超小型负电压模块

超小型负电压模块
超小型负电压模块

TNC16XXXDW

1A, -0.8V~-12V, NEGATIVE POWER MODULE

特性

? 1A 负电压输出 ? 小型封装

? 输入电压范围:4.5V to 14V ? 输出电压范围:-0.8V to -8V ? 效率高达85% ? 可选工作温度区间 A 级: -20 o C to 70 o C B 级: -30 o C to 85 o C C 级: -40 o C to 125 o C ? 低压自动保护 ? 过载自动保护 ? 超温自动保护 ? 快速瞬态响应 ? 具有软启动功能 ? 轻载条件具有省电调节 ? 500kHz 开关频率

? 下方允许高度1mm 元件放置

应用

? 复杂多电平系统 ? 数模/模数转换器 ? 信号调理 ? 运算放大器

描述

TNC16XXXDW 系列具有固定/可调电压输出和输出使能控制。轻载省电调节功能特别适合低功耗应用。由于具有极高的效率、极低的损耗,以及经过一定的热力学设计,TNC16XXXDW 系列能够提供1A 的输出带载能力。 高性价比、高稳定性以及微型体积帮助TNC16XXXDW 在科研设备、工业控制以及医疗领域成为明星产品。 输出过载保护和超温保护可以有效的对付电路故障,保护系统万全。

低压保护对于正在调试的系统或者干扰很大的系统具有很好的保护效果,可以避免昂贵的处理器受到电源系统冲击受损。

Realtimin 工程师为了减小模块体积和易于安装性上花费了大量心血。模块使用双面贴装,最大化减小体积,并在此基础上设计了可供直插和贴装的引脚。. 模块使用无铅工艺生产,满足RoHS 标准。

模块一览 (硬币大小:一角)

Rev. A Information furnished by Realtime Instruments is believed to be accurate and reliable. However, no responsibility is assumed by Realtime Instruments for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change

without notice. No license is granted by implication or otherwise under any patent or patent rights of Realtime Instruments. Trademarks and registered trademarks are the property of their respective owners.

SPECIFICATIONS ELECTRICAL CHARACTERISTICS

Electrical Characteristics

(1) Lower than -8 V is safe, but set-point error may deteriorate 1%.

(2) This control pin has an internal pull-up. Do not place an external pull-up on this pin. If it is left open-circuit, the module operates when input power is applied. If need to control, a small, low-leakage (<100 nA) MOSFET is recommended for control. For additional information, see the related application note.

(3) At least one 47 μF electrolytic input capacitor is recommended for better operation. The electrolytic capacitor must be rated for a minimum of 500 mA rms of ripple current.

(4) Output Capacitor must be MLCC type for its lower ESR characteristics.

ENVIRONMENTAL AND ABSOLUTE MAXIMUM RATINGS

Environmental and Absolute Maximum Ratings

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

TNC16XXXDW

Pin Configuration

Pin Function Descriptions

Coding Descriptions

Output Selection

TYPICAL PERFORMANCE CHARACTERISTICS

VI=12V, Unless otherwise noted, TA = 25℃

Efficiency vs Load Current Output Variation vs Load Current

Output Variation vs Temperature Vout Ripple vs Load Current

Thermal Operating Area (Grade B)Operating Frequency

TERMINOLOGY

Line Regulation

Line regulation refers to the change in output voltage in response to a given change in input voltage and is expressed in percent per volt, ppm per volt, or μV per volt change in input voltage. The input voltage accounts for the variation of switching duty cycle.

Load Regulation

Load regulation refers to the change in output voltage in response to a given change in load current and is expressed in μV per mA, ppm per mA, or ohms of dc output resistance. The load current accounts for the effects of self-heating.

Overcurrent Threshold

For protection against load faults, all modules incorporate output overcurrent protection. Applying a load that exceeds the regulator's overcurrent threshold causes the regulated output to shut down.

Over-Temperature Protection (OTP)

When the junction temperature increases above the rising threshold temperature, the module will enter the over-temperature protection state. The thermal sensor allows the converters to start a start-up process and regulate the output voltage again after the junction temperature cools by 45 o C. The OTP designed with a 45 o C hysteresis increases lifetime of the module.

Transient Response

The transient response has been characterized using a load transient with a di/dt of 2.5 A/μs. The typical voltage deviation for this load transient is given with the minimum required value of output capacitance. As the di/dt of a transient is increased, the response of a converter’s regulation circuit ultimately depends on its output capacitor decoupling network. This is an inherent limitation with any dc/dc converter once the speed of the transient exceeds its bandwidth capability. This also means when a dc/dc converter has better transient response, the less output decoupling capacitor it need.

Soft-Start Power Up

The TNC16XXXDW integrates soft-start circuits to ramp up the output voltage of the converter to the programmed regulation set point at a predictable slew rate. The slew rate of output voltage is internally controlled to limit the inrush current through the output capacitors during soft start process.

Long-Term Stability

Long-term stability refers to the shift in the output voltage at 60o C after 1000 hours of operation in a 60o C environment. The ambient temperature is kept at 60o C to ensure that the temperature chamber does not

switch randomly between heating and cooling, which can cause instability over the 1000 hours’ measurement. APPLICATION INFORMATION

Basic connection

Typical Application Circuit

Input Capacitors

TNC16XXXDW requires none minimum input capacitance. When V O> 3V, a 47μF electrolytic capacitor is recommended. Adding optionally one or more 10μF MLCC capacitor will always get better EMC results for the module.

Output Capacitor

TNC16XXXDW requires none minimum output capacitance due to its great transient characteristics. But adding optional one or more 22μF MLCC capacitor will improve ripple and transient performance. A combination of two 22μF MLCC capacitors is recommended.

On/Off Inhibit

For applications requiring output voltage on/off control, the TNC16XXXDW incorporates an EN control pin. The inhibit feature can be used wherever there is a requirement for the regulator to be turned off. The power modules function normally when the Inhibit pin is left open-circuit, providing a regulated output whenever a valid source voltage is connected to VI with respect to Vout. Open or 2V above GND= Normal operation, Vout = Off.

This pin is a high voltage input, which has internal pull-up to VIN. It is hazardous to connect any low-level digital output driver directly to this pin, such as TTL logic or CMOS logic. Adopt a transistor to protect digital driver (usually IOs).

Interfacing with IO

Under-Voltage Protection

In the process of operation, if a short circuit occurs, the output voltage will drop quickly. When load current is bigger than current limit threshold value, the output voltage will fall out of the required regulation range. The under-voltage protection circuit continually monitors the output voltage after soft-start is completed. If a load step is strong enough to pull the output voltage lower than the under voltage threshold, the under voltage threshold is 70% of the nominal output voltage, the internal UVP delay counter starts to count. After 16ms de-bounce time, the device turns off both high side and low-side MOSEFET with latched. T oggling enable pin to low, or recycling VIN, will clear the latch and bring the chip back to operation.

