催化剂试卷答案

催化剂试卷答案
催化剂试卷答案

一选择题

1.催化活性与吸附的关系是( C )。

A吸附越强活性越强B吸附越弱活性越强

C吸附适中时活性最强D吸附很弱或很强活性最强2.氧化反应常用具有( B )型半导体的氧化物为催化剂。An型半导体Bp型半导体

C本征半导体Dp和n半导体都可以

3.对催化剂描述正确的是( A )

A催化剂能同时加快正逆反应的速度

B催化剂改变化学反应的平衡常数

C催化剂不能改变化学反应的途径

D催化剂能降低控诉步骤的活化能

4.催化剂的活化方式不包括( D )

A氧化活化B还原活化C硫化活化D煅烧活化5.对于金属氧化物,下列条件中( C )不能形成n型半导体。

A掺杂低价金属离子B氧缺位

C引入电负性大的原子D高价离子同晶取代

6.催化剂的转化率越大,其选择性( D )

A 越好

B 越差

C 不变

D 无一定的规律

7.铂碳催化剂中( B )

A铂和碳都是活性组分B铂是活性组分碳是载

C铂是活性组分碳是助催化剂 D 碳是活性组分铂是助催化剂

8.在O2,CO,H2,N2中,金属最易吸附( A )

A O2

B CO

C H2

D N2

9.下列影响催化剂活性衰退的原因中,可逆的是( D )

A 活性组分的烧结

B 活性组分剥落

C 催化剂的化学组成发生变化

D 吸附了其他物质

10.SO2被氧化成SO3的机理为:

NO+O2→NO2SO2+NO2→SO3+NO 其中NO是( C )

A总反应的反应物B中间产物

C催化剂D最终产物

11.以下符合兰格缪尔吸附理论基本假定的是( A )

A.固体表面是均匀的,各处的吸附能力相同

B.吸附分子层可以是单分子层或者多分子层

C.被吸附分子间有作用,相互影响

D.吸附热和吸附的位置和覆盖度有关

二填空题

1.催化剂的一般组成包括主催化剂,助催化剂,共催化剂和载体。

2.Ea,Ed,Qc之间的关系为Ed=Ea+Qc 。

3.分子筛的化学组成为M2/n O˙Al2O32

pH2O ,结构单元是SiO4和AlO4的四面体,常见的分子筛类型有X型,Y型,A型,ZSM-5型。

4.金属催化剂的毒物主要包含硫化物,砷化物,重金属杂质。

5.浸渍法包括等体积浸渍,过饱和浸渍,多次浸渍。6.防止积碳的主要方法有加入K2O,用重整催化剂Pt-Re, Pt-Ir,使用CeO2。

7.硅铝比高主要表现在抗热,抗水蒸汽,抗酸度三方面能力强。

8.估量催化剂的价值的因素有活性,选择性,稳定性,价格。

9.化学反应体系实现的两个基本要素是热力学可行,动力学可行。

10.催化剂的活性随运转时间变化可分为成熟期,稳定期,衰老期三个时期。

11.催化择形包括反应物择形,产物择形,约束过渡态择形三种。

12.活化吸附与非活化吸附的区别在于前者气体发生化学吸附需要外加能量活化;解离吸附和缔合吸附的区别在于前者发生化学键断裂。

13.为了适应工业上强放(吸)热反应的需要,载体一般应具有较大的热容和良好的导热性。

14.分解N2O采用NiO催化剂时,加入少量Li2O作助催化剂,催化分解活性更好,这是因为Li2O的加入形成了受主能级,使E f降低,故催化活性得到促进。

三简答题

1.催化剂母体制备时煅烧的目的是什么?

答:煅烧:有的钝态催化剂只经过煅烧处理便具有催化活性。例如,对于一些氧化物催化剂,煅烧就是活化。有的催化剂(如金属催化剂),煅烧后还要进一步还原。

煅烧处理的目的大致可以归纳如下:

①通过物料的热分解,除去化学结合水和挥发性物质(如二氧化碳、二氧化氮、氨等),使之转变为所需的化学成分;

②通过固态反应、互溶、再结晶,获得一定的晶型、微晶粒度、孔径和比表面等;

③使微晶适当烧结,提高产品的机械强度。

2.何谓积碳?有哪些形态?积碳的原因是什么?

答:

积碳:指催化剂在使用过程中,逐渐在表面上沉积一层炭质化合物,减少了可利用的表面积,引起催化剂活性的衰退。

积碳形态:固定的无定型态、层状石墨碳、管须状结

晶碳、粘稠状液态碳、焦油。

原因:热裂解、催化裂解、深度脱氢、烯烃聚合。3.简述催化反应经历的过程?

答:

催化过程中,先经历一个物理过程,其先后经历了外扩散过程和扩散过程;其次经历化学过程,包括化学吸附过程、表面反应过程、脱附过程;最后再经历一个物理过程,先后为扩散过程、外扩散过程。

4.物理吸附的化学吸附有哪些区别?

答:

物理吸附作用力是德华力,化学吸附的作用力是价键力;

物理吸附热仅比液化热稍大,化学吸附热可与化学反应热相比;

物理吸附总是放热的、吸附很快、又是受扩散限制、且无需活化能,化学吸附有时可能吸热有可能放热,有活化吸附和非活化吸附;物理吸附发生于吸附物的沸点附近,化学吸附的温度一般高于物理吸附。

5.化学吸附状态与金属催化剂逸出功和反应物气体的电离势之间的关系?

答:

Φ:金属催化剂的电子逸出功Ι:反应物气体的电离势

Φ>Ι:电子从反应物向金属催化剂表面转移,反应物分子变成吸附在金属催化剂表面上的正离子,形成离子键。Φ<Ι:电子从金属催化剂表面向反应物分子转移,使反应物分子变成吸附在金属催化剂表面的负离子,形成离子键。

Φ≈Ι:常常二者各自提供一个电子共享,形成共价键。这种吸附键通常吸附热很大,属强吸附。

6.简述分子筛的各级结构单元?

答:

一级结构单元:硅、铝原子通过sp3杂化轨道与氧原子相连,形成以硅或铝原子为中心的正四面体;

二级结构单元:由硅氧四面体或铝氧四面体通过氧桥形成的环结构;

笼结构:二级结构单元再通过氧桥进一步连接形成。

7.在制造固体催化剂时,可采用哪些方法进行活化处理?答:

1)热活化方法:可导致催化剂改变化学组成和影响其物理状态。改变化学组成包括:热分解使氢氧化物、铵盐、硝酸盐、有机酸盐等分解成氧化物;发生固相变化,在高温下使组元间相互作用,形成化合物。改变物理状态主要是晶相变化,脱水、比表面孔结构变化。

2)化学活化方法。还原:金属催化剂常常先制成氧化

物,然后用氢气或者其他气体还原为活化金属态;氧化:用氧化剂使是低价氧化物变为高价氧化物;硫化:氧化物硫化为硫化物。

四论述题

1.分析催化剂失活的原因?

