思维的一种解题策略。但是,越是显而易见的方法往往越难以证明。下面我们就来介绍贪心策略的理论—拟阵。

“拟阵”理论是一种能够确定贪心策略何时能够产生最优解的理论,虽然这套理论还很不完善,但在求解最优化问题时发挥着越来越重要的作用。

拟阵M定义为满足下面3个条件的有序对(S,I):

(1)S是非空有限集;

(2)I是S的一类具有遗传性质的独立子集族,即若B∈I,则B是S的独立子集,且B的任意子集也都是S的独立子集。空集¢必为I的成员;

(3)I满足交换性质,即若A∈I,B∈I且|A|<|B|,则存在某一元素x∈B-A,使得A∪{x}∈I。

定理2.1 拟阵M中所有极大独立子集具有相同大小。

引理2.1 (拟阵的贪心选择性质)设M=(S,I)是具有权函数M的带权拟阵,且S中元素依权值从大到小排列,又设x∈S是S中第一个使得{x}是独立子集元素,则存在S的最优子集A使得x∈A。

引理2.2 设M=(S,I)是拟阵。若S中元素x不是空集¢的一个可扩元素,则x 也不可能是S中任一独立子集A的可扩展元素。

引理2.3 (拟阵的最优子结构性质)设x是求带权拟阵M=(S,I)的最优子集的贪心算法Greedy所选择的S中的第一个元素。那么,原问题可简化为求带权拟阵M'=(S',I')的最优子集问题,其中

S'={y|y∈S且{x,y}∈I}

I'={B|B S-{x}且B∪{x}∈I}

M'的权函数是M的权函数在S'上的限制(称M'为M关于元素x的收缩)。

定理2.4(带权拟阵贪心算法的正确性)高M=(S,I)是具有权函数W的带权拟阵,算法Greedy返回M的最优子集。

适宜于用贪心策略来求解的许多问题都可以归结为在加权拟阵中找一个具有最大权值的独立子集的问题,即给定一个加权拟阵M=(S,I),若能找出一个独立且具有最大可能权值的子集A,且A不被M中比它更大的独立子集所包含,那么A为最优子集,也是一个最大的独立子集。我们认为,针对绝大多数的信息学问题,只要它具

备了“拟阵”的结构,便可用贪心策略求解。拟阵理论对于我们判断贪心策略是否适用于某一复杂问题是十分有效的。

2.6 贪心算法存在的问题

(1)不能保证求得的最后解是最佳的。由于贪心策略总是采用从局部看来是最优的选择,因此并不从整体上加以考虑;

(2)贪心算法只能用来求某些最大或最小解的问题;

(3)贪心算法只能确定某些问题的可行性范围。

3贪心算法经典应用举例

3.1删数问题

问题提出:给定n位正整数a,去掉其中任意k<=n个数字后,剩下的数字按原次序排列组成一个新的正整数。对于给定的n位正整数a和正整数k,设计一个算法找出剩下数字组成的新数最小的删数方案。

分析:n位数a可表示为x1x2…xixjxk…xn,要删去k位数,使得剩下的数字组成的整数最小。设本问题为T,其最优解A=(y1,y2…yk)表示依次删去的k个数,在删去k个数后剩下的数字按原次序排成的新数。即最优值记为TA。

本问题采用贪心算法求解,采用最近下降点优先的贪心策略:即x1

先来证明该问题具有贪心选择性质,即对问题T删除最近下降点的数xj后得到的N1是n一1位数是中最小的数。

根据数的进制特点,对a按权展开得:

a=x1*10n-1+x2*10n-2+...+xi*10n-i+xj*10n-j+xk*10n-k+ (x)

则有:Nl=x1*10n-2+x2*10n-3+...+xi*10n-i-1+xk*10n-k+ (x)

假设删去的不是xj而是其它位,则有

N2=x1*10n-2+x2*10n-3+...+xi*10n-i-1+xj*10n-k+ (x)

因为有x1xk,则有Nl

因此删数问题满足贪心选择性质。

删数问题的C++代码:

#include

#include

using namespace std;

int main()

{

string n;

int s,i,x,l,m;

printf("请输入一个正整数和将要删去的个数!\n");

while(cin>>n>>s)

{

i=-1,m=0,x=0;

l=n.length();

while(x

{

i++;

if(n[i]>n[i+1])//出现递减,删除递减的首数字

{

n=n.erase(i,1);

x++;// x统计删除数字的个数

i=-1;//从头开始查递减区间

}

if(i==l-x-2&&x

m=1;//已经无递减区间,m=1脱离循环

}

printf("最后结果为:\n");

cout<

}

}

在进行了贪心选择后,原问题T就变成了对N1如何删去k-1个数的问题T’,是原问题的子问题。若A=(xj,A’)是原问题T的最优解,则A’是子问题T’的最优解,其最优值为TA’。

证明:假设A’不是子问题T’的最优解,其子问题的最优解为B’,其最优值记为TB’,则有TB’

n-1位数比最优值TA更小。这与TA为问题T的最优值相矛盾。因此,A’是子问题T’的最优值。

因此,删数问题满足最优子结构性质。

从以上贪心选择及最优子结构性质的证明可知删数问题用贪心算法可以求得最优解。

3.2 汽车加油问题

问题的提出:一辆汽车加满油后,可行使n千米。旅途中有若干个加油站。若要使沿途加油次数最少,设计一个有效算法,对于给定的n和k个加油站位置,指出应在哪些加油站停靠加油才能使加油次数最少。

编码分析

把两加油站的距离放在数组中,a[1..k]表示从起始位置开始跑,经过k个加油站,a[i]表示第i-1个加油站到第i个加油站的距离。汽车在运行的过程中如果能跑到下一个站则不加油,否则要加油。

对于这个问题我们有以下几种情况:设加油次数为k,每个加油站间距离为a[i];i=0,1,2,3……n

(1)始点到终点的距离小于N,则加油次数k=0;

(2)始点到终点的距离大于N时:

A 加油站间的距离相等,即a[i]=a[j]=L=N,则加油次数最少k=n;

B 加油站间的距离相等,即a[i]=a[j]=L>N,则不可能到达终点;