Current Limit Protection

The TNC16XXXDW modules protect against load faults with a continuous current limit characteristic. Under a load fault condition the output current cannot exceed the current limit value. Attempting to draw current that exceeds the current limit value causes the output voltage to be progressively reduced. Current is continuously supplied to the fault until it is removed. Upon removal of the fault, the output voltage will promptly recover.

Thermal Shutdown

Thermal shutdown protects the module’s internal circuitry against excessively high temperatures. A rise in temperature may be the result of a drop in airflow, a high ambient temperature, or a sustained current limit condition. If the junction temperature of the internal components exceeds T otp, the module will shut down. This reduces the output voltage to zero. The module will start up automatically, by initiating a soft-start power up when the sensed temperature decreases 40 °C below the thermal shutdown trip point.

Power-Up Characteristics

During start period, the TNC16XXXDW power modules produce a regulated output voltage whenever of a valid input voltage (minimum VIN) is applied from Vin. During the power-up period, internal soft-start circuitry slows the rate that the output voltage rises. This reduces the in-rush current drawn from the input source. The soft-start circuitry also introduces a short time delay into the power-up characteristic. The delay is from the point that a valid input source is recognized, to the initial rise of the output voltage.

Soft Start

TNC16XXXDW has an internal controlled timer for soft start function, which is fixedly set around 1ms.

Adjusting Vout

There is an output adjustment resistor mounted on top side of TNC16XXXDW. The adjustment range of the TNC16XXXDW is -0.6V to -8 V. The adjustment method requires replacement of the resistor, RSET. The requirement of RSET is 0603(1608) package, 1/16W, 1% accuracy or higher, good thermal stability.

For other output voltages, the value of the required resistor can either be calculated using the following formula, or simply selected from the range of values given in T able. The location of RSET is showing in next

chapter.

R SET=11kΩ×

0.6 Vo?0.6

RSET for Standard Output Voltages

Grade Selection and Thermal Consideration

Realtimin guarantee the correct behavior of the module over the full temperature range of corresponding grade. For highest grades, Realtimin not only employs better ICs and components, which has better temperature stabilization and better precision, but also adopts more producing procedure to ensure about 30% allowance. But when working under high ambient temperature (for example 85°C or higher, as shown in Thermal Operation Area), thermal protection function would limit MOSFET self-heating margin and eventually limit output current inevitably. Considering specific application environment, it might be necessary to take additional heat-sinking measures to improve the output capability when working under high ambient temperature, including:

1.Deploy silicone grease to connect bottom side and mounting board to achieve better thermal coupling.

2.Deploy silicone grease on top side to gain better thermal uniformity.

3.Install heat radiator.

https://www.360docs.net/doc/417435900.html,e fan or other methods to strengthen air flow.

OUTLINE DIMENSIONS

Top View 0.036(0.9)

0.126(3.2)

0.055(1.4)

0.126(3.2)

SMT-PAD

NOTES:

(1) All linear dimensions are in inches(mm)

(2) This drawing is subject to change without notice.

(3) 2 place decimals are ±0.030(±0.76mm).

(4) 3 place decimals are ±0.010(±0.25mm).

(5) Recommended keep out area for user components.

(6) Power pin connection should utilize two or more vias to The interior power plane of 0.025(0.63) I.D. per input,

ground and output pin (or the electrical equivalent).

(7) Paste screen opening: 0.080(2.03) to 0.085(2.16). Paste screen thickness: 0.006(0.15).

(8) Pad type: Solder mask defined.

(9) All pins: Material – Copper Alloy plated by Nickel.

ORDERING GUIDE

Ordering Guide

(1) XXX refers to Coding Description.

(2) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: Realtimin has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Devices is in production to support existing customers, using it in a new design is not recommended.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: Realtimin has discontinued the production of the device.

负反馈放大电路习题解答

自测题5 一、填空题 1.图T5-1所示理想反馈模型的基本反馈方程是A f=()=()=()。 2.图T5-1中开环增益A与反馈系数B的符号相同时为()反馈,相反时为()反馈。 3.图T5-1若满足条件(),称为深度负反馈,此时x f≈(),A f≈()。 4.根据图T5-1,试用电量x(电流或电压)表示出基本反馈方程中的各物理量: 开环增益A=(),闭环增益A f=(),反馈系数B=(),反馈深度F=(),环路传输函数T=(). 图T5-1 5.负反馈的环路自动调节作用使得()的变化受到制约。 6.负反馈以损失()增益为代价,可以提高()增益的稳定性;扩展()的通频带和减小()的非线性失真。这些负反馈的效果的根本原因是()。 7.反馈放大器使输入电阻增大还是减小与()和()有关,而与()无关。 8.反馈放大器使输出电阻增大还是减小与()和()有关,而与()无关。 9.电流求和负反馈使输入电阻(),电流取样负反馈使输出电阻()。 10.若将发射结视为净输入端口,则射极输出器的反馈类型是()负反馈,且反馈系数B=()。 解: 1、,, 2、负,正 3、,, 4、,,,, 5、取样信号 6、闭环、闭环、闭环增益、取样信号、负反馈环路的自动调节功能使取样信号的变化受到制约 7、求和方式、反馈极性,取样方式 8、取样方式、反馈极性,求和方式 9、减小、增加 10、电压串联、1 二、单选题 1.要使负载变化时,输出电压变化较小,且放大器吸收电压信号源的功率也较少,可

以采用()负反馈。 A. 电压串联 B.电压并联 C.电流串联 D.电流并联 2.某传感器产生的电压信号几乎没有带负载的能力(即不能向负载提供电流)。要使经放大后产生输出电压与传感器产生的信号成正比。放大电路宜用()负反馈放大器。 A. 电压串联 B. 电压并联 C. 电流串联 D. 电流并联 3.当放大器出现高频(或低频)自激时,自激振荡频率一定是()。 A. 特征频率 B. 高频截止频率 C. 相位交叉频率 D 增益交叉频率 解: 1、A 理由:电压取样负反馈使输出电阻减小,故负载变化时,输出电压变化会因此减小。 电流求和负反馈(串联)使输入电阻增加,故可使放大器因此而吸收电压信号源的功率减小。 2、A 理由:采用电流求和(串联)负反馈,使输入电阻增大,从而传感器电压信号对放大器提供电流很小;采用电压取样负反馈可以稳定电压增益,保证了输出电压与传感器输入电压成正比。 3、C 理由:相位交叉频率其实也就是满足自激振荡相位条件的频率。 三、在图T5-2所示电路中,为深反馈放大器,已知 为两个输出端。求(1)若从输出,试判别反馈组态,并估算; (2)若从输出,重复(1)的要求; (3)若将减小,反馈强弱有何变化?若时,。 图T5-2 解: (1)从或输出时,从极性上看,因为构成反馈元件,且与串接,则为负反馈,从输出构成电流串联负反馈,把反馈网络分离出来,见图(b) (2)从输出时为电压串联负反馈,见图(c)因为与并接,取自 同样把反馈支路分离出来,见图(d),可得

