钴配合物的制备和组成分析及电子光谱测定

钴配合物的制备和组成分析及电子光谱测定
钴配合物的制备和组成分析及电子光谱测定

基础化学实验I准备实验卡

配合物的基本知识(影响其稳定性的因素、分光化学序);

1

3

3

2

常用色谱与光谱分析方法与技术

常用色谱和光谱分析方法和技术 色谱分析、光谱分析以及两谱联用技术,构成了药物分析学科领域中最主要和最基本的研究手段和方法,应用日趋广泛,发展十分迅速,新颖方法层出不穷。 新近常用的色谱分析方法: 一、胶囊色谱(Micellar Chromatography,MC)又称拟相液相色谱或假相液相色谱(Pseudophase LC),是一种新型的液相色谱技术。特点是应用含有高于临界胶囊(或称胶束,微胞等)浓度的表面活性剂溶液作为流动相。所谓“胶囊”就是表面活性剂溶液的浓度超过其临界胶囊浓度(Critical Micelle Concentration,CMC)时形成的分子聚合体。通常每只胶囊由n个(一般为25~160个)表面活性剂单体分子组成,其形状为球形或椭圆球形。在CMC值以上的一个较大浓度范围内,胶囊溶液的某些物理性质(如表面张力、电导等等)以及胶囊本身的大小是不变的。构成胶囊的分子单体与溶液中自由的表面活性剂的分子单体之间存在着迅速的动态平衡。通常有正相与反相两种胶囊溶液。前者是由表面活性剂溶于极性溶剂所形成的亲水端位于外侧而亲脂端位于内部的胶囊;后者是指表面活性剂溶于非极性溶剂所形成的亲水端位于核心而亲脂基位于外面的胶囊。被分离组分与胶囊的相互作用和被分离组分与一般溶剂的作用方式不同,并且被分离组分和两种胶囊的作用也有差别。改变胶囊的类型、浓度、电荷性质等对被分离组分的色谱行为、淋洗次序以及分离效果均有较大影响。胶囊色谱就是充分运用了被分离组分和胶囊之间存在的静电作用、疏水作用、增溶作用和空间位阻作用以及其综合性的协同作用可获得一般液相色谱所不能达到的分离效果。适用于化学结构类似、性质差别细微的组分的分离和分析,是一种安全、无毒、经济的优越技术。 (一)原理:胶囊溶液是一种微型非均相体系(Microheterogenous system)。在胶囊色谱中,分离组分在固定相与水之间、胶囊与水相之间以及固定相与胶囊之间存在着分配平衡。组分的洗脱得为取决于三相之间分配系数的综合作用;同时定量地指出分离组分的容量因子k'的倒数值与胶囊浓度成正比,一般增加胶囊浓度即可获得较佳的分离效果。 (二)方法特点:与传统液相色谱的最大区别在于胶囊色谱流动相是由胶囊及其周围溶剂介质组成的一种微型的非均相体系,而常规流动相是一种均相体系。特点: 1、高度的选择性:因分离组分与胶囊之间存在着静电、疏水以及空间效应的综合作用,只要通过流动相中胶囊浓度的改变,就可使分离选择性获得改善和提高。此外,通过适当固定相以及表面活性剂的选择也可提高分离选择性。 2、便于梯度洗脱:由于表面活性剂的浓度高于CMC后再增大浓度时,溶液中仅胶囊的浓度发生改变,而表面活性剂单体分子的浓度不变,不影响流动相与固定相的平衡过程,因而比传统的梯度洗脱技术大大缩短了分析时间,并减少了流动相的消耗,适用于常规。 3、提高检测灵敏度:胶囊流动相可增加某些化合物的荧光强度,从而提高检测灵敏度。还可稳定某些化合物在室温条件下发生的液体磷光。 4、因分离组分不易分出,故缺点是柱效低且不适于制备分离。 (三)常用表面活性剂:常用的阳离子表面活性剂主要有:溴化或氯化十六烷基三甲铵(Cetyl trimethyl ammonium bromide or chloride,CTMAD或CTMAC);阴离子表面活性剂有十二烷基硫酸钠(SDS);非离子表面活性剂有Brij-35即(聚氧乙烯)35-十二烷基醚。 二、手性分离色谱(Chiral Separation Chromatography,CSC) 是采用色谱技术(TLC、GC和HPLC)分离测定光学异构体药物的有效方法。由于许多药物的对映体(Enantiomer)之间在药理、毒理乃至临床性质方面存在着较大差异,有必要对某些手性药物进行

