12.6 惠更斯原理 习题

12.6 惠更斯原理 习题
12.6 惠更斯原理 习题

12. 6 惠更斯原理习题

基础夯实

1.下列说法中不正确的是()

A.只有平面波的波面才与波线垂直

B.任何波的波线与波面都相互垂直

C.任何波的波线都表示波的传播方向

D.有些波的波面表示波的传播方向

答案:AD

解析:不管是平面波,还是球面波,其波面与波线均垂直,选项A错误,选项B正确,波线表示波的传播方向,选项C正确,D错误。

2.下列说法中正确的是()

A.水波是球面波

B.声波是球面波

C.只有横波才能形成球面波

D.只有纵波才能形成球面波

答案:B

解析:若波面是球面,则为球面波,与横波、纵波无关,由此可知B正确,C、D错误。由于水波不能在空间中传播,所以它是平面波,A不正确。

3.(2012·聊城模拟)以下关于波的认识,正确的是()

A.潜水艇利用声呐探测周围物体的分布情况,用的是波的反射原理

B.隐形飞机怪异的外形及表面涂特殊隐形物质,是为了减少波的反射,从而达到隐形的目的

C.雷达的工作原理是利用波的反射

D.水波从深水区传到浅水区改变传播方向的现象,是波的折射现象

答案:ABCD

解析:A、B、C选项中应用了波的反射现象;D选项是波的折射现象,深水区域和浅水区域视为不同介质,故波的传播方向发生改变。

4.一列声波从空气传入水中,已知水中声速较大,则()

A.声波频率不变,波长变小

B.声波频率不变,波长变大

C.声波频率变小,波长变大

D.声波频率变大,波长不变

答案:B

解析:波在传播过程中频率不变,由λ=v

f知水中波长大,故B

选项正确。

5.人们听不清对方说话时,除了让一只耳朵转向对方,还习惯性地把同侧的手附在耳旁,这样做是利用声波的________提高耳的接收能力。

答案:反射

6.为什么在空房间里讲话感觉到声音特别响?

解析:声波在空房间里遇到墙壁、地面、天花板发生反射时,由

于距离近,原声与回声几乎同时到达人耳。所以,人在空房间里讲话感觉声音特别响,而普通房间里的幔帐、沙发、衣物等会吸收声波,使反射不够强,所以人在普通房间里讲话不如在空房间里讲话响。

7.某人想听到自己发出的声音的回声,若已知声音在空气中的传播速度为340m/s,那么他至少要离障碍物多远?(原声与回声区分的最短时间为0.1 s)

答案:17m

解析:在波的反射现象中,反射波的波长、频率和波速都跟入射波的相同,只有声波从人所站立的地方到障碍物再返回来全部经历的时间在0.1 s以上,人才能辨别出回声则应有2s=v t,可得他至少要

离障碍物的距离为s=v t

2=

340×0.1

2m=17m。

8.

我国第24次南极科考队经过长达13天,4000多海里航行,已安全到达中国南极长城站,在考察途中“雪龙号”(如图所示)经历了各种考验,并进行了海冰观测、地磁观测、气象观测、极光及高空物理观测,在海面上航行时,它还不时地探测海洋的深度,在它上面配有一种十分先进的声纳探测系统,其原理是:向海底发射超声波,超声波就会从海底反射回来,通过这种方式测海底深度,已知超声波在海水中认为是匀速直线运动,且知其速度为1400m/s,船静止时测量,

从发射超声波到接收反射所用的时间为7s ,试计算“雪龙号”所在位置的海水深度?

答案:4900m

解析:超声波的运行可认为匀速直线运动,则传播距离为x =v t =1400×7m =9800m ,又因为海水深度为声波距离的一半,所以h =x 2=98002

m =4900m 。 能力提升

1.关于对惠更斯原理的理解,下列说法正确的是( )

A .同一波面上的各质点振动情况完全相同

B .同一振源的不同波面上的质点的振动情况可能相同

C .球面波的波面是以波源为中心的一个个球面

D .无论怎样的波,波线始终和波面垂直

答案:ACD

2.甲、乙两人平行站在一堵墙前面,二人相距2a ,距离墙均为3a ,当甲开了一枪后,乙在时间t 后听到第一声枪响,则乙听到第二声枪响的时间为( )

A .听不到

B .甲开枪3t 后

C .甲开枪2t 后

D .甲开枪3+72

t 后 答案:C

解析:乙听到第一声枪响必然是甲放枪的声音直接传到乙的耳

中,故t =2a v 。

甲、乙二人及墙的位置如图所示,乙听到第二声枪响必然是墙反射的枪声,由反射定律可知,波线如图中AC 和CB ,由几何关系可得:AC =CB =2a ,故第二声枪响传到乙的耳中的时间为t ′=AC +CB v

=4a v =2t 。 3.声波在空气中传播速度v 1=340m/s ,在钢铁中的传播速度为4900m/s ,一人用锤子敲击一下铁桥的一端而发出声音,经空气和桥传到另一端的时间差为2s ,则桥长________m ,空气中和钢铁中声波的频率之比是________,波长之比是________。

答案:730.7m ;1:1;17:245

4.一列声波在空气中的波长为34 cm ,传播速度为340 m/s ,这列声波传入另一介质时,波长变为68 cm ,它在这种介质中的传播速度是多少?该声波在空气中与介质中的频率各是多少?

答案:680 m/s 1000Hz 1000Hz

解析:在空气中fλ=v ,f =v λ=340 m/s 34×10-2m

=1000 Hz ,在介质中fλ′=v ′,v ′=1000×68×10-2 m/s =680 m/s 。

5.(2012·曲阜质检)某物体发出的声音在空气中的波长为1 m ,波速为340 m/s ,在海水中的波长为4.5 m ,此物体在海面上发出的声音经0.5 s 听到回声,则海水深为多少米?