答:

1)催化剂中毒:指催化剂在微量毒物的作用下丧失活性和选择性。催化剂中毒会使得其使用寿命大大缩短。毒物通常是反应原料包含的杂质,或者催化剂本身的某些杂质在反应条件下与活性组分作用而使催化剂失去活性,反应产物或副产物及中间物种都可能引起催化剂中毒。

2)催化剂的烧结:催化剂在高温反应一定时间后,负载在载体上的高分散的活性组分的小晶粒具有较大的自由能,加之表面晶格质点的热振动产生位移,结果晶粒长大,导致活性表面积缩小,活性降低甚至丧失活性。

3)催化剂的积碳:在催化烃类转化反应中,都会由于积碳生成而覆盖催化剂的表面或者堵塞催化剂的孔道,导致催化剂失活。

2.简述多组分固体催化剂的组成及其各部分的作用?

答:

1)主催化剂:催化活性的主体,多个活性组分协同催化;

2)共催化剂:与主催化剂同时起作用的活性组分,两者缺一不可。在单独使用时活性活性很低,组成共催化剂时活性很高;

3)助催化剂:本身无催化活性或活性很小,但加入后能提高催化剂的活性、稳定性、选择性。

助催化剂包括:结构型助催化剂——提高稳定性,延长催化剂寿命;调变型助催化剂——加入碱金属或碱土金属,中和酸性,抑制结焦;毒化型——防止积碳,加入碱性物质毒化强酸中心。

4)载体(基质):作用如下

分散活性组分——提供大表面和孔隙结构,节省活性组分,提高抗中毒能力;稳定化作用;支撑作用——维持一定形状;传热和稀释作用——防止烧结;助催化剂作用——调节载体的活性金属间作用。

镍催化加氢

2绿色化学是当今科研和生产的世界潮流,我国已在重大科研项目研究的立项上向这个方向倾斜。 催化加氢反应一般生成产物和水,不会生成其它副产物,具有很好的原子经济性。 加氢反应的应用很广泛。加氢过程在石油炼制工业中,除用于加氢裂化外,还广泛用于加氢精制。在煤化工中用于煤加氢液化制取液体燃料。在有机化工中则用于制备各种有机产品,例如一氧化碳加氢合成甲醇、苯加氢制环己烷、苯酚加氢制环己醇等。此外,加氢过程还作为化学工业的一种精制手段,用于除去有机原料或产品中所含少量有害而不易分离的杂质,例如乙烯精制时使其中杂质乙炔加氢而成乙烯;丙烯精制时使其中杂质丙炔和丙二烯加氢而成丙烯等。 3早在1902年,Normann 就实现了用镍催化剂使脂肪加氢来制取硬化油的工业化生产。近年来,镍系催化剂无论是在制备方法还是在应用领域,都取得了巨大的发展,镍应用于烯烃,炔烃,苯,硝基化合物,含羰基的化合物的催化加氢。 4按照催化剂的改性方法,将镍催化剂分为骨架镍催化剂、负载型催化剂以及其它类型镍催化剂。 5骨架镍,是应用最广泛的一类镍系加氢催化剂,也称雷尼镍。具有很多微孔,是以多孔金属形态出现的金属催化剂,制备骨架形催化剂的主要目的是增加催化剂的表面积,提高催化剂的反应面,即催化剂活性。具体的制备方法:将 Ni 和 Al ,Mg ,Si ,Zn 等易溶于碱的金属元素在高温下熔炼成合金,将合金粉碎后,再在一定的条件下,用碱溶至非活性组分,在非活性组分去除后,留下很多孔,成为骨架形的镍系催化剂。 6薛勇等[8]以邻硝基甲苯和草酸二乙酯为起始原料,合成邻硝基苯丙酮酸乙酯的乙醇碱性溶液,再用雷尼镍催化剂,在60~70℃、1.5MPa 压力下,用催化氢化法合成了吲哚-2-甲酸,总收率为70% (以邻硝基甲苯计算)用熔点、NMR 、GC - MS 谱图表征了该化合物。雷尼镍催化氢化方法合成吲哚-2-甲酸成本较低、后处理简单、无环境污染。其合成路线为: CH 3 NO 2 +(COOC 2H 5)2C H ONa CH 2C O COOCH 2CH 3NO 2 CH 2C O COOCH 2CH 3 NO 2+H 2Ni N H COOH 胡少伟等[10]采用骤冷法制备了改性骨架镍,将其应用于3, 4-二甲基硝基苯

钙钛矿型催化剂催化氧化NO讲解

钙钛矿型催化剂La1-x Ce x CoO3对一氧化氮的氧化催化研究 摘要 本文介绍了在钙钛矿氧化物中的NO的氧化性能的研究La1-x Ce x CoO3 (x = 0, 0.05, 0.1, 0.2, 0.3, 0.4)通过柠檬酸盐法合成钙钛矿型氧化物并以XRD, BETand XPS为特征。当使用铈替代催化剂时催化活性显著增强,并取得了当x=0.2时活性最大,但X越大活性会降低。分析表明,表面上吸附的氧对NO氧化成NO2起着重要的作用。在室温下,NO和O2共吸附层之下的表面化合物,通过红外光谱和TPD实验进行了研究。有三个品种形成在表明上分别是:桥接硝酸盐,次硝酸和单齿硝酸盐。热稳定性的顺序为:单齿硝酸盐> 次硝酸>桥接硝酸盐。其中,仅单齿硝酸盐在300摄氏度以上会分解,解除吸附变为NO2进入气相。当Ce的加入,单齿硝酸盐解脱吸附的温度变低,另外两个品种的吸附减少。这可能与表面上的钴的氧化状态有关。通过对表征结果和催化活性的数据的结合分析显示,大量吸附的氧,表面上少量的非活性化合物和较低的NO2接触吸附温度会有利于NO的氧化。 #2007爱思唯尔B.V.保留所有权利。 1 介绍 对NO x催化消除的广泛研究已进行了多年。然而,除去柴油发动机和过量氧气贫燃条件下的汽油发动机中的NO x仍然是一个挑战。在研制的几个NO X氧化环境转化的过程中NO2总是比NO更加受宠,例如NO x的储存和还原技术(NSR)[1],为去除氮氧化物和烟尘的连续再生陷阱技术(CRT)[2],选择性催化还原氮氧化物(SCR),尤其是某些N-所含物种如氨或尿素。[3-5]我们还发现,形成二氧化氮是在NO的SCR的碳氢化合物机制的重要一步[6.7]。一些研究人员也开发了几种更复杂的系统,例如'VHRO系统'(V= 对NO到NO2的氧化催化剂,H =水解催化剂,R = SCR催化剂,O =对NH3的氧化催化剂)[5]和IAR法(在氧化和还原剂的还原催化剂之间加入)[8]。在这些系统中,它们都在NO的氧化添加还原剂之前设置一个预催化剂,使还原剂的效率得到显著改善。总之,在一氧化氮氧化为二氧化碳的过程中放置催化剂是使人非常感兴趣的。 铂基催化剂是现在最常用于NO氧化的催化剂。Despre′s Joe¨l等,观察到铂/二氧化硅(2.5重量%)可在300摄氏度时转换约80%的NO为NO2[9]。并且当铂

