电力系统的无功补偿和电压调整的解决方案

电力系统的无功补偿和电压调整的解决方案
电力系统的无功补偿和电压调整的解决方案

电力系统的无功补偿和电压调整的解决方案

1.引言

电力系统中,电能质量是评价电力系统运行性能优劣的重要指标,而电压又是衡量电能质量的一个重要指标,因此,电压的稳定性对电力系统运行性能来说显得尤为重要。电压稳定与否主要取决于系统中无功功率的平衡,如果用电负荷的无功需求波动较大,而电网的无功功率来源及其分布不能及时调控,就会导致线路电压超出允许极限;另外,对于负荷一侧,电力系统多由输配电线、变压器、发电机等构成,其内阻抗主要呈感性,使得负载无功功率的变化对电网电压的稳定性带来极为不利的影响。

无功功率补偿是涉及电力电子技术、电力系统、电气自动化技术、理论电工等领域的重大课题。由于电力电子技术装置的应用日益普及生产、生活各个领域,无功补偿问题引起人们越来越多的关注。据有关科学统计,如果全国都通过优化配置计算来安装无功补偿装置,在总投资不变的条件下,估计每年可以节省电量大约3亿千瓦时。因此,电力系统的无功补偿和电压调整是保证电网安全、优质、经济运行的重要措施。目前,由于电力电子技术的飞速进步,无功功率补偿方面也取得了突破性的进展。

2.连续无功补偿装置发展历史、现状和发展前景

工程上应用的无功补偿器主要包括旋转无功补偿器和静止无功补偿

器,其具体分类见图1。

电力系统的无功补偿和电压调整的解决方案

2.1 连续无功补偿装置的发展历史

旋转无功补偿器以同步调相机为代表,同步调相机实际上就是在过励或欠励状态下运行的同步电机,它既能发出容性无功,也能发出感性无功,因而同步调相机能对变化的无功功率进行动态补偿。由于其存在诸多缺点(见表1),70年代以来逐渐被静止无功补偿器取代。

静止无功补偿技术经历了图1所示的3代发展:

第Ⅰ代属于慢速无功补偿装置,在电力系统中应用较早,目前也仍在应用;

第Ⅱ代属无源、快速动态无功补偿装置,出现于 20 世纪 70 年代,国外应用普遍,我国目前有一定应用,主要用于配电系统中,输电网中应用很少,SVC 可以看成是电纳值能调节的无功元件,它依靠电力电子器件开关来实现无功调节。 SVC 作为系统补偿时可以连续调节并与系统进行无功功率交换;

第Ⅲ代属快速的动态无功补偿装置,国外从20世纪80年代开始研究,90年代末得到较广泛的应用。随着大功率全控型电力电子器件GTO、IGBT、及IGCT的出现,特别是相控技术、脉宽调制技术(PWM)、四象限变流技术的提出,使得电力电子逆变技术得到快速发展,以此为基础的无功补偿技术也得以迅速发展。静止同步补偿器,作为FACTS 家族最重要的成员,在美国、德国、日本、中国相继得到成功应用。此外,SVG和SVC相比还拥有调节速度更快、调节范围更广、欠压条件下的无功调节能力更强等优点,同时谐波含量和占用空间都大大减少。3代无功补偿装置的优缺点见表1。

2.2 国内外电网动态无功补偿的现状

我国电网中目前使用最为广泛的补偿装置是机械投切的并联电容器组。为满足调压要求,在低压供电网络中装设了大量的并联电容器组,在中压配电网络中装设了少量的并联电容器组。牡丹江科海电气设备有限公司设计生产的G(X)JF1型电容器跟踪投切柜(箱)采用了KH -ZK电容器智能投切开关;G(X)JK1型接触器式电容器跟踪投切柜(箱)投切电容过程涌流小,整机使用寿命长,维修量小,无功补偿响应快,可频繁投切,多级补偿一次到位。包括G(X)D1型电容投切

产品都是该补偿装置的进步发展。

目前,我国输电系统中一共有5地 6套大容量SVC投入使用,它们分别被装设在广东江门、湖南云田、湖北凤凰山(2套)、河南小刘以及辽宁沙岭的500kV变电站中。此类SVC多为进口,其中有3套是ABB 公司的产品。

SVC在大型工矿企业中的应用较为广泛,在钢铁企业中的应用尤为突出,武汉钢铁公、包头钢铁公司、宝山钢铁公司、济南钢铁公司、张家港沙钢铁公司、天津钢管公司等均装有该补偿装置,如济南钢铁公司中厚板厂二期工程在35kV母线上安装了由西门子公司设计制造的一套容量为25Mvar的SVC,2001年底带负荷一次投运成功。

从国际范围来讲,目前SVC与SVG都已得到普遍的应用。SVC出现早,应用时间长,仅ABB公司,其目前在全世界投运的SVC就已超过370套,ABB 与西门子两个公司已安装的SVC总容量约为9万Mvar(包括已退役装置)。SVG装置在20世纪主要以示范工程为主,从上世纪90年代末到本世纪初,SVG在日本及欧美得到了广泛应用,尤其是在冶金、铁道等需要快速动态无功补偿的场合。1999 年3月,我国第一台工业化STATCON在河南省洛阳市朝阳变电站成功并网运行,标志着我国掌握了高压大容量FACTS 设备的设计制造技术。

2.3 静止无功补偿装置的发展前景

随着电力电子技术的日新月异以及各门学科的交叉影响,静止无功补偿的发展趋势主要有以下几点:

(1)在城网改造中,运行单位往往需要在配电变压器的低压侧同时加

装无功补偿控制器和配电综合测试仪,因此提出了无功补偿控制器和配电综合一体化的问题。

(2)快速准确地检测系统的无功参数,提高动态响应时间,快速投切电容器,以满足工作条件较恶劣的情况(如大的冲击负荷或负荷波动较频繁的场合)。随着计算机数字控制技术和智能控制理论的发展,可以在无功补偿中引入一些先进的控制方法,如模糊控制、微机控制等。

(3)目前无功补偿技术还主要用于低压系统。高压系统由于受到晶闸管水平的限制,是通过变压器降压接入的,如用于电气化铁道牵引变电所等。研制高压动态无功补偿的装置具有十分重要的意义,关键是要解决补偿装置晶闸管和二极管的耐压,即多个晶闸管元件串联及均压、触发控制的同步性等问题。

(4)由单一的无功功率补偿到具有滤波以及抑制谐波的功能。随着电力电子技术的发展和电力电子产品的推广应用,供电系统或负荷中含有大量谐波。研制开发兼有无功补偿与电力滤波器双重优点的晶闸管开关滤波器,将成为改善系统功率因数、抑制谐波、稳定系统电压、改善电能质量的有效手段。有源电力虑波器(APF)、统一潮流控制器(UPFC)正是既能补偿谐波,又能补偿无功的装置,虽然有电流中的高次谐波,单台容量低,成本较高等问题,但是其发展前景仍然看好。(5)将一个由晶闸管换流器产生的交流电压串入并叠加在输电线相电压上,使其幅值和相角皆可连续变化,从而实现线路有功和无功功率的准确调节,并可提高输送能力以及阻尼系统振荡。目前综合潮流控

制器(UPFC)发展较为迅速,美国西屋电气公司研制出串联潮流控制器(SPFC),其造价明显低于UPFC,功能可与之相比且优于SVG。3.无功功率补偿的根本目的

工程运用中,为了提高电网功率因数及稳定电网电压,通常引入无功补偿装置。对系统进行无功补偿,能够改变功率因数,降低系统损耗,大大提高电网功率的运行效率。另外,无功补偿还可以减少电压闪变、降低过电压以及提高电力系统的静止和动态稳定性等,就其经济价值而言,具有重要意义。