答案:382.5 m

解析:本题是波的反射现象与v =λf 的综合应用,知道不同介质中同一列波的频率是定值为解决本题的关键,

则波的频率f =v 气λ气

。 在海水中:v 水=

λ水

λ气v 气 海水的深度h =v 水·t 2=1 530×12

×0.5 m =382.5 m 。 6.(2010·洛阳市高二检测)某雷达站正在跟踪一架飞机,此时飞机正朝着雷达站方向匀速飞来;某一时刻雷达发出一个无线电脉冲,经200μs 后收到反射波;隔0.8s 后再发出一个脉冲,经198μs 收到反射波,已知无线电波传播的速度为c =3×108m/s ,求飞机的飞行速度v 。

答案:375m/s

解析:由于c ?v ,故可不考虑电磁波传播过程中飞机的位移;设雷达两次发射电磁波时飞机分别位于x 1、x 2处,则第一次:2x 1=ct 1,第二次:2x 2=ct 2

飞机的飞行速度:v =x 1-x 2Δt

且Δt =0.8s

代入数据解得:v =375m/s

7.一木匠在房顶上用铁锤钉钉子,有一位过路者在观察,他看到锤子举到最高点时,也恰好听到敲打声,他抬手看了看手表,木匠敲了8下用4 s ,他便很快估计出他到木匠的最小距离不小于85 m ,设声速为340 m/s ,木匠上举和向下放锤的时间相等,说说旁观者用的方法,写出他到木匠距离的表达式。

答案:x =85(2n +1)m(n =0,1,2,…)

解析:由题意知木匠举锤的时间为t =14

s ,最短距离x =v t =340×14

m =85 m 。而由于敲打的周期性,敲击声跟锤子举到最高点之间的时间为t =14

(2n +1) s ,因而可能的距离为x ′=v t ′=85(2n +1) m(n =0,1,2,…)。

大学物理期末试卷(带答案)

大学物理期末试卷(A) (2012年6月29日 9: 00-11: 30) 专业 ____组 学号 姓名 成绩 (闭卷) 一、 选择题(40%) 1.对室温下定体摩尔热容m V C ,=2.5R 的理想气体,在等压膨胀情况下,系统对外所做的功与系统从外界吸收的热量之比W/Q 等于: 【 D 】 (A ) 1/3; (B)1/4; (C)2/5; (D)2/7 。 2. 如图所示,一定量的理想气体从体积V 1膨胀到体积V 2分别经历的过程是:A B 等压过程; A C 等温过程; A D 绝热过程 . 其中吸热最多的 过程 【 A 】 (A) 是A B. (B) 是A C. (C) 是A D. (D) 既是A B,也是A C ,两者一样多. 3.用公式E =νC V T (式中C V 为定容摩尔热容量,ν为气体摩尔数)计算理想气体内能 增 量 时 , 此 式 : 【 B 】 (A) 只适用于准静态的等容过程. (B) 只适用于一切等容过程. (C) 只适用于一切准静态过程. (D) 适用于一切始末态为平衡态的过程. 4气缸中有一定量的氦气(视为理想气体),经过绝热压缩,体积变为原来的一半,问气体 分 子 的 平 均 速 率 变 为 原 来 的 几 倍 ? p V V 1 V 2 A B C D . 题2图

【 B 】 (A)2 2 / 5 (B)2 1 / 5 (C)2 1 / 3 (D) 2 2 / 3 5.根据热力学第二定律可知: 【 D 】 (A )功可以全部转化为热, 但热不能全部转化为功。 (B )热可以由高温物体传到低温物体,但不能由低温物体传到高温物体。 (C )不可逆过程就是不能向相反方向进行的过程。 (D )一切自发过程都是不可逆。 6. 如图所示,用波长600=λnm 的单色光做杨氏双缝实验,在光屏P 处产生第五级明纹极大,现将折射率n =1.5的薄透明玻璃片盖在其中一条缝上,此时P 处变成中央 明纹极大的位置,则此玻璃片厚度为: 【 B 】 (A) 5.0×10-4 cm (B) 6.0×10-4cm (C) 7.0×10-4cm (D) 8.0×10-4cm 7.下列论述错误..的是: 【 D 】 (A) 当波从波疏媒质( u 较小)向波密媒质(u 较大)传播,在界面上反射时,反射 波中产生半波损失,其实质是位相突变。 (B) 机械波相干加强与减弱的条件是:加强 π?2k =?;π?1)2k (+=?。 (C) 惠更斯原理:任何时刻波面上的每一点都可作为次波的波源,各自发出球面次波;在以后的任何时刻,所有这些次波面的包络面形成整个波在该时刻的新波面 (D) 真空中波长为500nm 绿光在折射率为1.5的介质中从A 点传播到B 点时,相位改变了5π,则光从A 点传到B 点经过的实际路程为1250nm 。 8. 在照相机镜头的玻璃片上均匀镀有一层折射率n 小于玻璃的介质薄膜,以增强某一波长 的透射光能量。假设光线垂直入射,则介质膜的最小厚度应为: 【 D 】 (A)/n λ (B)/2n λ (C)/3n λ (D)/4n λ P O 1 S 2 S 6. 题图

412-惠更斯-菲涅耳原理

412—惠更斯—菲涅耳原理 1. 选择题 1,根据惠更斯-菲涅耳原理,给定波阵面S上,每一面元dS发出的子波在观察点引起的光振动的振幅与以下哪些物理量相关: (A) 面元的面积dS。(B) 面元到观察点的距离。 (C) 面元dS对观察点的倾角。(D) 以上皆是。 [ ] 2,根据惠更斯-菲涅耳原理,给定波阵面S上,每一面元dS发出的子波在观察点引起的光振动的相位与以下哪些物理量相关: (A) 面元的面积dS。(B) 面元到观察点的距离。 (C) 面元dS对观察点的倾角。(D) 以上皆是。 [ ] 3,在研究衍射时,可按光源和所研究的点到障碍物的距离,将衍射分为菲涅耳衍射和夫琅和费衍射两类,其中夫琅和费衍射为: (A)光源到障碍物有限远,所考查点到障碍物无限远。(B) 光源到障碍物无限远,所考查点到障碍物有限远。 (C) 光源和所考察点的到障碍物的距离为无限远。(D) 光源和所考察的点到障碍物为有限远。 [ ] 4,在研究衍射时,可按光源和所研究的点到障碍物的距离,将衍射分为菲涅耳衍射和夫琅和费衍射两类,其中不是菲涅耳衍射为: (A) 光源和所考察的点到障碍物为有限远。(B) 光源和所考察点的到障碍物的距离为无限远。 (C)光源到障碍物有限远,所考查点到障碍物无限远。(D) 光源到障碍物无限远,所考查点到障碍物有限远。 [ ] 2. 判断题 1,在研究衍射时,是惠更斯首先引入子波的概念提出了惠更斯原理。 2,菲涅耳用子波相干叠加的思想补充了惠更斯原理,发展成了惠更斯-菲涅耳原理。 3,根据惠更斯-菲涅耳原理,衍射现象在本质上也是一种干涉现象。 4,惠更斯-菲涅耳原理的基本内容是:波阵面上各面积元所发出的子波在观察点P的相干叠加,决定了P点的合振动及光强.