近红外光谱分析及其应用简介

近红外光谱分析及其应用简介 1、近红外光谱分析及其在国际、国内分析领域的定位 近红外光谱分析是将近红外谱区(800-2500nm)的光谱测量技术、化学计量学技术、计算机技术与基础测试技术交叉结合的现代分析技术,主要用于复杂样品的直接快速分析。近红外分析复杂样品时,通常首先需要将样品的近红外光谱与样品的结构、组成或性质等测量参数(用标准或认可的参比方法测得的),采用化学计量学技术加以关联,建立待测量的校正模型;然后通过对未知样品光谱的测定并应用已经建立的校正模型,来快速预测样品待测量。 近红外光谱分析技术自上世纪60年代开始首先在农业领域应用,随着化学计量学与计算机技术的发展,80年代以来逐步受到光谱分析学家的重视,该项技术逐渐成熟,90年代国际匹茨堡会议与我国的BCEIA等重要分析专业会议均先后把近红外光谱分析与紫外、红外光谱分析等技术并列,作为一种独立的分析方法;2000年PITTCON 会议上近红外光谱方法是所有光谱法中最受重视的一类方法,这种分析方法已经成为ICC(International Association for Cereal Science and Technology国际谷物科技协会)、AOAC(American Association of Official Analytical Chemists美国公职化学家协会)、AACC(American Association of Cereal Chemists美国谷物化学家协会)等行业协会的标准;各发达国家药典如USP(United States Pharmacopoeia美国药典)均收入了近红外光谱方法;我国2005年版的药典也将该方法收入。在应用方面近红外光谱分析技术已扩展到石油化工、医药、生物化学、烟草、纺织品等领域。发达国家已经将近红外方法做为质量控制、品质分析和在线分析等快速、无损分析的主要手段。 我国对近红外光谱技术的研究及应用起步较晚,上世纪70年代开始,进行了近红外光谱分析的基础与应用研究,到了90年代,石化、农业、烟草等领域开始大量应用近红外光谱分析技术,但主要是依靠国外大型分析仪器生产商的进口仪器。目前国内能够提供完整近红外光

红外光谱分析技术及其应用

红外光谱分析技术及其应用(作者: _________ 单位:___________ 邮编: ___________ ) 作者:范雪芳徐淼侯晓涛王帅李洪宇张丽华 【摘要】红外光谱(IR)分析技术是一门发展迅猛的高新技术,与传统分析技术相比,红外光谱分析技术具有分析速度快,样品用量少,无破坏无污染等特点。红外光谱测定的是物质中分子的吸收光谱,不同的物质会有其特征指纹的特性,利用红外指纹图谱技术对中成药进行质量鉴定与分析,借助计算机和模式识别等技术,以综合的、宏观的、非线性的分析理念和质量控制模式来评价中药的真伪优劣 【关键词】红外光谱;红外指纹图谱技术 【Abstract ] Infrared spectrum (IR) is a fast developing newly tech no logy. Comparedwith traditi onal an alysis tech no logy, IR possesses characters of fast analysis, little sample, no breach and no pollution. IR measures the absorption spectrum of molecule, and different substances have different fingerprint patter ns. Thus, IR tech no logy can be applied to detect and an alyze the quality of traditi onal Chin ese drug. Using the computer, pattern recognition and so on, we can estimate if

常用材料分析方法简写

WORD格式 A AAS原子吸收光谱法 AES原子发射光谱法 AFS原子荧光光谱法 ASV阳极溶出伏安法 ATR衰减全反射法 AUES俄歇电子能谱法 C CEP毛细管电泳法 CGC毛细管气相色谱法 CIMS化学电离质谱法 CIP毛细管等速电泳法 CLC毛细管液相色谱法 CSFC毛细管超临界流体色谱法 CSFE毛细管超临界流体萃取法 CSV阴极溶出伏安法 CZEP毛细管区带电泳法 D DDTA导数差热分析法 DIA注入量焓测定法 DPASV差示脉冲阳极溶出伏安法 DPCSV差示脉冲阴极溶出伏安法 DPP差示脉冲极谱法 DPSV差示脉冲溶出伏安法 DPVA差示脉冲伏安法 DSC差示扫描量热法 DTA差热分析法 DTG差热重量分析法 E EAAS电热或石墨炉原子吸收光谱法 ETA酶免疫测定法 EIMS电子碰撞质谱法 ELISA酶标记免疫吸附测定法 EMAP电子显微放射自显影法 EMIT酶发大免疫测定法 EPMA电子探针X射线微量分析法 ESCA化学分析用电子能谱学法 ESP萃取分光光度法 F FAAS火焰原子吸收光谱法 FABMS快速原子轰击质谱法 FAES火焰原子发射光谱法 FDMS场解析质谱法 FIA流动注射分析法

WORD格式 FIMS场电离质谱法 FNAA快中心活化分析法 FT-IR傅里叶变换红外光谱法 FT-NMR傅里叶变换核磁共振谱法 FT-MS傅里叶变换质谱法 GC气相色谱法 GC-IR气相色谱-红外光谱法 GC-MS气相色谱-质谱法 GD-AAS辉光放电原子吸收光谱法 GD-AES辉光放电原子发射光谱法 GD-MS辉光放电质谱法 GFC凝胶过滤色谱法 GLC气相色谱法 GLC-MS气相色谱-质谱法 H HAAS氢化物发生原子吸收光谱法 HAES氢化物发生原子发射光谱法 HPLC高效液相色谱法 HPTLC高效薄层色谱法 I IBSCA离子束光谱化学分析法 IC离子色谱法 ICP电感耦合等离子体 ICP-AAS电感耦合等离子体原子吸收光谱法 ICP-AES电感耦合等离子体原子发射光谱法 ICP-MS电感耦合等离子体质谱法 IDA同位素稀释分析法 IDMS同位素稀释质谱法 IEC离子交换色谱法 INAA仪器中子活化分析法 IPC离子对色谱法 IR红外光谱法 ISE离子选择电极法 ISFET离子选择场效应晶体管 L LAMMA激光微探针质谱分析法 LC液相色谱法 LC-MS液相色谱-质谱法 M MECC胶束动电毛细管色谱法 MEKC胶束动电色谱法 MIP-AAS微波感应等离子体原子吸收光谱法 MIP-AES微波感应等离子体原子发射光谱法 MS质谱法

