五种液压同步控制方案及精度

五种液压同步控制方案及精度
五种液压同步控制方案及精度

五种液压同步控制方案及精度

! q& F2 c(

X& K 在多支路驱动器同时动作的应用设计中,等速同步驱动出现问题较为突出。为简化问题,用两个油缸的举升平台为例,下列公式和计算方法适应与多数驱动器,马达或油缸。

如果载荷时对两个油缸不对称,油缸速度V1和V2不同,Q1和Q2流量不同,则油缸(1)和油缸(2)举升行程也不相同。看看下面的例子中油缸伸出速度不同对平台的水平位置的影响。

图1:两个油缸的举升平台

图2:平台的

水平倾斜

根据公式计算,速度变化时,平台倾斜角度随之变化,请见上表。可以根据工况来选择不同的设计方案。! K# I$ l; U$ m. O" n% X4 Y

方案1:压力补偿分流阀

压力补偿分流阀将一路供油分为两路等量供油,不受输入输出压力的影响。

当平台负载变化时,滑阀(4)在分流阀(3)中自动滑移,以补偿P1与P2压力的压差。压力通过滑阀内部的钻孔作用于相反一侧滑阀的端面,若P1压力较高,则相反一端的开口减少,其Q2开口流量相应减少,反之皆然。进口压力=高压出口的压力+开口的压降。集流阀的同步精度约为5-10%。* a( Q% M; l# Q

0 V$ u1 c" \" M$ Y) y1 I

0 R8 u* p% Z0 ^- Y; r* F

方案2:压力补偿流量阀

压力补偿流量阀可以不受压力波动的影响,通过独立对个阀流量进行调整,满足同步速度的要求。该方案适用等量或不等量同步控制,对两路阀手动微动调整可以满足不同速度的要求。同步精度约为5%。

0 ~4 _! l9 Q1 e0 D. O! a% ~( Z

方案3:同型号液压泵

采用两个同样型号的液压泵也可实现同步控制。但是负载压力波动会影响液压泵的内泄。两泵方案实现调速较困难。控制的精度约为5%。2 G* \% l9 f% {2 w; y

方案4:双杆等速油缸串联回路) b; w* i$ A U# }9 k/ j2 W

采用双杆等速油缸串联回路的主要优点是容积效率较高。由于油缸1排出的流量与进入油缸2的流量相等,所以两油缸的速度相等。该方案等速同步控制精度约为1%。

缺点是油缸1的压力为负载的2倍,另外双杆油缸的安装空间较大。) p+ b. q; E$ u# B) |- N) f' g

$ [+ z, ~' M* I: I6 j, `/ f

方案5:同步液压齿轮分流器5 Q4 N( u' ]+ ], j

旋转式分流器是将一路供油分为两路或多路等量或不等量供油,供油不受输入输出压力的影响。

双片分流器是由两个相同排量的马达组成,采用公共轴连接,因此两个马达的速度相同,流量也相同。工作原理同于马达,由于驱动轴几乎不损失动力,所以各马达片间压降极小。在结构可以根据流量速度采用不同数量和不同型号的马达组合,选配灵活,适应范围较广。由于马达内泄较低,同步控制精度约为1%。

该方案在同步控制中精度高,成本低,应用广泛。

液压驱动双油缸不同步的原因与解决方法

液压驱动双油缸不同步的原因与解决方法 The Standardization Office was revised on the afternoon of December 13, 2020

液压驱动双油缸不同步的原因与解决方法 液压油缸在斗轮堆取料机、起重机械、工程机械等设备上的得到十分广泛的应用,其特点是机构简单,设计制造方便。而在大多数场合下设备俯仰机构采用的是双油缸驱动,这就带来了双油油缸不同步问题。所谓双油油缸不同步是指两个油缸在运动时活塞杆所行走的位移量不同导致被支撑结构出现被扭曲或承受扭转载荷,严重时被支撑梁会出现过大的扭转角度使得设备无法正常运行或出现被支撑梁应力过大等问题。双油缸运行不同步的原因:1、两个油缸外载荷的偏差,如两个油缸的阻力不同、摩擦力不同会导致不平衡。其中阻力小的油缸位移量就会大一些。2、内部摩擦力的不同,如每个油缸的活塞与油缸之间,活塞杆与密封件之间的摩擦里的差距导致油缸不同步。3、两个油缸的输油管路上液压油沿程阻力的不同导致油缸出现不同步。4、控制原件调整的偏差导致流量的偏差出现不同步,如每个油缸使用独立的节流阀会出现进出油的流量的差别影响到两个油缸的同步。5、被支撑件的油缸支撑点最初就已经出现偏差,即初始状态就是偏斜的。6、油缸使用时间过长后出现活塞与油缸之间内泄漏导致双油缸不同步。双油缸运行不同步的解决办法:1、机械刚性同步与机械传动同步机械刚性同步是将被驱动件制造成具有足够刚度的结构,当油缸出现不同步现象时靠其自身的较强的刚度来实现同步。这种方式只有在结构设计条件许可的条件下进行。机械传动同步是将被驱动件在条件许可时采用齿轮或齿条的附属设施实现双油缸的同步。这种同步方式需要在机构具有特定条件下实施。2、回路中使用节流采用节流阀后可以分别调整两个油缸的进出口的液压油流量,达到调整两个油缸速度的目的。最终实现两个油缸同步的调整。优