声波的惠更斯原理及费尔马最小定理

惠更斯原理,菲尔马定理 声音的基本性质特点

声音的基本性质 一、声音的产生 声音产生于物体的振动。例如,讲话声音产生于喉管内声带的振动,扬声器(喇叭)发声产生于纸盆的振动,机械噪声产生于机械部件的振动等。我们把能够发出声音的物体称为声源。 声源发声后,还要经过一定的介质才能向外传播。例如扬声器发声,当外加信号使扬声器纸盆来回振动时,随之也使它邻近的空气振动起来。当纸盆向某个方向振动时,便压缩其邻近空气,使这部分空气变密;当纸盆向相反方向振动时,这部分空气变稀疏。邻近空气这样一疏一密地随着纸盆的振动而振动,同时又使较远的空气做同样的振动,空气这种一疏一密地振动传播的波叫做声波。声波的传播示意图如图1-1所示。声波以一定速度向四面八方传播,当声波传到入耳中时,会引起人耳鼓膜发生相应的振动,这种振动通过听觉神经,使我们产生声音的感觉。 由此可见,听到声音,要有三个基本条件。一是存在发声体或声源。二是要有传播过程中的弹性介质,例如空气,或者液体、固体的弹性介质;真空中没有弹性介质,所以真空不能传送声波:月球上没有空气,所以月球上是无声的世界。三是要通过入耳听觉才能产生声音的感觉。 声波的传播 声波的传播也可以用水面波作形象的比喻。把一石块投入平静的水中,水面上便可看到一圈圈的水面波,它由波峰和波谷这样高低起伏交替变化着向外传播。因为水面在波动,所以水面波带有能量。如果在水面卜浮一很小的木块,就可以看到这一小木块随着水面波峰波谷做上下运动,待水面平静下来,木块则仍停留在它的原来位置。由此可见,水的质点本身并不沿着波动前进,而是水波动的能量从一部分水面到邻近的另一部分水面相继传递。这与声波在空气中传播时空气层并不跟随声音一块传播出去,而只是在平衡位置附近振动是相似的。所以说声波的传播,实际上是声波的能量随声波在传播。有声波存在的空间叫做声场。 但是,声波与水波也有不同,水面波的振动方向与波的传播方向相垂直,因此水波是一种横波。声波的传播方向与疏密相间振动方向是一致的,所以声波在空气中的表现形式是纵波。 由上述可见,振动和波动是互相密切联系的运动形式,振动是波动的产生根源,而波动是振动的传播过程。声音的本质是一种波动,因此声音也叫声波。为了清楚起见,通常把声的物理过程称为声波,而把与听觉有关的过程称为声音。 二、频率、波长与声速 声源完成一次振动所经历的时间称为周期,记作T为秒(s)。Is内振动的次数称为频率,记作?单位为赫兹( Hz),它是周期的倒数,即 声源的振动能产生声波,但不是所有振动产生的声波人们都能听得见,这是由于人耳特性决定的。只有当频率在20~20000Hz范围内的声波传到人耳,引起耳膜振动,才能产生声音的感觉。所以通常将频率在20—20000Hz范围内的声波叫做可听声。低于20Hz的

由惠更斯原理可以解释反射定律和折射定律

由惠更斯原理可以解释反射定律和折射定律,并给出n 的物理意义 两种媒质 媒质1、媒质2,这是两种媒质的分界面 一束平行光(光线为1、2、3〃〃〃〃n )从媒质1射向媒质2,光线1、2、3〃〃〃n 分别交界面于A 1B 2B 3···B n 过A 1作平行光的波面,交光线于A 2A 3···A n 当光线1→到达A 1同时 光线2→到达A 2 光线3→到达A 3 光线n →到达A n 而光线2还要经 12 22V B A t = 时间才能到达B 2 光线3还要经 13 33V B A t = 时间才能到达B 3 …………………………………………… 光线n 还要经 V B A t n n n = 时间才能到达B n V 1为光波在媒质1中的波速,设在媒质2中波速为V 2 每条光线到达分界面上时,都同时发射两个次波。反射次波和折射次波 反射次波——向媒质1内发射反射次波 当光线n 到达B n 点时,A 1点发出的反射次波波面和透射次波波面分别是以V 1t n V 2t n 半径的半球面。 B 2点发出的反射次波波面和透射次波波面分别是以V 1(t n -t 2),V 2(t n -t 2)为半径的半球面。 光线 所有时间 到达点 反射波波面半径 透射波波面半径 1→A 1 0 A 1 V 1t n V 2t n 2→A 2 12 22V B A t = B 2 V 1(t n -t 2) V 2(t n -t 2)

3→A 3 13 33V B A t = → B 3 V 1(t n -t 3) V 2(t n -t 3) . . . . . . . . . . . . . . . . . . . . . n →A n V B A t n n n = → B n 0 0 这些次波面一个比一个小,直到B n 处缩成一个点。 按惠更斯原理: 这一时刻总扰动的波面是这些次波面的包络面 反射次波和透射次波总扰动的波面是这些次波的波面的包络面,且包络面是通过B n 点的平面。 设反射波总扰动的波面与各次波面相切于C 1C 2C 3···C n 透射波总扰动的波面与各次波面相切于D 1D 2D 3〃〃〃D n 连接次波源与切点,即得总扰动的波线 即反射光线A 1C 1 B 2C 2〃〃〃 透射光线A 1D 1 B 2D 2〃〃〃 (折射光线) 下面证明∵A 1C 1=A n B n A 1B n 公共 ∴RT ΔA 1C 1B n ≌RT ΔA 1A n B n ∴∠A n A 1B n =∠A 1B n C 1 又 ∴∠A n A 1B n =i 1 ,∠A 1B n C 1=i 11 ∴i 1=i 11 反射定律

6 惠更斯原理

12.6惠更斯原理 [探新知·基础练] 1.波面和波线 (1)波面:从波源出发的波,经过同一时间到达的各点所组成的面,如图所示。 (2)波线:用来表示波的传播方向的线,波线与各个波面总是垂直的。 说明:波面是球面的波为球面波,如空气中的声波。波面是平面的波为平面波。 2.惠更斯原理 (1)内容:介质中任一波面上的各点,都可以看做发射子波的波源,其后任意时刻,这些子波在波前进方向的包络面就是新的波面。 (2)包络面:某时刻与子波波面相切的曲面。 (3)应用:如果知道某时刻一列波的某个波面的位置,还知道波速,利用惠更斯原理可以得到下一时刻波面的位置,从而可确定波的前进方向。 [辨是非](对的划“√”,错的划“×”) 1.用惠更斯原理可以解释波的传播方向问题。(√) 2.用惠更斯原理可以解释光的反射和折射现象。(√) 3.用惠更斯原理不可以解释波的衍射现象。(×) [释疑难·对点练] 1.对惠更斯原理的理解 (1)惠更斯原理中,同一波面上的各点都可以看做子波的波源。波源的频率与子波波源的频率相等。 (2)波线的指向表示波的传播方向。 (3)在各向同性的均匀介质中,波线恒与波面垂直。