C 加油站间的距离相等,即a[i]=a[j]=L

D 加油站间的距离不相等,即a[i]!=a[j],则加油次数k通过贪心算法求解。贪心算法策略

该题目求加油最少次数,即求最优解的问题,可分成几个步骤,一般来说,每个步骤的最优解不一定是整个问题的最优解,然而对于有些问题,局部贪心可以得到全局的最优解。贪心算法将问题的求解过程看作是一系列选择,从问题的某一个初始解出发,向给定目标推进。推进的每一阶段不是依据某一个固定的递推式,而是在每一个阶段都看上去是一个最优的决策(在一定的标准下)。不断地将问题实例归纳为更小的相似的子问题,并期望做出的局部最优的选择产生一个全局得最优解。

由于汽车是由始向终点方向开的,我们最大的麻烦就是不知道在哪个加油站加油可以使我们既可以到达终点又可以使我们加油次数最少。

提出问题是解决的开始。为了着手解决遇到的困难,取得最优方案。我们可以假设不到万不得已我们不加油,即除非我们油箱里的油不足以开到下一个加油站,我们才加一次油。在局部找到一个最优的解。每加一次油我们可以看作是一个新的起点,用相同的递归方法进行下去。最终将各个阶段的最优解合并为原问题的解得到我们原问题的求解。

贪心算法正确性证明

(1)贪心选择性质

所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。对于一个具体的问题,要确定它是否具有贪心性质,我们必须证明每一步所作的贪心选择最终导致问题的一个整体最优解。该题设在加满油后可行驶的N千米这段路程上任取两个加油站A、B,且A距离始点比B距离始点近,则若在B加油不能到达终点那么在A加油一定不能到达终点,因为m+N

(2)最优子结构性质:

当一个问题大的最优解包含着它的子问题的最优解时,称该问题具有最优子结构性质。由于(b[1],b[2],……b[n])是这段路程加油次数最少的一个满足贪心选择性质的最优解,则易知若在第一个加油站加油时,b[1]=1,则(b[2],b[3],……b[n])是从a[2]到a[n]这段路程上加油次数最少且这段路程上的加油站个数为(a[2],a[3],……a[n])的最优解,即每次汽车中剩下的油不能在行驶到下一个加油站时我们才在这个加油站加一次油,每个过程从加油开始行驶到再次加油满足贪心且每一次加油后相当于与起点具有相同的条件,每个过程都是相同且独立,也就是说加油次数最少具有最优子结构性质。

贪心算法时间复杂度分析

由于若想知道该在哪个加油站加油就必须遍历所有的加油站,且不需要重复遍历,所以时间复杂度为O(n)。

3.3会场安排问题

问题的提出:假设要在足够多的会场里安排一批活动,并希望使用尽可能少的会场。设计一个有效的贪心算法进行安排。(这个问题实际上是著名的图着色问题。若将每一个活动作为图的一个顶点,不相容活动间用边相连。使相邻顶点着有不同颜色的最小着色数,相应于要找的最小会场数。)

数据输入:由文件input.txt给出输入数据。第一行有1个正整数k,表示有k 个待安排的活动。接下来的k行中,每行有2个正整数,分别表示k个待安排的活动开始时间和结束时间。时间以0点开始的分钟计。

结果输出:将编程计算出的最少会场数输出到文件output.txt。

会场安排问题的C++代码:

#include

using namespace std;

int Partition(int a[], int low, int high )//划分

{

int i,j;

int x = a[low];

i = low;

j = high;

while(i

{

while(i

{

j = j - 1;

}

if(i

{

a[i] = a[j];

i=i+1;

}

while(i= a[i])

{

i = i + 1;

}

if(i

{

a[j] = a[i];

j=j-1;

}

}

a[i] = x;

return i;

}

void QuickSort(int a[], int low, int high) {

int Position;

if(low < high)

{

Position = Partition(a,low,high); QuickSort(a, low, Position-1);

QuickSort(a, Position+1, high);

}

}

int schedule(int a[],int b[],int s,int e) {

int n=0;

int i=s+1;

if (a[s]>-1)

{

n=1;

for(;i<=e;i++)

if(a[i]>=b[s]) //有一个活动结束,新活动可在已空闲的会场进行。 s++;

else

n++; //要增开一会场

}

return n;

}

int main( )

{ int n;

cin>>n;

int *st= new int[n];

int *et=new int[n];

for(int i=0;i

cin>>st[i]>>et[i];

QuickSort(st,0,n-1);

QuickSort(et,0,n-1);

cout<< schedule(st,et,0,n-1) <

delete []st;

delete []et;

return 0;

}

输入文件示例输出文件示例

input.txt output.txt

5 3

1 23

12 28

25 35

27 80

36 50

编码分析:根据会场安排问题的定义,首先将问题简化为:找出两个活动,若ei和ej满足si≥fj或sj≥fi,则称这两个活动相容,即问题转化为:要求找出最多相容会场集合A。

问题简化为对相容会场A的寻找,下面用贪心方法分析过程,根据题意,选取一种量度标准,然后按量度标准对n个输入排序,按顺序一次输入一个量。如果这个输入和当前已构成在这种量度意义下的部分最优解加在一起不能产生一个可行解,则不把此输入加到这部分解中,这种能够得到某种量度意义下的最优解的分级处理方法就是贪心方法。那么问题转化为对度量标准的寻找,判断各个数据是否可以包含在解向量中去,然后根据目标函数来选择最优解。

贪心算法

(1)将所有活动按结束时间排序,得到活动集合E={e1,e2,…,en};

(2)先将e1选入结果集合A中,即A={e1};

(3)依次扫描每一个活动ei:如果ei的开始时间晚于最后一个选入A的活动ej的结束时间,则将ei选入A中,否则放弃ei。

最优解证明:若E={e1,e2…en}是按结束时间排序的活动集合,则e1具有最早的结束时间,设存在一个最优安排A不包含e1,并以ei开始,则易见:A-{ei}∪{e1}也是最优的活动安排;依此类推,即可推出上述活动都为A中的不相容最优活动。

俗话所的好的:纸上得来终觉浅,绝知此事要躬行!那么让我们举个例子来进一步清晰化问题:

下面表格有12个活动,并给出各个活动的开始时间与结束时间,那么请用上述贪心解法分析并求解最优会场数目。如表8-1所示。

表8-1 会场活动安排表

活动i 1 2 3 4 5 6 7 8 9 10 11 开始时间s(i) 1 3 0 5 3 5 6 8 8 2 12 结束时间E(i) 4 5 6 7 8 9 10 11 12 13 14 (1)根据贪心策略:现将1~12个活动的结束时间排序(为解说方便上表格已经排好)排序可用快速排序。

(2)毋庸置疑将E1先分配入会场集合A1,然后按照顺序找出下个活动,使得其开始时间小于E1的结束时间(即满足时间不冲突),如图易知为E4,再将E4分配给A1,以后每一步骤都重复如E4的选择。经过第一轮的筛选可知会场集合A1中包

含:A1={E1,E4,E8,E11}。

(3)此时已经没有活动在相容于会场A1中,那么再继续对A2进行同样的选取,同理:A2={E2,E6} A3={E3,E7} A4={E5,E9} A5={E10}。

(4)那么得出总的会场数目:S=5。

4.总结

贪心算法是很常见的算法,贪心策略是最接近人的日常思维的一种解题策略,虽

然它不能保证求得的最后解一定是最佳的,但是它可以为某些问题确定一个可行性范围。贪心算法所作的选择依赖于以往所作过的选择,但决不依赖于将来的选择,这使得算法在编码和执行过程中都有一定的速度优势。对于一个问题的最优解只能用穷举法得到时,用贪心算法是寻找问题最优解的较好算法。对一个问题可以同时用几种方法解决,贪心算法并不是对所有的问题都能得到整体最优解或是最理想的近似解时,就需判断贪心性质的正确性了。与回溯法、动态规划法等比较,它的适用区域相对狭窄许多。总之,如果一个贪心解决方案存在,就可以使用它。

5.参考文献

[1] 严蔚敏,吴伟民.数据结构(c语言版)[M].北京:清华大学出版社,2007.

[2] M.H.ALSUWAIYEL.算法设计技巧与分析[M].北京:电子工业出版社,2008.

[3] 谭浩强.C++面向对象程序设计[M].北京:清华大学出版社,2006.

[4] 常友渠.贪心算法的探讨与研究[M].重庆电力高等专科学报,第13卷,第13期,2008.9.

[5] 龚雄兴,堆与贪心算法[M],湖北襄樊学院,2010.

[6] 张洁,朱莉娟.贪心算法与动态规划的比较[M].新乡师范高等专科科学学报,第19卷,第五期,2011.9.

[7] 殷建平.关于贪心算法的正确性证明[M].江西师范大学学报(自然科学版),第22卷增刊,2009.10.

[8] 肖进杰,范辉,郭玉刚,程大鹏.贪心算法求解k-median问题.计算机工程与应用,2007年03期.

[9] 潘杰珍.贪心算法求解最少资源问题的探讨.价值工程2013年第14期.

[10] 陈曦.基于贪心算法的0-1背包问题.电脑知识与技术2010年第35期.

算法设计与分析实验报告贪心算法

算法设计与分析实验报告 贪心算法 班级:2013156 学号:201315614 姓名:张春阳哈夫曼编码 代码 #include float small1,small2; int flag1,flag2,count; typedefstructHuffmanTree { float weight; intlchild,rchild,parent; }huffman; huffmanhuffmantree[100]; void CreatHuffmanTree(intn,int m) { inti; void select(); printf("请输入%d个节点的权值:",n); for(i=0;i

printf("\n"); for(i=0;i

算法设计与分析考试题及答案

算法设计与分析考试题 及答案 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

一、填空题(20分) 1.一个算法就是一个有穷规则的集合,其中之规则规定了解决某一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:确定性 有穷性 可行性 0个或多个输入 一个或多个输出 2.算法的复杂性有时间复杂性 空间复杂性之分,衡量一个算法好坏的标准是 时间复杂度高低 3.某一问题可用动态规划算法求解的显着特征是 该问题具有最优子结构性质 4.若序列X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列X 和Y 的一个最长公共子序列{BABCD}或{CABCD}或{CADCD } 5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含一个(最优)解 6.动态规划算法的基本思想是将待求解问题分解成若干_子问题 ,先求解_子问题 ,然后从这些子问题 的解得到原问题的解。 7.以深度优先方式系统搜索问题解的算法称为回溯法 背包问题的回溯算法所需的计算时间为o(n*2n ) ,用动态规划算法所需的计算时间为o(min{nc,2n }) 9.动态规划算法的两个基本要素是最优子结构 _和重叠子问题 10.二分搜索算法是利用动态规划法实现的算法。 二、综合题(50分) 1.写出设计动态规划算法的主要步骤。 ①问题具有最优子结构性质;②构造最优值的递归关系表达式; ③最优值的算法描述;④构造最优解; 2. 流水作业调度问题的johnson 算法的思想。 ①令N 1={i|a i =b i };②将N 1中作业按a i 的非减序排序得到N 1’,将N 2中作业按b i 的非增序排序得到N 2’;③N 1’中作业接N 2’中作业就构成了满足Johnson 法则的最优调度。 3. 若n=4,在机器M1和M2上加工作业i 所需的时间分别为a i 和b i ,且 (a 1,a 2,a 3,a 4)=(4,5,12,10),(b 1,b 2,b 3,b 4)=(8,2,15,9)求4个作业的最优调度方案,并计算最优值。 步骤为:N1={1,3},N2={2,4}; N 1’={1,3}, N 2’={4,2}; 最优值为:38 4. 使用回溯法解0/1背包问题:n=3,C=9,V={6,10,3},W={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间(从根出发,左1右0),并画出其解空间树,计算其最优值及最优解。 解空间为{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1), (1,1,0),(1,1,1)}。 解空间树为: 该问题的最优值为:16 最优解为:(1,1,0) 5. 设S={X 1,X 2,···,X n }是严格递增的有序集,利用二叉树的结点来存储S 中的元素,在表示S 的二叉搜索树中搜索一个元素X ,返回的结果有两种情形,(1)在二叉搜索树的内结点中找到X=X i ,其概率为b i 。(2)在二叉搜索树的叶结点中确定X ∈(X i ,X i+1),其概率为a i 。在表示S 的二叉搜索树T 中,设存储元素X i 的结点深度为C i ;叶结点(X i ,X i+1)的结点深度为d i ,则二叉搜索树T 的平均路长p 为多少假设二叉搜索树T[i][j]={X i ,X i+1,···,X j }最优值为m[i][j],W[i][j]= a i-1+b i +···+b j +a j ,则m[i][j](1<=i<=j<=n)递归关系表达式为什么 .二叉树T 的平均路长P=∑=+n i 1 Ci)(1*bi +∑=n j 0 dj *aj