近红外光谱技术在药物分析中的应用

近红外光谱技术在药物分析中的应用 1·前言 近红外光谱分析技术是分析化学领域迅猛发展的高新分析技术,越来越引起国内外分析专家的注目,在分析化学领域被誉为分析“巨人”,它的出现可以说带来了又一次分析技术的革命。 近红外(NIR)谱区是人类认识最早的非可见光谱区,波长范围在0.75—2.5 m之间,用波数表示时则在13330—4000cm-1之间。由于近红外的吸收谱带复杂,谱峰重叠,信号弱,在分析上难以应用,长期以来没有受到人们的重视。近十多年来,随着近红外仪器的改良,新的光谱理论和光度分析方法的建立,特别是计算机技术和化学计量学的广泛应用和迅速发展,使近红外光谱技术成为目前发展最快、最引人注目的分析技术,并以其简单快速、实时在线、无损伤无污染分析等特点,在复杂物质的分析上得到广泛应用。在包括制糖和制药的许多与化学分析和品质管理有关的行业中的应用前景极其广阔。 关于近红外光谱技术在制药行业中应用的文献报道越来越多,显示了近红外光谱技术在制药领域中越来越受到人们的重视。近红外光谱分析具有的快速实时、操作简单、无损伤测定、不受样品状态影响的特点很符合药物分析的要求。因此,在制药业中原料药的分析、药物制剂中水分、有效成分的分析、药物生产品质的过程控制等方面近红外光谱技术得到了十分广泛的应用。 2·光谱介绍 近红外光是介于可见光和中红外光之间的电磁波,根据ASTM(美国试验和材料检测协会)定义是指波长在780~2526nm范围内的电

磁波,习惯上又将近红外区划分为近红外短波(780~1100nm)和近红外长波(1100~2526nm)两个区域。 近红外光谱属于分子振动光谱的倍频和主频吸收光谱,主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,具有较强的穿透能力。近红外光主要是对含氢基团X-H(X=C、N、O)振动的倍频和合频吸收,其中包含了大多数类型有机化合物的组成和分子结构的信息。由于不同的有机物含有不同的基团,不同的基团有不同的能级,不同的基团和同一基团在不同物理化学环境中对近红外光的吸收波长都有明显差别,且吸收系数小,发热少,因此近红外光谱可作为获取信息的一种有效的载体。近红外光照射时,频率相同的光线和基团将发生共振现象,光的能量通过分子偶极矩的变化传递给分子;而近红外光的频率和样品的振动频率不相同,该频率的红外光就不会被吸收。因此,选用连续改变频率的近红外光照射某样品时,由于试样对不同频率近红外光的选择性吸收,通过试样后的近红外光线在某些波长范围内会变弱,透射出来的红外光线就携带有机物组分和结构的信息。通过检测器分析透射或反射光线的光密度,就可以确定该组分的含量。 3·近红外光谱技术在制药业中的应用 3·1 原料和活性组分的测定 药物加工过程中第一步就是原料的鉴定,其质量的好坏直接决定后续加工过程的成败于否,而同一类型的原料中多变因素主要是湿度和颗粒大小,近红外光谱在湿度测定中的灵敏度及其适于固体表面的表征的特性,使他能够很快地得到样品的湿度和颗粒大小的信息,然

(整理)光谱分析技术及应用

光谱分析技术及应用 一、光谱分析的分类 1、原子吸收光谱法——也叫湿法分析。它是以待测元素的特征光波,通过样品的蒸发,被蒸发中的待测元素的基态原子所吸收,由辐射强度的减弱程度,来测定该元素的存在与否和含量多少;通常是采用火焰或无火焰(也叫等离子)方法,把被测元素转化为基态原子。根据吸收光波能量的多少测定元素的含量。 通常原子吸收光谱法是进行仪器定量分析的湿法分析。 2、原子发射光谱法——利用外部能量激发光子发光产生光谱。 看谱分析法就是原始的、也是最经典的利用原子发射光谱的分析方法。看谱分析法在我国工业生产上的使用是在上世纪50年代,58年北京永定机械厂制造了第一台仿苏联技术的看谱仪,随后天津光学仪器厂成为我国大量生产棱镜分光的看谱镜基地。 上世纪80年代起,德国、英国、美国等国家,开始研制采用CCD (Charge Coupled Device电荷耦合器件)技术作为光谱接收器件的直读式定量光谱仪,德国以实验室用大型直读定量光谱仪为主;英国阿朗公司、美国尼通公司以便携式金属分析仪为主打市场。近年来,德国、芬兰等国家研制生产便携式、直读定量光谱仪,分析精度在一定条件下可以替代实验室直读式定量光谱仪。 二、看谱分析的特点 1、操作简便,分析速度快。 2、适合现场操作。