深度负反馈电压放大倍数解题秘笈

求解深度负反馈放大电路放大倍数的一般步骤: (1) 正确判断反馈组态;(2)利用不同组态特点求解uf A 或usf A 正负反馈判断方法: 反馈引到非输入端,极性相同,构成负反馈;极性相反,构成正反馈。 反馈引到输入端,极性相同,构成正反馈;极性相反,构成负反馈。 上述是其他老师讲课时总结的方法,我一般就是从定义判断的,使净输入增大的就是正反馈,使净输入减小的就是负反馈。 交流负反馈组态的判断方法: 反馈信号引到输入端为并联反馈;引到非输入端为串联反馈。 反馈从输出端引出为电压反馈;反馈从非输出端引出(或运放输出电压不共地),为电流反馈。 以下解题要点对同一种组态任何一个电路都适用。 【例1】电压串联负反馈 【例2】电流串联负反馈 1 21R R U U U U A f o i o uf +=== 11 R R R I R I U U A L o L o i o uf === 解题要点:所有串联反馈(1)U i =U f ;(2)反馈输入点对地电压为U f ;(3)

o f I R R R I 212+- = 【例3】电压并联负反馈 【例4】电流并联负反馈 【练习1】 s s i f s o usf R R R I R I U U A -=-== s i s R I U =s L s f L o s o usf R R R R R I R I U U A )1(21+-=-== L uf R R R R R R A ?++=31321解题要点:所有并联反馈(1)I i =I f ;(2)反馈输入点对地电压为0(虚地)。 所有电流反馈,找输出电压U o 和输出电流I o 及反馈电压U f (或电流I f )R I U f o -=解题要点:所有串联反馈(1)U i =U f ;(2)反馈输入点对地电压为U f ;(3)反馈输入点到放大电路的输入电流特别小,视为开路。 解题要点:所有并联反馈(1)I i =I f ;(2)反馈输入点对地电压为0(虚地)。 s i s R I U =L o o R I U -=

串联电压负反馈电子电路实验报告

实验报告 实验名称:电压串联负反馈放大电路 实验目的: 1.了解反馈放大器的分类和判别方法 2.加深理解负反馈对放大器性能的改善作用 3.进一步熟悉放大器性能指标的测量方法 实验仪器: 1. 直流稳压电源 2. 函数信号发生器 3. 数字示波器 4. 串联电压负反馈放大电路板 实验原理: 1.反馈放大电路的概念与分类: 将放大器电路的输出的电信号(电压或电流)的一部分或全部,通过一定的方式(烦馈网络)引回到放大器输入电路中,并与输入信号一起参与控制的电路称为反馈放大电路。(如下图1-10) 从反馈的极性划分,反馈分为正反馈和负反馈。 负反馈削弱了净输入信号,降低了放大电路的增益,但负反馈的引入改善了放大器的性能。比如负反馈提高了放大器电路的工作稳定性,减小了非线性失真,抑制了内部

的噪声和干扰,展宽通频带。 正反馈增强了净输入信号,在信号产生电路中有着广泛的使用。 按照反馈网络对输出信号的采样划分,分为电压反馈和电流反馈。 按照反馈信号和输入信号在输入回路中的连接方式,分为串联反馈和并联反馈。 本实验使用并联电压放大电路。 2. 负反馈网络的性能参数和对开环电路的影响 如上图1-10,设X 为输入信号,表示电压或电流,i X 表示输入信号,f X 表示反馈信号,则净输入信号X ∑ =i X -f X 。 开环放大器的放大倍数(开环增益为): 00X A X ∑= 反馈网络的反馈系数为 0f X F X = 所以反馈放大器的放大倍数即闭环增益为:0of i X A X ==00 1A FA + 可见,加入负反馈放大器的增益减小了01FA +倍。令反馈深度D=01FA +,把FA 称为环路增益。当01FA +>>1时,称为深度反馈。得到: 0111f A FA F =≈+,可见在深度反馈中,放大系数取决于反馈网络决定的反馈系数,几乎与开环放大电路无关。而反馈网络通常由性能稳定的无源原件R ,C 组成,所以负反馈放大器较开环放大器较为稳定。 参数D 可直观显示反馈电路对放大电路的影响: 稳定性的影响: 开环放大电路稳定性为00 A A δ?=,闭环放大电路为00f f f A A D δδ?==,稳定性提高了D 倍。 负反馈电路可以展宽放大电路的通频带: 设开环放大电路的上限截止频率和下限截止频率分别为H f 和L f 。而在加入反馈电路后,上限截止频率扩大为原来的D 倍,下限截止频率缩小了D 倍。 对输入输出电阻的影响:

单闭环电压负反馈调速

单闭环电压负反馈调速系统的动态建模与仿真 学院: 姓名: 学号: 时间:

目录 一、课题要求.............................................................................................................................. - 1 - 1.设计题目........................................................................................................................ - 1 - 2.设计内容........................................................................................................................ - 1 - 3.设计要求........................................................................................................................ - 1 - 4 . 控制对象参数................................................................................................................ - 1 - 二、设计方案.............................................................................................................................. - 2 - 1、概述................................................................................................................................ - 2 - 2、电压负反馈直流调速系统的原理................................................................................ - 2 - 三、参数计算.............................................................................................................................. - 3 - 四、单闭环电压负反馈调速系统的仿真模型.......................................................................... - 4 - 1. 单闭环电压负反馈调速系统的仿真模型的建立......................................................... - 4 - 2.开环带扰动无电压负反馈调速系统的仿真结果........................................................... - 5 - 3. 单闭环不带扰动电压负反馈调速系统的仿真结果..................................................... - 5 - 4. 单闭环带扰动电压负反馈调速系统的仿真结果......................................................... - 6 - 五、实训心得:.......................................................................................................................... - 8 -