液压同步回路的方法及特点

液压同步回路的方法及特点 液压缸机械结合同步回路 图1 中回路由两执行油缸和刚性梁组成,通过刚性梁联接实现两缸同步,图2 中回路由两执行油缸、齿轮齿条缸组成,通过齿轮齿条将两缸联接在一起,从而实现同步。 两液压回路液压缸的同步都是靠机械结构来保证的,这种回路特点是同步性能较可靠,但由于油缸的受力有差别时硬性的机械作用力可能对油缸有所损伤,同时对机械联接的 强度要求增加. 2 串联液压缸同步回路 图3 中回路由泵、溢流阀、换向阀、两串联缸组成,要求实现两串联缸同步。实现此串联液压缸同步回路的前提条件是:必须使用双侧带活塞杆的液压缸,或者串联的两油腔的有效作用面积相等,这样根据油缸速度为流量与作用面积的比值,油缸的速度才能相同。但是,这种结构往往由于制造上的误差、内部泄露及混入空气等原因而影响其同步性。对于负载一定时,需要的油路压力要增加,其增加的倍数为其所串联的油缸数。为了补偿因为泄 露造成的油缸不同步问题,在设计同步回路时可以采用带补油装置的同步回路,见图4。 图4 中回路较图3 增加了液压锁和控制液压锁打开的换向阀,这条油路的增加可使两串联缸更好地实现同步。同样,缸Ⅰ的有杆腔A和缸Ⅱ的无杆腔B 的受力面积相同。在工作状态,活塞杆伸出的情况下,如果缸Ⅰ先伸出到底部,限位开关的作用使电磁换向阀得电,压力油进入 B 腔补入一部分油液,使油缸Ⅱ完成全部行程;如果缸Ⅱ先伸出到底部,限位开关的作用使电磁阀得电,液控单向阀打开,使A腔放出部分油液,使油缸Ⅰ完成全部行程。

3 采用节流阀的同步回路 用节流阀来控制工作缸的同步,其结构比较简单,造价低廉,且同步效果较好,因此,是在液压同步回来设计中较常用的控制方法。

液压缸选型参考

【液压缸选定程序】 程序1:初选缸径/杆径(以单活塞杆双作用液压缸为例) ※ 条件一 已知设备或装置液压系统控制回路供给液压缸的油压P、流量Q及其工况需要液压缸对负载输出力的作用方式(推、拉、既推又拉)和相应力(推力F1、拉力F2、推力F1和拉力F2)的大小(应考虑负载可能存在的额外阻力)。针对负载输出力的三种不同作用方式,其缸径/杆径的初选方法如下: (1)输出力的作用方式为推力F1的工况: 初定缸径D:由条件给定的系统油压P(注意系统的流道压力损失),满足推力F1的要求对缸径D进行理论计算,参选标准缸径系列圆整后初定缸径D; 初定杆径d:由条件给定的输出力的作用方式为推力F1的工况,选择原则要求杆径在速比~2(速比:液压缸活塞腔有效作用面积与活塞杆腔有效作用面积之比)之间,具体需结合液压缸回油背压、活塞杆的受压稳定性等因素,参照相应的液压缸系列速比标准进行杆径d的选择。 (2)输出力的作用方式为拉力F2的工况: 假定缸径D,由条件给定的系统油压P(注意系统的沿程压力损失),满足拉力F2的要求对杆径d进行理论计算,参选标准杆径系列后初定杆径d,再对初定杆径d进行相关强度校验后确定。 (3)输出力的作用方式为推力F1和拉力F2的工况: 参照以上(1)、(2)两种方式对缸径D和杆径d进行比较计算,并参照液压缸缸径、杆径标准系列进行选择。 ※ 条件二 已知设备或装置需要液压缸对负载输出力的作用方式(推、拉、既推又拉)和相应力(推力F1、拉力F2、推力F1和拉力F2)大小(应考虑负载可能存在的额外阻力)。但其设备或装置液压系统控制回路供给液压缸的油压P、流量Q等参数未知,针对负载输出力的三种不同作用方式,其缸径/杆径的初选方法如下:(1)根据本设备或装置的行业规范或特点,确定液压系统的额定压力P;专用设备或装置液压系统的额定压力由具体工况定,一般建议在中低压或中高压中进行选择。 (2)根据本设备或装置的作业特点,明确液压缸的工作速度要求。 (3)参照“条件一”缸径/杆径的初选方法进行选择。 注:缸径D、杆径d可根据已知的推(拉)力、压力等级等条件由下表进行初步查取。 不同压力等级下各种缸径/杆径对应理论推(拉)力表