3、无损检测(现场操作情况下无须破坏样品)。 4、检测成本低。是便携式金属分析仪的1/30左右,是便携式直读定量光谱仪的1/40。 5、有一定的灵敏度和准确度。 三、看谱分析的方法: 定性分析方法,所谓定性就是判定分析的元素是否存在的分析。严格的讲定性分析是根据某元素的特征灵敏线的出现与否,来确定该元素是否存在的分析方法。 那么,什么叫灵敏线呢? 某元素在某几个区域出现的几条与其它元素不同的特征线;或称“在较低含量情况下出现的谱线”,或者说是在某一范围内出现的谱线,叫做灵敏线。 半定量方法就是近似的估计元素含量的方法。 利用谱线进行比较,即通过 亮度比较含量,就是与铁基线进 行比较,含量与亮度的对数成正 比关系。(用来进行比较的铁基线 的亮度应不变。)lgI(谱线强度) 四、看谱分析的一般步骤 1、分析前的准备

材料分析方法说明

红外汲取光谱 1 波长(λ)相邻两个波峰或波谷之间的直线距离,单位为米(m)、厘米(cm)、微米(μm)、纳米(nm)。这些单位之间的换算关系为1m=102cm=106μm=109nm。 2频率(v)单位时刻内通过传播方向某一点的波峰或波谷的数目,即单位时刻内电磁场振动的次数称为频率,单位为赫兹(Hz,即s-1),频率和波长的关系为 3 波数(σ)每厘米长度内所含的波长的数目,它是波长的倒数,即σ=1 / λ ,波数单位常用cm-1来表示。 4传播速度:辐射传播速度υ等于频率v乘以波长λ,即υ=v λ。在真空中辐射传播速度与频率无关,并达到最大数值,用c 表示,c值准确测定为2.99792×1010cm/s 5周期T:相邻两个波峰或波谷通过空间某固定点所需要的时刻间隔,单位为秒(s)。 红外光谱法的特点: (1)特征性高。就像人的指纹一样,每一种化合物都有自己的特征红外光谱,因此把红外光谱分析形象的称为物质分子的“指纹”分析。(2)应用范围广。从气体、液体到固体,从无机化合物到有机化合物,从高分子到低分子都可用红外光谱法进行分析。(3)用样量少,分析速度快,不破坏样品。

简正振动的数目称为振动自由度,每个振动自由度相应于红外光谱图上一个基频汲取峰。每个原子在空间都有三个自由度,假如分子由n个原子组成,其运动自由度就有3n 个,这3n个运动自由度中,包括3个分子整体平动自由度,3个分子整体转动自由度,剩下的是分子的振动自由度。关于非线性分子振动自由度为3n-6,但关于线性分子,其振动自由度是3n-5。例如水分子是非线性分子,其振动自由度=3×3-6=3. 红外汲取光谱(Infrared absorption spectroscopy, IR)又称为分子振动—转动光谱。当样品受到频率连续变化的红外光照耀时,分子汲取了某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些汲取区域的透射光强度减弱。记录红外光的百分透射比与波数或波长关系的曲线,就得到红外光谱。 红外光谱在化学领域中的应用大体上可分为两个方面:一是用于分子结构的基础研究,应用红外光谱能够测定分子的键长、键角,以此推断出分子的立体构型;依照所得的力常数能够明白化学键的强弱;由简正频率来计算热力学函数。二是用于化学组成的分析,红外光谱最广泛的应用在于对物质的化学组成进行分析,用红外光谱法能够依照光谱中汲取峰的位置和形状来推断未知物

光谱分析技术及应用.doc

第一章绪论 第一节光学分析的历史及发展 1.吸收光谱:由于物质对辐射的选择性吸收而得到的光谱。 2.发射光谱:构成物质的各种粒子受到热能、电能或者化学能的激发,由低能态或基态跃迁到较高能态,当其返回基态时以光辐射释放能量所产生的光谱。 第二章光谱分析技术基础 第一节电磁辐射与波谱 1.电磁辐射的波动性 (1)散射 丁铎尔散射和分子散射两类。 丁铎尔散射:当被照射试样粒子的直径等于或大于入射光的波长时。 分子散射:当被照射试样粒子的直径小于入射光的波长时。分为瑞利散射(光子与分子相互作用时若没有能量交换)和拉曼散射(有能量交换)。 (2)折射和反射 全反射:当入射角增大到某一角度时,折射角等于90,再增大入射角,光线全部反射回光密介质中,没有折射。 (3)干涉 当频率相同,振动方向相同,周相相等或周相差保持恒定的波源所发射的电磁波互相叠加时,会产生波的干涉现象。 (4)衍射 光波绕过障碍物而弯曲地向它后面传播的现象。 2.电磁波的粒子性 光波长越长,光量子的能量越小。 光子:一个光子的能量是传递给金属中的单个电子的。电子吸收一个光子后,能量会增加,一部分用来挣脱束缚,一部分变成动能。 3.物质的能态 当物质改变其能态时,它吸引或发射的能量就完全等于两能级之间的能量差。 从低能态到高能态需要吸收能量,是为吸收光谱,即吸光度对波长或频率的函数。 从高能态到低能态需要释放能量,是为发射光谱。 第二节原子吸收光谱分析 1.当原子吸引能量的时候,按能量数量使核外电子从一级跃迁到另一级,这与吸收的能量有关。吸收能量的多少与原子本身和核外电子的状态有关。