(4)球面波的波线是沿半径方向的直线,平面波的波线是垂直于波面的平行直线。 (5)利用惠更斯原理可以解释平面波和球面波的传播、波的衍射、干涉和折射现象,但无法说明衍射现象与狭缝或障碍物的大小关系。 2.惠更斯原理的应用 (1)应用惠更斯原理解释波的衍射: - 1 - 如图甲所示,平面波到达挡板上的狭缝AB,按照惠更斯原理,波面上的每一点都可以看做子波的波源,位于狭缝的点也就是子波源。因此波可以到达挡板后的位置。这就是波的衍射现象。 (2)应用惠更斯原理解释波的反射: 惠更斯原理对波的反射的解释,如图乙中a、c、b是入射波的波线,a′、c′、b′是反射波的波线。过a的入射点A作与波线垂直的波面AB,在波面AB上找三点A、C、B作为子波BB′源,设波速为v,取时间间隔Δt=;作Δt时间后子波源A、C发出的子波波面如图中小v 圆弧所示;画出子波波面的包络面A′B′,根据波线与波面的方位关系画出反射波线a′、c′、b′,代表了反射波的波线。 (3)应用惠更斯原理解释波的折射现象: 当波由一种介质进入另一种介质时发生偏折的现象叫做波的折射。用惠更斯原理解释如 下:1由介质a首先于时刻t如图丙所示,一束平面波中的波线也到bt,波线a进入介质2后,又经过时间Δ到达界面。波线两点发出的子波的波面如图中两小段圆弧所C′A达界面。这时、之后的新的波面。由于是两种不同的介,这是波进入介质2A′B′示,它们的包络面为图中的前进的距离b这段时间内,两条波线a和、质,其中波的传播速度vv不一定相同,在Δt21也不一定相同。因此波进入第二种介质后传播方向常常发生偏折。这是波的折射′和BBAA′现象。]

大学物理机械波知识点总结

大学物理机械波知识点总结 【篇一:大学物理机械波知识点总结】 高考物理机械波知识点整理归纳 机械振动在介质中的传播称为机械波(mechanical wave)。机械波和电磁波既有相似之处又有不同之处,机械波由机械振动产生,电磁 波由电磁振荡产生;机械波的传播需要特定的介质,在不同介质中的 传播速度也不同,在真空中根本不能传播,而电磁波(例如光波)可以 在真空中传播;机械波可以是横波和纵波,但电磁波只能是横波;机械 波和电磁波的许多物理性质,如:折射、反射等是一致的,描述它 们的物理量也是相同的。常见的机械波有:水波、声波、地震波。 机械振动产生机械波,机械波的传递一定要有介质,有机械振动但不 一定有机械波产生。 形成条件 波源 波源也称振源,指能够维持振动的传播,不间断的输入能量,并能 发出波的物体或物体所在的初始位置。波源即是机械波形成的必要 条件,也是电磁波形成的必要条件。 波源可以认为是第一个开始振动的质点,波源开始振动后,介质中 的其他质点就以波源的频率做受迫振动,波源的频率等于波的频率。介质 广义的介质可以是包含一种物质的另一种物质。在机械波中,介质 特指机械波借以传播的物质。仅有波源而没有介质时,机械波不会 产生,例如,真空中的闹钟无法发出声音。机械波在介质中的传播 速率是由介质本身的固有性质决定的。在不同介质中,波速是不同的。

下表给出了0℃时,声波在不同介质的传播速度,数据取自《普通高 中课程标准实验教科书-物理(选修3-4)》(2005年)[1]。单位v/m s^- 1 传播方式和特点 质点的运动 机械波在传播过程中,每一个质点都只做上下(左右)的简谐振动,即,质点本身并不随着机械波的传播而前进,也就是说,机械波的一质 点运动是沿一水平直线进行的。例如:人的声带不会随着声波的传 播而离开口腔。简谐振动做等幅震动,理想状态下可看作做能量守恒 的运动.阻尼振动为能量逐渐损失的运动. 为了说明机械波在传播时质点运动的特点,现已绳波(右下图)为例进 行介绍,其他形式的机械波同理[1]。 绳波是一种简单的横波,在日常生活中,我们拿起一根绳子的一端 进行一次抖动,就可以看见一个波形在绳子上传播,如果连续不断 地进行周期性上下抖动,就形成了绳波[1]。 把绳分成许多小部分,每一小部分都看成一个质点,相邻两个质点间,有弹力的相互作用。第一个质点在外力作用下振动后,就会带 动第二个质点振动,只是质点二的振动比前者落后。这样,前一个 质点的振动带动后一个质点的振动,依次带动下去,振动也就发生 区域向远处的传播,从而形成了绳波。如果在绳子上任取一点系上 红布条,我们还可以发现,红布条只是在上下振动,并没有随波前 进[1]。 由此,我们可以发现,介质中的每个质点,在波传播时,都只做简 谐振动(可以是上下,也可以是左右),机械波可以看成是一种运动形 式的传播,质点本身不会沿着波的传播方向移动。

惠更斯原理 习题

12. 6 惠更斯原理习题 基础夯实 1.下列说法中不正确的是() A.只有平面波的波面才与波线垂直 B.任何波的波线与波面都相互垂直 C.任何波的波线都表示波的传播方向 D.有些波的波面表示波的传播方向 答案:AD 解析:不管是平面波,还是球面波,其波面与波线均垂直,选项A错误,选项B正确,波线表示波的传播方向,选项C正确,D错误。 2.下列说法中正确的是() A.水波是球面波 B.声波是球面波 C.只有横波才能形成球面波 D.只有纵波才能形成球面波 答案:B 解析:若波面是球面,则为球面波,与横波、纵波无关,由此可知B正确,C、D错误。由于水波不能在空间中传播,所以它是平面波,A不正确。 3.(2012·聊城模拟)以下关于波的认识,正确的是() A.潜水艇利用声呐探测周围物体的分布情况,用的是波的反射原理 B.隐形飞机怪异的外形及表面涂特殊隐形物质,是为了减少波的反射,从而达到隐形的目的 C.雷达的工作原理是利用波的反射