电压串联反馈原理

放大电路负反馈的原理特点 一、提高放大倍数的稳定性 引入负反馈以后,放大电路放大倍数稳定性的提高通常用相对变化量来衡量。 因为: 所以求导得: 即: 二、减小非线性失真和抑制噪声 由于电路中存在非线性器件,会导致输出波形产生一定的非线性失真。如果在放大电路中引入负反馈后,其非线性失真就可以减小。 需要指出的是:负反馈只能减小放大电路自身产生的非线性失真,而对输入信号的非线性失真,负反馈是无能为力的。 放大电路的噪声是由放大电路中各元器件内部载流子不规则的热运动引起的。而干扰来自于外界因素的影响,如高压电网、雷电等的影响。负反馈的引入可以减小噪声和干扰,但输出端的信号也将按同样规律减小,结果输出端的信号与噪声的比值(称为信噪比)并没有提高。 三、负反馈对输入电阻的影响 由于负反馈可以提高放大倍数的稳定性,所以引入负反馈后,在低频区和高频区放大倍数的下降程度将减小,从而使通频带展宽。 引入负反馈后,可使通频带展宽约(1+AF)倍。 四、负反馈对输入电阻的影响 (a)串联反馈(b)并联反馈

图1 求输入电阻 1、串联负反馈使输入电阻提高 引入串联负反馈后,输入电阻可以提高(1+AF)倍。即: 式中:ri为开环输入电阻 rif为闭环输入电阻 2、并连负反馈使输入电阻减小引入并联负反馈后,输入电阻减小为开环输入电阻的 1/(1+AF )倍。 即: 五、负反馈对输出电阻的影响 1、电压负反馈使输出电阻减小 放大电路引入电压负反馈后,输出电压的稳定性提高了,即电路具有恒压特性。 引入电压负反馈后,输出电阻rof减小到原来的1/(1+AF)倍。 2、电流负反馈使输出电阻增大 放大电路引入电流负反馈后,输出电流的稳定性提高了,即电路具有恒流特性。 引入电流负反馈后,使输出电阻rof增大到原来的(1+AF)倍。 3、负反馈选取的原则 (1)要稳定静态工作点,应引入直流负反馈。 (2)要改善交流性能,应引入交流负反馈。 (3)要稳定输出电压,应引入电压负反馈; 要稳定输出电流,应引入电流负反馈。 (4)要提高输入电阻,应引入串联负反馈; 要减小输入电阻,应引入并联负反馈。 六、深度负反馈的特点 1、串联负反馈的估算条件 反馈深度(1+AF)>>1的负反馈,称为深度负反馈。通常,只要是多级负反馈放大电路,都可以认为是深度负反馈.此时有: 因为:, 所以:xi≈xf 估算条件:

电压负反馈和电流正反馈自动调速系统的选择

电压负反馈和电流正反馈自动调速系统的选择 转速负反馈自动调速系统,其调速指标是很好的,但是它需要一个测速发电机,增加了设备投资,维修较麻烦,有时安装也困难。从A-G-M开环系统中可以看出,当负载电流增加时,由于发电机端电压的下降以及发电机、电动机换向绕组压降及电动机电枢压降的增加,使电动机反电动势及转速下降,可用发电机端电压作为负反馈以维持发电机电压近似不变;可用负载电流作为正反馈以补偿换向绕组及电动机电枢绕组压降。这样既可得到近似转速负反馈的性能。 下图为电压负反馈调速系统电路图。 图2.5.1电压负反馈系统电路图 Figure 2.5 .1 negative feedback system voltage circuit 发电机电枢两端并联电阻RV,从中引出反馈电压UV,此即为信号引出点。Rv的选择应使流进其电流而引起发电机内部压降可略而不计。UV与给定电压Us是反向的,因而构成了电压负反馈环节。由于是电压反馈,故应选择高阻控制绕组作为CI。图中Rsa是给定回路附加电阻。 式中, 为给定电位器分压比;

为电压负反馈系数; 上图中各环节的电压平衡方程式为 式中,分别为发电机及电动机电枢绕组及换向绕组电阻; 为主回路换向绕组的电阻和。 根据框图,写出电压负反馈调速系统静特性方程: 式中,KV为电压负反馈闭环系统开环放大倍数

图2.5.2具有电压负反馈及电流正反馈系统电路图 Figure 2.5 .2 a negative feedback voltage and current positive feedback system circuit 从图2.5(b)可得静特性方程式

电流电压串联并联负反馈分析

一.电压串联负反馈: 图Z0303(a)为两级电压串联负反馈放大电路,图(b)是它的交流等效电路方框图。 1.反馈类型的判断 (1)找出联系输出回路与输入回路的反馈元件。图Z0303(a)中Rf、Cf、Re1是联系输出回路与输入回路的元件,故Rf、Cf、Re1是反馈元件,它们组成反馈网络,引入级间反馈。 (2)判断是电压反馈还是电流反馈。 可用两种方法来判别,一是反馈网络直接接在放大电路电压输出端,故为电压反馈;二是令Uo = 0,因Uf由Rf、Re1 对Uo分压而得,故Uf= 0反馈消失,所以为电压反馈; (3)判别是串联反馈还是并联反馈。 由图Z0303(a)可以看出:Ube = Ui - Uf 即输入端反馈信号与输入信号以电压形式相迭加,故为串联反馈,也可令Ui=0,此时Uf仍能作用到放大电路输入端,故为串联反馈;还可以根据反馈信号引至共射电路发射极则为串联反馈。 (4)判别反馈极性。 假定Ui为+,则经两级共射电路放大后,Uo为+,经Rf与Re1 分压得到的Uf也为+,结果使得放大电路有效输入信号减弱,故为负反馈。 综上判断结果、该电路为电压串联负反馈放大电路。 2、反馈对输出电量的稳定作用 放大电路引入电压负反馈后,能够使输出电压稳定。任何外界因素引起输出电压不稳时,输出电压的变化将通过反馈网络立即回送到放大电路的输入端,并与原输入信号进行比较,得出与前一变化相反的有效输人信号,从而使输出电压的变化量得到削弱,输出电压便趋于稳定。 可见,负反馈使放大电路具有了自动调节能力。电压负反馈能够稳定输出电压。 3、信号源内阻对串联反馈效果的影响 由上面的讨论可见,对串联反馈Ube = Ui - Uf ,显然,UI越稳定,Uf 对Ube 的影响就越强,控制作用就越灵敏。当信号源内阻Rs = 0时,信号源为恒压源,Us就为恒定值,则Uf的增加量就全部转化为Ube 的减小量,此时,反馈效果最强。因此,串联反馈时,Rs 越小越好,或者说串联反馈适用于信号源内阻Rs 小的场合。 4、放大倍数及反馈系数的含义 对电压串联负反馈电路, Xi = Ui, Xo = Uo,Xf = Uf 故: AUf、FU,分别称为闭环电压放大倍数和电压反馈系数。