第三节 分子吸收与光谱分析 1.分子吸收与原子的不同在于,分子还需要转动跃迁、振动跃迁、电子跃迁等几个能级。 2.朗伯-比尔(Lambert-Beer )法则:设某物质被波长为λ、能量为)(0λI 的单色光照射时,在另一端输出的光的能量)(λt I 将出输入光的能量低。考虑物质光程长度为L 中一个薄层dx ,其入射光为)(λI ,则其出射光为)()(λλdI I -。假设光强的减少量与薄层中吸收成分的浓度c 和入射光强度)(λI 成比例,并进一步假定在物质内只发生光的吸收,没有反射、散射、荧光等其他现象发生(事实上一定会有),因此有微分方程 cdx kI dI )()(λλ=- 其中k 为比例常数。 对于初始条件入射光强)(0λI ,及光程长度L ,所得出射光强)(λt I 为 kcL t e I I -=)()(0λλ 令e k lg =ε,则有 cL T I I A t ελλλλ===)) (1lg())()(lg()(*0* ε称为吸光系数,)(*λA 称为吸光度。可知吸光度与吸收成分的浓度和光程长度成正比,且当待测物质中包含有多种吸收成分时,总的吸光度等于各个吸收成分的吸光度之和,称为吸光度的加和性。 缺点:(1)假设光强的减少量与薄层厚度及吸收成分浓度成比例(其实可能是别的关系)。 (2)假设在物质内只发生光的吸收,没有反射、散射、荧光等其他现象发生(事实上一定会有)。 3.紫外与可见光谱应用举例——植物叶绿素分析 叶绿体=叶绿素+类胡萝卜素 叶绿素=叶绿素A (蓝绿色)+叶绿素B (黄绿色)(A :B=3:1) 叶绿素吸收光谱的最强吸收区有两个:波长范围为640~660nm 的红光部分和430~450的蓝紫光部分。 类胡萝卜素=胡萝卜素(橙黄色)+叶黄素(黄色) 类胡萝卜素的吸收光谱的最大吸收带在蓝紫光部分。 根据前述的朗伯-比尔(Lambert-Beer )法则和吸光度的加和性来进行测量。

油样光谱分析技术及其在工业中的应用

2007年第5期(总205期) 压缩机技术·13· 收稿日期: 2007 - 06 - 27 文章编号: 100622971 (2007) 0520013204 多种故障诊断技术在往复压缩机中的应用 程香平1 ,丁雪兴1 ,刘海亮2 ,李国栋1 (11兰州理工大学石油化工学院,甘肃兰州730050; 21河南四方建设管理有限公司,河南漯河462000) 4油样光谱分析技术测取方法及其可表征 的故障 在机械设备的磨损故障中,润滑不良是导致磨损失效的主要原因。 油液光谱分析技术是监测、诊断设备润滑系统故障的重要手段,尤其是对设备早期磨损隐患的发现和识别,更是其他分析诊断方法难以取代的技术。发射光谱分析技术是利用物质受电能或热能激发后发射出特性光谱来判断物质组成,它能把润滑油中所含的铁、镍、铬、铜等元素激发,然后根据这些金属杂质发射出的谱线强度对这些元素进行定量分析。 这种方法操作简便、分析速度快、精度高、灵敏度好,其缺点是价格昂贵,不能给出磨屑的外形、尺寸等信息,不能反映磨屑产生的原因和来源,它只能对小于10μm的磨屑提供结果,而对磨损严重的较大颗粒不能反映。工作原理 412实例分析 某油田的天然气压缩机由于累计运行时间长,故障率高, 2001年3号天然气压缩机爆炸, 2号和4号压缩机组烧坏,造成损失3000万元。此后采用光谱分析技术对压缩机组进行状态监测,了解磨损颗粒成分和浓度变化趋势,确定换油周期,实现有计划的预知性维修,保证了设备正常运行。

停机检修连杆小头的黄铜衬套已经严重磨损,活塞环与缸套也有不同程度的磨损。 检修气轴瓦、连杆轴瓦磨损面积已超过20%。通过上例充分说明了油样光谱分析在往复压缩机故障诊断中的有效性 光谱分析法及其新技术在石油化工中的应 用景丽洁 2 原子发射光谱法 它是利用不同物质的原子在受到热、光或电能作用时发射的特征光谱而判断物质组成的一门应用最早,最广分析技术。 在石油化工方面,常用它来测定石油产品中微量金属元素的含量及催化剂中活性组分。如燃料油中镍、钒、硅等元素曲含量多少,通常可做为燃烧器喷管堵塞和发动机零件异常磨损状况的指针。随着等离子体发射光谱(ICP—AE8)分析技术的不断改进,开创了多元素和常量、微量同时测定的新局面。 3 X射线荧光光谱法 是一种荧光分析法,方法的选择性高,不仅适用于微量组分的测定,也适用于高至90%左右的高含量组分的测定,特别是对于高含量组分的测定,具有相当高的准确度。配有电子计算机的X射线荧光光谱仪,使分析工作实现自动化,可在数分钟内同时测定3O多种元素的含量,是生产过程控制析的一种强有力的分