D.水波从深水区传到浅水区改变传播方向的现象,是波的折射现象 答案:ABCD 解析:A、B、C选项中应用了波的反射现象;D选项是波的折射现象,深水区域和浅水区域视为不同介质,故波的传播方向发生改变。 4.一列声波从空气传入水中,已知水中声速较大,则() A.声波频率不变,波长变小 B.声波频率不变,波长变大 C.声波频率变小,波长变大 D.声波频率变大,波长不变 答案:B 解析:波在传播过程中频率不变,由λ=v f知水中波长大,故B 选项正确。 5.人们听不清对方说话时,除了让一只耳朵转向对方,还习惯性地把同侧的手附在耳旁,这样做是利用声波的________提高耳的接收能力。 答案:反射 6.为什么在空房间里讲话感觉到声音特别响 解析:声波在空房间里遇到墙壁、地面、天花板发生反射时,由于距离近,原声与回声几乎同时到达人耳。所以,人在空房间里讲话感觉声音特别响,而普通房间里的幔帐、沙发、衣物等会吸收声波,使反射不够强,所以人在普通房间里讲话不如在空房间里讲话响。 7.某人想听到自己发出的声音的回声,若已知声音在空气中的传播速度为340m/s,那么他至少要离障碍物多远(原声与回声区分的

浙江理工大学 惠更斯原理

惠更斯原理 1.选择题 1.原来小孔宽与水波长相差不多,当小孔逐渐变到很宽的过程中,其衍射现象(C)*3 (A)一直很明显(B)一直不明显 (C)由很明显变得不明显(D)由不明显变得很明显 2.关于波的衍射现象,下列说法正确的是:(D)*2 (A)某些波在一定条件下才有衍射现象 (B)某些波在任何情况下都有衍射现象 (C)一切波在一定条件下才有衍射现象 (D)一切波在任何情况下都有衍射现象 3.惠更斯原理涉及了下列哪个概念?(C)*2 (A) 波长 (B) 振幅 (C) 次波假设 (D) 位相 4.惠更斯原理:(C)*3 (A)可以解释波的反射定律,不能解释折射定律 (B)不能解释波的反射定律,可以解释折射定律 (C)可以解释波的反射定律和折射定律 (D) 不能解释波的反射定律和折射定律 5.惠更斯原理的次波假设(A)*4 (A)只能说明波在障碍物后面偏离直线传播的现象,不能够定量计算波所到达的空间范围内任何一点的振幅。 (B)既能说明波在障碍物后面偏离直线传播的现象,也能够定量计算波所到达的空间范围内任何一点的振幅。 (C)不能说明波在障碍物后面偏离直线传播的现象,但能够定量计算波所到达的空间范围内任何一点的振幅。 (D)既不能说明波在障碍物后面偏离直线传播的现象,也不能够定量计算波所到达的空间范围内任何一点的振幅。 2.判断题 1.当波出现明显的衍射现象时,可能是障碍物尺寸与波长相差不多。对*1 2.衍射是一切波的特性。对*2 3.波长比孔宽度大的越多,衍射现象越不明显。错*3 4.惠更斯原理:任何时刻波面上的每一点都可作为次波的波源,各自发出球面次波;在以后的任何时刻,所有这些次波面的包络面形成整个波在该时刻的新波面。对*2 5.惠更斯原理的次波假设能说明波在障碍物后面偏离直线传播的现象,不能够定量计算波所到达的空间范围内任何一点的振幅。对*3 6.惠更斯原理可以解释波的反射定律和折射定律。对*2 7.波在一定条件下才有衍射现象。错*2 3.填空题 4.计算题

惠更斯-菲涅耳原理

HUYGENS-FRESNEL PRINCIPLE 惠更斯-菲涅耳原理 目录 The One---The Origin of the Huygens-Fresnel principle The Two ---The Essence of the Huygens-Fresnel principle The Three---The Conclusion of the Huygens-Fresnel principle 一、惠更斯-菲涅耳原理的起源 二、惠更斯-菲涅耳原理的本质 三、惠更斯-菲涅耳原理的结论 The One---The Origin of the Huygens-Fresnel principle 一、惠更斯-菲涅耳原理的起源 The penetration of light waves into the region of a geometrical shadow can be explained with the aid of Huygens'principle.This principle,however,gives no information on the amplitude and ,consequently,on the intensity of waves propagating in different directions. The French physicist Augustin Fresnel (1788~1827) supplemented Huygens'principle with the concept of the interference of secondary waves.Taking into account the amplitudes and phases of the secondary waves makes it possible to find the amplitude of the resultant wave for any point of space .Huygens'principle developed in this way was named the Huygens-Fresnel principle 光波进入几何阴影区的渗透可以用惠更斯原理.这个原理虽然没有给出振幅信息.因此,对在不同方向上传播的波的强度。法国物理学家奥古斯丁-菲涅耳(1788 ~ 1827)补充了惠更斯原理的次波的干涉的概念。考虑到振幅和二次波的相位使得有可能找到任何点的空间所得到的波的振幅。惠更斯原理以这种方式发展被命名为惠更斯-菲涅耳原理。 The Two ---The Essence of the Huygens-Fresnel principle 二、惠更斯-菲涅耳原理的本质 According to the Huygens-Fresnel principle .Every element of wave surface S (Fig.1.1) is the source of a secondary spherical wave whose amplitude is proportional to the size of element dS.The amplitude of a spherical wave diminishes with the distance r from its source according to the law 1/r.Consequently,the oscillation rives from each section dS of a wave surface at point in front of this surface . Is the the phase of the oscillation where wave surface S is ,k is the wave number ,r isthe distance from surface element dS topoint Parrives from each section dS of a wave surface at point P in front of this surface . The factor is determined by theamplitude on the light oscillation at the location of dS .The coeffcient ()00cos a kr wt r d a K dE s +-=0a ?