放大电路中的负反馈解读

第四章放大电路中的负反馈习题 4.1 判断图4-24所示各电路中有无反馈?是直流反馈还是交流反馈?哪些构成了级间反馈?哪些构成了本级反馈? 4.1解答: (a)R e1:本级直流反馈 R e2:本级交直流反馈 R f,C f:级间交流反馈(因为直流 信号被C f隔直) (b)Re:本级直流反馈 R b:本级直流反馈(因为交流信号被C2 短路到地) (c)R R e2 :本级交直流反馈 R e3:本级直流反馈(因为交流被C3短路) R f:级间交直流反馈 (d)R1,R2,R3为级间交直流反馈 R3:本级交直流反馈

4-1解答续: (e)R2,R4:本级交直流反馈 R L,R6:为级间交直流反馈 (f)R e :本级直流反馈(∵交流信号被C e短路)R1, R2 :本级直流反馈(∵交流信号被C短路到地) (g)R1, R2 :级间交直流反馈 (h)(i) R e2 :本级直流反馈 R e1, R e3 :级间交流反馈 (ii)R f1, R b :级间交直流反馈 R f2, R e1 :级间交直流反馈

4.2指出图4-24所示各电路中反馈的类型和极性,并在图中标出瞬时极性以及反馈电压或反馈电流。 (a)解答:R f,C f引入电压并联交流负反馈 瞬间极性如图示:∵I b↓=I i-I f↑故为负反馈 (b)解答,R b引入电压并联直流负反馈,瞬时极性如图示 ∵I b↓=I i-I f↑故为负反馈 (C)解答:R f, R e1 :引入电压串联交流正反馈(∵直流被C2隔直),瞬时极性如图示:U be=U i+U f, U f与U i极性相同,故为正反馈 (d)解答:R1,R2引入电压串联交直流正反馈,瞬时极性如图示: U ' i=U i+U f, U f与U i极性相同,故为正反馈 (e)解答:R L,R6 引入电流串联交直流负反馈,(即ΔU i=(U+-U i)↓)(即同相端与反相端电位差下降,∴为负反馈) (f)解答:R1,R e 引电容并联直流负反馈(交流被C短路到地)瞬时极性为图示(因I b↓=I i-I f ↑)I f上升,I b下降 (g)解答:R1,R2引入电压并联交直流负反馈 瞬时极性如图示:∵I b↓=I i-I f↑ (h)(i)解答:R b , R f1引入电压并联交直流负反馈 瞬时极性为图示∵I b↓=I i-I f↑故为负反馈 (ii)解答:R f2, R e1引入电流串联交直流负反馈 瞬时极性为图示∵U be↓=U i-U f2↑= U i-U e1↑(U e1上升,U be下降) ∴为负反馈

模拟电路自测题4(反馈与负反馈)

反馈和负反馈放大电路 1. 放大电路中有反馈的含义是___B____。 (a) 输出与输入之间有信号通路(b) 电路中存在反向传输的信号通路 (c) 除放大电路以外还有信号通道 2. 根据反馈的极性,反馈可分为___C____反馈。 (a) 直流和交流(b) 电压和电流(c) 正和负 3. 根据反馈信号的频率,反馈可分为____A___反馈。 (a) 直流和交流(b) 电压和电流(c) 正和负 4. 根据取样方式,反馈可分为_____B__反馈。 (a) 直流和交流(b) 电压和电流(c) 正和负 5. 根据比较的方式,反馈可分为___C____反馈。 (a) 直流和交流(b) 电压和电流(c) 串联和并联 6. 负反馈多用于____A___。 (a) 改善放大器的性能(b) 产生振荡(c) 提高输出电压 7. 正反馈多用于____B___。 (a) 改善放大器的性能(b) 产生振荡(c) 提高输出电压 8. 直流负反馈是指___B____。 (a) 只存在于直接耦合电路中的负反馈(b) 直流通路中的负反馈 (c) 放大直流信号才有的负反馈 9. 交流负反馈是指____B___。 (a) 只存在于阻容耦合电路中的负反馈(b) 交流通路中的负反馈 (c) 变压器耦合电路中的反馈 10.直流负反馈在电路中的主要作用是__C_____。 (a) 提高输入电阻(b) 增大电路增益(c) 稳定静态工作点 11.若反馈信号正比于输出电压,该反馈为___C____反馈。 (a) 串联(b) 电流(c) 电压 12.若反馈信号正比于输出电流,该反馈为____B___负反馈。 (a) 并联(b) 电流(c) 电压 13.当电路中的反馈信号以电压的形式出现在电路输入回路的反馈称为___B____反馈。 (a) 并联(b) 串联(c) 电压 14.当电路中的反馈信号以电流的形式出现在电路输入回路的反馈称为___A____反馈。 (a) 并联(b) 串联(c) 电压 15.电压负反馈可以____A___。 (a) 稳定输出电压(b) 稳定输出电流(c) 增大输出功率 16.电流负反馈可以____B___。 (a) 稳定输出电压(b) 稳定输出电流(c) 增大输出功率 17.对于放大电路,所谓闭环是指____ C_____。 (a) 接入负载(b) 接入信号源(c) 有反馈通路 18. 串联负反馈____A_____。 (a) 提高电路的输入电阻(b) 降低电路的输入电阻(c) 提高电路的输出电压 19. 并联负反馈____B_____。 (a) 提高电路的输入电阻(b) 降低电路的输入电阻(c) 提高电路的输出电压 20. 电压并联负反馈____B_____。 (a) 提高电路的输出电阻(b) 降低电路的输出电阻(c) 提高电路的输出电压 21. 电流串联负反馈____A_____。 (a) 提高电路的输出电阻(b) 降低电路的输出电阻(c) 提高电路的输出电压