光谱分析仪应用及功能特点

光谱分析仪应用及功能特点 由于近红外光在常规中有良好的传输特性,且其仪器较简单、分析速度快、非破坏性和样品制备量小、几乎适合各类样品(液体、粘稠体、涂层、粉末和固体)分析、多组分多通道同时测定等特点,成为在线分析仪表中的一枝奇葩。近几年,随着化学计量学、光纤和计算机技术的发展,在线近红外光谱分析技术正以惊人的速度应用于包括农牧、食品、化工、石化、制药、烟草等在内的许多领域,为科研、教学以及生产过程控制提供了一个十分广阔的使用空间。光谱分析仪应用于钢铁冶金、有色金属、石油化工、机械制造、能源电力、铁路运输、航空航天、食品卫生、环境保护以及教学科研等各个领域。 直读光谱仪一般属于原子发射光谱,应用于冶金,铸造,有色,黑色金属鉴别,石化,机械制造等行业。国际上比较有名的有美国热电(收购瑞士ARL),德国斯派克,德国布鲁克,日本岛津等比较有名。 手持式光谱仪属于X射线荧光光谱仪,同样属于原子发射光谱仪,但和直读光谱的激发方式不一样,直读光谱靠高压放电激发,X射线是通过X光管来激发,接收原件也不同,检测元素范围和精度低于直读光谱,但应用于合金材料牌号鉴别以及混料筛选,废料回收,野外材料牌号鉴别有特殊用途,因可以做的小巧,一般做成手持式,方便携带。 性能特点 防返油真空技术,采用两级阀门控制。一级通过真空规管控制并与真空泵联动,为世界光谱仪领域最新技术,避免仪器抽真空带来的噪声、故障,防返油真空技术,避免油蒸汽对光学系统造成的污染,大大提高了仪器的使用寿命。 1.仪器采用的独立出射狭缝为国内首创,世界先进。金属整缝的特点是仪器调试方便、快捷,便于出射狭缝增加通道(用户可仅考虑目前应用的元素,以后需要的通道可随时增加)节约成本。 2.自动高压系统为世界先进水平。该系统可通过计算机控制每个通道提供8档高压,使同一通道可以在不同分析程序中得到应用,提高了通道的利用率和谱线最佳线性范围在分析不同材料中的采用,减少了通道的采用数量,降低了成本。 3.自动描迹为世界领先水平,同类仪器国内空白。自动描迹可大大缩短校准仪器所用的时间,使仪器校准变得简单、方便,非专业人员既可进行描迹操作。仪器设有内部恒温系统。大大减小了环境温度变化对光学系统造成的漂移。 4.WINDOWS系统下的中文操作软件,方便国内使用。不同层次的操作员可随时调用相关帮助菜单来指导对仪器的操作;分析速度快捷,20秒内测完所有通道的化学成分;针对不同的分析材料,通过制作预燃曲线来确定分析时间,使仪器用最短的时间达到最优的分析效果;预制好合理的工作曲线,用户可免购大量标样,节约使用成本,安装后即可投入使用。 5.多功能光源国内空白。多功能光源的采用可扩大元素的分析范围,满足超高含量以及痕量元素的分析;各系统独立供电,单元化设计,维修方便快捷。单元化的设计可达到非专业人员的快速维修,为互联网摇诊仪器故障做好了充分准备。

核磁共振光谱分析法在药物分析中的应用

核磁共振光谱分析在药物分析中的应用 摘要 对科学产生最大影响的分析方法是核磁共振技术,它被广泛用于许多领域。本文结合核磁共振及核磁共振光谱法的相关概念,介绍核磁共振光谱分析法的特点及其方法,着重于核磁共振光谱分析在体内药物分析中的应用。核磁共振法以其重现性好、特征性强等优点已成为药物研究的重要手段。随着天然药物生产领域的发展,核磁共振作为质量控制的手段已得到重视,并逐渐地应用于实践。相信不久的将来,核磁共振技术将会更好地为人类服务,为药物研究作出贡献。 Abstract In science the biggest impact on the analysis method is NMR, it is widely used in many fields. Based on the nuclear magnetic resonance (NMR) and magnetic resonance spectroscopy ,this article introduce nuclear magnetic resonance spectroscopy analysis of characteristics and methods and focusing on nuclear magnetic resonance spectra analysis in vivo drug analysis in application. As natural drug production fields of development, nuclear magnetic resonance (NMR) as quality control means has been seriously, and gradually applied in practice. Nuclear magnetic resonance (NMR) technology will better service to humanity, for drug research to contribute in the future. 关键词: 核磁共振核磁共振光谱法定量分析法药物分析 Keywords: nuclear magnetic resonance nuclear magnetic resonance spectroscopy quantitative analysis method drug analysis 正文:1945年,F.Bloch和E.M.Purcell分别领导的两个小组几乎同时发现了核磁共振(NuelearMagnetic Resonance,简称NMR)现象。NMR技术最初只应用于物理科学领域,但随着超导技术、计算机技术和脉冲傅立叶变换波谱仪的迅速发展,今天核磁共振已成为鉴定有机化合物结构和研究化学动力学等诸多领域中极为重要的方法,而且其应用领域正在逐 步扩大。核磁共振技术在药物检验分析中的应用已有多年,由于其具有其他方法难以比拟的独特优点,即定性测定不具有破坏性、定量测定不需要标样,因此核磁共振技术在药物 分析中应用和发展也越来越广泛?。 核磁共振(Nuclear Magnetic Resonance)原是一种原子核的物理现象,它的原理可以用一个不严格的简单模型来说明:用最简单的原子核──氢核为例,氢原子核是一个带正电的质子,同时原子核具有自旋性,从古典电磁学的观点看来,这个自旋的带电质子将具有磁性,我们不妨把它暂时看成是个小磁铁。如果我们外加一个磁场,小磁铁在磁场中的不同方位与外加磁场产生不同的作用力,如图一a是较稳定的状态,图一b则是较不稳定的状态。也就是说,「小磁铁」在外