钙钛矿结构材料在催化方面的应用简述

钙钛矿结构材料在催化方面的应用简述 摘要:钛矿是地球上最多的矿物,经过定向合成的特殊钙钛矿类型材料,对很多污染物具有很好的催化降解效果。本文结合国内外研究研究成果,对钙钛矿的结构、制备方法、催化方面的应用以及目前的研究热点进行概述,以期对相关的研究工作进行指导。 关键字:钙钛矿、合成方法、催化反应 ABSTRACT:The titanium ore is most abundant on the earth. The special perovskite material stereospecific synthesized has good effect on the catalytic decomposition of many contaminants. This paper analyzed both domestic an foreign achievements, overviewed the structure of perovskite, the preparation methods, the application on the catalysis and the main focus of current research. To expect to be helpful for the relative research. KEY WORDS:the perovskite/preparation methods/catalytic reaction 1.钙钛矿的结构 钙钛矿是以俄罗斯地质学Preosvik的名子命名的,其结构通常有简单钙钛矿结构、双钙钛矿结构和层状钙钛矿结构。简单钙钛矿化合物的化学通式是ABX3,其中X通常为半径较小的O2+或F-,双钙钛矿结构( Double-Perovskite) 具有A2B2X6组成通式,层状钙钛矿结构组成较复杂, 研究较多的是具有通式A3B2O7以及具有超导性质的YBa2Cu3O7和三方层状钙钛La2Ca2MnO7等。目前, 研究最多的是组成为ABX3的钙钛矿结构类型化合物。 组成为ABO3的钙钛矿结构类型化合物, 所属晶系主要有正交、立方、菱方、四方、单斜和三斜晶系.,A位离子通常是稀土或者碱土具有较大离子半径的金属元素,它与12个氧配位,形成最密立方堆积,主要起稳定钙钛矿结构的作用;B位一般为离子半径较小的元素(一般为过渡金属元素,如Mn、Co、Fe等),它与6个氧配位,占据立方密堆积中的八面体中心,由于其价态的多变性使其通常成为决定钙钛矿结构类型材料很多性质的主要组成部分。与简单氧化物相比,钙钛矿结构可以使一些元素以非正常价态存在,具有非化学计量比的氧,或使活性金属以混合价态存在,使固体呈现某些特殊性质。由于固体的性质与其催化活性密切相关,钙钛矿结构的特殊性使其在催化方面得到广泛应用[1]。 2.钙钛矿的制备方法 材料的性质在很大程度上依赖于材料的制备方法。钙钛矿结构类型化合物的制备方法主要有传统的高温固相法( 陶瓷工艺方法) 、溶胶-凝胶法、水热合成法、高能球磨法和沉淀法,此外还有气相沉积法、超临界干燥法、微乳法及自蔓延高温燃烧合成法等。 1)高温固相法这是目前用的最多的一种方法,一般采用金属氧化物、碳酸盐或草酸盐等反应前驱物,反应起始物经过充分混合、煅烧,合成温度通常需要1000~1200℃[2]。高温固相法常用于合成多晶或晶粒较大的、烧结性较好的固体材料,产品的纯度较低,粒度分布不够均匀,适用于对材料纯度等要求不太高而且需求量较大的材料的制备.。 2)溶胶-凝胶法溶胶-凝胶法( Sol-Gel Process) 是化合物在水或低碳醇溶剂中经溶液、溶胶、凝胶而固化,再经热处理制备氧化物、复合氧化物和许多固

镍基CO加氢反应催化剂及其设备制作方法与应用与设计方案

本技术介绍了一种镍基CO加氢反应催化剂及其制备方法与应用,该镍基CO加氢反应催化剂的组成分成分包括氧化镍、氧化铝和助剂,并且所述氧化镍的含量占该镍基CO加氢反应催化剂总质量的55~90%,所述助剂的含量占该镍基CO加氢反应催化剂总质量的1~5%;所述氧化镍的粒度为3~17nm。该镍基CO加氢反应催化剂是采用共沉淀法进行制备的,并通过添加不同种类助剂、改进助剂的添加方式、改进干燥过程提高了催化剂的反应活性,从而能够极大的降低甲烷化反应的反应温度,而且在低温条件下能够保持很高的反应活性和稳定性,因此该镍基CO加氢反应催化剂可用于在低温条件下完全脱除富氢气体中的CO。 技术要求 1.一种镍基CO加氢反应催化剂,其特征在于,其组成分成分包括氧化镍、氧化铝和助剂,并且所述氧化镍的含量占该镍基CO加氢反应催化剂总质量的55~90%,所述助剂的含量占该镍基CO加氢反应催化剂总质量的1~5%; 其中,所述氧化镍的粒度为3~17nm;所述的助剂为氧化镧、氧化铈、氧化镁、氧化锰、氧化镨中的至少一种。 2.根据权利要求1所述的镍基CO加氢反应催化剂,其特征在于,所述镍基CO加氢反应催化剂的比表面积为220~271m2/g,孔容为0.90~ 1.08cm3/g,平均孔径为 3.一种镍基CO加氢反应催化剂的制备方法,其特征在于,包括以下步骤: 步骤A、配制镍盐和铝盐的混合水溶液,从而得到混合盐溶液; 步骤B、将第一部分碱溶液先加入到反应容器中,然后控制反应温度为75~85℃,在转速为5~20r/s的搅拌条件下,将第二部分碱溶液与所述混合盐溶液并流加入到所述反应容器中,同时控制反应容器内液体的pH值为8~10,从而得到胶状溶液; 步骤C、向所述胶状溶液中加入助剂盐溶液,并在搅拌30分钟后超声波处理30分钟,然后在75~85℃条件下陈化1小时,再采用去离子水进行洗涤和抽滤,直至得到pH值为7的中间体沉淀物;将所述中间体沉淀物与第一醇溶液混合,并超声波处理20~60分钟使所述中间体沉淀物分散均匀,然后在75~85℃的条件下搅拌蒸发水分,从而得到中间体粉末;再将所述中间体粉末置于120℃下干燥4小时,从而得到干燥的中间体粉末; 步骤D、对所述干燥的中间体粉末进行焙烧,焙烧后冷却降温,并使用压片机压片成型,从而制得上述权利要求1或2所述的镍基CO加氢反应催化剂; 其中,所述镍盐水溶液为硝酸镍、醋酸镍、硫酸镍中的至少一种;所述铝盐水溶液为硝酸铝和硫酸铝中的至少一种;所述第一部分碱溶液和第二部分碱溶液均为Na2CO3、NaHCO3、尿素中的至少一种;所述助剂盐溶液为镧、铈、镁、锰、镨中至少一种的盐溶液;所述第一醇溶液是由月桂醇硫酸脂钠、烷基酚聚氧乙烯醚、醇溶液按照0.1~1:0.1~1:0.1~1的体积比混合而成;所述烷基酚聚氧乙烯醚采用壬基酚聚氧乙烯醚和辛基酚聚氧乙烯醚中的至少一种。 4.根据权利要求3所述的镍基CO加氢反应催化剂的制备方法,其特征在于,所述镍盐水溶液的浓度为0.5~1.5mol/L。 5.根据权利要求4或5所述的镍基CO加氢反应催化剂的制备方法,其特征在于,所述的碱溶液采用浓度为2mol/L的Na2CO3。 6.根据权利要求4或5所述的镍基CO加氢反应催化剂的制备方法,其特征在于,在步骤D中,将所述干燥的中间体粉末放入马弗炉中进行焙烧,升温速率为1~2.5℃/分钟,直至达到焙烧温度为350~450℃后,以此温度焙烧4小时后再自然冷却降温。 7.一种镍基CO加氢反应催化剂的应用,其特征在于,将上述权利要求1至2中任一项所述的镍基CO加氢反应催化剂用于对CO浓度为4000~ 5500ppm的富氢气体进行CO脱除。 技术说明书 一种镍基CO加氢反应催化剂及其制备方法与应用 技术领域 本技术涉及CO加氢反应催化剂,尤其涉及一种镍基CO加氢反应催化剂及其制备方法与应用。 背景技术