3.1 减少线路压降,提高电压的稳定性

无功补偿装置的引入,平衡了系统中无功功率,提高了电压的稳定性。由于线路传送电流小了,系统的线路电压损失也相应减小,有利于系统电压的稳定(轻载时要防止超前电流使电压上升过高),有利于大电机装置的起动。

3.2 降低系统能耗,提高资源的利用率

功率因数的提高,能一定程度减少线路损耗及变压器的铜耗。

由(5)式可知,功率因数从0.8提高至0.9时,铜耗相当于原来的79%。

3.3 改善功率因数,减少相应电费

根据国家水电部,物价局颁布的《功率因数调整电费办法》,规定三种功率因数标准值,相应减少电费:

(1)高压供电的用电单位,功率因数为0.9以上。

(2)低压供电的用电单位,功率因数为0.85以上。

(3)低压供电的农业用户,功率因数为0.8以上。

根据《办法》,补偿后的功率因数以分别不超出0.95、0.94、0.92为宜,因为超过此值,电费并没有减少,相反初次设备增加,是不经济的。

3.4 增加供电功率,减少用电投资

对于原有供电设备来讲,同样的有功功率下,功率因数提高,负荷电流减小,因此向负荷传输功率所经过的变压器、开关、导线等配电设

备都增加了功率储备,发挥了设备的潜力。对于新建项目来说,降低了变压器容量,减少了投资费用,同时也减少了运行后的基本电费。4.无功补偿的一般方法

无功功率补偿通常采用的方法主要有3种:低压个别补偿、低压集中补偿和高压集中补偿。

4.1 低压个别补偿

低压个别补偿就是根据个别用电设备对无功的需求,将单台或多台低压电容器组分散地与用电设备并接。它与用电设备共用一套断路器,通过控制、保护装置与电机同时投切,随机补偿适用于补偿个别大容量且连续运行(如大中型异步电动机)的无功消耗,以补励磁无功为主。低压个别补偿的优点:根据用电设备运行或者停运,无功补偿投入或者退出,不会造成无功倒送。具有投资少、体积小、安装容易、配置方便、操作灵活、维护简单、事故率低等优点。

4.2 低压集中补偿

低压集中补偿是指将低压电容器通过低压开关接在配电变压器低压母线侧,以无功补偿投切装置作为控制保护装置,根据低压母线上的无功负荷直接控制电容器的投切。电容器的投切是整组进行,做不到平滑的调节。低压集中补偿的优点:配置容易、维护简单、平衡迅捷,从而提高配变利用率,降低网损,具有较高的经济价值,是目前无功补偿常用手段之一。

4.3 高压集中补偿

高压集中补偿是指将并联电容器组直接接在变电所6~10kV高压母线

上的补偿方式。适用于远离变电所或在供电线路末端的用户,用户本身又有一定的高压负荷时,可以减少对电力系统无功的消耗,起到一定的补偿作用;补偿装置根据负荷的大小自动投切,从而合理地提高了用户的功率因数,避免功率因数降低导致电费的增加。高压集中补偿的优点:配置灵活、维护简单,补偿效益高等。

5.无功功率补偿的基本原理

在电力系统中,无功功率的动态补偿,可以实现如下诸多功能,比如:①对动态无功负荷的功率因数校正;②调整电压;③提高电力系统的动态和静态稳定性;④降低过电压;⑤减少电压闪烁;⑥阻尼功率振荡;⑦阻尼次同步振荡;⑧减少电压和电流的不平衡。

虽然以上八种功能相互关联,然而,实际的静止无功补偿装置往往只能以其中的某一条或某几条为直接控制目标,尽可能的兼顾其它功能,并且,在控制策略和控制方式有所侧重。本文仅以改善电压调整的基本功能做一介绍。

补偿原理:

将电路具体分为系统、负载和补偿器三部分的等效电路,其动态补偿原理如图2所示。

系统的特性曲线可近似用下式表示:

电力系统的无功补偿和电压调整的解决方案

由(7)式可以看出,无功功率的变化,引起系统电压成比例的变化,系统供给的无功功率为负载和补偿器无功功率之和,即:

Q=QL+QY

在电力工程运行过程中,负载无功功率QL变化时,补偿器的无功功率QY总能够弥补负载无功功率QL的变化,从而使得△Q=Q1-Q2,无功功

率Q维持不变。由(7式)可知,△U=0,系统电压U维持恒定,这就是对无功功率进行动态补偿的基本原理。

图2b标绘出了动态的无功补偿,系统的工作点保Q=QA的点处,即U=UA;当使系统的工作点保持在Q=0的C点处时,即U=U0,系统即实现了功率因数的完全补偿。

工程实际运用过程中,一般把负载包括在系统之内,进行总体等效,将图2a系统和负载部分等效为图 3a系统虚框内的部分。忽略内部阻抗中的电阻,电抗XS。由于补偿器具有维持连续点电压恒定的作用,可以将其视为恒定电压源,电压值取为等效前连接点处未接补偿器且负载无功不变时的供电电压Urd。

当Xr为零时,补偿器具有图3b中所示的水平的理想补偿器特性,而实际的静止无功补偿装置不设计成具有水平的电压-电流特性,而是该图中所示的倾斜特性,倾斜的方向是电压随吸收的感性电流的增加而升高,这种倾斜特性还可以兼顾补偿器容量和电压稳定的要求,可以改善并联补偿器之间的电流分配,并有利于预留稳定要求的无功备用。

投入补偿器后,补偿器所吸收的无功功率为:

因为实际补偿器中Xr不为零,所以补偿器吸收的无功功率相对理想补偿情况而言是减小了。连接点电压也并不像理想补偿器时保持原正常值不变,而是变化了:

因此,在具有倾斜特性的无功功率特性中,实际补偿器所需容量比理想补偿器所需容量有较大幅度的减小。当Xr=Xs时,能维持连接点电

压变化为系统电源电压变化一半的补偿器,所需容量为理想补偿器的一半,这就是所谓的补偿器容量与电压调整之间折中的问题。

6.结合实例浅谈无功补偿的作用

以某大型项目能源中心为例,该项目供电电源的电压等级为10kV,设备装机容量约为21000多千瓦,其中高压电动机设备容量为5400多千瓦,其他低压设备容量为5000多千瓦。经过经济分析,采用10kV作为高压电动机的供电电压等级,投资较省,减少变电环节,同时亦减少了故障点。根据负荷计算,共采用六路10kV电源,分别对高压电动机直配。

该项目中,高压电动机主要用于中央空调机组、冷冻水循环泵和冷却水循环泵等多台设备。这些设备单机容量很大,离心机组单机最大达2810kW(共5台),小的870kW(共4台),冷冻水循环泵单机560kW (共9台),冷却水循环泵单机380kW(共3台),自然功率因数在0.8左右。如果在10kV配电室集中补偿电容,不采用高压无功自动补偿的话,如此大容量的电动机起、停会使10kV侧功率因数不稳定,有可能造成过补偿,引起系统电压升高。同时,从配电室至冷冻机房高压电动机的线路最近50m,最远140m,线路损耗相当可观,综合考虑到高压自动补偿元件、技术、价格均要求较高,因此采用高压电容器就地补偿,与电动机同时投切。高压电容器组放置在电动机附近,这些电动机采用自耦降压起动方式,高压就地补偿装置以并联电容器为主体,采用熔断器做保护,装设避雷器用于过电压保护,串联电抗器抑制涌流和谐波。这样做,不仅提高了电动机的功率因数,降低了线

路损耗,同时释放了系统容量,缩小了馈电电缆的截面,节约了投资。对于低压设备,由二台1000kVA及二台1600kVA变压器配出,低压电机配置较分散,因此,在变电所变压器低压侧采用电容器组集中自动补偿。虽然一些低压电动机的容量也不小,但这些设备主要用于锅炉房和给排水设备,锅炉房的设备不如冷冻机房集中,环境较差,管理不便,因此,在低压配电室采用按功率因数大小自补偿是较合适的。7.结语