§3—2惠更斯-菲涅耳原理

§3—2惠更斯-菲涅耳原理
一、惠更斯-菲涅耳原理
1、惠更斯原理
惠更斯原理的表述:在波动传播过程中的任一时刻,波面上的每一点都可以 看作是一个新的波源,各自发射球面子波。所有子波的 包络面,形成下一时刻的新波面。两个波面的空间间隔 等于波的传播速度与传播时间间隔的乘积。
光的直线传播定律的解释:
平面波的直线传播
球面波的直线传播
惠更斯原理与波动的直线传播

衍射现象的定性解释:
光波的衍射

2、惠更斯-菲涅耳原理
(1) 惠更斯原理的局限性
没有涉及波动的时空周期特性,即波长、振幅、相位等。虽然可以用 于确定光的传播方向,但无助于确定沿不同方向传播的光波的振幅和相位 大小。
(2) 惠更斯-菲涅耳原理
菲涅耳对惠更斯原理的贡献:将不同子波的干涉叠加引入惠更斯原
理,并赋予其以相应的相位和振幅表达式。
ev
ΔS θ r P
*
S:t时刻波阵面 ΔS:波阵面上面元
S
(子波波源)

Σ

θ0 n
θ
S
RQ
r
惠更斯-菲涅耳原理
S:光源
Σ :光源S发出的光波的任一波面
dΣ :波面Σ上位于Q点的面元
P
n:面元d Σ 的法线方向单位矢量
θ0:光源S到点Q连线与面元法线夹角
θ:Q点到场点P的连线与面元法线夹角
惠更斯-菲涅耳原理的表述:
波面Σ 上的每个面元dΣ 都可以看作是新的波源,它们均发射球面子
波,在与波面相距为r处的P点的光振动ê0(P),等于所有球面子波在该点的 光振动ê0(P)的相干叠加:
E~(P) = ∫∫ d E~(P) Σ

人教版选修3-4 12.6 惠更斯原理 教案 Word版含答案

高中人教版物理 课时12.6惠更斯原理 1.知道什么是波面和波线,了解惠更斯原理。 2.认识波的反射现象,并能用惠更斯原理进行解释。 3.认识波的折射现象,并能用惠更斯原理进行解释。 重点难点:波面、波线的概念和惠更斯原理。以及用惠更斯原理对波的反射规律和折射规律进行解释。 教学建议:本节在已学过的光的反射、折射及回声等知识的基础上,进一步加深对波的特性的理解。要理解波面、波线等概念及惠更斯原理,并能用惠更斯原理对波的反射规律和折射规律进行解释。由于这些概念比较抽象,应通过实验演示和日常生活经验来辅助教学。波的反射和折射是常见的现象,从对现象的研究中概括出规律,再用来解释现象和指导实践,使学生提高学习的兴趣,感受知识的力量。 导入新课:北京天坛的回音壁为圆形,直径为61.5米,周长为193.2米,是用磨砖对缝砌成的,墙面极其光滑整齐。两个人分东、西方向贴墙而立,一个人靠墙向北说话,无论说话声音多小,也可以使另一人听得清清楚楚,而且声音悠长,堪 称奇趣,给人造成一种“天人感应”的神秘气氛。为什么声音能够传播这么远呢? 1.波面和波线 任何振动状态①相同的点都组成一个个圆,这些圆叫作②波面,与波面垂直 的线代表了波的③传播方向,叫作④波线。

2.惠更斯原理 (1)内容:介质中任一波面上的各点,都可以看作可以发射⑤子波的波源,其后任意时刻,这些⑥子波在波前进方向的⑦包络面就是新的波面。这就是惠更斯原理。 (2)应用:如果知道某时刻一列波的某个⑧波面的位置,还知道⑨波速,利用惠更斯原理可以得到下一时刻这个⑩波面的位置,从而确定波的传播方向。还可以利用惠更斯原理说明平面波的传播,解释波的衍射。 (3)局限性:惠更斯原理只能解释波的传播方向,不能解释波的强度,所以无法说明衍射现象与狭缝或障碍物的大小的关系。 3.波的反射和折射 (1)回声是声波的反射,利用惠更斯原理可以确定反射波的传播方向。 (2)波从一种介质进入另一种介质后传播方向发生偏折的现象叫作波的折射。 1.波面一定都是平面吗? 解答:波面既可以是平面,也可以是球面。 2.波线与波面是什么关系? 解答:波线与波面垂直。 3.惠更斯原理能解释什么现象? 解答:能解释波的反射和折射。 主题1:波面和波线 问题:阅读课本中有关“波面和波线”的相关内容,回答下列问题。 (1)水面上的一个点波源,其形成的水波的波面我们如何来描述?其水波的波线我们又如何来描述?

大学物理公式

大学物理公式集 概念(定义和相关公式) 1.位置矢量:r ,其在直角坐标系中:k z j y i x r ++=;222z y x r ++=角位置:θ 2.速度:dt r d V = 平均速度:t r V ??= 速率:dt ds V = (τ V V =)角速度: dt d θω= 角速度与速度的关系:V=rω 3.加速度:dt V d a =或 2 2dt r d a = 平均加速度:t V a ??= 角加速度:dt d ωβ= 在自然坐标系中n a a a n +=ττ其中dt dV a = τ(=rβ),r V n a 2 = (=r 2 ω) 4.力:F =ma (或F = dt p d ) 力矩:F r M ?=(大小:M=rFcos θ方向:右手螺旋 法则) 5.动量:V m p =,角动量:V m r L ?=(大小:L=rmvcos θ方向:右手螺旋法则) 6.冲量:? = dt F I (=F Δt);功:? ?= r d F A (气体对外做功:A=∫PdV ) 7.动能:mV 2/2 8.势能:A 保= – ΔE p 不同相互作用力势 能形式不同且零点选择不同其形式 不同,在默认势能零点的情况下: 机械能:E=E K +E P 9.热量:CRT M Q μ =其中:摩尔热容 量C 与过程有关,等容热容量C v 与等压热容量C p 之间的关系为:C p = C v +R 10. 压强:ωn tS I S F P 3 2= ?== 11. 分子平均平动能:kT 23=ω;理想气体内能:RT s r t M E )2(2 ++=μ 12. 麦克斯韦速率分布函数:NdV dN V f =)((意义:在V 附近单位速度间隔内的分子 数所占比率) 13. 平均速率:πμ RT N dN dV V Vf V V 80 )(= = ? ?∞ 方均根速率:μ RT V 22 = ;最可几速率:μ RT p V 3= 14. 熵:S=Kln Ω(Ω为热力学几率,即:一种宏观态包含的微观态数) mg(重力) → mgh -kx (弹性力) → kx 2/2 F= r r Mm G ?2 - (万有引力) →r Mm G - =E p r r Qq ?420πε(静电力) →r Qq 04πε

惠更斯原理

惠更斯原理 作者:一点秋出自:午夜“Insert” & “ De...浏览/评论:811/0 日期:2007年5月18日 23:00 科学家:惠更斯 历史背景: 人们对光的本性的认识经历了漫长的岁月,大约在十七世纪形成了两种对立的学说,即光的波动说与微粒说,但在以后很长一段时期内,微粒说占据统治地位,而波动说几乎消声匿迹.历史发展到十九世纪初,由于一连串的发现和众多科学家的努力使光的波动说再次复兴,并压倒了微粒说.二十世纪初,爱因斯坦提出了光的量子说,康普顿证实了光的粒子性,使人们对光的本性又有全新的认识,乃至到今天,人们认识到光具有波粒二象性.人们对光的本性的认识过程可概括为: 光的波动说→光的微粒说→光的波动说→光的量子说→光的粒子说→光的波粒 二象性. 一、光的波动说的形成 十七世纪形成了关于光的本性的两种学说,历史上主张光的波动说有笛卡儿、胡克、惠更斯等人.