放大电路中的负反馈

放大电路中的负反馈 放大电路是主要的电子电路类型,为了确保放大电路能够正常工作,提供稳定的增益、良好的线性,以及其他的一些特殊目的,一般实用的放大电路都加上了负反馈的网络。 在各种系统的控制分析中,电路中的负反馈研究应该是最为深入和细致的了,详细的内容请参阅“电子技术”或“电路分析”专业教科书,本文仅仅是想通过对放大电路中反馈的简单介绍,阐述系统中反馈控制的基本原理。 1、为什么要在电路中设置反馈 半导体技术发展到今天,为电子电路的设计提供了极大的施展空间。现在要设计或制作一个高性能的放大器,在如何提高放大倍数方面已经不是问题,最普通的集成电路运算放大器(LM324,其内部包含了4个相同的独立放大器,价格在1元左右,如下图),其开环电压放大倍数也可以做到几十万倍(80dB~140dB)之高,对于一般的要求来说,这几乎就是无限大的放大倍数了。 然而,在多数的应用中,都要求电路的放大倍数是一个固定不变的有限值。所谓固定不变是指:当工作环境的温度变化;电路输入、输出连接状态发生改变;器件因常时间工作性能老化;因故障更换了主要半导体器件之后,等等的内在的和外部的干扰因素下,放大器的放大倍数都维持在设定值不会变化。这个稳定增益(放大倍数)的要求,其实才是现代电子电路设计的难点,而在电路中使用负反馈技术,是解决这个难题的主要方法。 此外,电路中的负反馈还能解决以下问题: 提高输入阻抗,降低输出阻抗(提高负载能力),优化频率响应,稳定静态工作点,减少线性失真等等,本文不做叙述。 2、电路中最主要的两种负反馈应用示例 ①反相交流放大器 电路见附图。此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。电路无需调试。放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。 放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。负号表示输出信号与输入信号相位相反。按图中所给数值,Av=-10。此电路输入电阻为Ri。一般情况下先取Ri 与信号源内阻相等,然后根据要求的放大倍数在选定Rf。Co和Ci为耦合电容。 ②同相交流放大器 电路见附图。同相交流放大器的特点是输入阻抗高。其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。R4的阻值范围为几千欧姆到几十千欧姆。以上两种基本的反馈放大器,共同点是都具有反馈,而且从输出端取出的反馈信号经过反馈网络后,都加到了运算放大器的负输入端,反馈信号的作用是抵消了输入信号,因此称为负反馈;另一个共同点是,经过分析计算发现,两种放大电路由于反馈网络的加入,使得放大器的放大倍数(增益)的大小,只由反馈网络的电阻参数值决定(Av=-Rf/Ri;Av=1+Rf/R4),只要这几个电阻的阻值是稳定的放大倍数就不会变化,而要确保电阻的阻值始终稳定在规定的范围内,是比较容易做到的。 3、电路中反馈的基本模型概括 4、电路中反馈的类型及其作用: 直流反馈:反馈只对直流分量起作用,反馈元件只能传递直流信号;目的:稳定静态工作点。

7、实验七:电压串联负反馈放大电路

湖北科技学院计算机科学与技术学院 《电路与电子技术》实验报告学号姓名实验日期: 实验题目:电压串联负反馈放大电路 【实验目的】 1.加深理解负反馈对放大电路性能的影响 2.掌握放大电路开环与闭环特性的测试方法 【实验器材】 模拟电子线路实验箱一台 双踪示波器一台 万用表一台 连线若干 其中,模拟电子线路实验箱用到信号发生器、直流稳压电源模块,元器件模组以及“电压串联负反馈放大电路”模板。 【实验原理】 1.参考电路如图1-1所示。 负反馈有四种类型:电压串联负反馈,电压并联负反馈,电流串联负反馈,电流并联负反馈。本实验电路由两级共射放大电路引入电压串联负反馈,构成负反馈放大器。其中反馈电阻RF=10KΩ。 2.电压串联负反馈对放大器性能的影响 (1)引入负反馈降低了电压放大系数

式中,是反馈系数,,是放大器不引入级间反馈 时的电压放大倍数(即,但要考虑反馈网络阻抗的影响),其值可由图1-2所示的交流等效电路求出。 设,则有 式中:第一级交流负载电阻 第二级交流负载电阻 从式中可知,引入负反馈后,电压放大倍数比没有负反馈时的电压放大倍数降低了()倍,并且愈大,放大倍数降低愈多。 图1-2 (2)负反馈可提高放大倍数的稳定性

该式表明:引入负反馈后,放大器闭环放大倍数的相对变化量比开环放大倍数的 相对变化量减少了(1 AF )倍,即闭环增益的稳定性提高了(1 AF )倍。 (3)负反馈可扩展放大器的通频带 引入负反馈后,放大器闭环时的上、下截止频率分别为: 可见,引入负反馈后,向高端扩展了倍,从而加宽了通频带。 (4)负反馈对输入阻抗、输出阻抗的影响 负反馈对输入阻抗、输出阻抗的影响比较复杂。不同的反馈形式,对阻抗的影响不一样。一般而言,串联负反馈可以增加输入阻抗,并联负反馈可以减小输入阻抗;电压负反馈将减小输出阻抗,电流负反馈可以增加输出阻抗。图1-1电路引入的是电压串联负反馈,对整个放大器电路而言,输入阻抗增加了,输出阻抗降低了。它们的增加和降低程度与反馈深度(1 AF )有关,在反馈环内满足 (5)负反馈能减小反馈环内的非线性失真 综上所述,在放大器引入电压串联负反馈后,不仅可以提高放大器放大倍数的稳定性,还可以扩展放大器的通频带,提高输入电阻和降低输出电阻,减小非线性失真。 【实验内容】 1、负反馈放大器开环和闭环放大倍数的测试 (1)开环电路 ①按图1-1接线,F R 先不接入。 ②输入端接入KHz f mV V i 1,1==的正弦波(注意输入mV 1信号采用输入端衰减法)。调整接线和参数使输出不失真且无振荡。 ③按表2.1要求进行测量并填表。 ④根据实测值计算开环放大倍数。 (2).闭环电路 ①接通f R 。 ②按表2.1要求测量并填表,计算vf A 。

习题和解答(第7章负反馈放大电路)(修改)

(华成英,傅晓林,陈大钦,自编) 7-1 选择填空 1.当反馈量与放大电路的输入量的极性_______,因而使________减小的反馈称为________。 a.相同 b.相反 c.净输入量 d.负反馈 e.正反馈 2.为了稳定静态工作点,应该引入_______。为了改善放大器性能,应该引入_______。为了稳定输出电压,应该引入_______。为了稳定输出电流,应该引入_______。 a.直流负反馈 b. 交流负反馈 c.电压负反馈 d.电流负反馈 e.串联负反馈 f.并联负反馈 ; 3.为了减小输入电阻,应该引入_______。为了增大输入电阻,应该引入_______。为了减小输出电阻,应该引入_______。为了增大输出电阻,应该引入_______。 a.电压负反馈 b.电流负反馈 c.串联负反馈 d.并联负反馈 4.负反馈所能够抑制的干扰和噪声是__________。 a.外界对输入信号的干扰和噪声 b.外界对输出信号的干扰和噪声 c.反馈环内的干扰和噪声 d.反馈环外的干扰和噪声 5.为了得到一个由电流控制的电压源,应选择_______负反馈放大电路。为了得到一个由电压控制的电流源,应选择_______负反馈放大电路。 a.电压串联负反馈 b.电压并联负反馈 | c.电流串联负反馈 d.电流并联负反馈 6.为了得到一个由电流控制的电流源,应选择_______负反馈放大电路。 a.电压串联负反馈 b.电压并联负反馈 c.电流串联负反馈 d.电流并联负反馈 7.为了增大从电流源索取的电流并增大带负载的能力,应选择_______负反馈放大电路。为了减小从电压源索取的电流并增大带负载的能力,应选择_______负反馈放大电路。 a.电压串联负反馈 b.电压并联负反馈 c.电流串联负反馈 d.电流并联负反馈 8.负反馈放大电路产生自激的条件是_______。 ~ =1 =-1 c.AB=0 =∞ 9.单管共射放大电路如果通过电阻引入负反馈,则__________。如果单管共集放大电路如果通过电阻引入负反馈,则__________。 a.一定会产生高频自激 b.一定不会产生高频自激 c.一般不会产生高频自激 d.可能产生高频自激 10.多级负反馈放大电路容易引起自激振荡的原因是____________。