随着电力电子技术的发展和电力电子器件的不断研制创新,无功功率补偿也处于不断发展之中,目前,国内外的研制成果发展迅速,出现了许多种类的SVC、SVG补偿装置。比如:牡丹江科海电气设备有限公司研制开发的G(X)JF1型、G(X)JK1型(接触器式)、G(X)D1型电容器跟踪投切柜(箱)以及VQCL—D12/J12无功补偿控制器;哈尔滨工大威翰科技开发有限责任公司研制开发的HVC高压自动无功电压综合调节装置和TSC系列可控硅动态无功功率补偿器;深圳市赛源电气技术有限公司研制开发的JKWA-15A型和JKWA—12J型低压无功补偿控制器等等。虽然兼顾价格、质量、体积、操作等一系列因素最优化配置的补偿装置目前还没有面世,但是,发展前景比较广阔。

浅谈电力系统电压稳定性

太原科技2009年第4期TAIYUAN S CI-TECH 浅谈电力系统电压稳定性 刘宝,李宝国 文章编号:1006-4877(2009)04-0035-02 最近30年来,世界各国的电力系统普遍进入大电网、高电压和大机组时代,巨量的电能需要通过长距离的高压输电线送到负荷中心,电力系统面临的压力越来越大,很多电力系统不得不运行在其稳定极限附近,极易发生失稳事故。这些事故损失是巨大的,引起人们对电压稳定问题的严重关注。可以说电压稳定问题目前已成为世界各国电力工业领域研究的热点。 1电力系统电压稳定的定义及分类 1.1电压稳定定义 电力系统电压稳定性是指给定一个初始运行条件,扰动后电力系统中所有母线维持稳定电压的能力。在发生电压失稳时,可能引起电网中某些母线上的电压下降或升高,从而导致系统中负荷丧失、传输线路跳闸、级联停电及发电机失去同步等。1.2电压稳定分类 目前,文献中可以见到与电压稳定的主要有静态电压稳定、暂态电压稳定、动态电压稳定、中长期电压稳定等,对它们的含义和范畴,至今还没有一个统一的定义。2004年,IEEE/CIGRE稳定定义联合工作组给出了电力系统电压稳定的分类:电力系统电压稳定分为小扰动电压稳定和大扰动电压稳定。 小扰动(或小信号)电压稳定是指电力系统受诸如负荷增加等小扰动后,系统所有母线维持稳定电压的能力。大扰动电压稳定是指电力系统遭受大干扰如系统故障,失去负荷,失去发电机或线路之后,系统所有母线保持稳定电压的能力。 2电力系统电压失稳的机理 对电力系统电压失稳机理的研究是十分重要的,合理解释和明确区分电压失稳现象,可以正确应对预想的事故。静态研究认为电压失稳原因是负荷超过了网络的最大传输极限,从而造成潮流方程无解。随着对电压稳定研究的进一步深入,越来越多的人们开始用非线性动力学系统的理论知识来解释电压失稳的机理。对于电压失稳机理,T.Van Custem提出:电压失稳产生于负荷动态地恢复其自身功率消耗的能力超出了传输网络和发电机系统所能达到的最大极限。把电压稳定问题仅当作静态问题的观念是不周全的;负荷是电压失稳的根源,因此,电压失稳这一现象也可称为负荷失稳,但负荷并不是电压失稳中唯一的角色;发电机不应视为理想的电压源,其模型(包括控制器)的准确性对准确的电压稳定分析十分重要。 3电压稳定性的分析方法 电力系统作为一个复杂的非线性动力系统,考虑其动态因素,数学上可用一组DAE(Differential Algebraic Equations)微分代数方程组来表示。微分方程组主要体现动态元件,代数方程组主要体现网络结构等约束条件。目前,电力系统电压稳定性的分析方法主要有:静态分析方法、动态分析方法、非线性动力学方法。 3.1静态电压稳定分析方法 潮流方程和扩展的潮流方程是静态分析方法的基本立足点。静态分析方法一般认为潮流方程的临界解就是电压稳定的极限静态方法,将一个复杂的微分代数方程组简化为简单的非线性代数方程实数,大体上可以归纳为:连续潮流法、特征值分析法、最大功率法等。 3.1.1连续潮流法 连续潮流法(CPFLOW)又称延拓法,连续潮流法使用包括有预估步和校正步的迭代方案找出随负荷参数变化的潮流解路径。连续潮流法跟踪负荷和发电机功率变化情况下电力系统的稳态行为,通 (辽宁工业大学,辽宁锦州121001) 摘要:介绍了电力系统电压稳定的定义和分类,提出了电压失稳机理和电压稳定的主要研究方法,反映出该领域的研究概貌和最新动向。 关键词:电力系统;电压稳定;静态;动态 中图分类号:TM712文献标志码:A 收稿日期:2009-01-05;修回日期:2009-02-05 作者简介:刘宝(1982-),男,山东滨州人。2006年9月就 读于辽宁工业大学,攻读硕士学位。 研究与探讨

国家电网公司电力系统无功补偿配置技术原则

国家电网公司电力系统无功补偿配置技术原则 为进一步加强国家电网公司无功补偿装置的技术管理工作,规范电网无功补偿的配置要求,提高电网的安全、稳定、经济运行水平,国家电网公司在广泛征求公司各有关单位意见的基础上,制定完成了《国家电网公司电力系统无功补偿配置技术原则》,并于8月24日以国家电网生[2004]435号印发,其全文如下: 国家电网公司电力系统无功补偿配置技术原则 第一章总则 第一条为保证电压质量和电网稳定运行,提高电网运行的经济效益,根据《中华人民共和国电力法》等国家有关法律法规、《电力系统安全稳定导则》、信息来源:《电力系统电压和无功电力技术导则》、《国家电网公司电力系统电压质量和无功电力管理规定》等相关技术标准和管理规定,特制定本技术原则。 第二条国家电网公司各级电网企业、并网运行的发电企业、电力用户均应遵守本技术原则。 第二章无功补偿配置的基本原则 第三条电力系统配置的无功补偿装置应能保证在系统有功负荷高峰和负荷低谷运行方式下,分(电压)层和分(供电)区的无功平衡。分(电压)层无功平衡的重点是220kV及以上电压等级层面的无功平衡,分(供电)区就地平衡的重点是110kV及以下配电系统的无功平衡。无功补偿配置应根据电网情况,实施分散就地补偿与变电站集中补偿相结合,电网补偿与用户补偿相结合,高压补偿与低压补偿相结合,满足降损和调压的需要。 第四条各级电网应避免通过输电线路远距离输送无功电力。500(330)kV 电压等级系统与下一级系统之间不应有大量的无功电力交换。500(330)kV电压等级超高压输电线路的充电功率应按照就地补偿的原则采用高、低压并联电抗器基本予以补偿。 第五条受端系统应有足够的无功备用容量。当受端系统存在电压稳定问题时,应通过技术经济比较,考虑在受端系统的枢纽变电站配置动态无功补偿装置。 第六条各电压等级的变电站应结合电网规划和电源建设,合理配置适当规模、类型的无功补偿装置。所装设的无功补偿装置应不引起系统谐波明显放大,并应避免大量的无功电力穿越变压器。35kV~220kV变电站,在主变最大负荷时,其高压侧功率因数应不低于0.95,在低谷负荷时功率因数应不高于0.95。 第七条对于大量采用10kV~220kV电缆线路的城市电网,在新建110kV 及以上电压等级的变电站时,应根据电缆进、出线情况在相关变电站分散配置适当容量的感性无功补偿装置。