含钼催化剂研究进展

含钼催化剂研究新进展 摘要含钼催化剂广泛用于多种化工生产过程,在含钼精细化学品的研究与开 发中占有重要地位。简要介绍了我国近年来一些含钼催化剂的研究进展和有关文献1前言 催化是现代十分重要的化工技术,据统计,发达国家近三分之一的国民经济总 产值来自催化技术。含钼催化剂在催化领域占有重要地位,广泛用于石油加工和化 工生产,如合成气制造、基本有机合成和精细化工产品等的的生产。因此,长期以 来国内外对含钼催化剂的创新和改进不断进行。这也引起我国钼业界的广泛关注, 逐渐成为我国钼深加工领域的一个新的发展方向。现仅就我国近年来含钼催化剂的 一些新进展作简要介绍。 2烷烃的化学加工催化剂 2.1烷烃芳构化催化剂 四烷无氧脱氢芳构化,为甲烷活化和转化的一个新的研究热点。王林胜等在1 993年首次报道一种以HZSM-5分子筛为载体的含钼催化剂使甲烷于无氧条件下高选择性地转化为苯。该催化剂是甲烷芳构化反应的典型催化剂。此后,对这种催化剂 的研究活跃。舒玉瑛等用机械混合、机械混合后焙烧、机械混合后微波处理等方法 制备这种催化剂,并考察了其对甲烷芳构化反应的催化性能。结果表明:机械混合 法、固相反应法和微波处理法制备的Mo/HZSM-5催化剂,比一般浸渍法能明显提高 芳烃的选择性和减少积碳生成;在不同制法的Mo/HZSM-5催化剂上,Mo物种落位不同,机械混合法、固相反应法和微波处理法能使Mo物种较多地落位于分子筛外表面 ,这对甲烷芳构化反应有利,并明显减少积碳的生成。 王军威等用浸渍法、机械混合法和水热法制备了Mo/HZSM-5催化剂,并考察了 钼含量和反应时间对丙烷芳构化反应的影响,深入研究了Mo物种对HZSM-5分子筛结构和酸性的作用。 最近,田丙伦等报道了对Mo/MCM-22催化剂用于甲烷无氧芳构化的研究结果。MCM-22为晶粒呈片状、含两种孔道结构的高硅沸石分子筛。同Mo/HZSM-5催化剂相比,Mo/MCM-22催化剂稳定性更好,苯产物的选择性较高 。用浸渍法制备的Mo担载量为6%的Mo/MCM-22催化剂性能最佳。此外,还研究了添加钴对Mo/MCM-22催化反应性能和催化剂积碳性质的影响。 2.2烷烃选择氧化催化剂 甲基丙烯酸(MAA)是重要的有机化工原料,当前主要用烯烃为原料生产。然而,饱和烃较烯烃来源广泛,更经济易得,故近年来由异丁烷氧化制MAA已成研究 与开发的新方向。采用一般热表面催化法由异丁烷选择氧化制取MAA主要存在的问 题是MAA选择性低,浓度反应产物(COx)高达40%。激光促进表面反应法是很有应用前景的光催化合成新技术。最近,陶跃武等分别采用在铋钼复合氧化物、钒钼复 合氧化物表面上激光促进异丁烷选择氧化制MAA,取得选择性达到90%和无COx产生的良好结果。

钙钛矿型复合氧化物光催化研究进展

第18卷第7期2006年7月化学研究与应用 Chem ica lR esea rch and A pp licati on V o.l 18,N o .7 J u.l ,2006 收稿日期:2004-11-22;修回日期:2005-05-17基金项目:河南省自然科学基金(0424270073)项目资助 联系人简介:牛新书(1954-),男,教授,主要从事无机纳米材料研究。Te:l 0373-******* 文章编号:1004-1656(2006)07-0770-06 钙钛矿型复合氧化物光催化研究进展 牛新书,曹志民 (河南师范大学化学与环境科学学院,河南省环境污染控制重点实验室,河南 新乡 453007) 摘要:扼要叙述了钙钛矿型复合氧化物(ABO 3)作为光催化剂的研究进展。包括结构,机理,制备,改性和研究现状。强调了结构与性能之间的关系并对其研究方向提出了自己的见解。关键词:钙钛矿型复合氧化物;光催化;半导体中图分类号:O 643 3 文献标识码:A Fu ji s hi m a 和H onda [1] 在1972年的发现标志着多相光催化新时代的开始。此后T i O 2因其稳定的结构和性能,低廉的价格且无毒无害等优点吸引了人们的注意,围绕T i O 2光催化性能的大量研究取得了一定的进展,但T i O 2较宽的能隙(3 2ev)决定了其只能吸收紫外光波。长期以来,受T i O 2自身结构和合成条件限制,大量研究集中于阳离子掺杂[2] ,目前较为前沿的是阴离子掺杂[3,4,5],但此方面的研究仅见有少量的文献报导,所得到的可见光催化活性还比较低[6] 。总体来说,在提高T i O 2对太阳能的利用率方面没有取得巨大突破,因此人们仍在寻找新的高效光催化剂。钙钛矿是地球上最多的矿物,由于其全范围的电气性能,人们很早就开始了钙钛矿结构的人造晶体的合成以及对其在铁电、压电、超导等性能方面的研究与应用,另外,在气敏材料、汽车尾气净化、 催化有机合成[7,8,9,10] 等方面钙钛矿型复合氧化物也表现出了良好的性能。近年来,白树林、傅希贤[12,17] 等系统研究了钙钛矿型复合氧化物(ABO 3)在光催化方面的性能,结果显示了钙钛矿型复合氧化物在光催化方面具有潜在的应用价值。本文将对AB O 3型复合氧化物的光催化研究进展作一综述及评价。 1 A BO 3型复合氧化物的结构特征 图1 A BO 3结构示意图F i g .1 Sche m e o f ABO 3structure 理想的钙钛矿晶体为立方结构,满足空间群 Pm 3m Oh ,其中A 为较大的阳离子,与12个O 配位,位于立方体的中心。B 为较小的阳离子,与6个O 配位,位于6个O 组成的8面体中心(图1)。理想的钙钛矿结构中,R A >0 090nm,R B >0 051n m [13] ,A O 之间的距离应为20 5 a /2(a 为晶胞参数),B O 之间的距离应为0 5a ,3种离子半径应满足下列关系式: r A +r O =2 0 5 (r B +r O )实际情况下,许多ABO 3型复合氧化物不满足上述关系式时仍能保持立方结构,针对这种情况,Go l d schm idt [14]引入了允许因子,t 规定:

钙钛矿型催化材料的制备

引言 (1) 1.钙钛矿型催化剂的结构 (1) 2.钙钛矿型催化材料的制备方法 (2) 2.1固相反应法 (2) 2.2共沉淀法 (2) 2.3非晶态配合物法 (2) 2.4溶胶-凝胶法 (2) 2.5机械混合法 (4) 2.6水热合成法 (4) 2.7燃烧合成法 (5) 结论 (7) 参考文献 (8) 致谢 (9)