2015年算法分析与设计期末考试试卷B卷

西南交通大学2015 — 2016学年第(一)学期考试试卷 课程代码 3244152课程名称 算法分析与设计 考试时间 120分钟 阅卷教师签字: __________________________________ 填空题(每空1分,共15分) 1、 程序是 (1) 用某种程序设计语言的具体实现。 2、 矩阵连乘问题的算法可由 (2) 设计实现。 3、 从分治法的一般设计模式可以看出,用它设计出的程序一般是 (3) 4、 大整数乘积算法是用 (4) 来设计的。 5、 贪心算法总是做出在当前看来 (5) 的选择。也就是说贪心算法并不从整体最优 考虑,它所做出的选择只是在某种意义上的 (6) o 6、 回溯法是一种既带有 (7) 又带有 (8) 的搜索算法。 7、 平衡二叉树对于查找算法而言是一种变治策略,属于变治思想中的 (9) 类型 8、 在忽略常数因子的情况下,0、门和0三个符号中, (10) 提供了算法运行时 间的一个上界。 9、 算法的“确定性”指的是组成算法的每条 (11) 是清晰的,无歧义的。 10、 冋题的(12) 是该冋题可用动态规划算法或贪心算法求解的关键特征。 11、 算法就是一组有穷 (13),它们规定了解决某一特定类型问题的 (14) o 12、 变治思想有三种主要的类型:实例化简,改变表现, (15) o 、 ___________________________________________________________________________________ L 线订装封密 线订装封密 、 __________________ 二 线订装封密 级班 选择题(每题2分,共20 分)

算法设计与分析考试题及答案

1.一个算法就是一个有穷规则的集合,其中之规则规定了解决某一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:_________,________,________,__________,__________。 2.算法的复杂性有_____________和___________之分,衡量一个算法 好坏的标准是______________________。 3.某一问题可用动态规划算法求解的显著特征是 ____________________________________。 4.若序列X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列X 和Y的一个最长公共子序列_____________________________。 5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________。 6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解。 7.以深度优先方式系统搜索问题解的算法称为_____________。 8.0-1背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________。 9.动态规划算法的两个基本要素是___________和___________。 10.二分搜索算法是利用_______________实现的算法。 二、综合题(50分) 1.写出设计动态规划算法的主要步骤。 2.流水作业调度问题的johnson算法的思想。

算法分析与设计试卷

《算法分析与设计》试卷(A) (时间90分钟满分100分) 一、填空题(30分,每题2分)。 1.最长公共子序列算法利用的算法是( B )。 A、分支界限法 B、动态规划法 C、贪心法 D、回溯法2.在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是( B ). A.回溯法 B.分支限界法 C.回溯法和分支限界法 D.回溯法求解子集树问题 3.实现最大子段和利用的算法是( B )。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法4..广度优先是( A )的一搜索方式。 A、分支界限法 B、动态规划法 C、贪心法 D、回溯法5.衡量一个算法好坏的标准是( C )。 A 运行速度快 B 占用空间少 C 时间复杂度低 D 代码短 6.Strassen矩阵乘法是利用( A)实现的算法。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 7. 使用分治法求解不需要满足的条件是( A )。 A 子问题必须是一样的 B 子问题不能够重复 C 子问题的解可以合并 D 原问题和子问题使用相同的方法解 8.用动态规划算法解决最大字段和问题,其时间复杂性为( B ). A.logn B.n C.n2 D.nlogn 9.解决活动安排问题,最好用( B )算法 A.分治 B.贪心 C.动态规划 D.穷举 10.下面哪种函数是回溯法中为避免无效搜索采取的策略( B ) A.递归函数 B.剪枝函数C。随机数函数 D.搜索函数11. 从活结点表中选择下一个扩展结点的不同方式将导致不同的分支限界法,以下除( C )之外都是最常见的方式. A.队列式分支限界法 B.优先队列式分支限界法 C.栈式分支限界法 D.FIFO分支限界法 12. .回溯算法和分支限界法的问题的解空间树不会是( D ). A.有序树 B.子集树 C.排列树 D.无序树 13.优先队列式分支限界法选取扩展结点的原则是( C )。 A、先进先出 B、后进先出 C、结点的优先级 D、随机14.下面是贪心算法的基本要素的是( C )。 A、重叠子问题 B、构造最优解 C、贪心选择性质 D、定义最优解15.回溯法在解空间树T上的搜索方式是( A ). A.深度优先 B.广度优先 C.最小耗费优先 D.活结点优先 二、填空题(20分,每空1分)。 1.算法由若干条指令组成的又穷序列,且满足输入、输出、 确定性和有限性四个特性。 2.分支限界法的两种搜索方式有队列式(FIFO)分支限界法、优先队列式分支限界法,用一个队列来存储结点的表叫活节点表。

(完整版)算法设计与分析期末考试卷及答案a

一.填空题(每空 2 分,共30分) 1.算法的时间复杂性指算法中的执行次数。 2.在忽略常数因子的情况下,O、和三个符号中,提供了算法运行时间的一个上界。 3.设D n表示大小为n的输入集合,t(I)表示输入为I时算法的运算时间, p(I)表示输入 I 出现的概率,则算法的平均情况下时间复杂性A(n)= 。 4.分治算法的时间复杂性常常满足如下形式的递归方程: f (n) d , n n0 f(n) af(n/c) g(n) , n n0 其中,g(n)表示。 5. 分治算法的基本步骤包括。6.回溯算法的基本思想是。 7.动态规划和分治法在分解子问题方面的不同点是。 8.贪心算法中每次做出的贪心选择都是最优选择。 9.PQ 式的分支限界法中,对于活结点表中的结点,其下界函数值越小,优先级 10.选择排序、插入排序和归并排序算法中,算法是分治算法。 11.随机算法的一个基本特征是对于同一组输入,不同的运行可能得到的结果。12. 对于下面的确定性快速排序算法,只要在步骤3 前加入随机 化步骤,就可得到一个随机化快速排序算法,该随机化步骤的功能是。 算法QUICKSORT 输入:n 个元素的数组A[1..n] 。 输出:按非降序排列的数组 A 中的元素