电力系统电压等级与规定

电力系统的电压等级与规定 1、用电设备的额定电压 要满足用电设备对供电电压的要求,电力网应有自己的额定电压,并且规定电力网的额定电压和用电设备的额定电压相一致。为了使用电设备实际承受的电压尽可能接近它们的额定电压值,应取线路的平均电压等于用电设备的额定电压。 由于用电设备一般允许其实际工作电压偏移额定电压±5%,而电力线路从首端至末端电压损耗一般为10%,故通常让线路首端的电压比额定电压高5%,而让末端电压比额定电压低5%。这样无论用电设备接在哪一点,承受的电压都不超过额定电压值的±5% 2、发电机的额定电压 发电机通常运行在比网络额定电压高5%的状态下,所以发电机的额定电压规定比网络额定电压高5%。具体数值见表4.1-1的第二列。 表4.1-1 我国电力系统的额定电压 网络额定电压发电机额定电压 变压器额定电压 一次绕组二次绕组 3 6 103.15 6.3 10.5 3及3.15 6及6.3 10及10.5 3.15及3.3 6.3及6.6 10.5及11 13.8 15.75 18 20 13.8 15.75 18 20 35 110 220 330 500 35 110 220 330 500 38.5 121 242 363 550 3、变压器的额定电压 根据功率的流向,规定接收功率的一侧为一次绕组,输出功率的一侧为二次绕组。对于双绕组升压变压器,低压绕组为一次绕组,高压绕组为二次绕组;对于双绕组降压变压器,高压绕组为一次绕组,低压绕组为二次绕组。 ①变压器一次绕组相当于用电设备,故其额定电压等于网络的额定电压,但当直接与发电机连接时,就等于发电机的额定电压。 ②变压器二次绕组相当于供电设备,再考虑到变压器内部的电压损耗,故当变压器的短

论电力系统的电压调整

论电力系统的电压调整 发表时间:2018-12-21T17:15:05.133Z 来源:《建筑学研究前沿》2018年第29期作者:赵渐进 [导读] 还会导致照明体系中降低了电灯功率,降低亮度等等问题,更为严重的是比较低电压时还也许会导致电网的崩溃导致人们生活的不方便。 国网湖北省电力公司孝感供电公司 432000 摘要:随着社会的发展和进步,当前我们的生活中已经跟电力有密切的关系,在我们的生活中电的作用的无法替代的,而作为电能展现的关键组成部分的电压,更是严重的影响着电力用户。随着社会的发展,对电能质量用户提出了越来越高的要求。从电力体系电压调整的必要性、对电压调整的基本原理、电压调整的关键形式和适用场合、电压调整的措施几个方面实施了分析,便于更好的服务社会发展。 关键词:电力系统;方式;电压调整 引言 电能质量的关键指标是电压,电网会因为电压的不合格而导致严重的影响。太大的电压偏移,会关系到工农业生产的质量与产量,电力设备会损坏,甚至导致体系性“电压崩溃”,导致大面积停电。所以需要马上使用可靠安全的电压调整方法,通过某些方法进行调整电压,把体系中中枢点的电压校正到拟定的运行区域内或者预定的目标值上,由于非常多负荷都由这些中枢点供电,而且中枢点到各负荷点在最大最小负荷时电压损耗之差不可以大于负荷点许可上下限电压只差,因此如果可以把这些点的电压偏移调整住就可以对体系中大多数负荷的电压偏移进行调整。 1、电力系统电压调整的必要性 1.1电网电压偏低危害 通过多年的建设才达到当前的规模的是中国的电网,而建设早期的电网因为当时设计的不合理构造,造成部分线路供电区域太大,同时因为当时店里电缆太小的直径,导致电压消耗然后是比较低的电压,或者是因为电网补偿的无功功率电源不够或者是由于没有合理的维护设备导致不能应用。电网电压比较低时肯定会导致降低了发电机的出力,异步电动机中定子绕组中增大电流而且缩短了寿命,还会导致照明体系中降低了电灯功率,降低亮度等等问题,更为严重的是比较低电压时还也许会导致电网的崩溃导致人们生活的不方便。 1.2电网电压偏高危害 在当前科学技术与社会经济迅速发展的今天,超高压电网内接入越来越多的大容量机组,大大的提高了电网线路的充电功率,造成超高压电网发生了无功过剩的情况,然后渐渐的提高了电压。在高压状态下,通常会大大的降低了照明灯的寿命,甚至直接报废;电压每增减5%,电子设计部就会降低50%的电子阴极的寿命。 2、电压调整的基本原理 第一,电力体系中电压的运行情况关键看无功功率的平衡。当体系中各类无功电压的无功输出大于或者等于体系负荷与网络消耗状况下额定电压对无功功率的需求量时,相对稳定的电压。相反,电压会渐渐偏离额定值,出现电压偏离。电力体系中确保可靠的运行电力,一般要配置一些无功备用容量,使无功功率满足增长。当体系的无功电量足够时,体系能在相对高的电压水平上运行,反之,体系的无功电源不足其运行电压水平则偏低,需要把无功补偿设置好进行转变。电力体系供电范围相对宽广,不可以长距离实施传输的无功功率,因此体系负荷所要的无功功率只可以分层分范围的平衡。由此能知道,调整电压一定要从补偿无功电源,使无功网络损耗减少的2个方面开始。 3、电压调整的关键形式和适用场合 在电路体系中,调整电压关键分别有逆调压方式、恒调压方式与顺调压方式3种调压形式,像中枢点供电到各负荷点相对长的线路,各负荷大概一样的变化规律,而且各负荷的改动相对大。中枢点电压以抵偿线路上由于最大负荷而增大的电压损耗则是在最大负荷时要提高。在最小负荷时,则要降低一些中枢点电压以避免负荷点的电压太高。这种中枢点的调压形式称为“逆调压”。通常使用“逆调压”形式的中枢点,在最大负荷时电压比线路额定保持高5%电压;在最小负荷时,电压则降低线路的额定电压。这种形式大部分可以让用户要求得到满足,所以通常要使用这种方法。假如相对小的负荷变动,线路上也相对小的电压损耗。这种状况只要把中枢点电压保持在比线路额定电压高(2%~5%)的数值,不用随负荷改变来对中枢点的电压进行调整依然能确保负荷的电压质量,这种调压形式称为“恒调压”,或称“常调压”。当线路上的负载改变比恒调压小时,线路特别小的电压损耗,能够使用顺调压的形式。在最小的负载时,电压要通过中枢点合理的提高,然而不可以超过线路108%的额定电压;在最大的负载时,中枢点的电压要通过合理的降低,然而不可以低于线路103%的额定值。用户处于电压偏移的相对大农业电网时,也能使用顺调压的形式。顺调压通常是在无功调整方法不足时才加以应用的,通常不使用这种方法。 4、电压调整的措施 4.1运用发电机调压 调压发电机是运用发电机励磁调节体系,经过对发电机端电压实施负反馈通过励磁机励磁来保持端电压的,负荷对电压质量的要求能完成逆调压来得到满足,不用附加投资。在全世界这种方法都已广泛的使用,然而有局限性,通常只适合在发电机不通过升压直接向用户供电的简单体系中应用。当发电机通过多级变压向负荷供电时,只是通过发电机调压就不能满足体系中各点的电压要求,一定要和别的调压方法相配合。 4.2转变变压器变比调压 从整个体系来看,无功电源不是变压器本身,在无功充裕或者无功平衡的电力体系中,转变变压器变比调压就是依据电压要求合理的选择分接头,简单方便的维护检修,要优先使用;然而对于无功不足的电力体系,不能使用变压器电压比调压,由于它也许会造成“电压崩溃”。绕组间匝数之比就是变压器的变压比,转变变压器的变比就是经过转变绕组间匝数比来完成。双绕组变压器的高压绕组与三绕组变压器的高、中压绕组常常有几个分接头可供选择。当使用一般变压器实施调压,电压损耗不可以减少,二次电压的改变幅度不可以减少,只在电压改变幅度不是非常大而不需要逆调压的场合下适用,并且供电还会造成不连续。对于电压改变幅度大或者要求逆调压或需要常常性