钙钛矿型氧化物具有独特的物理性质(如铁磁性、铁电性、超导性、热导性、吸附性等)。更重要的是,由于钙钛矿型氧化物在元素组配和晶体结构方面具有灵活的可“化学剪裁”的设计特点使得此类材料在催化氧化、环境催化、催化加氢、加氢裂解、光催化、固体燃料电池及化学传感器等方面得到了广泛的研究和应用。钙钛矿型氧化物是一类完全氧化型催化材料,加之其化学结构的高温稳定性,使它们在煤、天然气和燃料催化燃烧等方面的应用日益受到重视,成为催化化学领域的研究热点,同时钙钛矿型催化材料的制备成为钙钛氧化物新的研究方向。 1.钙钛矿型催化剂的结构 钙钛矿最初是指以CaTiO3形式存在的无机矿物,后来就成为具有化学式ABO且与CaTiO3有相同晶体结构类型化合物的代称。结构与天然钙钛矿ABO3类似的稀土复合氧化物是目前研究较多的具有多种特殊物理化学性能的新型固体材料之一。 理想的钙钛矿型复合氧化物ABO3为立方结构,如图1所示。在这中,A位为半径较大的稀土金属离子,周围有12个氧阴离子配位,形成积,处于这些八面体所构成的空穴中心;B位为半径较小的过渡金属离子阴离子为6配位,B位过渡金属离子被八面体分布的氧所包围,;O位于立条棱的中心,见图1。钙钛矿稳定性主要来自于刚性的BO6八面体堆积伦(Madelung)能。在ABO3计量化合物中,为满足电中性要求,A n+、B m+是:n+m=6,但没有A的价态比B的高的化合物。这种配位型式和立方最密每个堆积球周的配位情况是相同的。因此要求B是优先选用八面体配位子。占据大十二面体间隙的A离子大小必须合适。这是由于十二面体和八境中,A和B的稳定性需要限制了A和B化合的可能性,并且在氧化物骨架中大的正离子,由于它要和氧负离子作立方最密堆积,所以A的大小应和氧的大小相当,B离子是小的离子,处于八面体配位之中。

钙钛矿催化剂的改性与性能研究

!!塑丝丝塑丝!!!!生蔓!!塑!!!!查钙钛矿催化剂的改性与性能研究。 朱志杰,,唐有根1,宋永江2,罗继2 (1.中南大学化学化工学院电源及其材料研究所,湖南长沙4l0083 2.丰日电气集团股份有限公司,湖南长沙410331) 摘要:在溶胶凝胶法的基础上.通过添加不同量的活性炭到凝胶当中的方法,制备了纳来级的钙钛矿催化荆,采用了xRD、TEM对催化剂进行了表征,用此催化荆制作了赋功能氧电极,用Tafel曲线进行了分析。对氧电极克放电性能进行了测试,并与未添加活性炭进行改性的催化荆进行了对比.结果表明,添加了活性炭的催化荆其粒径都较小,且各项电化学性能都好于未添加活性炭的催化剂,其中按物质的量比金属离子z活性碳为2t3制备的催化荆B晶体粒径最小?极化电流密度最大。克放电性能最佳。 关键词:双功能氧电极:钙钛矿;电催化;极化曲线 中图分类号:TM911.11文献标识码:A文章编号:1001—973112007)11-1834—03 1引言 随着能源问题日益加剧,全球变暖趋势更加突出,解决能源同题和环境问题显得尤其迫切了.因此t替代传统化石能源的各项研究在国内外正加紧展开t各种环保电源尤其是燃料电池近年来成了研究的热点.但燃料电池氧电极催化荆制约了燃料电池的发展,Hyun.JongKim等03研究了直接甲醇燃料电池的催化剂PtRu/c_A“Tio:。结果发现PtRu/C_Au/Tio:比单纯的PtRu/c的催化效果要好。v.Ba91io等…研究了在低温Pt_Fe催化剂对直接甲酵燃料电池氧还原性能的研究,结果发现Pt_Fe比Pt—c在低温下单体电池比能量有所提高。 目前。直接甲醇燃料电池大都采用贵金属催化剂作为电催化剂,由于贵金属价格昂贵.使得研究成本大幅提高.因此寻找替代贵金属催化剂的研究也日益成为科研专家的关注焦点.O.Haas等嘲用x射线吸收和X射线衍射研究了钙钛矿催化剂,结果表明x射线吸收和x射线衍射能有效的跟踪钙钛矿催化剂在电池反应中的电子结构的改变。韩红涛等D1采用苹果酸作为前驱体,而A.Kahoula【‘3等采用柠檬酸作为前驱体制备了钙钛矿类催化剂La-一:Ca:CoO;对氧反应的影响,结果都发现Lal一;c虬CoO,当z兰O.4时,即Lao。c虬.coo|具备最佳的催化效果.唐志远等口1对钙钛矿型双功能氧电极催化剂的研究进展作了综述, 目前的研究太都集中在元素的掺杂和络合剂的选择上‘s~w,由于凝胶的均匀性,掺杂元素不会出现单一元素的富集而影响催化剂的效果.在凝胶中加^活性炭让其在煅烧过程中缓慢氧化充当造孔剂的报道还很少,因此本文对此作了研究. 2实验 2.1钙钛矿的制备 采用无定型前驱体,苹果酸为络合剂,按化学计量比称取La(N03)3?6H20,Ca(No,)2?4H20,co(N03):?6H。O(本文所用药品未特别说明的全部为分析纯),按金属离子?苹果酸为2?3称取苹果酸,在250ml烧杯中用去离子水配成溶液,用分析纯25%~28%氨水调节pH值至3~4,在70℃恒温水浴箱中旋转蒸发n““.待溶液形成咖啡色透明胶体时,分别按物质的量比(活性炭?金属离子)为1tl、3t2、2?1加人活性炭.进一步蒸发至稠状凝胶后移人到研钵中以110℃在恒温干燥箱中干燥,经研磨成细粉后移人到坩埚中,在马福炉中以600℃恒温煅烧2h,升温速度为8℃/min.再次研磨成细粉即为备用的催化剂,分别记为A、B、C. 2.2空气电极的制备 空气电极分为3层:扩散层、导电骨架、催化层,其中扩散层的制作参照文献[12],按无水Na2So‘?Pn、E?乙炔黑质量比为1?1t1称量上述药品,其中Pn砸为60%原液,乙炔黑为工业级,无水乙醇分散后在60~70℃热辊压机上辊压成1mm薄片,待薄片成纤维状即停止辊压.后在去离子水中浸泡24h备用(中间更换去离子水4~6次).催化层按质量比,碳材料,催化剂?PH吧为13t1?6称量,按照扩散层相同的制作方法制成催化层,后把扩散层、导电骨架、催化层叠好放在油压机上以15MPa的压力冷压1T11in,即为空气电极. 2.3锌电极的制备 用掺有缓蚀剂的锌粉,5%的聚乙烯醇,饱和znO的7moI/LKOH溶液.按一定比例配成锌膏,涂抹在导电骨架镍网上,在真空干燥箱中干燥2h备用. 2.4XRD分析 采用日本理学生产的X射线衍射仪对产物进行 ?基金琉目:国家高技术研究发展计划(863计划)资助项目(z001AA501433) 收到初稿日期:2007?0}20收到修改稿日期:2007-07-lO通讯作者:唐有根作者简介:朱志杰(1976一)。江西南昌人。在读硕士.从事先进电池和新能源材料研究.  万方数据 万方数据