光谱分析技术总结

1可见与紫外分光光度法 紫外--可见分光光度法:是根据物质分子对波长为200-760nm这一范围的电磁波的吸收特性所建立起来的一种定性、定量和结构分析方法。操作简单、准确度高、重现性好。波长长(频率小)的光线能量小,波长短(频率大)的光线能量大。分光光度测量是关于物质分子对不同波长和特定波长处的辐射吸收程度的测量。 特点: 灵敏度高------10-5 mol·L-1 ~10 -6 mol·L-1 相对误差小------2%~5% 应用广泛-----医药、卫生、环保、化工等领域。 设备:紫外-可见分光光度计

价格主要在5000-35000左右 应用场合: 食品分析、药物分析、环境监测 2红外光谱法 红外光谱法又称“红外分光光度分析法”。简称“IR”,分子吸收光谱的一种。利用物质对红外光区的电磁辐射的选择性吸收来进行结构分析及对各种吸收红外光的化合物的定性和定量分析的一法。被测物质的分子在红外线照射下,只吸收与其分子振动、转动频率相一致的红外光谱。对红外光谱进行剖析,可对物质进行定性分析。化合物分子中存在着许多原子团,各原子团被激发后,都会产生特征振动,其振动频率也必然反映在红外吸收光谱上。据此可鉴定化合物中各种原子团,也可进行定量分析。特征性强、测定快速、不破坏试样、试样用量少、操作简便、能分析各种状态的试样、分析灵敏度较低、定量分析误差较大。 特点: 优点:(1)快速,通常30秒内就可给出分析结果,可进行在线分析; (2)制样简单; (3)信息量大,可同时测定多组分; (4)经定标建模后,无须用其他常规化学分析手段,不使用有毒有机试剂,无污染; (5)非破坏性分析,可实现产品的无损质量检测; (6)可使用光纤,从而可实现远程分析检测。 缺点:(1)建立模型需要大量有代表性且化学值已知的样品; (2)模型需要不断的维护改进; (3)近红外测定精度与参比分析精度直接相关,在参比方法精度不够的情况下,

近红外光谱(NIR)分析技术的应用

近红外光谱(NIR)分析技术的应用 近红外光谱分析是近20年来发展最为迅速的高新技术之一,该技术分析样品具有方便、快速、高效、准确和成本较低,不破坏样品,不消耗化学试剂,不污染环境等优点,因此该技术受到越来越多人的青睐。 一、近红外光谱的工作原理 有机物以及部分无机物分子中各种含氢基团在受到近红外线照射时,被激发产生共振,同时吸收一部分光的能量,测量其对光的吸收情况,可以得到极为复杂的红外图谱,这种图谱表示被测物质的特征。不同物质在近红外区域有丰富的吸收光谱,每种成分都有特定的吸收特征。因此,NIR能反映物质的组成和结构信息,从而可以作为获取信息的一种有效载体。 二、近红外光谱仪的应用 NIR分析技术的测量过程分为校正和预测两部分(如图一所示),(1)校正:①选择校正样品集,①对校正样品集分别测得其光谱数据和理化基础数据,①将光谱数据和基础数据,用适当的化学计量方法建立校正模型;(2)预测:采集未知样品的光谱数据,与校正模型相对应,计算出样品的组分。由此可知,建立一个准确的校正模型是近红外光谱分析技术应用中的重中之重。 图一 2.1 定标建模

2.1.1 为什么要建立近红外校正模型 2.1.1.1 建立近红外校正模型的最终目标是获得一个长期稳定的和可预测的模型。 2.1.1.2 近红外光谱分析是间接的(第二手)分析方法,所以①需要定标样品集;①利用定标样品集的参比分析数据与近红外光谱建立校正模型;③近红外分析准确度与参比方法数据准确度高度相关;④近红外分析精度一般优于参比方法分析精度。 2.1.2 模型的建立与验证步骤 2.1.2.1 扫描样品近红外光谱 准确扫描校正样品集中各个样品规范的近红外光谱:为了克服近红外光谱测定的不稳定性的困难,必须严格控制包括制样、装样、测试条件、仪器参数等测量参数在内的测量条件。利用该校正校品集建立的数学模型,也只能适用于按这个的测量条件所测量光谱的样品。 2.1.2.2 测定样品成分(定量) 按照标准方法(如饲料中的粗蛋白GB/T6432、水分GB/T6435、粗脂肪GB/T6433)准确测定样品集中每个样品的各种待测成分或性质(称为参考数据)。这些值测定的精确度是近红外光谱运用数学模型进行定量分析精确度的理论极限。 2.1.2.3 建立数据对应关系 通过2.1.2.1所得光谱与2.1.2.2所得不同性质参数的参考数据相关联,使光谱图和其参考数据之间形成一一对应映射的关系,从而建立一个带参考数据的光谱文件。 2.1.2.4 剔除异常值 2.1.2.3建立的光谱文件中,样品参考值与光谱有可能由于各种随机的原因而有较严重的失真,这些样品的测定值称为异常值。为保证所建数学模型的可靠性,在建立模型时应当剔除这些异常值。 2.1.2.5 建立模型 选择算法、确定模型的参数、建立、检验与评价数字模型:常用的算法有逐步回归分析、偏最小二乘法、主成分回归分析等。这些算法的基本思想