五种液压同步控制方案及精度

五种液压同步控制方案及精度 ! q& F2 c( X& K 在多支路驱动器同时动作的应用设计中,等速同步驱动出现问题较为突出。为简化问题,用两个油缸的举升平台为例,下列公式和计算方法适应与多数驱动器,马达或油缸。 如果载荷时对两个油缸不对称,油缸速度V1和V2不同,Q1和Q2流量不同,则油缸(1)和油缸(2)举升行程也不相同。看看下面的例子中油缸伸出速度不同对平台的水平位置的影响。 图1:两个油缸的举升平台 图2:平台的 水平倾斜

根据公式计算,速度变化时,平台倾斜角度随之变化,请见上表。可以根据工况来选择不同的设计方案。! K# I$ l; U$ m. O" n% X4 Y 方案1:压力补偿分流阀 压力补偿分流阀将一路供油分为两路等量供油,不受输入输出压力的影响。 当平台负载变化时,滑阀(4)在分流阀(3)中自动滑移,以补偿P1与P2压力的压差。压力通过滑阀内部的钻孔作用于相反一侧滑阀的端面,若P1压力较高,则相反一端的开口减少,其Q2开口流量相应减少,反之皆然。进口压力=高压出口的压力+开口的压降。集流阀的同步精度约为5-10%。* a( Q% M; l# Q 0 V$ u1 c" \" M$ Y) y1 I

0 R8 u* p% Z0 ^- Y; r* F 方案2:压力补偿流量阀 压力补偿流量阀可以不受压力波动的影响,通过独立对个阀流量进行调整,满足同步速度的要求。该方案适用等量或不等量同步控制,对两路阀手动微动调整可以满足不同速度的要求。同步精度约为5%。 0 ~4 _! l9 Q1 e0 D. O! a% ~( Z 方案3:同型号液压泵 采用两个同样型号的液压泵也可实现同步控制。但是负载压力波动会影响液压泵的内泄。两泵方案实现调速较困难。控制的精度约为5%。2 G* \% l9 f% {2 w; y

双作用单杆活塞式液压缸毕业论文正稿

v .. . .. 目录 设计题目---------------------------------------------------------------------------2 液压缸的选型---------------------------------------------------------------------2 液压缸主要参数的计算 液压缸主要性能参数-----------------------------------------------------2 缸筒内径(缸径)计算--------------------------------------------------2 缸壁壁厚的计算------------------------------------------------------------2 流量的计算------------------------------------------------------------------3 底部厚度计算---------------------------------------------------------------4 最小导向长度的确定------------------------------------------------------4 主要零部件设计与校核 缸筒的设计------------------------------------------------------------------5 缸筒端盖螺纹连接的强度计算-----------------------------------------6 缸筒和缸体焊缝连接强度的计算--------------------------------------6 活塞设计----------------------------------------------------------------------7 活塞的密封-------------------------------------------------------------------8 活塞杆杆体的选择----------------------------------------------------------8 活塞杆强度的校核----------------------------------------------------------8 液压缸稳定性校核----------------------------------------------------------9 活塞杆的导向、密封和防尘---------------------------------------------9 致谢-----------------------------------------------------------------------------10 参考文献------------------------- 一.设计题目 双作用单杆活塞式液压缸设计 主要设计参数: 系统额定工作压力:p= 25(Mpa)驱动的外负载:F =50(KN) 液压缸的速度比:λ=1.33 液压缸最大行程:L =640 (mm) 液压缸最大伸出速度:λ=4 (m/min) 液压缸最大退回速度:v t =5.32(m/min) 缸盖连接方式:螺纹连接 液压缸安装方式:底座安装 缓冲型式:杆头缓冲 二.液压缸的选型