各种负反馈电路的作用

各种负反馈的作用 1. 电压负反馈 电压负反馈是指从放大器输出端取出输出信号电压的一部分(或全部)作为负反馈信号,也就说负反馈信号VF与输出电压VO成正比。 电压负反馈的特点是: 电压负反馈能够稳定放大器的输出信号电压。 由于电压负反馈元件是并联在放大器输出端与地之间的,所以能够降低放大器的输出电压 2. 电流负反馈 电流负反馈是指从放大器输出端取出输出信号电流的一部分作为负反馈信号,换句话说:反馈信号VF与输出电流IO成正比。 电流负反馈的特点是: 电流负反馈能够定放大器的输出信号电流。 由于电压负反馈元件是串联在放大器输出回路中的,所以提高了放大器的输出电阻。 3. 串联负反馈 电压和电流负反馈都是针对放大器输出端而言的,指负反馈信号从放大器输出端的取出方式。串联和并联负反馈则是针对放大器输入端而言的,指负反馈信号加到放大器输入端的方式。 串联负反馈网络取出的负反馈信号VF,同放大器的输入信号Vi以串联形式加到放大器的输入回路中的,这样的负反馈称为串联负反馈。 串联负反馈的特点是: 串联负反馈右以降低放大器的电压放大倍数,稳定放大器的电压增益。 由于串联负反馈元件是串联在放大器输入回路中的,所以这种负反馈可以提高放大器的输入电阻。 4. 并联负反馈 并联负反馈是指负反馈网络取出的负反馈信号VF,同放大大器的输入信号Vi以并联形式加到放大器的输入回路中,这样的负反馈称为并联负反馈。 并联负反馈的特点是: 并联负反馈降低放大器的电流放大倍数,稳定放大器的电流增益。 由于并联负反馈元件是与放大器输入电阻相并联的,所以这种负反馈降低了放大器的输入电阻。 5. 负反馈电路种类

负反馈放大电路性能测试实验报告

电压串联负反馈放大电路 一、实验目的 1.加深理解负反馈对放大电路性能的影响 2.掌握放大电路开环与闭环特性的测试方法 二、预习要求 1.复习电压串联负反馈的有关章节,熟悉电压串联负反馈电路的工作原理以及对放大电路性能的影响。 2.估算图3.1所示电路在有反馈和无反馈时的电压放大倍数的大小。设==50,Rp=60K。 3.估算图3.1所示电路在有反馈和无反馈时的输入电阻和输出电阻。 4.自拟实验记录表格。 三、实验元、器件 模拟电子线路实验箱一台双踪示波器一台 万用表一台连线若干 其中,模拟电子线路实验箱用到信号发生器、直流稳压电源模块,元器件模组以及“电压串联负反馈放大电路”模板。 四、实验原理与参考电路 1.参考电路如图3-1所示。

负反馈有四种类型:电压串联负反馈,电压并联负反馈,电流串联负反馈,电流并联负反馈。本实验电路由两级共射放大电路引入电压串联负反馈,构成负反馈放大器。其中反馈电阻RF=10KΩ。 2.电压串联负反馈对放大器性能的影响 (1)引入负反馈降低了电压放大系数 式中,是反馈系数,,是放大器不引入级间反馈时的电压放大倍数(即,但要考虑反馈网络阻抗的影响),其值可由图3-2所示的交流等效电路求出。 设,则有

式中:第一级交流负载电阻 第二级交流负载电阻 从式中可知,引入负反馈后,电压放大倍数比没有负反馈时的电压放大倍数降低了()倍,并且愈大,放大倍数降低愈多。 (2)负反馈可提高放大倍数的稳定性

该式表明:引入负反馈后,放大器闭环放大倍数的相对变化量比开环放大倍数的相对变化量减少了(1 AF)倍,即闭环增益的稳定性提高了(1 AF)倍。 (3)负反馈可扩展放大器的通频带 引入负反馈后,放大器闭环时的上、下截止频率分别为: 可见,引入负反馈后,向高端扩展了倍,从而加宽了通频带。 (4)负反馈对输入阻抗、输出阻抗的影响 负反馈对输入阻抗、输出阻抗的影响比较复杂。不同的反馈形式,对阻抗的影响不一样。一般而言,串联负反馈可以增加输入阻抗,并联负反馈可以减小输入阻抗;电压负反馈将减小输出阻抗,电流负反馈可以增加输出阻抗。图3-1电路引入的是电压串联负反馈,对整个放大器电路而言,输入阻抗增加了,输出阻抗降低了。它们的增加和降低程度与反馈深度(1 AF)有关,在反馈环内满足 (5)负反馈能减小反馈环内的非线性失真 综上所述,在放大器引入电压串联负反馈后,不仅可以提高放大器放大倍数的稳定性,还可以扩展放大器的通频带,提高输入电阻和降低输出电阻,减小非线性失真。 五、实验内容 1.按图3.1组装电压串联负反馈电路,调整Q1,Q2静态工作点(方法同实验一)。输入端加,2mV的正弦电压,输出接示波器CH2,观察输出电压波形是否有自激振荡,若有自激,可在Q2的基极b2和集电极c2之间加消振电容,其容量约为200pF。确认输出电压无自激,不失真,关闭信号

负反馈放大电路分析

新疆大学 课程设计报告 所属院系:电气工程学院 专业:自动化 课程名称:电子技术基础A 设计题目:负反馈放大电路的设计 班级:自动化10-1 学生姓名:孙奥 学生学号:20102102004 指导老师: 程静、刘兵 完成日期:2012.7.7