电力系统电压及无功补偿

电力系统电压与无功补偿 交流电力系统需要电源供给两部分能量,一部分将用于作功而被消耗掉,这部分电能将转换为机械能、光能、热能或化学能,我们称为“有功功率”。另一部分能量是用来建立磁场,用于交换能量使用的,对于外部电路它并没有作功,由电能转换为磁能,再由磁能转换为电能,周而复始,并没有消耗,这部分能量我们称为“无功功率”,无功是相对于有功而言,不能说无功是无用之功,没有这部分功率,就不能建立感应磁场,电动机、变压器等设备就不能运转。 2、无功功率按电路的性质有正有负,Q为正值(感性)时表示吸收无功功率,Q为负值(容性)时表示发出无功功率,在感性电路中,电流滞后于电压,f >0,Q为正值。而在容性电路中,电流超前于电压,f < 0,Q为负值。这就是人们通常称电动机等设备“吸收”无功而电容器发出“无功”的道理。 3、输电线路电压损耗由两部分组成,即有功功率在电阻上的压降和无功功率在电抗上的压降。一般说来,在超高压电网的线路、变压器的等值电路中,电抗的数值比电阻大得多。所以无功功率对电压损耗的影响很大,而有功功率对电压损耗的影响则要小得多。因此,可以得出结论,在电力系统中,无功功率是造成电压损耗的主要因素。由电压损耗表达式DU = (PR + QX)/U可知,要改变电压损耗有两种办法。

(1)改变元件的电阻; (2)改变元件的电抗,都能起到改变电压损耗的作用。 可采取的一种办法是增大导线截面减小电阻以减小电压损耗,这种办法在负荷功率因数较高、原有导线截面偏小的配电线路中比较有效。适宜负荷不断增加的农村地区采用。 而电网中用的最多的办法是减少线路中的电抗,在超高压输电线路中广泛采用的分裂导线就可以明显降低线路的电抗。在我国,220kV线路一般采用二分裂、500kV线路采用四分裂导线。采用分裂导线,降低线路电抗,不仅仅减少了电压损耗,而且有利于电力系统的稳定性,能提高线路的输电能力。 减小线路电抗的另一种办法是采用串联电容补偿,就是在线路中串联一定数值的电容器,大家知道,同一电流流过串联的电感、电容时,电感电压与电容电压在相位上正好差180 串联电容器补偿,现在主要应用于超高压、大容量的输电线路上 4、除了用改变电力网参数来减少电压损耗以外,改变电压损耗的另一个重要方面是改变电网元件中传输的功率。即改变表达式中的P和Q的大小,在满足负荷有功功率的前提下,要改变供电线路、变压器传输的有功功率,是比较困难的,常常是不可能的。因此,改变线路、

关于电力系统电压稳定的探讨

关于电力系统电压稳定的探讨 现如今,社会经济的发展越来越快,人们对电力的需求量也越来越多,电力系统的电压稳定性不仅与整个电力系统运行的稳定、安全密切相关,还会影响到人们的生产和生活,因而变得越来越重要。本文首先对电力系统电压稳定性问题进行了分析,然后阐述了电力系统的电压稳定分析方法及其控制措施。 【关键词】电力系统电压稳定 电力系统是一个庞大复杂的多变量非线性动态系统,确保电力系统正常运行的基本条件是安全以及稳定。随着电力市场化改革的不断深入,电网规模越来越大,远距离重负荷输电的局面会越来越明显,使得电力系统越来越频繁地在接近网络极限输送能力的状态下运行。所以,加强电压稳定性的研究具有非常重要的理论意义与现实意义。 1 电压稳定性问题的分析 电压稳定性问题是电力研究工作中发展比较晚的分支,电压的稳定性开发研究工作是发电机在所有情况下同步运行的分析,但是在电力系统产生电压的时候无法满足于负荷无功需求时的稳定情况,所以电压的稳定与否主要是由电力系统的无功不足引起的。电力系统属于动态系统,对于电压稳定性可以从以下几个方面进行研究:

(1)电压小干扰时候电力系统的稳定性; (2)电压大干扰时候电力系统稳定性以及系统电压失稳过程; (3)电力系统中稳态平衡点能够存在的可能性; (4)分析系统中电压稳定性的概率,因此对系统中电压是否稳定的分析方法也有很多种。 2 电力系统电压稳定分析方法 对电力系统电压稳定性进行预防与控制的基础条件就是分析电力系统的电压稳定性,电力系统电压稳定性的分析方法包括动态电压法以及静态电压法两类。 2.1 静态电压稳定分析 在静态电压稳定分析方法中比较常用的方法主要有奇异值分解(特征值分析)法、潮流多解法、灵敏度分析法、最大功率法、崩溃点法这几种,它们都是在潮流方程或者是经过修改的潮流方程的基础上的,静态电压稳定的临界点在本质上都由电力网络的潮流极限来做,在线性化当前运行点处后再进行分析和计算;不同的地方是使用极限运行状态下不同特征的电压崩溃的判据与采用的求取临界点的方法。静态电压稳定分析法的好处是用一个简单的非线性代数方程实数解的存在性研究代替复杂的微分方程解的性态研究,它的坏处是把小干扰电压稳定的极限点用电力系统的潮流极限来做,并且静态电压分析法无法反映各元件的动态特性。

电力系统无功补偿论文

电力系统的无功优化、补偿及无功补偿技术对低压电网功率因数的影响 电气与信息工程学院 自动化13-2 马春野 20131802

电力系统的无功优化、补偿及 无功补偿技术对低压电网功率因数的影响 一前言 随着国民经济的迅速发展,用电量的增加,电网的经济运行日益受到重视。降低网损,提高电力系统输电效率和电力系统运行的经济性是电力系统运行部门面临的实际问题,也是电力系统研究的主要方向之一。特别是随着电力市场的实行,输电公司(电网公司)通过有效的手段,降低网损,提高系统运行的经济性,可给输电公司带来更高的效益和利润。电力系统无功功率优化和无功功率补偿是电力系统安全经济运行研究的一个重要组成部分。通过对电力系统无功电源的合理配置和对无功负荷的最佳补偿,不仅可以维持电压水平和提高电力系统运行的稳定性, 而且可以降低有功网损和无功网损,使电力系统能够安全经济运行。 无功补偿,就其概念而言早为人所知,它就是借助于无功补偿设备提供必要的无功功率,以提高系统的功率因数,降低能耗,改善电网电压质量。 二无功优化和补偿的原则和类型 1、无功优化和补偿的原则 在无功优化和无功补偿中,首先要确定合适的补偿点。无功负荷补偿点一般按以下原则进行确定: 1)根据网络结构的特点,选择几个中枢点以实现对其他节点电压的控制; 2)根据无功就地平衡原则,选择无功负荷较大的节点。 3)无功分层平衡,即避免不同电压等级的无功相互流动,以提高系统运行的经济性。 4)网络中无功补偿度不应低于部颁标准0.7的规定。 2、无功优化和补偿的类型 电力系统的无功补偿不仅包括容性无功功率的补偿而且包括感性无功功率的补偿。在超高压输电线路中(500kV及以上),由于线路的容性充电功率很大,据统计在500kV 每公里的容性充电功率达1.2Mvar/km。这样就必须对系统进行感性无功功率补偿以抵消线路的容性功率。如实际上,电网在500kV的变电所都进行了感性无功补偿,并联了高压电抗和低压电抗,使无功在500kV电网平衡。