液压驱动双油缸不同步的原因与解决方法

液压驱动双油缸不同步的原因与解决方法 液压油缸在斗轮堆取料机、起重机械、工程机械等设备上的得到十分广泛的应用,其特点是机构简单,设计制造方便。而在大多数场合下设备俯仰机构采用的是双油缸驱动,这就带来了双油油缸不同步问题。所谓双油油缸不同步是指两个油缸在运动时活塞杆所行走的位移量不同导致被支撑结构出现被扭曲或承受扭转载荷,严重时被支撑梁会出现过大的扭转角度使得设备无法正常运行或出现被支撑梁应力过大等问题。双油缸运行不同步的原因:1、两个油缸外载荷的偏差,如两个油缸的阻力不同、摩擦力不同会导致不平衡。其中阻力小的油缸位移量就会大一些。2、内部摩擦力的不同,如每个油缸的活塞与油缸之间,活塞杆与密封件之间的摩擦里的差距导致油缸不同步。3、两个油缸的输油管路上液压油沿程阻力的不同导致油缸出现不同步。4、控制原件调整的偏差导致流量的偏差出现不同步,如每个油缸使用独立的节流阀会出现进出油的流量的差别影响到两个油缸的同步。5、被支撑件的油缸支撑点最初就已经出现偏差,即初始状态就是偏斜的。6、油缸使用时间过长后出现活塞与油缸之间内泄漏导致双油缸不同步。双油缸运行不同步的解决办法:1、机械刚性同步与机械传动同步机械刚性同步是将被驱动件制造成具有足够刚度的结构,当油缸出现不同步现象时靠其自身的较强的刚度来实现同步。这种方式只有在结构设计条件许可的条件下进行。机械传动同步是将被驱动件在条件许可时采用齿轮或齿条的附属设施实现双油缸的同步。这种同步方式需要在机构具有特定条件下实施。2、回路中使用节流采用节流阀后可以分别调整两个油缸的进出口的液压油流量,达到调整两个油缸速度的目的。最终实现两个油缸同步的调整。优点是比较简单。缺点是同步效果不佳。调整后同步的偏差仍然比较大。图1 在油缸进出油口加节流阀3、在液压回路中使用分流阀与集流阀或者调速阀分流阀与集流阀或者调速阀调整两个油缸的同步效果要比采用节流阀好一些。这是因为分流阀与集流阀或者调速阀对流量的控制相对准确。图2 在两个油缸的有杆腔与无杆腔进出油口加分流阀与集流阀或调速阀4、两个油缸分别使用独立定量泵供油实现双缸同步采用两个油泵分别驱动两个油缸,由于两个油泵的流量相等。两个油缸之间的进出油缸的液压油不受相互牵连。尽管载荷有所不同,但在流量相同的条件下可以实现同步。5、回路中采用同步马达实现双油缸同步图3 在双缸的进油口加同步马达供油的同