负反馈放大电路的设计 一、 课程设计的目的 (1)初步了解和掌握负反馈放大器的设计、调试的过程。 (2)能进一步巩固课堂上学到的理论知识。 (3)了解负反馈放大器的工作原理。 (4)了解并掌握负反馈放大电路各项性能指标的测试方法。 (5)加深理解放大电路中引入负反馈的方法和负反馈对放大器各项性能指标的影响。 二、 设计方案论证 2.1框图及基本公式 图1 负反馈放大电路原理框图 图中X 表示电压或电流信号;箭头表示信号传输的方向;符号¤表示输入求和,+、–表示输入信号 与反馈信号是相减关系(负反馈),即放大电路的净输入信号为: id i f X X X =- 基本放大电路的增益(开环增益)为: /o id A X X = 反馈系数为: /f o F X X = 负反馈放大电路的增益(闭环增益)为: /f o i A X X = 2.2负反馈对放大器各项性能指标的影响 负反馈的电路形式很多,但就基本形式来说,可以分为4种:即电流串联负反馈;电压串联负反馈 ;电流并联负反馈;电压并联负反馈。一个放大器,加入了负反馈环节后,虽

图2 第一级放大电路 三极管工作在放大区时满足的条件为:BE U >on U 且CE BE U U ≥ 在电路的直流通路中,节点B 的电流方程为 1R I =2R I +BQ I 为了稳定静态工作点,通常是参数的选取满足 2R BQ I I R BQ I I 因此,12R R I I ≈,B 点电位为212 BQ CC R U V R R ≈+ 12BQ CC R U V R R ≈+ 表明基极电位几乎仅决定于21R R 与对CC V 的分压,而与环境温度无关。 为了提高输入电阻而又不致使放大电路倍数太低,应取IE1=1mA ,并选1β=80,则 be1r =bb'r +(1+1β)T E1 U I =300+(1+80)261 =2.256k ? 利用同样的原则,可得 ()()11119 //1c L o u i be R R U A U r R ββ-==++ 为了获得高输入电阻,且取Au1=50,取R5=1.8k ?,代入Au1=50,求出R3=5.1K ?。 为了计算R4,EQ U =1V ,再利用IE1(R5+R4)=EQ U 得出R4=123?,选R4为100?。

放大电路中的反馈习题及解答

放大电路中的反馈 习题 6.1选择合适的答案填入空内。 (1)对于放大电路,所谓开环是指。 A.无信号源B.无反馈通路 C.无电源D.无负载 而所谓闭环是指。 A.考虑信号源内阻B.存在反馈通路 C.接入电源D.接入负载 (2)在输入量不变的情况下,若引入反馈后,则说明引入的反馈是负反馈。 A.输入电阻增大B.输出量增大 C.净输入量增大D.净输入量减小 (3)直流负反馈是指。 A.直接耦合放大电路中所引入的负反馈 B.只有放大直流信号时才有的负反馈 C.在直流通路中的负反馈 (4)交流负反馈是指。 A.阻容耦合放大电路中所引入的负反馈 B.只有放大交流信号时才有的负反馈 C.在交流通路中的负反馈 (5)为了实现下列目的,应引入 A.直流负反馈B.交流负反馈 ①为了稳定静态工作点,应引入; ②为了稳定放大倍数,应引入; ③为了改变输入电阻和输出电阻,应引入; ④为了抑制温漂,应引入; ⑤为了展宽频带,应引入。 解:(1)B B (2)D (3)C (4)C (5)A B B A B

6.2 选择合适答案填入空内。 A.电压B.电流C.串联D.并联 (1)为了稳定放大电路的输出电压,应引入负反馈; (2)为了稳定放大电路的输出电流,应引入负反馈; (3)为了增大放大电路的输入电阻,应引入负反馈; (4)为了减小放大电路的输入电阻,应引入负反馈; (5)为了增大放大电路的输出电阻,应引入负反馈; (6)为了减小放大电路的输出电阻,应引入负反馈。 解:(1)A (2)B (3)C (4)D (5)B (6)A 6.3判断下列说法的正误,在括号内填入“√”或“×”来表明判断结果。 (1)只要在放大电路中引入反馈,就一定能使其性能得到改善。()(2)放大电路的级数越多,引入的负反馈越强,电路的放大倍数也就越稳定。() (3)反馈量仅仅决定于输出量。() (4)既然电流负反馈稳定输出电流,那么必然稳定输出电压。() 解:(1)×(2)×(3)√(4)×

反馈及负反馈放大电路 习题解答

典型例题和考研试题解析 自测题及解答 【解】1.√ 2. × 3. ①√ ②× 4.× 5.× 6. √ 7.× 8.× 9.× 10.× 【解】1.电流串联负反馈 2.电压串联负反馈 3.电流并联负反馈 4.电压并联负反馈 5.电压串联负反馈 6.负反馈 7.交流负反馈 8.直流负反馈 9. F A 1 10. 将放大电路的输出量(电压或电流)的全部或一部分,通过一定的电路(网络)送回输入回路,与输入量(电压或电流)进行比较。 选择题 【解】1. B. 2. B. 3. B. 4. B. 、C 9. A 、C 、E 如图所示,它的最大跨级反馈可从晶体管的集电极或发射极引出,接到的基极或发射极,共有4种接法(①和③、①和④、②和③、②和④相连)。试判断这4种接法各为何种组态的反馈是正反馈还是负反馈设各电容可视为交流短路。 图T 【解】简答①和③相连:电压并联组态,负反馈; ①和④相连:电流并联组态,正反馈; ②和③相连:电压串联组态,正反馈; ②和④相连:电流串联组态,负反馈。 详解:(a )①和③相连:如图解T (a ),用瞬时极性法分析可知,从输入端来看:f i id i i i ,净输入电流减小,反馈极性为负;反馈回来的信号与输入信号在同一节点,表现为电流的形式,为并联反馈;从输出端来看:反馈信号从电压输出端引回来与输出电压正比,为电压反馈。总之,①和③相连为电压并联负反馈。 (b )①和④相连:如图解T (b ),用瞬时极性法分析可知,输入端f i id i i i ,净输入电流增加,反 馈极性为正,且为并联反馈;从输出端来看:反馈信号从非电压输出端引回来,反馈信号不与输出电压成正比,而与输出电流成正比,为电流反馈。总之,①和④相连为电流并联正反馈; (c )②和③相连:如图解T (c ),用瞬时极性法分析可知,从输入回路来看:f i id u u u ,净输入 电压增加,反馈极性为正;反馈回来的信号与输入信号不在同一节点,表现为电压的形式,为串联反馈;从输出端来看:反馈信号从电压输出端引回来与输出电压成正比,为电压反馈。总之,②和③相连为电压串联正

相关文档
最新文档