铂系与镍系苯加氢催化剂催化性能对比

生产技术 化工科技,2007,15(6):42~45 SCIEN CE &T ECHN O LO GY IN CH EM ICA L I NDU ST RY 收稿日期:2007-08-09作者简介:吴永忠(1966-),男,江苏兴化人,南京化工职业技术学院高级工程师,从事科研与教学工作。 铂系与镍系苯加氢催化剂催化性能对比 吴永忠1,张英辉2 (1.南京化工职业技术学院应化系,江苏南京210048;2.中国石油吉林吉化建修有限公司,吉林吉林132021) 摘 要:在实验室中对比了苯加氢N CG 系列镍催化剂和新型铂系苯加氢催化剂的性能,并在工业使用中进一步进行对比,最后给出工业应用的综合评价和提高环己烷质量的有效方法。 关键词:比较;性能;苯加氢催化剂;镍系;铂系 中图分类号:T Q 426.8 文献标识码:A 文章编号:1008-0511(2007)06-0042-04 生产己内酰胺的主要原料之一)))环己烷,除了从粗汽油中分馏和甲基环戊烷异构制备外, 迄今为止主要由苯加氢制备的已达90%左右。由于己内酰胺用途越来越广,其主要原料环己烷的生产日趋重要。苯加氢制环己烷是石油化工中重要的催化加氢过程,世界上环己烷产量已大于300万t/a,环己烷主要用于生产己内酰胺和树脂,也可用作溶剂和其它化工原料。国内主要采用装有催化剂的固定床苯加氢反应器,由于该催化剂具有优良活性和热稳定性及机械强度,在实际生产中取得了良好的效果。 研究发现Pt,Pd,Ni,Ru,Rh,Co 等少数几种金属,对苯加氢反应具有良好的催化活性。目前工业上广泛应用的苯加氢反应催化剂,主要分为镍系和铂系两大类 [1~3] 。镍系苯加氢催化剂主要 有Ni/Al 2O 3、Ni/SiO 2和骨架镍系等工业产品;其中N i/Al 2O 3和Ni/SiO 2苯加氢催化剂应用较为广泛。在生产实践中发现:镍系苯加氢催化剂苯加氢活性好,价格便宜,但该体系催化剂有一些缺点,如耐硫性能差,耐热性差,一般工业使用温度120~180e ,液苯空速低(0.1~ 1.0h -1,一般为0.2~0.8h -1),工业使用寿命短,一般为一年到两年,只能副产低压蒸汽。目前我国镍系苯加氢催化剂主要用于中小型生产装置;Pt 系苯加氢催化剂较Ni 系催化剂有许多优点:耐硫性能好,中毒后易再生,耐热性能好,工业操作温度可达 200~400e ,可副产中压蒸汽(1.0M Pa),液苯空速可达1.0~ 2.0h -1 ,工业使用寿命大于5年。Pt/Al 2O 3催化剂应用于大型己内酰胺厂苯加氢工艺具有较大优势,如南京东方化工有限公司引进荷兰DSM Stamicaro n 公司技术建成的50kt/a 己内酰胺生产装置中就采用Pt 系苯加氢工艺。镍系苯加氢与铂系苯加氢催化剂,国外市场各占约一半,国内目前仍以镍系为主。今后发展趋势仍为两个系列并存的格局,但从工业生产装置大型化,高产能、长寿命、抗毒性等角度考虑,使用铂系苯加氢催化剂具有比较明显的优势。 笔者在研制铂系苯加氢催化剂时,发现铂催化剂与镍催化剂的反应条件与催化性能均存在较大的差异。为了更好的使用好这两种催化剂,有必要对这2种催化剂进行详细的比较。 1 加氢催化反应及其催化剂 苯加氢制环己烷反应是一强放热反应,其主要化学反应式如下。 主反应: C 6H 6+3H 2C 6H 12+215.7kJ/mo l (1) 主要副反应:C 6H 6+3H 2C 5H 9CH 3+16.58kJ/mol (2) C 6H 6+3H 2 3C+3CH 4+315.9kJ/m ol (3) 反应式(1)为主反应,生成目的产物环己烷;反应式(2)为主要副反应,生成甲基环戊烷,影响目的产物环己烷的纯度;反应式(3)则会造成催化

镍催化剂

镍催化剂 论文题目:镍催化剂 班级:学号: 姓名:实验日期:2011.11.19.

一、镍的基本知识: 镍基催化剂一般是指雷尼镍又译兰尼镍,是一种由带有多孔结构的镍铝合金的细小晶粒组成的固态异相催化剂,它最早由美国工程师莫里·雷尼在植物油的氢化过程中,作为催化剂而使用。其制备过程是把镍铝合金用浓氢氧化钠溶液处理,在这一过程中,大部分的铝会和氢氧化钠反应而溶解掉,留下了很干燥的活化后的雷尼镍.多大小不一的微孔。这样雷尼镍表面上是细小的灰色粉末,但从微观角度上,粉末中的每个微小颗粒都是一个立体多孔结构,这种多孔结构使得它的表面积大大增加,极大的表面积带来的是很高的催化活性,这就使得雷尼镍作为一种异相催化剂被广泛用于有机合成和工业生产的氢化反应中。我们所说的骨架镍,原料是镍铝合金,用氢氧化钠处理该合金2Ni-Al+2NaOH+2H2O=2Ni+2NaAlO2+3H2雷尼镍主要用于不饱和化合物,如烯烃,炔烃,腈,二烯烃,芳香烃,含羰基的物质,乃至具有不饱和键的高分子的氢化反应。使用雷尼镍进行氢化有时甚至不需要特意加入氢化,仅凭活化后的雷尼镍中吸附的大量氢气即可完成反应。反应后得到的是顺位氢化产物。另外,雷尼镍也可以用于杂原子-杂原子键的还原。除了作为催化剂加氢,雷尼镍还将充当试剂参与有机含硫化合物如硫缩酮的脱硫生成烃类的反应。 镍催化剂呈现出很高的加氢活性,由于其催化活性好,机械强度高,对毒物不敏感,导热性好等优点,不仅应用于各种不饱和烃的加氢,而且也是脱氢、氧化脱卤、脱硫等某些转化过程中的良好催化剂,使用于石油、化工、制药、油脂、香料、双氧水、合成纤维,特别是在山梨醇、木糖醇、麦芽糖醇等工业上得到了广泛应用。 二、镍催化剂的发展现状 近几年年以来,LME镍价就在30000美元/吨以下波动,3月初受到停产消息刺激,镍价短暂回升到30000美元/吨以上,此后在关键点位连连失守,二季度末主要不锈钢企业开始减产压库,又给镍价回升蒙上了阴影,此后人们一直希望寄予下半年不锈钢市场能够恢复上,拖垮了整个商品期货价格,尽管各种类别的大综商品有不同的供求体系,但信贷市场的整体紧缩和实体经济运行的不确定性带来的悲观消费预期,导致投资者纷纷撤出商品市场。 由于镍价快速回落,多数近年准备投资的镍项目将会暂停,已经投资的项目将会推迟,从而减少镍供应,我国镍产量为22.9万吨,消费量为31.3万吨、为了应对全球金融危机可能对我国降级带来的影响,中国政府已经采取了一系列建议灵活的调控措施,建议下一步能够进一步调整有关政策,以帮助企业渡过难关。