多种液压同步的控制方式201811

多种液压同步的控制方式 Zhujun 本文介绍了多种液压同步的控制方式,并结合现场实际使用情况详细分析了各种控制方式使用要求、控制的特点和投资成本的高低;说明控制方式的选择必须根据现场使用工艺要求进行比较和确定。在工业或者军工设备上有很多场合要求两个或多个液压缸同步动作,就产生了液压系统同步问题的要求,根据工况要求和投资成本可以使用多种液压同步的控制方案。 1. 多个普通节流阀或者调速阀同时使用,使用在同步要求不是很高或者同步功能可以通过机械结构进行缓冲的场合,特点是控制简单,投资成本非常低。比如某厂的板坯翻转台就使用这种控制方案,由于其用于线外设备,且对同步要求不是很高,达到基本同步即可满足工艺参数。(附图1)而且这种同步控制方式成本非常低,达到了既满足工艺动作要求,又满足投资成本控制的要求,非常合适此类场合的使用选择。 2. 使用分流集流阀:分流集流阀又称速度同步阀,是分流阀、集流阀、单向分流阀、单向集流阀的总称。它们在液压系统中,可使同一系统中的2—4个相同的执行元件,无论负载大小如何,均能达到速度同步的运行目的。自调式分流集流阀是在分流集流阀基础上,增加了流量、压力自调节能力,使得该阀可以适应大的流量、压力变化范围和大的偏载工作条件。如某钢厂包盖提升机构液压控制如图2 3. 使用同步马达,如某炼钢厂转炉裙罩提升控制,转炉裙罩是一个非常庞大的结构件,与其他设备还有配合要求,因此对其提升的同步有一定的要求,特别是要求可靠性比较高,一旦控制功能发生故障,将会引起严重的后果和巨大的经济损失。为了达到高可靠性,这里优先选择机械原理的同步控制方案,因此比例伺服阀加位置传感器的同步控制方法这里不合适;由于此设备运动过程中与其他设备还有配合要求,因此同步要求比较高,所以普通的分流集流阀在这里精度达不到要求。为了满足上述的工艺动作要求,使用同步马达在这里比较合适。使用精度合适的同步马达可以满足设备的同步控制要求,同时机械同步大大确保了设备的可靠性,确保生产线能够顺利运行,避免生产事故和不可估量的经济损失。 4. 使用同步马达配合普通小型换向阀 在对同步要求较高的时候,而又不愿意增加投资成本,就可以采用另外一种简单可靠的同步控制系统,他的原理是正常情况下使用同步马达保持同步,在油缸的位置传感器检查的同步误差超过设计值的时候,打开小型同步阀对油缸进行微量的调整,使油缸回到同步状态中。如某生产线使用的同步顶升系统附图。此系统顶升力量近百吨,且每动作一次就要求保持位置在40分钟,如此长的保压时间,难免两个油缸产生误差,一般的传统控制方式采用两个比例阀单独控制两个带位置传感器的油缸,保压过程中产生不同步时控制相对应的比例阀来调整油缸,但是这种方式成本较高,且无法避免软件故障带来的事故停产和其他经济损失,为了达到高可靠性,又能够控制设备投资成本,改成如图示的系统后,不仅降低了成本,同时完全实现了原同步控制要求。 5. 使用伺服阀配合液压缸位置传感器 这种控制方式控制的系统同步精度非常高,能够时刻保持同步,而且频响可以达到较高的水平;但是投资成本非常高并且控制方式比较复杂。除非设备要求较高的状态,不推荐使用。如图所示某生产线使用的同步振动系统。此系统对应的两个油缸要求完全同步,且两个油缸件基本没有机械刚度,同时,两个油缸作高速高频往复运动,工艺要求每时每刻两个油缸均保持相同的转态。对这类要求非常苛刻的同步控制,只有采用下图的控制方式来思想。 6.其他 当然近年来又参数了一些新的控制技术如北京某公司开发的数字液压技术来实现同步控制,达到了很高的水平,但是业绩有限且成本难于控制,此类技术还有待于更近一步的研究和大家的关注。 总之,液压同步控制的方案非常多,具体使用过程中应该根据实际的工艺动作要求,安装可靠性的要求和投资成本的预算等多方面因素最终确定具体的控制方案。

液压多缸同步方法的选择

1有关程控液压同步分流器 第一章概况 液压技术是实现现在传动与自动化控制的关键技术之一,液压技术以器特有的特性,可以实现体积小,高响频,易扩展,柔性传输,无缝无级变速,可操控性能好,易于实现直线运动等优点征服世界,从而世界各国都对液压工业的发展给予了很大在重视,而液压同步技术,则是液压技术里的一个很大的分支,有这举足轻重的地位,特别是在高精度,高响频率,大流量,长行程领域.然而,这个技术基本全部掌握在国外几家大公司受力,因此很多地方的运用都受到了这样那样的限制. 一目前运用的液压多缸同步优缺点分析 1: 同步阀同步: 同步阀是最老的技术之一,使用分流截流方式实现同步,有点的价格便宜,安装方便.流量范围大.缺点精度低,抗偏载能力差,需要反复调节,只适用同步要求不高,没有同步危险的地方.属于低端产品,也比较成熟.误差终点补偿.如果出现偏载严重或者油缸卡滞,同步效果随即失效. 正常同步精度5%-10% 1 无调节同步阀 2可调节同步阀 3 电控调节同步阀