1. quicksort(1, n) end QUICKSORT _ _ 过程 quicksort(A, low, high) _ _ // 对 A[low..high] 中的元素按非降序排序。 _ 号 学 2. if low

算法设计与分析试卷(2010)

内部资料,转载请注明出处,谢谢合作。 算法设计与分析试卷(A 卷) 一、 选择题 ( 选择1-4个正确的答案, 每题2分,共20分) (1)计算机算法的正确描述是: A .一个算法是求特定问题的运算序列。 B .算法是一个有穷规则的集合,其中之规则规定了一个解决某一特定类型的问题的运算序列。 C .算法是一个对任一有效输入能够停机的图灵机。 D .一个算法,它是满足5 个特性的程序,这5个特性是:有限性、确定性、能 行性、有0个或多个输入且有1个或多个输出。 (2)影响程序执行时间的因素有哪些? A .算法设计的策略 B .问题的规模 C .编译程序产生的机器代码质量 D .计算机执行指令的速度 (3)用数量级形式表示的算法执行时间称为算法的 A .时间复杂度 B .空间复杂度 C .处理器复杂度 D .通信复杂度 (4)时间复杂性为多项式界的算法有: A .快速排序算法 B .n-后问题 C .计算π值 D .prim 算法 (5)对于并行算法与串行算法的关系,正确的理解是: A .高效的串行算法不一定是能导出高效的并行算法 B .高效的串行算法不一定隐含并行性 C .串行算法经适当的改造有些可以变化成并行算法 D. 用串行方法设计和实现的并行算法未必有效 (6)衡量近似算法性能的重要标准有: A .算法复杂度 B .问题复杂度 C .解的最优近似度 D .算法的策略 (7)分治法的适用条件是,所解决的问题一般具有这些特征: A .该问题的规模缩小到一定的程度就可以容易地解决; B .该问题可以分解为若干个规模较小的相同问题; C .利用该问题分解出的子问题的解可以合并为该问题的解 D .该问题所分解出的各个子问题是相互独立的。 (8)具有最优子结构的算法有: A .概率算法 B .回溯法 C .分支限界法 D .动态规划法 (9)下列哪些问题是典型的NP 完全问题: A .排序问题 B .n-后问题 C .m-着色问题 D .旅行商问题 (10)适于递归实现的算法有: A .并行算法 B .近似算法 C .分治法 D .回溯法 二、算法分析题(每小题5分,共10分) (11)用展开法求解递推关系: (12)分析当输入数据已经有序时快速排序算法的不足,提出算法的改进方案。 ???>+-==1 1)1(211)(n n T n n T

【精选】贪心算法的应用

贪心算法的应用 课程名称:算法设计与分析 院系:计算机科学与信息工程学院 学生姓名:**** 学号:********** 专业班级:********************************** 指导教师:****** 201312-27

贪心算法的应用 摘要:顾名思义,贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。当然,希望贪心算法得到的最终结果也是整体最优的。虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。如单源最短路经问题,最小生成树问题等。在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。贪心算法求问题一般具有两个重要性质:贪心选择性质和最优子结构性质。所谓贪心选择性是指所求问题的整体最优解可以通过一系列局部最优解的选择,即贪心选择达到。这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法主要区别。当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。问题的最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。 背包问题是一个经典的问题,我们可以采用多种算法去求解0/1背包问题,比如动态规划法、分支限界法、贪心算法、回溯法。在这里我们采用贪心法解决这个问题。 关键词:贪心法背包问题最优化

目录 第1章绪论 (3) 1.1 贪心算法的背景知识 (3) 1.2 贪心算法的前景意义 (3) 第2章贪心算法的理论知识 (4) 2.1 问题的模式 (4) 2.2 贪心算法的一般性描述 (4) 第3章背包问题 (5) 3.1 问题描述 (5) 3.2 问题分析 (5) 3.3算法设计 (5) 3.4 测试结果与分析 (10) 第4章结论 (12) 参考文献 (13) 附件 (13)

算法设计与分析试卷及答案

湖南科技学院二○年学期期末考试 信息与计算科学专业年级《算法设计与分析》试题 考试类型:开卷试卷类型:C卷考试时量:120分钟 题号一二三四五总分统分人 得分 阅卷人 复查人 一、填空题(每小题3 分,共计30 分) 1、用O、Ω与θ表示函数f与g之间得关系______________________________。 2、算法得时间复杂性为,则算法得时间复杂性得阶为__________________________。 3、快速排序算法得性能取决于______________________________。 4、算法就是_______________________________________________________。 5、在对问题得解空间树进行搜索得方法中,一个活结点最多有一次机会成为活结点得就是_________________________。 6、在算法得三种情况下得复杂性中,可操作性最好且最有实际价值得就是_____情况下得时间复杂性。 7、大Ω符号用来描述增长率得下限,这个下限得阶越___________,结果就越有价值。。 8、____________________________就是问题能用动态规划算法求解得前提。 9、贪心选择性质就是指____________________________________________________________________________________________________________________。 10、回溯法在问题得解空间树中,按______________策略,从根结点出发搜索解空间树。 二、简答题(每小题10分,共计30分) 1、试述回溯法得基本思想及用回溯法解题得步骤。 2、有8个作业{1,2,…,8}要在由2台机器M1与M2组成得流水线上完成加工。每个作业加工得顺序都就是先在M1上加工,然后在M2上加工。M1与M2加工作业i所需得时间分别为: M110 2 8 12 6 9414