电力系统电压调整的方式与措施样本

电力系统电压调节方式与办法 系统电压是电能质量首要指标,其过高或过低对电网及顾客均有危害。随着发展,电力顾客对电能质量规定越来越高。本文从系统电压调节必要性、办法及分时段调节办法几种方面进行阐述,以便能更好地服务社会。 【核心词】电压调节电力系统电能质量 1 电力系统电压调节必要性 电压是电能质量重要指标。电压偏移过大,就会直接影响工业、农业生产产量和质量,会对电力设备导致损坏,严重会引起系统"电压崩溃”,引起大范畴停电严重后果。 1.1 系统电压偏高 1.1.1 系统电压偏高因素 随着着电网发展,超高压电网中大容量机组直接并入,和超高压线路投入,其充电功率大,致使超高?旱缤?内无功增大,导致主网系统电压升高。 1.1.2 电压过高构成危害 将促使接入电网电气设备绝缘老化速度加快,减少使用寿命。当电压过高时会导致变压器、电动机等铁芯过饱和,铁损增大,温度上升,减少寿命;也会影响产品质量,致使生产出不合格产品等。

1.2 系统电压偏低 1.2.1 系统电压偏低因素 由于初期设计供电及配电网络构造不尽合理,特别是一某些线路送电距离较长,供电半径较大,导线截面积较小,增大了线路电压损耗。系统无功补偿设备投入局限性是系统电压水平减少主线因素。变压器超负荷运营也会引起电压下降。不合理地摆放变压器分接头位置、不合理电网结线,负荷功率因数低,运营方式变化及异常方式等,均能引起电网电压下降。 1.2.2 系统电压偏低危害 对发电机也许引起定子电流增大。对异步电动机引起温升增长,减少效率,缩短寿命。会导致照明亮度局限性等。会导致冶金等行业产品不合格。系统电压过低还也许导致系统振荡、解列以至于大范畴停电,直接影响人们生活和社会安全。 2 系统调节电压方式与办法 2.1 系统调节电压方式 2.1.1 顺调压方式 所谓顺调压方式是指在高峰负荷时容许系统中枢点电压稍有减少,在低谷负荷时容许系统中枢点电压稍有升高。与逆调压相对,在供电线路较短、负荷较稳定中枢点可以采用顺调压方式。普通顺调压容许系统负荷高峰时中枢点电压

无功补偿来源和电压调节设备

无功补偿来源和电压调节设备 1)同步发电机:同步发电机是电力系统中最重要的无功补偿设备。往往依照不同系统条件和不同的安装位置,根据需要选择不同的发电机额定功率因数。位于负荷中心附近的发电机组,宜于有较大的送出无功功率的能力,可以供应正常负荷的部分无功功率需求外,还可以在正常时保留一部分作为事故紧急储备,非常重要。 至于送端电厂的发电机组,特别是远方电厂,由于无功功率不宜远送的规律,它发出的无功功率主要用以补偿配出线路在重负荷期间的部分无功功率损耗,实现超高压网无功功率的分层平衡。功率因数一般都较高。例如,巴西伊泰普水电.站中,有9台765MW勺机组接在交流侧,经900km 765kV交流线路到受端,机组的额定功率因数选为0.95,另9台7机通过直流线路到受端,其额定功率因数选为0.85,因为前者只需要补偿线路,后者还需要补偿换流站的无功(换流站的无功需求相当大)。 反过来说,接到超高压电网特别是位于远方的发电机组需要具有 适当的进相运行能力(吸收无功),使能在系统低负荷期间,吸收配出的超高压线路的部分多余无功功率,以保持电厂送电电压不超标。这点在工程实践中往往是一个后备方案,即机组的进相运行来调整电压。我国一般现在

机组都会做进相运行试验。 2)输电线路:输电线路既能产生无功功率(由于分布电容)又消耗无功功率(由于串联阻抗)。当沿线路传送某一固定有功功率,线路上的这两种无功功率适能相互平衡时,这个有功功率,叫做线路的 “自然功率”。这点应该是较为基本的认识,所以有功潮流大的线路,无功消耗也大,自然产生较少无功;空载线路也最容易贡献无功,从而抬升电压。尤其是500kV层面小负荷方式下容易无功剩余。

电力系统电压稳定的研究

毕业设计 学生姓名学号 系(部) 机电工程系 专业电气自动化技术 题目电力系统电压稳定的研究指导教师

摘要:电力系统是一个具有高度非线性的复杂系统,随着电力工业发展和商业化运营,电网规模不断扩大,对电力系统稳定性要求也越来越高。在现代大型电力系统中,电压不稳定/电压崩溃事故已成为电力系统丧失稳定性的一个重要方面。因此,对电压稳定性问题进行深入研究,仍然是电力系统工作者面临的一项重要任务。 从国内外一些大的电力系统事故的分析来看,发生电压崩溃的一个主要原因就是无法预计负荷增长或事故发生后可能导致的电压失稳的程度和范围,难以拟定预防和校正的具体措施。所以,我们有必要在负荷模型基础上考虑采用更好的方法来进行电压稳定性评的研究。矚慫润厲钐瘗睞枥庑赖。 关键词:电力系统,电压崩溃,电压失稳,稳定性 Abstract:Power system is a highly complex systems, nonlinear with the power industry and commercial operation scale constantly expanding, network, the power system stability requirements is also high. in large power system, voltage instability of the voltage of power system of stability has become an important aspect. therefore, the voltage stability problems and in-depth study is still the power systems are faced with an important task.聞創沟燴鐺險爱氇谴净。From home and abroad some big power systems analysis of the accident, there is a major cause of the voltage is not expected to load up or after the accident may lead to the loss of degree and scope, to work out specific measures to prevent and correct. Therefore, we have to consider adopting the model on the basis of better ways to make a stability assessment study.残骛楼諍锩瀨濟溆塹籟。 Keywords:Power systems,V oltage collapse,In a voltage,Stability酽锕极額閉镇桧猪訣锥。

电力系统电压调整及控制

13.1基本概念及理论 电压控制:通过控制电力系统中的各种因素,使电力系统电压满足用户、设备和系统运行的要求。 13.1.1电压合格率指标 我国电力系统电压合格指标: 35kV及以上电压供电的负荷:+5% ~ -5% 10kV及以下电压供电的负荷:+7% ~ -7% 低压照明负荷: +5% ~ -10% 农村电网(正常) +7.5% ~ -10% (事故) +10% ~ -15% 按照中调调规: 发电厂和变电站的500kV母线在正常运行方式情况下,电压允许偏差为系统额定电压的0% ~ +10%; 发电厂的220kV母线和500kV变电站的中压侧母线在正常运行方式情况下,电压允许偏差为系统额定电压的0% ~ +10%;异常运行方式时为系统额定电压的-5% ~ +10%。 220kV变电站的220kV母线、发电厂和220kV变电站的110kV ~ 35kV母线在正常运行方式情况下,电压允许偏差为系统额定电压的-3% ~ +7%;异常运行方式时为系统额定电压的±10%。 带地区供电负荷的变电站和发电厂(直属)的10(6)kV母线正常运行方式下的电压允许偏差为系统额定电压的0% ~ +7%。 13.1.2负荷的电压静特性

负荷的电压静态特性是指在频率恒定时,电压与负荷的关系,即U=f(P,Q)的关系。 13.1.2.1 有功负荷的电压静特性 有功负荷的电压静特性决定于负荷性质及各类负荷所占的比重。电力系统有功负荷的电压静态特性可用下式表示 13.1. 2.2无功负荷的电压静特性 异步电动机负荷在电力系统无功负荷中占很大的比重,故电力系统的无功负荷与电压的静态特性主要由异步电动机决定。异步电动机的无功消耗为 ― 异步电动机激磁功率,与异步电动机的电压平方成正比。 ―异步电动机漏抗的无功损耗,与负荷电流平方成正比。 在电压变化引起无功负荷变化的情况下,无功负荷变化与电压变化之比称为 无功负荷的电压调节效应系数()。它等于,其变化范围比的变化范围大,且与有无无功补偿设备有关。 阐述电力系统电压和无功平衡之间的相互关系。 13.1.3.1电压与无功功率平衡关系 电压与无功功率平衡关系:有网络结构与参数确定的情况下,电压损耗与输送的有功功率以及无功功率均有关。由于送电目的地,输送的有功功率不能改变,线路电压损耗取决于输送的无功功率的大小。如果输送无功功率过多,则线路电压损耗可能超过最大允许值,从而引起用户端电压偏低。