2、同步缸同步: 同步缸是容积同步,同步精度高,抗偏载能力强,对油品抗污染能力强, 价格相应较高,属于被动同步, 缺点是体积大, 流量小, 补油困难, 安装受限, 体积不能做的很大, 否则会严重影响同步精度和安全, 油缸出现内泄补油困难.可以在合适的地方使用.液压油不循环,容易 升温和污染,影响系统工作. 正常同步精度0.1%-5% 1 同步缸(流量小) 2 串联油缸(制作工艺要求高) 3 双出头油缸串联(压力损失大,加工精度要求高,维修困难) 4 同步缸是同步精度理论上的0,但是由于制造精度的原因,不 能做得很大,在流量,小行程时可以采用,大流量,大行程时, 不适合. 3、同步马达(同步分流马达): 同步马达也是采用容积同步方式, 用同心轴连接,同步性能好,抗 偏载能力强,抗污染能力强, 缺点体积大,价格高, 维修困难,使用有 限制,必须在转速范围才可以, 目前是主流,使用范围广.也可用于增压. 同步精度1%-10%

液压同步顶升控制系统研究

液压同步顶升控制系统研究 发表时间:2019-12-06T10:53:30.343Z 来源:《电力设备》2019年第16期作者:赵印 [导读] 摘要:同步顶升液压系统是同步顶升技术装备的核心执行机构,采用该技术可以对桥梁等建筑物实施不损伤其原有的结构顶升或者是进行水平的移动,这种方法对比于传统爆破拆除方式来说,具有经济环保、无污染、效率高、交通中断时间短等诸多优点。 (中国核工业二三建设有限公司山东荣成 264300) 摘要:同步顶升液压系统是同步顶升技术装备的核心执行机构,采用该技术可以对桥梁等建筑物实施不损伤其原有的结构顶升或者是进行水平的移动,这种方法对比于传统爆破拆除方式来说,具有经济环保、无污染、效率高、交通中断时间短等诸多优点。基于此,本文主要对液压同步顶升控制系统进行分析探讨。 关键词:液压同步;顶升控制系统 前言 集成了液压技术、机械结构、计算机算法和电气自动化控制等多家先进理论技术的液压同步顶升系统这一新型施工技术装备可高效精确经济用于改造各类大小桥梁、建筑的平移抬升等施工,液压系统具有系统足够安全,功率密度高能够提供足够的负载,采用集中控制,分散布置,各顶升点既能同步工作,又能协同工作,可把大范围的无极变速的大推力与力矩直线运动进行实时动态监控和智能化先进管理,随着电液控制技术与机电一体化的结合与发展,各种元件的体积愈发的小控制精度愈发的高,更是大大的直接推动了液压系统有关技术的进步与发展。 1、液压同步顶升控制系统 1.1系统简介 液压同步顶升控制系统的原理如图1所示。该升降台有3个液压升降缸,通过3个比例伺服阀控制升降缸的上升与下降,并推动负载上升或下降。在工作过程中,升降支座承载能力为800kN。同时,负载在上升、下降过程中要求升降台严格同步运行,防止负载在运行过程中倾斜、滑落而造成重大的事故。 图1升降支座液压顶升系统原理 1.2系统模型 该系统为典型电液位置伺服系统,控制器根据指令输出控制信号,通过D/A电路转换为模拟电压信号Ui,该电压信号通过比例伺服阀转化为滑阀的阀芯位移信号xv,进而转化为出口流量QL,从而控制双作用液压缸的行程位移xp,再通过位移传感器将xp转换为反馈信号Uf反馈回控制器,构成完整的闭环系统。对系统进行简化,该闭环系统的开环传递函数为: K0为放大器的增益;Kv为比例系数;Kq为伺服阀流量增益;Ap为液压缸活塞有效面积;ωn为固有频率;ξn为阻尼比;βe为系统弹性模量;Vt为液压缸两腔总容积;Mt为负载质量;Bp为负载的黏性阻尼系数;Kc为伺服阀流量压力系数;Ct为液压缸总泄漏系数。 2、液压同步顶升工艺方案设计 (1)作业点均匀分散布置 桥梁等建筑物体积重量确实都很大,要实现对其成功进行有效的顶升作业,作业用的液压缸执行件间必须采取分散布置才能均匀分力,在实际的顶升作业过程中液压缸最好均匀分散布置在目标物下方提前计算了的重要顶升作业点位,顶升作业时这几十个液压缸将近乎均匀的分担目标物的所有相关负载;同样的应用于平移作业时,液压执行作业缸也要提前均匀布置到计算好的作业点上。 (2)集中处理操作 考虑到诸如安全、工人数目等因素,操作工人不能去把现场的大范围里面分散布置每个液压缸等执行机构进行一对一手动直接控制,而是在安全的中心控制室内通过全程监控处理系统对顶升作业的液压缸的每一步动作进行远程监视控制现场实时的各缸的工作参数并可以远程修正作业等。 (3)多缸同步力控 体积大质量分布轻重不均的桥梁等建筑物,使得分散开来均匀布置大范围里面的液压缸所受载荷大小情况不可能相同,但是每个执行缸的每次动作所加载的载荷必须与其外部力大致匹配而且可以实时控制,预防建筑物在顶升作业过程中因为受力不均匀导致发送应力集中或形成裂纹而报废。 (4)多缸同步位控 当分散布置在比较大范围里的每一个液压执行缸作业时的位移要求是可以严格实现对不均衡载荷的同步顶升或者下降过程实时控制,从而保证建筑物顶升作业过程中的每一环节的位置实时可以控制。 5)实时动态监控 技术员在中心控制室内通过监视控制系统对每一个液压缸的任意时间的压力、位移进行远程监视预判操作,并且能看到压力、位移的