贪心算法详解分析

贪心算法详解 贪心算法思想: 顾名思义,贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。当然,希望贪心算法得到的最终结果也是整体最优的。虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。如单源最短路经问题,最小生成树问题等。在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。 贪心算法的基本要素: 1.贪心选择性质。所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。 动态规划算法通常以自底向上的方式解各子问题,而贪心算法则通常以自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。 对于一个具体问题,要确定它是否具有贪心选择性质,必须证明每一步所作的贪心选择最终导致问题的整体最优解。 2. 当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。问题的 最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。 贪心算法的基本思路: 从问题的某一个初始解出发逐步逼近给定的目标,以尽可能快的地求得更好的解。当达到算法中的某一步不能再继续前进时,算法停止。 该算法存在问题: 1. 不能保证求得的最后解是最佳的; 2. 不能用来求最大或最小解问题; 3. 只能求满足某些约束条件的可行解的范围。 实现该算法的过程: 从问题的某一初始解出发; while 能朝给定总目标前进一步do 求出可行解的一个解元素; 由所有解元素组合成问题的一个可行解; 用背包问题来介绍贪心算法: 背包问题:有一个背包,背包容量是M=150。有7个物品,物品可以分割成任意大小。要 求尽可能让装入背包中的物品总价值最大,但不能超过总容量。

算法分析与设计复习题及答案

算法分析与设计复习题及答案一、单选题 1.D 2.B 3.C 4.D 5.D 6.D 7.C 8.D 9.B 10.C 11.D 12.B 13.D 14.C 15.C 16.D 17.D 18.D 19.D 20.C 1.与算法英文单词algorithm具有相同来源的单词是()。 A logarithm B algiros C arithmos D algebra 2.根据执行算法的计算机指令体系结构,算法可以分为()。 A精确算法与近似算法B串行算法语并行算法 C稳定算法与不稳定算法D32位算法与64位算法 3.具有10个节点的完全二叉树的高度是()。 A6B5C3D 2 4.下列函数关系随着输入量增大增加最快的是()。 Alog2n B n2 C 2n D n! 5.下列程序段的S执行的次数为( )。 for i ←0 to n-1 do for j ←0 to i-1 do s //某种基本操作 A.n2 B n2/2 C n*(n+1) D n(n+1)/2 6.Fibonacci数列的第十项为( )。 A 3 B 13 C 21 D 34 7.4个盘子的汉诺塔,至少要执行移动操作的次数为( )。 A 11次 B 13次 C 15次 D 17次 8.下列序列不是堆的是()。 A 99,85,98,77,80,60,82,40,22,10,66 B 99,98,85,82,80,77,66,60,40,22,10 C 10,22,40,60,66,77,80,82,85,98,99 D 99,85,40,77,80,60,66,98,82,10,22 9.Strassen矩阵乘法的算法复杂度为()。 AΘ(n3)BΘ(n2.807) CΘ(n2) DΘ(n) 10.集合A的幂集是()。 A.A中所有元素的集合 B. A的子集合 C. A 的所有子集合的集合 D. 空集 11.与算法英文单词algorithm具有相同来源的单词是()。 A logarithm B algiros C arithmos D algebra 12.从排序过程是否完全在内存中显示,排序问题可以分为()。 A稳定排序与不稳定排序B内排序与外排序 C直接排序与间接排序D主排序与辅助排序 13.下列()不是衡量算法的标准。 A时间效率B空间效率 C问题难度D适应能力 14.对于根树,出度为零的节点为()。 A0节点B根节点C叶节点D分支节点 15.对完全二叉树自顶向下,从左向右给节点编号,节点编号为10的父节点编号为()。 A0B2C4D6 16.下列程序段的算法时间的复杂度为()。 for i ←0 to n do for j ←0 to m do

《算法分析与设计》期末试题及参考答案

《算法分析与设计》期末试题及参考答案 一、简要回答下列问题: 1.算法重要特性是什么? 1.确定性、可行性、输入、输出、有穷性 2. 2.算法分析的目的是什么? 2.分析算法占用计算机资源的情况,对算法做出比较和评价,设计出额更好的算法。 3. 3.算法的时间复杂性与问题的什么因素相关? 3. 算法的时间复杂性与问题的规模相关,是问题大小n的函数。 4.算法的渐进时间复杂性的含义? 4.当问题的规模n趋向无穷大时,影响算法效率的重要因素是T(n)的数量级,而其他因素仅是使时间复杂度相差常数倍,因此可以用T(n)的数量级(阶)评价算法。时间复杂度T(n)的数量级(阶)称为渐进时间复杂性。 5.最坏情况下的时间复杂性和平均时间复杂性有什么不同? 5. 最坏情况下的时间复杂性和平均时间复杂性考察的是n固定时,不同输入实例下的 算法所耗时间。最坏情况下的时间复杂性取的输入实例中最大的时间复杂度: W(n) = max{ T(n,I) } , I∈Dn 平均时间复杂性是所有输入实例的处理时间与各自概率的乘积和: A(n) =∑P(I)T(n,I) I∈Dn 6.简述二分检索(折半查找)算法的基本过程。 6. 设输入是一个按非降次序排列的元素表A[i:j] 和x,选取A[(i+j)/2]与x比较, 如果A[(i+j)/2]=x,则返回(i+j)/2,如果A[(i+j)/2]

计算机算法与分析贪心算法实验报告

实验03 贪心算法 一、实验目的 1.掌握贪心算法的基本思想 2.掌握贪心算法中贪心选择性质和最优子结构性质的分析与证明 3.掌握贪心算法求解问题的方法 二、实验内容 1.认真阅读算法设计教材,了解贪心算法思想及方法; 2.设计用贪心算法求解最优装载哈夫曼编码、单源最短路径、最小生成树的 java程序 三、求解的问题 1.哈夫曼编码是广泛地用于数据文件压缩的十分有效的编码方法。给出文件中 各个字符出现的频率,求各个字符的哈夫曼编码方案。 2.给定带权有向图G =(V,E),其中每条边的权是非负实数。另外,还给定V 中的一个顶点,称为源。现在要计算从源到所有其他各顶点的最短路长度。 这里路的长度是指路上各边权之和。 3.设G =(V,E)是无向连通带权图,即一个网络。E中每条边(v,w)的权为 c[v][w]。如果G的子图G’是一棵包含G的所有顶点的树,则称G’为G的生成树。生成树上各边权的总和称为该生成树的耗费。在G的所有生成树中,耗费最小的生成树称为G的最小生成树。求G的最小生成树。 四、实验程序 1.哈夫曼编码 哈夫曼算法以自底向上的方式构造表示最优前缀码的二叉树T。算法以|C|个叶结点开始,执行|C|-1次的“合并”运算后产生最终所要求的树T。下面所给出的算法huffmanTree中,编码字符集中的每一字符c的频率是f(c)。以f 为键值的优先队列Q用在贪心选择时有效地确定算法当前要合并的两棵具有最小频率的树。一旦两棵具有最小频率的树合并后,产生一棵新的树,其频率为合并两棵树的频率之和,并将新树插入优先队列Q。 private static class Huffman implements Comparable{ Bintree tree; float weight; private Huffman(Bintree tt,float ww) { tree=tt;weight=ww; } public int compareTo(Object x){ float xw=((Huffman) x).weight; if(weight