_原子发射光谱分析技术及应用_

0231分析化学第38卷 5WEI Feng-Yu(魏凤玉),WEI Hong-Yi(韦洪屹),CUI Peng(崔鹏),QING Wei-Xing(庆卫星).Chemical Engineering (化学工程),2006,34(5):8 11 6Zhang X H,Wang S F,Shen Q H.Microchim.Acta,2005,149(1-2):37 42 7Safavi A,Maleki N,Moradlou O.Electroanalysis,2008,20(19):2158 2162 8Kelth B O,Glenn D Z.Anal.Chem.,1980,52(13):2116 2123 9Song Yuan-Zhi.Spectrochimica Acta.Part A,Molecular and Biomolecular,2007,67(3-4):611 618 Study of p-Aminophenol Sensor Based on Acetylene Black/Chitosan Film Modified Electrode WANG Ya-Zhen*,QIU Hong-Xin,HUANG Wen-Li (School of Chemistry and Environmental Engineering,Jianghan University,Wuhan430056) Abstract An acetylene black/chitosan film modified glassy carbon electrode was fabricated.The electro-chemical behavior of p-aminophenol was studied at the acetylene black/chitosan film electrode by cyclic volta-mmetry.The experimental results showed that a pair of reversible redox peaks were obtained at this film elec-trode.In comparison with the bare glassy carbon electrode,the redox peak current increased greatly,the peak potential difference reduced and the reversibility got better,which indicated that acetylene black/chitosan film electrode had a good catalysis to the electrochemical redox of p-aminophenol.Cyclic voltammetry experiment results also indicated that the oxidative peak current increased linearly with the concentration of p-aminophenol in the range of1.0?10-7-2.0?10-6mol/L and2.0?10-6-5.0?10-4mol/L,respectively.Regression equation was i=0.0394+189.848c and correlation coefficient was0.9943in the range of1.0?10-7-2.0?10-6mol/L.Regression equation was i=0.1555+29.2369c and correlation coefficient was0.9969in the range of2.0?10-6-5.0?10-4mol/L,respectively.The detection limit was up to5.0?10-8mol/L (S/N=3).The method was used for the determination of p-aminophenol in the real sample with satisfactory result. Keywords Cyclic voltammetry;Acetylene black/chitosan;Chemically modified electrode;p-Aminophenol;Sensor (Received9November2009;accepted27January2010 )櫫櫫櫫櫫櫫櫫櫫櫫櫫櫫櫫櫫櫫櫫櫫櫫櫫櫫櫫櫫櫫櫫櫫櫫櫫櫫櫫櫫櫫櫫櫫櫫櫫櫫櫫櫫櫫櫫櫫櫫櫫櫫櫫櫫 《原子发射光谱分析技术及应用》 该书以实际中广泛应用的发射光谱现代分析仪器为对象,介绍了原子发射光谱分析技术的原理和必要的基础知识,主要发射光谱仪器的分析技术及其实际应用。着重介绍火花源原子发射光谱、电感耦合等离子体发射光谱和辉光放电发射光谱的仪器结构、分析技术及其应用,并分别列举了这三种光谱分析方法在各行业中的典型分析实例,及其在国家标准及相关行业标准中的应用情况,同时简要介绍了光谱分析过程中的误差分析及测定结果不确定度的数理统计方法,为发射光谱分析数据的可比性和溯源性提供参考知识。同时,书中也介绍了原子发射光谱仪器中实用类型仪器的结构、附件及其使用要求和仪器的日常维护知识,列举了新型现代化仪器的性能、特点及其应用范围。 该书由郑国经、计子华、余兴编著,化学工业出版社于2010年1月出版,定价80.00元。

红外光谱分析技术及其应用

红外光谱分析技术及其应用 (作者:___________单位: ___________邮编: ___________) 作者:范雪芳徐淼侯晓涛王帅李洪宇张丽华 【摘要】红外光谱(IR)分析技术是一门发展迅猛的高新技术,与传 统分析技术相比,红外光谱分析技术具有分析速度快,样品用量少, 无破坏无污染等特点。红外光谱测定的是物质中分子的吸收光谱,不同的物质会有其特征指纹的特性,利用红外指纹图谱技术对中成药进 行质量鉴定与分析,借助计算机和模式识别等技术,以综合的、宏观的、非线性的分析理念和质量控制模式来评价中药的真伪优劣 【关键词】红外光谱; 红外指纹图谱技术 【Abstract】 Infrared spectrum (IR) is a fast developing newly technology. Compared w ith traditional analysis technology, IR possesses characters of fast analysis, little sample, no breach and no pollution. IR measures the absorption spectrum of molecule, and different substances have different fingerprint patterns. Thus, IR technology can be applied to detect and analyze the quality of traditional Chinese drug. Using the computer, pattern recognition and so on, we can estimate if

相关文档
最新文档