钼催化剂

书山有路勤为径,学海无涯苦作舟 钼催化剂 1、磷钼酸磷钼酸是丙烯氨氧化制备丙烯睛的催化剂,它在合成纤维加工 中起着重要作用,它还是丝和皮革加重剂、有机颜料的原料、分析试剂。磷 钼酸分子式为H3PO4·12MoO3·30H2O,可溶于水、乙醇、乙醚。密度 2.53g/cm3,熔点78℃。为黄色到桔黄色结晶。主要原料:三氧化钼和磷酸。 反应式为:12MoO3+H3PO4+xH2O 煮沸H3PO4·12MoO3·xH2O→生产过程:按MoO3:水=1:10 的固液比搅拌均匀,加入浓度85%磷酸,加入量按MoO3:H3PO4=12:lmol 数计算。通入蒸汽使溶液煮沸3h,加温时应控制蒸 汽压力,使溶液平稳沸腾,不要暴沸。还要不断补充清水,保持最初的液面高 度。反应前,溶液呈MoO3 的乳白色,反应初变金黄色,后期变为绿色,反应 后期pH 为1.0。液固分离,弃去滤渣(可回收用)。滤液中先滴加30%双氧 水,溶液颜色由绿转黄。蒸发浓缩溶液(温度106℃),将溶液冷却、结晶获产 品流程见图1。图1 磷钼酸生产流程2、钴-钼催化剂在用天然气、油田气、 炼油气、焦炉气或轻油为原料,生产合成氨时,要求气、油中硫含量< 0.3ppm。在脱硫时,无机硫可用脱硫剂全部除净,而有机硫的脱除就很困难。 为此,要用以钼为主催化剂将有机硫加氢变成无机硫(H2S)后脱除。反应式 为: CS2+4H2→CH4+2H2SCOS+4H2→CH4+H2S+H2OC2H5SH+H2→C2H6+H2S加氢脱硫催化剂以钼为主,钴、镍、铁、钒为助催化剂,氧化铝作载体。应用最 早为钴-钼。现亦有用铁-钼或镍-钼。其成份变化,结构复杂,据Richardson 研 究后认为,催化剂活性物是被活性Cox 活化了的MoS2,以Cox/Mo=0.18 为 佳。催化剂组分的化合形态不管以何形式存在,在加氢脱硫前,都必须进行充 分预硫化处理。[next] 加氢脱硫的钴-钼或镍-钼催化剂生产工艺有三种:

光催化剂

光催化剂概述 第一篇 通俗意义上讲触媒就是催化剂的意思,光触媒顾名思义就是光催化剂。催化剂是加速化学反应的化学物质,其本身并不参与反应。光催化剂就是在光子的激发下能够起到催化作用的化学物质的统称。 光催化技术是在20世纪70年代诞生的基础纳米技术,在中国大陆我们会用光触媒这个通俗词来称呼光催化剂。典型的天然光催化剂就是我们常见的叶绿素,在植物的光合作用中促进空气中的二氧化碳和水合成为氧气和碳水化合物。总的来说纳米光触媒技术是一种纳米仿生技术,用于环境净化,自清洁材料,先进新能源,癌症医疗,高效率抗菌等多个前沿领域。 世界上能作为光触媒的材料众多,包括二氧化钛(TiO2)、氧化锌(ZnO)、氧化锡(SnO2)、二氧化锆(ZrO2)、硫化镉(CdS)等多种氧化物硫化物半导体,其中二氧化钛(Titanium Dioxide)因其氧化能力强,化学性质稳定无毒,成为世界上最当红的纳米光触媒材料。在早期,也曾经较多使用硫化镉(CdS)和氧化锌(ZnO)作为光触媒材料,但是由于这两者的化学性质不稳定,会在光催化的同时发生光溶解,溶出有害的金属离子具有一定的生物毒性,故发达国家目前已经很少将它们用作为民用光催化材料,部分工业光催化领域还在使用。 二氧化钛是一种半导体,分别具有锐钛矿(Anatase),金红石(Rutile)及板钛矿(Brookite)三种晶体结构,其中只有锐钛矿结构和金红石结构具有光催化特性。 二氧化钛是氧化物半导体的一种,是世界上产量非常大的一种基础化工原料,普通的二氧化钛一般称为体相半导体以与纳米二氧化钛相区分。具有Anatase或者Rutile结构的二氧化钛在具有一定能量的光子激发下[光子激发原理参考光触媒反应原理]能使分子轨 道中的电子离开价带(Valence band)跃迁至导带(conduction band)。从而在材料价带形成光生空穴[Hole+],在导带形成光生电子[e-],在体相二氧化钛中由于二氧化钛颗粒很大,光生电子在到达导带开始向颗粒表面活动的过程中很容易与光生空穴复合,从而从宏观上我们无法观察到光子激发的效果。但是纳米的二氧化钛颗粒由于尺寸很小,所以电子比较容易扩散到晶体表面,导致原本不带电的晶体表面的2个不同部分出现了极性相反的2个微区-光生电子和光生空穴。由于光生电子和光生空穴都有很强的能量,远远高出一般有机污染物的分子链的强度,所以可以轻易将有机污染物分解成最原始的状态。同时光生空穴还能与空气中的水分子形成反应,产生氢氧自由基亦可分解有机污染物并且杀灭细菌病毒。这种在一个区域内2个微区截然相反的性质并且共同达到效果的过程是纳米技术典型的应用,一般称之为二元论。该反应微区称之为二元协同界面。

石油加氢脱硫催化剂的应用进展

石油加氢脱硫催化剂的应用进展 一、前言 一直以来,化石燃料特别是石油一直是各国最重要的能源,尽管近年来世界各国不断加强对二次能源,如太阳能、风能等的研究和应用,但应用比例仍然较小。最受瞩目的从水制氢,甚至从海水制氢研究有所进展,但产业化仍面临一系列问题,如大规模生产催化剂和生产成本等难以绕过的问题。 在石油消耗增长的同时,为了防止汽车尾气对环境污染,使环境中的PM2.5 达到国际标准,石油的加氢脱硫产品——燃油如汽油和柴油的质量也要大幅度提升。2018 年我国使用的柴油含S 要达到≤10 mg /kg,现在除北京外其他地区使用的柴油、汽油含S≤50 mg /kg 或≤100 mg /kg. 降低燃油的含硫、含氮量任务十分艰巨,众所周知,石油加氢精致脱硫要用钼基催化剂如CoMo /Al2O3、NiMo /Al2O3进行轻质油和重质油加氢脱硫。 1 石油加氢脱硫催化剂应用概况 20 世纪末,由于当时防止环境污染的要求相对宽松,一些国家规定燃油含S≤50 ~100 mg /kg,Ni-Mo /Al2O3、CoMo /Al2O3加氢脱硫催化剂就已经满足要求。进入21 世纪后,对环境污染的法规和法律要求日趋苛刻,燃油含S 量至少要达到≤50 mg /kg,从而激励着化学家研究与应用更加有效的加氢脱硫催化剂,使得加氢脱硫催化剂有几项重大创新。