一种双作用多级液压缸的设计与应用_臧克江.

文章编号 :1008-1402(2006 04-0524-05 一种双作用多级液压缸的设计与应用 臧克江 , 蒲红 , 李彩花 , 胡晓平 (佳木斯大学机械工程学院 , 黑龙江佳木斯 154007 摘要 :通过对一种双作用多级液压缸伸缩过程的分析 , 弄清了影响此种双作用多级液压缸动作顺序的几何要素和系统的力学要素 , 确定了此种双作用多级液压缸设计原则及液压缸正常工作的条件 , 为此种双作用多级液压缸的设计及应用提供了理论依据 . 关键词 :液压 ; 双作用 ; 多级缸 中图分类号 : TH137文献标识码 : A 根据工作要求设计了如图 1所示的液压系统 . 系统由变量泵供油 , 三位四通换向阀控制液压缸的伸缩 , 液控单向阀保证液压缸伸缩停在任意位置 , 通过单向节流阀调节液压缸缩回速度 , 电磁溢流阀实现系统的调压和卸荷

. 图 1液压系统原理图 在系统调试过程中发现 , 液压缸活塞外伸时 , 按照先大后小的顺序 , 而在液压缸活塞回缩时本应 该按先小后大的顺序时 , 可是出现按先大后小的顺序 . 如果在回缩过程中三位四通换向阀电磁铁失电 , 使三位四通换向阀处中立位置 , 出现大活塞快速外伸 , 小活塞杆快速回缩 , 负载急剧下落 , 不能保证负载回落时停在任意位置的要求 , 实质上此系统不能正常工作 . 本文对此系统出现的现象进行了研究 , 提出了多级双作用液压缸设计及使用时应注意的事项 . 1液压缸结构设计 由于系统对负载的运动速度没有过多要求 , 只是对推力和行程有要求 , 因此本系统参考文献 [1]对液压缸进行了机构设计 , 其机构简图如图 2(a 所示 . 此液压缸为