详解电网无功补偿与电压调节

详解电网无功补偿与电压调节 无功对于电网系统设计来说,肯定是非常非常重要的了,这块其实内容很多,就做一个简单的梳理总结,有一些工程实践中的认识,希望可以互相印证。无功对应电压,有功对应频率,应该是一个比较普遍大概的认识,当然没错。所以无功补偿和电压调节是密不可分的,也是调度考核的重要指标。 一、无功补偿概述和原则 无功功率比较抽象,它是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。它不对外作功,而是转变为其他形式的能量。凡是有电磁线圈的电气设备,要建立磁场,就要消耗无功功率。比如40瓦的日光灯,除需40多瓦有功功率(镇流器也需消耗一部分有功功率)来发光外,还需80乏左右的无功功率供镇流器的线圈建立交变磁场用。由于它不对外做功,才被称之为“无功”。 电力系统的无功补偿与无功平衡是保证电压质量的基本条件,首先是一些重要原则当然很多是国网的原则,虽说要摆脱国网思路束缚,但是有些好东西还是要保留。 分层分区补偿原则:有鉴于经较大阻抗传输无功功率所产生的很大无功功率损耗和相应的有功功率损耗,电网无功功率的补偿安排宜实行分层分区和就地平衡的原则。所谓的分层安排,是指作为主要有功功率大容量传输即220--500 kV电网,宜力求保持各电压层间的无功功率平衡,尽可能使这些层间的无功功率串动极小,以减少通过电网变压器传输无功功率时的大量消耗;而所谓分区安排、是指110k V 及以下的供电网,宜于实现无功功率的分区和就地平衡。 电压合格标准:

500kV母线:正常运行方式时,最高运行电压不得超过系统额定电压的+10%;最低运行电压不应影响电力系统同步稳定、电压稳定、厂用电的正常使用及下一级电压调节。 发电厂和500kV变电所的220kV母线:正常运行方式时,电压允许偏差为系统额定电压0~+10%;事故运行方式时为系统额定电压的的-5%~+10%。 发电厂和220kV变电所的110kV~35kV母线:正常运行方式时,电压允许偏差为相应系统额定电压-3%~+7%;事故后为系统额定电压的的±10%。 带地区供电负荷的变电站和发电厂(直属)的10(6)kV母线:正常运行方式下的电压允许偏差为系统额定电压的0~+7%。 无功补偿配置原则:各电压等级变电站无功补偿装置的分组容量选择,应根据计算确定,最大单组无功补偿装置投切引起所在母线电压变化不宜超过电压额定值的2.5%,并满足主变最大负荷时,功率因数不低于0.95。 以上只是大概的比例估计,具体工程的变电站的无功配置是需要通过计算的,计算分不同运行方式(针对容性和感性),无功计算一般是有无功交换的整个区域一

关于电力系统电压稳定性的研究

龙源期刊网 https://www.360docs.net/doc/4117994448.html, 关于电力系统电压稳定性的研究 作者:赵崇宇阎惊奇 来源:《中国科技博览》2015年第35期 [摘要]随着我国经济的飞速发展,电力作为经济发展的强劲推动力,对于其的研究已经比较深入。由于人们物质生活水平的不断提高,对于电力的需求更加的严格,而电力系统的电压稳定性更是我们现如今研究的重点,而如何有效的解决实际运营过程中电压不稳定的现象,是我们需要积极研究的课题。文章首先系统的分析了电力系统电压稳定性的基本理论与方法,以及一些电力系统运营的现状,然后对如何提高电力系统的稳定性作了一定的分析和探讨,最后分析得到一些提高电压稳定性的对策。 [关键词]电力系统电压稳定性电力需求 中图分类号:TM421.1 文献标识码:A 文章编号:1009-914X(2015)35-0328-01 伴随着人们对于电力的极大需求,使得现代化的电网产生了巨大的经济效益,也给电力系统的发展提供了契机。但是由于现在的电网规模的日益巨大,结构越来越复杂,使得其电力系统的不稳定性问题逐渐显现出来。由于电力系统在人们的日常的生产生活过程中已经占据了举足轻重的地位,一旦电力系统出现稳定性的破坏,一定会给正常的生产生活产生巨大的影响,导致严重的经济损失。电压稳定性作为电力系统稳定问题中最为重要的研究课题,目前在电力工业的飞速发展过程中,由于电压稳定问题导致的财产损失已经不胜枚举,使得电力系统所面临其稳定性的强大挑战,如何解决这一问题已经日益迫切了。 1 电力系统的电压稳定性 本节主要对电力系统的电压稳定性做了比较准确的定义和分析。考虑到部分的工程技术人员对于电压稳定问题相对比较不了解,本节会首先对其做一定的描述和分析。 1.1 电压稳定性的基本定义 电力系统维持其自身电压的能力即电压稳定性。电压的安全性主要是指在一些可控的运行问题中,还能够保证系统的稳定运行的能力。 1.2 电压崩溃的过程 由于系统在实际的运营过程中,其所负荷的电压会不断地变化和传递引起的衰落,当保证系统运营的工作人员无法控制这些电压变化时,就会使得系统电压进入一个极不稳定的工作状态,甚至导致电力系统的崩溃,即我们常说的电压崩溃。电压崩溃的主要特征是失去电力负载能力,无法自身恢复系统的正常电压以及其导致的区域化的停电情况。只有将用户工作点的电压保持在一个相对稳定的水平,才能保证系统的稳定性需求。

《国家电网公司电力系统无功补偿配置技术原则》

《国家电网公司电力系统无功补偿配置技术原则》 第一章总则 第一条为保证电压质量和电网稳定运行,提高电网运行的经济效益,根据《中华人民共和国电力法》等国家有关法律法规、《电力系统安全稳定导则》、信息来源:《电力系统电压和无功电力技术导则》、《国家电网公司电力系统电压质量和无功电力管理规定》等相关技术标准和管理规定,特制定本技术原则。 第二条国家电网公司各级电网企业、并网运行的发电企业、电力用户均应遵守本技术原则。 第二章无功补偿配置的基本原则 第三条电力系统配置的无功补偿装置应能保证在系统有功负荷高峰和负荷低谷运行方式下,分(电压)层和分(供电)区的无功平衡。分(电压)层无功平衡的重点是220kV 及以上电压等级层面的无功平衡,分(供电)区就地平衡的重点是110kV及以下配电系统的无功平衡。无功补偿配置应根据电网情况,实施分散就地补偿与变电站集中补偿相结合,电网补偿与用户补偿相结合,高压补偿与低压补偿相结合,满足降损和调压的需要。 第四条各级电网应避免通过输电线路远距离输送无功电力。500(330)kV电压等级系统与下一级系统之间不应有大量的无功电力交换。500(330)kV电压等级超高压输电线路的充电功率应按照就地补偿的原则采用高、低压并联电抗器基本予以补偿。 第五条受端系统应有足够的无功备用容量。当受端系统存在电压稳定问题时,应通过技术经济比较,考虑在受端系统的枢纽变电站配置动态无功补偿装置。 第六条各电压等级的变电站应结合电网规划和电源建设,合理配置适当规模、类型的无功补偿装置。所装设的无功补偿装置应不引起系统谐波明显放大,并应避免大量的无功电力穿越变压器。35kV~220kV变电站,在主变最大负荷时,其高压侧功率因数应不低于0.95,在低谷负荷时功率因数应不高于0.95。 第七条对于大量采用10kV~220kV电缆线路的城市电网,在新建110kV及以上电压等级的变电站时,应根据电缆进、出线情况在相关变电站分散配置适当容量的感性无功补偿装置。 第八条35kV及以上电压等级的变电站,主变压器高压侧应具备双向有功功率和无功功