《算法分析与设计》期末复习题

一、选择题 1.一个.java文件中可以有()个public类。 A.一个B.两个C.多个D.零个 2.一个算法应该是() A.程序B.问题求解步骤的描述 C.要满足五个基本特性D.A和C 3.用计算机无法解决“打印所有素数”的问题,其原因是解决该问题的算法违背了算法特征中的()A.唯一性B.有穷性C.有0个或多个输入D.有输出 4.某校有6位学生参加学生会主席竞选,得票数依次为130,20,98,15,67,3。若采用冒泡排序算法对其进行排序,则完成第二遍时的结果是() A.3,15,130,20,98,67B.3,15,20,130,98,67 C.3,15,20,67,130,98 D.3,15,20,67,98,130 5.下列关于算法的描述,正确的是() A.一个算法的执行步骤可以是无限的B.一个完整的算法必须有输出 C.算法只能用流程图表示D.一个完整的算法至少有一个输入 6.Java Application源程序的主类是指包含有()方法的类。 A、main方法 B、toString方法 C、init方法 D、actionPerfromed方法 7.找出满足各位数字之和等于5的所有三位数可采用的算法思路是() A.分治法B.减治法C.蛮力法D.变治法 8.在编写Java Application程序时,若需要使用到标准输入输出语句,必须在程序的开头写上( )语句。 A、import java.awt.* ; B、import java.applet.Applet ; C、import java.io.* ; D、import java.awt.Graphics ; 9.计算某球队平均年龄的部分算法流程图如图所示,其中:c用来记录已输入球员的人数,sum用来计算有效数据之和,d用来存储从键盘输入的球员年龄值,输入0时表示输入结束。

算法设计与分析期末试题-考试版(汇编)

1、用计算机求解问题的步骤:1、问题分析 2、数学模型建立 3、算法设计与选择 4、算法指标 5、算法分析 6、算法实现 7、程序调试 8、结果整理文档编制 2、算法定义:算法是指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程 3、算法的三要素 1、操作 2、控制结构 3、数据结构 算法具有以下5个属性: 有穷性: 确定性: 可行性: 输入: 输出: 算法设计的质量指标: 正确性:算法应满足具体问题的需求; 可读性:算法应该好读,以有利于读者对程序的理解; 健壮性:算法应具有容错处理,当输入为非法数据时,算法应对其作出反应,而不是产生莫名其妙的输出结果。 效率与存储量需求:效率指的是算法执行的时间;存储量需求指算法执行过程中所需要的最大存储空间。一般这两者与问题的规模有

关。 复杂性的渐近性态 设T(N)是算法A的复杂性函数,使得当N→∞时有: (T(N)-T’(N))/T(N) → 0 那么,我们就说T’(N)是T(N)当N→∞时的渐近性态,或叫T’(N)为算法A当N→∞的渐近复杂性而与T(N)相区别。 P = NP 经常采用的算法主要有迭代法、分而治之法、贪婪法、动态规划法、回溯法、分支限界法 分而治之法 1、基本思想 将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以

便各个击破,分而治之。 分治法所能解决的问题一般具有以下几个特征: (1)该问题的规模缩小到一定的程度就可以容易地解决; (2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质; (3)利用该问题分解出的子问题的解可以合并为该问题的解; (4)该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。 3、分治法的基本步骤 (1)分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题; (2)解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题; (3)合并:将各个子问题的解合并为原问题的解。 递归: 直接或间接的调用自身的算法,叫做递归算法。 1·期盘覆盖 用分治策略,可以设计解棋盘问题的一个简捷的算法。 当k>0时,将2^k * 2^k棋盘分割为4个2^(k-1) * 2^(k-1)子棋盘 特殊方格必位于4个较小子棋盘之一中,其余3个子棋盘中无特殊方格。为了将这3个无特殊方格的子棋盘转化为特殊棋盘,我们可以用一个L型骨牌覆盖这3个较小的棋盘的汇合处,如下图所示,这3个子棋盘上被L型骨牌覆盖的方格就成为该棋盘上的特殊方格,从而将原问题化为4个较小规模的棋盘覆盖问题。递归的使用这种分割,直至棋盘简化为1x1棋盘。

算法设计与分析试题与答案

一、填空题(20分) 1.一个算法就是一个有穷规则的集合,其中之规则规定了解决某一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性: 确定性,有穷性,可行性,0个或多个输入,一个或多个输出。 2.算法的复杂性有时间复杂性和空间复杂性之分,衡量一个算法好坏的标准是时间复杂度高低。 3.某一问题可用动态规划算法求解的显著特征是该问题具有最优子结构性质。 4.若序列X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列X和Y的一个最长公共子序列{BABCD}或{CABCD}或{CADCD}。 5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含一个(最优)解。 6.动态规划算法的基本思想是将待求解问题分解成若干子问题,先求解子问题,然后从这些子问题的解得到原问题的解。 7.以深度优先方式系统搜索问题解的算法称为回溯法。 8.0-1背包问题的回溯算法所需的计算时间为o(n*2n) ,用动态规划算法所需的计算时间为o(min{nc,2n})。 9.动态规划算法的两个基本要素是最优子结构和重叠子问题。 10.二分搜索算法是利用动态规划法实现的算法。 二、综合题(50分) 1.写出设计动态规划算法的主要步骤。 ①问题具有最优子结构性质;