1.1 优化载体 尽管作为钼钴、钼镍催化剂的载体可为SiO2、TiO2、MgO,也可以是各种沸石和纳米含硅化合物等,但当今大多数钼钴催化剂厂家采用γ-Al2O3作催化剂载体,如美国的雪伏龙石油催化剂公司、日本的コヌモ石油株式会社、日本住友金属矿山公司、德国的BASF 化学公司和中国抚顺石油化工研究院等。 γ-Al2O3物理性能较20世纪末有了很大的改进,具有代表性的物理性质如下: 平均孔径7.5 nm,细孔径分布率为78%~88%,细孔容积035 ~ 0.50mL /g,比表面积200 ~ 272 m2 /g,个别厂家为318m2 /g,事实上,γ-Al2O3颗粒组成更加均匀,5~6nm≤10%,10 nm以上的粗粒级≤5%γ-Al2O3载体生产公司专业化,钼钴、钼镍催化剂的载体经多年详尽研究,目前已形成产业化生产,产品质量稳定并不断提升;含磷的钼钴、钼镍催化剂的加氢脱硫活性明显增长。 近10年来,许多化学家研究了磷对钼钴催化剂活性的影响[1],研究者向CoMo /Al2O3催化剂中添加不同数量的磷对噻吩等化合物进行了加氢脱硫影响试验。首先用浸渍法制取MoO3P /Al2O3催化剂,如将Al2O3载体浸渍在含H3PO4或NH4H2PO4与( NH4)6Mo7O24H2O 的浸渍液中,浸渍后过滤,烘干。然后在500 ℃下煅烧5 h,制出含P 分别为0%、0.2%、0.5%、1%、2%、3%和5% ( 质量分数,下同) ,将含13%Mo 的MoO3P / Al2O3催化剂,用10%H2S /H2气流在400 ℃下硫化1.5 h。制出MoS2P /Al2O3催化剂,再用化学气相沉积法将Co 引入催化剂中,制出CoMoS2P /Al2O3催化剂。用这种含磷的催化剂进行加氢

加氢催化剂

加氢催化剂 加氢精制催化剂是由活性组分、助剂和载体组成的。其作用是加氢脱除硫、氮、氧和重金属以及多环芳烃加氢饱和。该过程原料的分子结构变化不大,,根据各种需要,伴随有加氢裂化反应,但转化深度不深,转化率一般在10%左右。加氢精制催化剂需要加氢和氢解双功能,而氢解所需的酸度要求不高。 一、加氢精制催化剂的活性组分 加氢精制催化剂的活性组分是加氢精制活性的主要来源,属于非贵金属的主要有ⅥB族和Ⅷ族中几种金属氧化物和硫化物,其中活性最好的有W,Mo和Co,Ni;贵金属有Pt,Pd等。 催化剂的加氢活性和元素的化学特征有密切关系。加氢反应的必要条件是反应物以适当的速度在催化剂表面上吸附,吸附分子和催化剂表面之间形成弱键后再反应脱附。这就要求催化剂应具有良好的吸附特性。而催化剂的吸附特性与其几何特性和电子特性有关。催化剂的电子特性决定了反应物与催化剂表面原子之间键的强度。 研究表明,提高活性组分的含量,对提高活性有利。但综合生产成本及活性增加幅度分析,活性组分的含量应有一最佳范围。目前加氢精制催化剂活性组分含量一般在15%~35%之间。 在工业催化剂中,不同的活性组分常常配合使用。例如,钼酸钴催化剂中含钼和钴,铝酸镍催化剂中含钼和镍等。在同一催化剂内,不同活性组分之间有一个最佳配比范围。 2、加氢精制催化剂中的助剂 为了改善加氢精制催化剂某方面的性能,在制备过程中,常常添加一些助剂。大多数助剂是金属化合物在制备过程中,也有非金属元素。 助剂的作用按机理不同可分为结构性助剂和调变性助剂。结构性助剂的作用是增大表面,防止烧结,提高催化剂的结构稳定性;调变性助剂的作用是改变催化剂的电子结构、表面性质或者晶型结构。

钼加氢催化剂

[K10716-0276-0002] 钴钼加氢精制催化剂的制备方法 [摘要] 本发明涉及一种钴钼加氢精制催化剂的制备方法。该方法是将乙酸钴溶于水后加入乙二胺,使其形成钴乙二胺的混合溶液,最后加入钼酸铵制成含有钴钼金属的共浸液,将多孔载体用此溶液浸渍后在无氧或微氧气氛中焙烧得产品。本方法所用设备简单,配制时间短,焙烧时不会产生飞温,因而保证了催化剂的高活性。本方法制备的催化剂加氢脱硫活性远高于UOP公司生产的同类型催化剂。 [K10716-0557-0003] 用于马来酸加氢制1,4-丁二醇的改进的催化剂 发现了一种用于马来酸、马来酸酐或其它可加氢前体催化加氢成1,4-丁二醇和四氢呋喃的改进的催化剂。该加氢催化剂含有负载在炭载体上的钯、银、铼和至少一种选自铁、铝、钴和它们中的混合物的金属。 [K10716-0521-0004] 一种加氢处理催化剂及其制备方法 [摘要] 本发明公开了一种石油烃类加氢处理(加氢裂解和加氢精制,如加氢脱硫、加氢脱氮及加氢脱金属等)催化剂及其制备方法。将高浓度、高稳定性的溶液(至少含一种第ⅥB族元素如钼或钨;一种第ⅧB族元素如镍或钴,和一种无机酸如H3PO4)和拟薄水铝石(pseudo-boehmite)以及含有强电负性元素(通常为第ⅦA族)的物质一起,经充分混合、捏合成可塑状,挤成条状,在110℃~130℃下干燥。然后采用三段恒温焙烧,制得具有较高活性的加氢处理催化剂。 [K10716-0224-0005] 用于中间馏分加氢裂化的新型改进催化剂及其使用方法 [摘要] 本发明与一种中间蒸馏产品的加氢裂化方法有关,并涉及一种具有改进的选择性、活性和稳定性的加氢裂化催化剂,该催化剂用于在700°F以上沸腾的重气体油原料中生产中间蒸馏产品。 [K10716-0153-0006] 在固定床钯催化剂上进行炔的部分加氢制备链烯烃 [摘要] 液相炔在钯催化剂进行部分加氢制备链烯烃的方法,该方法包括:A.使用一种固定床催化剂,该催化剂是通过将优选的金属载体在空气中加热,冷却,减压下用金属钯涂覆,适当成型并处理成一整块催化剂制得的;和B.将10到180ppm的CO加入到加氢所用的氢气中。 [K10716-0162-0007] 改进的采用活性铑催化剂分离和循环的加氢甲酰化方法 [摘要] 通过将活性催化剂和杂质结合在酸性离子交换树脂上,使活性铑催化剂和杂质从含有活性和钝性有机铑催化剂的加氢甲酰化过程料流中分离出来。纯化了的加氢甲酰化料流可返回到加氢甲酰化反应器中。在将经纯化的加氢甲酰化过程料流循环回到反应器之前,将其中所含的全部或部分的钝性铑催化剂进行再活化。在树脂再生过程中,首先使用中性溶剂除去杂质,然后用酸性溶剂从树脂中分离出活性有机铑催化剂。这些活性催化剂可再氢化,然后返回到加氢甲酰化反应器中。可以产生具有至少一个在硅骨架上的酸基团的离子交换树脂,在加氢甲酰化过程料流中的活性有机铑配合物则结合在树脂上。

相关文档
最新文档