电力系统的电压等级

电力系统的电压等级 额定电压:各用电设备、发电机、变压器都是按一定标准电压设计和制造的。当它们运行在标准电压下时,技术、经济性能指标都发挥得最好。此标准电压就称为~。 一、电力系统的额定电压等级 1、电力系统的额定电压等级(输电线路的额定线电压) 220,kV 3,kV 6,kV 10,kV 35,kV 60,kV 110,kV 220,kV 330,kV 500,kV 750,kV 1000一般来说:110kv 以下的电压等级以3倍为级差:10kv 35kv 110kv 110kv 以上的电压等级,则以两倍为级差:110kv 220kv 500kv 确定额定电压等级的考虑因素: 三相功率S 和线电压U 、线电流I 的关系是UI S 3=。 当输送功率一定时,输电电压越高,电流越小,导线等载流部分的截面积越小,投资越小;但电压越高,对绝缘的要求越高,杆塔、变压器、断路器等绝缘的投资也越大。所以,对应于一定的输送功率和输送距离应有一个最合理的线路电压。 但从设备制造的角度考虑,线路电压不能任意确定。规定的标准电压等级过多也不利于电力工业的发展。 2、发电机、变压器、用电设备的额定电压的确定 1)用电设备的额定电压=线路额定电压 允许其实际工作电压偏离额定电压% 5±2)线路的额定电压: 指线路的平均电压(Ua+Ub )/2, 线路首末端电压损耗为10%;因为用电设备允许的电压波动是±5%,所以接在始端的设备,电压最高不会超过5%;接在末端的设备最低不会低于-5%; 3)发电机的额定电压 总在线路始端,比线路额定电压高5%;3kv 的线路发电机电压为3.15kv。

4)变压器的额定电压 一次侧:相当于用电设备 A、直接与发电机相连,额定电压与发电机一致。 B、直接与线路相连,额定电压与线路额定电压相同; 二次侧:相当于电源 A、二次侧位于线路始端,比线路额定电压高5%。计及自身5%的电压损耗,总共比线路额定电压高10%。 B、二次侧直接接用电设备(负荷)时,只需考虑自身5%的电压损耗。

电力系统电压调整的方式与措施精编

电力系统电压调整的方式 与措施精编 Jenny was compiled in January 2021

电力系统电压调整的方式与措施 系统电压是电能质量的首要指标,其过高或过低对电网及用户均有危害。随着发展,电力用户对电能质量的要求越来越高。本文从系统电压调整的必要性、措施及分时段的调整的方法几个方面进行论述,以便能更好地服务社会。 【关键词】电压调整电力系统电能质量 1 电力系统电压调整的必要性 电压是电能质量的重要指标。电压偏移过大,就会直接影响工业、农业生产的产量和质量,会对电力设备造成损坏,严重会引起系统的"电压崩溃”,引发大范围停电的严重后果。 系统电压偏高 系统电压偏高的原因 伴随着电网的发展,超高压电网中大容量机组的直接并入,和超高压线路的投入,其充电功率大,致使超高旱缤内无功增大,导致主网系统电压升高。 电压过高构成的危害 将促使接入电网的电气设备绝缘老化速度加快,减少使用寿命。当电压过高时会造成变压器、电动机等铁芯过

饱和,铁损增大,温度上升,降低寿命;也会影响产品质量,致使生产出不合格产品等。 系统电压偏低 系统电压偏低的原因 由于早期设计的供电及配电网络结构不尽合理,尤其是一部分线路送电距离较长,供电的半径较大,导线截面积较小,增大了线路电压损耗。系统无功补偿设备投入不足是系统电压水平降低的根本原因。变压器超负荷运行也会引起电压下降。不合理地摆放变压器分接头位置、不合理的电网结线,负荷的功率因数低,运行方式改变及异常方式等,均能引起电网电压下降。 系统电压偏低的危害 对发电机可能引起定子电流增大。对异步电动机引起温升增加,降低效率,缩短寿命。会导致照明亮度不足等。会导致冶金等行业产品不合格。系统的电压过低还可能造成系统振荡、解列以至于大范围停电,直接影响人们的生活和社会安全。 2 系统调整电压的方式与措施 系统调整电压的方式 顺调压方式 所谓顺调压方式是指在高峰负荷时允许系统中枢点电压稍有降低,在低谷负荷时允许系统中枢点的电压稍有升

电网的无功补偿与电压调整

电网的无功补偿与电压调整 1、输电网的无功补偿与电压调整 输电网多数无直供负载,一般不为调压目的而设置无功补偿装置。参数补偿多用于较长距离的输电线路,有串联补偿(又称纵补偿)与并联补偿(又称横补偿)之分。电压支撑则多用于与地区受电网络连接的输电网的中枢点。 1.1电抗器补偿 电抗器是超高压长距离输电线路的常用补偿设备,用以补偿输电线路对地电容所产生的充电功率,以抑制工频过电压。电抗器的容量根据线路长度和过电压限制水平选择,其补偿度(电抗器容量与线路充电功率之比)国外统计大多为70-85,个别为65,一般不低于60。电抗器一般常设置在线路两端,且不设断路器。 1.2串连电容补偿 串联电容用来补偿输电线路的感抗,起到缩短电气距离提高稳定性水平和线路的输电容量的作用。串联电容器组多为串、并联组合而成,并联支数由线路输送容量而定,串联个数则由所需的串联电容补偿度(串联电容的容抗与所补偿的线路感抗之比)而定。串联电容补偿一般在50以下,不宜过高,以免引起系统的次同步谐振。输电网中因阻抗不均而造成环流时,也可用串联电容来补偿。日本在110kV环网中就使用了串联电容补偿。 1.3中间同步或静止补偿 在远距离输电线路中间装设同步调相机或静止补偿装置,利用这些装置的无功调节能力,在线路轻载时吸收线路充电功率,限制电压升高;在线

路重载时发出无功功率,以补偿线路的无功损耗,支持电压水平,从而提高线路的输送容量。中间同步或静止补偿通常设在线路中点,若设在线路首末端,则调节作用消失。 输电网的电压支撑点与调压输电网与受电地区的低一级电压的电网 相联的枢纽点,常设置有载调压变压器或有相当调节与控制能力的无功补偿装置,或者二者都有,以实现中枢点调压,使电网的运行不受或少受因潮流变化或其他原因形成的电压波动的影响,在电网发生事故时起支撑电压的作用,防止因电网电压剧烈波动而扩大事故。 电压支撑能力的强弱,除与补偿方法和补偿容量大小有关外,更与补偿装置的调节控制能力和响应速度有关。并联电容器虽是常用而价廉的补偿设备,但其无功出力在电压下降时将按电压的平方值下降,不利于支撑电压。大量装设并联补偿电容器反而有事故发生助长电网电压崩溃的可能性。采用同步调相机和静止无功补偿装置辅以适当的调节控制,是比较理想的支撑电压的无功补偿设备。近年来,国内外均注重静止补偿装置的应用。 2、配电网的无功补偿与电压调整 以相位补偿和保证用户用电电压质量为主。 2.1相位补偿亦称功率因数补偿 用电电器多为电磁结构,需要大量的励磁功率,致使用户的功率因数均为滞相且较低,一般约为0.7左右。励磁功率——滞相的无功功率在配电网中流动,不仅占用配电网容量,造成不必要的损耗,而且导致用户电压降低。相位补偿是以进相的无功补偿设备(如并联电容器)就近供给用户或配电网所需要的滞相无功功率,减少在配电网中流动的无功功率,降低网损,

相关文档
最新文档