1.笛卡儿借助于以太来说明光的传播过程 十七世纪上半叶,法国物理学家笛卡儿(1596—1650)曾用他提出的“以太”假说来说明光的本性.他用以太中的压力来说明光的传播过程.如果一物体被加热并发光,这意味着,物体的粒子处于运动状态并给予这一媒质的粒子以压力.这一媒质被称为以太,它充满了整个空间.压力向四面八方传播,在达到人眼后引起人的感觉,他把人们对物体的视觉比喻为盲人用手杖来感知物体的存在,他把光的颜色设想为起源于以太粒子的不同的转动速度,转得快的引起红色的感觉,转得慢的对应于黄色,最慢的是绿色和蓝色.他的主张是强调媒质的影响,以“作用”的传播为出发点,特别是以接触作用或近距作用为出发点,把光看作压力或者脉动运动的传播,因而笛卡儿被认为是光的波动说的创始人. 2.胡克把光波与水波类比指出光的波动性 胡克在1665 年出版的《显微术》一书,明确提出光是一种振动.他以钻石受到摩擦、打击或加热时在黑暗中发光的现象为例,认为发光体的一部分处在或多或少的运动中,又因金刚石很硬,肯定它是一种很短的振动.在分析光的传播时,胡克提到了光速的大小是有限的,并认为“在一种均匀媒介中,这一运动在各个方向都以相等的速度传播”,因此发光体的每一个振动形成一个球面向四周扩展,犹如石子投入水中所形成的波那样,而射线和波面交成直角.胡克还把波面的思想用于对光的折射现象的研究,提出了薄膜颜色的成因是由于两个界面反射、折射后所

12.6 惠更斯原理

第六节惠更斯原理 教学目标: (一)知识与技能 1.知道波面和波线,以及波传播到两种介质的界面时同时发生反射和折射 2.知道波发生反射现象时,反射角等于入射角,知道反射波的频率,波速和波长与入射波相同 3.知道折射波与入射波的频率相同,波速与波长不同,理解波发生折射的原因是波在不同介质中速度不同 (二)过程与方法 培养学生对实验的观察、分析和归纳的能力。 (三)情感、态度与价值观 通过对现象的观察、解释、培养学生观察生活,探索知识的能力。 教学重难点: 惠更斯原理对波的反射和折射规律的解释 教学方法: 自学辅导法 教学用具: 实物投影仪,自制投影片,水波槽,长木板和厚玻璃板各一块 教学过程: (一)引入新课 [放录像]一位演员在山中唱山歌,歌声缭绕不断。 [提出问题]为什么会产生上述现象? [学生讨论分析]上述录像中:演员发出的声波传到山崖时,会返回来继续传播,使我们听到回声,这属于声波的反射现象。 那么:水波在传播过程中遇到障碍物时,能不能产生反射现象呢? [做演示实验,并通过实物投影仪投影] 在水波槽的装置中,把一根金属丝固定在振动片上。 a.让振动片开始振动,金属丝将周期性地触动水面,形成波源。 观察到的现象:在水面上从波源发出一列圆形水波。

b.在水槽中放一块长木板,让波源发出圆形波,观察水波遇到长木板后发生的现象。 观察到的现象:从波源发出的圆形波遇到长木板后,有一列圆形波从长木板反射回来。 教师:波的反射现象中遵循哪些规律呢?这节课我们就来学习有关的内容。 (二)新课教学 1、波面和波线 教师:引导学生阅读教材有关内容,思考问题: (1)什么是波面?什么是波线? (2)对于水波和空间一点发出的球面波为例,如何 理解波面和波线? 学生:阅读教材,思考问题。 [投影]出示圆形波的照片。 介绍什么是波面和波线: (1)照片中的圆形是朝各个方向传播的波峰(或波谷)在同一时刻构成的,叫做波面。 (2)图中与各个波面垂直的线叫波线,用来表示波的传播方向。 2、惠更斯原理 教师:引导学生阅读教材有关内容,思考问题: (1)惠更斯原理的内容是什么? (2)以球面波为例,应用惠更斯原理解释波的传播。 学生:阅读教材,思考问题。 3、波的反射 教师:引导学生阅读教材有关内容,体会用惠更斯原理对波的反射过程的解释。 学生:阅读教材。 教师:用多媒体出示右图。结合图形讲解、总 结: (1)入射波的波线与平面法线的夹角i叫做

惠更斯原理波的反射与折射

2.4惠更斯原理波的反射与折射 【教材分析】 教材首先介绍了惠更斯原理,要求学生了解波面、波线等概念,学会利用惠更斯原理确定下一时刻新的波面。在此基础上引导学生观察和研究波的反射现象和波的折射现象及其规律,并利用惠更斯原理进行论证。 【教案目标】 理解惠更斯原理 知道波发生反射时,反射角等于入射角,反射波的频率,波速、波长都与入射波相同知道波发生折射是由于波在不同介质中速度不同 知道折射角与入射角的关系 【教案重难点】 重点是使学生掌握波的反射与折射的规律 难点是理解惠更斯原理 【教案思路】 通过现象引入新课,激发学生的好奇性,然后在教师的组织下首先学习惠更斯原理,使学生了解波在传播时某一时刻的波面上的各点都可以认为是一个新的波源,向各个方向发出子波,由此可以确定下一时刻的波面。在此基础上,引导学生对波的反射和折射规律分别进行探究和论证。主要手段是先通过对实验现象的观察、分析得出大致的规律,进而利用惠更斯原理进行分析论证,最后分别得出波的反射和折射现象中满足的规律——反射定律和折射定律。这样教案的目的在于使学生开阔视野,了解科学家研究物理现象的极为巧妙的思维方法。通过例题和练习,使学生熟练掌握入射角、反射角、折射角和折射率的概念和反射定律和折射定律,并会应用解题。 【教案器材】 发波水槽、投影仪、自制多媒体课件等 【教案过程】