②构造最优值的递归关系表达式; ③最优值的算法描述; ④构造最优解; 2.流水作业调度问题的johnson算法的思想。 ②N1={i|ai=bi}; ②将N1中作业按ai的非减序排序得到N1’,将N2中作业按bi的非增序排序得到N2’; ③N1’中作业接N2’中作业就构成了满足Johnson法则的最优调度。 3.若n=4,在机器M1和M2上加工作业i所需的时间分别为ai和bi,且 (a1,a2,a3,a4)=(4,5,12,10),(b1,b2,b3,b4)=(8,2,15,9)求4个作业的最优调度方案,并计算最优值。 步骤为:N1={1,3},N2={2,4}; N1’={1,3}, N2’={4,2}; 最优值为:38 4.使用回溯法解0/1背包问题:n=3,C=9,V={6,10,3},W={3,4,4},其解空间有长度为3 的0-1向量组成,要求用一棵完全二叉树表示其解空间(从根出发,左1右0),并画出其解空间树,计算其最优值及最优解。 解空间为{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1), (1,1,0),(1,1,1)}。 解空间树为:

算法设计和分析实验四:贪心算法求解背包问题

实验五:贪心算法求解背包问题 实验内容 应用贪心算法求解离散背包问题,分析时间复杂度。 有一个承重为W的背包和n个物品,它们各自的重量和价值分别是wi和vi(1<=i<=n),设求这些物品中最有价值的一个子集。如果每次选择某一个物品的时候,只能全部拿走,则这一问题称为离散(0-1)背包问题;如果每次可以拿走某一物品的任意一部分,则这一问题称为连续背包问题。 算法思想 ?动态规划的思想: –对较小的子问题进行一次求解,并把结果记录下来,然后利用较小问题的解,求解出较大问题的解,直到求解出最大问题的解。 – 引进一个二维数组ch[MAX][MAX],用ch[i][j]记录CH1与CH2的LCS 的长度,b[i][j]记录ch[i][j]是通过哪一个子问题的值求得的,以决定搜索的方向。 我们是自底向上进行递推计算,那么在计算ch[i,j]之前,ch[i-1][j-1], ch[i-1][j]与ch[i][j-1]均已计算出来。此时我们根据CH1 [i] = CH2[j]还是CH1[i] != CH2[j],就可以计算出ch[i][j]。 算法 length(string CH1,string CH2,int b[MAX][MAX]) //用于构建动态数组 //输入:两字符窜 //输出:最长公共子序列 for(i=1;i<=ch1Len;i++)//二重循环求解 for(int j=1;j<=ch2Len;j++) { if(CH1[i-1]==CH2[j-1])//相等字符

{ ch[i][j]=ch[i-1][j-1]+1; b[i][j]=0; } else if(ch[i-1][j]>=ch[i][j-1])//上比较大 { ch[i][j]=ch[i-1][j]; b[i][j]=1; } else//左比较大 { ch[i][j]=ch[i][j-1]; b[i][j]=-1; } } printCS(int b[MAX][MAX],string x,int i,int j) //回溯求出最长子序列输出 //输入:标记数组 //输出:最长子序列 if(i == 0 || j == 0)//边界,返回 return; if(b[i][j] == 0) { printCS(b, x, i-1, j-1);//左上 cout< using namespace std; #define MAX 100 //结构体 struct Elem { double W; double V;

算法分析与设计试题

一、选择题(20分) 1.最长公共子序列算法利用的算法是( B )。 A、分支界限法 B、动态规划法 C、贪心法 D、回溯法2.实现棋盘覆盖算法利用的算法是( A )。 A、分治法 B、动态规划法 C、贪心法 D、回溯法 3.下面是贪心算法的基本要素的是( C )。 A、重叠子问题 B、构造最优解 C、贪心选择性质 D、定义最优解 4.回溯法的效率不依赖于下列哪些因素( D ) A.满足显约束的值的个数 B. 计算约束函数的时间 C. 计算限界函数的时间 D. 确定解空间的时间 5.下面哪种函数是回溯法中为避免无效搜索采取的策略( B ) A.递归函数 B.剪枝函数C。随机数函数 D.搜索函数6.采用最大效益优先搜索方式的算法是( A )。 A、分支界限法 B、动态规划法 C、贪心法 D、回溯法7.贪心算法与动态规划算法的主要区别是( B )。 A、最优子结构 B、贪心选择性质 C、构造最优解 D、定义最优解 8. 实现最大子段和利用的算法是( B )。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 9.优先队列式分支限界法选取扩展结点的原则是( C )。 A、先进先出 B、后进先出 C、结点的优先级 D、随机 10.下列算法中通常以广度优先方式系统搜索问题解的是( A )。 A、分支限界法 B、动态规划法 C、贪心法 D、回溯法

二、填空题(22分每空2分) 1.算法是由若干条指令组成的有穷序列,且要满足输入、输出、确定性和有限性四条性质。 2、大整数乘积算法是用分治法来设计的。 3、以广度优先或以最小耗费方式搜索问题解的算法称为分支限界法。 4、舍伍德算法总能求得问题的一个解。 5、贪心选择性质是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。 6.快速排序 template void QuickSort (Type a[], int p, int r) { if (p using namespace std; int Gcd(int m,int n)

算法设计与分析试卷及答案.doc

湖南科技学院二○ 年 学期期末考试 信息与计算科学专业 年级《算法设计与分析》 试题 考试类型:开卷 试卷类型: C 卷 考试时量: 120 分钟 题号 一 二 三 四 五 总分 统分人 得 分 阅卷人 一、填空题(每小题 3 分,共计 30 分) 1. 用 O 、Ω和θ表示函数 f 与 g 之间的关系 ______________________________ 。 f n n lo g n g n log n 1, n 1 2. 算法的时间复杂性为 f (n) n ,则算法的时间复杂性的阶 8 f (3n / 7) n, 2 为__________________________ 。 3. 快速排序算法的性能取决于 ______________________________ 。 4. 算法是 _______________________________________________________ 。 5. 在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的 是_________________________ 。 6. 在算法的三种情况下的复杂性中, 可操作性最好且最有实际价值的是 _____情况下的时间复杂性。 7. 大Ω符号用来描述增长率的下限,这个下限的阶越 ___________,结果就越有价值。 。 8. ____________________________ 是问题能用动态规划算法求解的前提。 9. 贪心选择性质是指 ________________________________________________________ ____________________________________________________________ 。

相关文档
最新文档