◆新课导入 教师:各种波在传播过程中,遇到较大的障碍物时,都会发生反射现象.声波在遇到较大的障碍物后也会反射回来.反射回来的声波传入人耳,听到的就是回声,我们在山中、在大的空房间里大声说话时,都会听到回声。 学生:回顾生活中的体验。 教师:演示实验——水波的反射现象,并指导学生观察认识(采用发波水槽和实物投影仪)。 学生:观察实验,认识现象。 教师:提出问题:波为什么会有这样的现象呢?其有何规律呢? 要了解这些问题,我们必须先学习惠更斯原理。 ◆新课展示 一、惠更斯原理 1.相关概念:波面、波前和波线: 教师:引导学生思考问题:如何表示波传播的方向? 然后指导学生阅读教材40页有关内容,理解: (1)什么是波面?什么是波线? (2)对于水波和空间一点发出的球面波和平面波为例,如何理解波面和波线? 学生:阅读教材,思考理解: (1)在波的传播过程中,任一时刻介质中任何振动状态相同的点联结成的面叫做波面,又叫波前。 (2)图中与各个波面垂直的线叫波线,用来表示波的传播方向。 2.相关概念:子波源和子波——惠更斯原理

惠更斯原理知识要点归纳

§12.6惠更斯原理 一、波面和波线 波面:振动状态相同的质点组成的面。 波线:表示波的传播方向的线,箭头表示传播方向 波面和波线的关系:垂直 二、惠更斯原理 1) 行进中的波面上任意一点都可看作是新的子波源; 2) 所有子波源各自向外发出许多子波; 3)之后任意时刻,这些子波在波前进方向的包络面是波在该时刻的新的波面 说明: 1.原理的依据:1)波动在介质中是逐点传播的;2)各质点作与波源完全相同的振动 2.在均匀的各向同性介质中传播时,波面的几何形状总是保持不变的。 3.该原理对非均匀媒质也成立,只是波面的形状和传播方向可能发生变化。 三、惠更斯原理的应用 1.波的反射: 1)波的反射:波遇到障碍物会返回来继续传播,这种现象叫做波的反射. 2)入射角(i):入射波的波线与平面法线的夹角i叫做入射角。 3)反射角(i’):反射波的波线与平面法线的夹角i’叫做反射角。 4)反射定律: 入射波线、法线、反射波线在同一平面内,入射波线与反射波线分居法线两侧,反射角等于入射角。 由惠更斯原理解释证明:AB为波的一个波面经?t后,B点发射的子波到达界面处B`点,A点发射的子波到达A`点。同种介质,波速不变。 ` `AA B B= ` ` `AA B B AB? ? ? A BB AB A` ` `∠ = ∠ i i=` 注意:1)反射波的波长、频率、波速都跟入射波相同。 2)波遇到两种介质界面时,总存在反射。2.波的折射: 1)波的折射:波从一种介质进入另一种介质时,波的传播方向发生了改变的现象叫做波的折射。2)折射角(r):折射波的波线与法线的夹角 3)折射定律:入射波线、法线、折射波线共面,入射波线与折射波线分居法线两侧.入射角、折射角的正弦比等于波在第一种介质和第二种介质中的速度比 2 1 sin sin v v r i = 表达式: 4)折射的原因:波在不同介质中速度不同 由惠更斯原理解释证明,A、B为同一波面上的两点经?t后,B点发射的子波到达界面处D点,A点的到达C点, AD BD i= sin AD t v? =1 AD AC r= sin AD t v? =2 2 1 sin sin v v r i = 注意: 1)当入射速度大于折射速度时,折射波线靠拢法线;当入射速度小于折射速度时,折射波线远离法线。 2)当垂直界面入射时,传播方向不改变,属折射中的特例 3)在波的折射中,波的频率不改变,波速、波长都发生改变 4)波发生折射的原因:是波在不同介质中的速度不同. 3.由惠更斯原理分析波的衍射现象 当波传到孔(缝)时,在孔(缝)处的波面上有许多子波源,每个子波源都向外传播子波面,从而使波传到孔(缝)后面的衍射区域,产生了衍射现象。 注意:惠更斯原理只能解释波的传播方向,不能解释波的强度,无法说明衍射现象与狭缝或障碍物的大小的关系。 同步练习:

2.1 惠更斯—菲涅尔原理

光的传播是光学研究的基本问题之一,也是光能 够记录、存储、处理和传送信息的基础。众所周知,几何光学的基本定律——光沿直线传播,是光的波动理 论的近似。作为电磁波的光的传播要用衍射理论才能准确说明。衍射是波动传播过程的普遍属性,是光具有波动性的表现。电磁波是矢量波,精确解决光的衍射问题,必须考虑光波的矢量性。用矢量波处理衍射过程非常复杂,这是因为电磁场矢量的各个分量通过麦克斯韦方程联系在—起,不能单独处理;但是在光的干涉、衍射等许多现象中,只要满足: (1) 衍射孔径大于波长; (2) 观察点与衍射屏足够远。

不考虑电磁波场矢量的各矢量之间的联系,把光作为标量波处理结果与实际结果很接近,处理衍射问题变得简单。 经典的标量衍射理论最初于1678年由惠更斯提出,1818年菲涅耳引入干涉概念,补充了惠更斯理论,1882年基尔霍夫利用格林定理,导出了严格的衍射公式。 由于任意光波场可以展开为平面波的叠加,用平面波作为基元函数也可描述衍射现象,这就是研究衍射的角谱理论提出光的衍射现象,按光源、障碍物和观察平之间的关系大小分为两种: (1)菲涅尔衍射; (2)夫琅和费衍射。

衍射公式和傅里叶变换之间有着明显的相同之处,不论对于两种衍射的那一种,尽可能将衍射公式和衍射屏透过率函数的傅里叶变换联系起来,不仅使计算方便,而且直接应用傅里叶变换的性质,也会对光学信息处理带来方便。 本章将用平面波角谱理论导出同样衍射公式,说明光的传播过程作为线性系统用频率(角谱)方法在频域中分析,与用脉冲响应在空域中分析是完全等价的,进而用角谱理论方法讨论菲涅耳衍射和夫琅和费 衍射。

相关文档
最新文档