一种补偿的双杆串联液压缸新同步回路

在液压系统中,使两个或多个液压缸在运动中保持相对位置或速度不变的回路称为同步回路。在多缸液压系统中,往往由于液压缸负载、摩擦阻力、泄漏、制造精度、结构变形以及油液中的含气量等因素的差异而不能使串联的液压缸保持同步,性能良好的液压回路要尽量克服或减少这些因素的不良影响。有关带补偿措施的串联液压缸同步回路,很多研究工作者对其进行了研究与改进。长沙大学汪大鹏做了开创性的工作,提出了几种单杆串联液压缸带补偿措施的新同步回路,采用单向阀、单向阀和顺序阀、在液压缸端盖和活塞上装单向阀来消除误差,但这几种同步回路只能在液压缸下行时消除误差,反向则不行。汪大鹏又提出了双杆串联液压缸的同步回路的补偿措施,采用单向阀、单向阀与顺序阀以及在活塞上装单向阀来消除误差。这几种补偿措施虽然可以消除双向误差,但需要在液压缸和活塞上另外加工油孔,不仅使液压缸加工工序和造价增加,而且由于油孔的存在,易产生应力集中,影响液压缸和活塞寿命,特别是活塞受其影响较大。另外由于使用多个单向阀,连接比较复杂。 本文提出了几种新的带补偿装置的双杆串联缸同步回路,可以免去加工油孔及其带来的不良影响,消除误差更准确、及时,而且价格也不贵。 2 现有的单杆串联缸同步回路 教材上提到一种带补偿装置的串联缸同步回路,如图1a所示,其工作原理简介如下。 图1 同步回路工作原理 2个串联的液压缸5和6,有效工作面积相等而使进出流量相等,理论上升降可同步,实际上产生的误差都可在每一个下行运动中消除。 例如,当1Y通电,三位四通电磁换向阀2左位接人回路,液压缸5和6活塞同时下行,如果缸5活塞先到达行程端点,则挡块压下行程开关1S,1S给三位四通电磁换向阀3发信号,使电磁铁3Y通电,换向阀3左位接人回路,压力油经换向阀3和液控单向阀4进入缸6上腔,进行补油,使其活塞继续下行到达行程端点,积累误差便可消除。 如果缸6活塞先到达行程端点,则挡块压下行程开关2s,2S给三位四通电磁换向阀3发信号,使电磁铁4Y通电,换向阀3右位接人回路,由于缸6先到达行程端点,遇到阻力,缸5上腔油压升高,高压油便进人液控单向阀4的控制腔,打开阀4,缸5下腔便与油箱接通,使其活塞继续下行到达行程端点,从而消除积累误差。 已有的这种同步回路的缺点是只能在液压缸下行时消除误差,上行时则不行,作者针对这种回路进行了改进,使液压缸双向都可消除误差。 3 对单杆串联缸同步回路的改进 针对图1a我们进行了改进,图1b和图1c是改进后的新同步回路,它们不仅克服了图1a中回路上行不能消除积累误差的缺点,而且结构简单,连接方便。3.1 采用两三位四通电磁换向阀对称连接的同步回路(1)图1b是新的带补偿装置的两缸双杆串联缸同步回路,与图la相比,保持了原有的液控单向阀和换向阀,增加了两个行程开关3S、4s和一个三位四通电磁换向阀5,使换向阀4和5对称水平放置,其工作原理如下。 如当1Y通电,三位四通电磁换向阀2左位接人回路,液压缸6和7活塞同时下行,如果缸6活塞先到达行程端点,则挡块压下行程开关1S,1S给三位四通电磁换向阀3发信号,使电磁铁4Y通电,换向阀3左位接入回路,压力油便不再经过缸6,而是经换向阀3和液控单向阀5进入缸7上腔,进行补油,使其活塞继续下行到达行程端点。下行中积累误差即被消除。 如果缸7活塞先到达行程端点,则挡块压下行程开关2s,2S给三位四通电磁换向阀3发信号,使电磁铁3Y通电,换向阀3右位接入回路,由于缸7先到达行程端点,遇到阻力,缸6上腔油压升高,高压油便进入液控单向阀5的控制腔,打开阀5,液压油便由缸6下腔,经过液控单向阀5流回油箱,下行中积累误差即被消除。 如果换向阀2换向,2Y通电,右位接人回路,液压缸6和7活塞同时上行,如果缸6活塞先到达行程端点,则挡块顶起行程开关3s,3s给换向阀4发信号,使电磁铁5Y得电,换向阀4右位接人回路,压力油液压英才网用心专注、服务专业

双作用液压缸的设计与控制

中原工学院机电学院 机电系统综合实验 (2016-2017学年第 1 学期) 专业:机械电子工程 题目:可伸缩伺服液压缸 姓名:程方园 学号:2 班级机电131 指导教师:周高峰崔路军 完成日期:2017 年 1 月12 日 机械电子工程系

目录 设计任务书 (3) 1.设计目的与意义 (4) 2. 设计内容和要求 (4) 2.1确定总体方案 (4) 2.2设计内容 (5) 2.3设计要求 (5) 3.设计进度安排 (5) 4.机电系统设计的分析、计算、选用与说明 (5) 4.1机械设计 (5) 4.1.1液压缸的结构设计 (5) 4.1.2、液压缸的主要技术性能参数的计算 (6) 4.1.4、液压缸主油缸的设计计算 (8) 4.1.5、缸体的材料和技术要求 (11) 4.1.6、活塞杆径的计算与校核 (11) 4.1.7、快速液压缸柱塞直径的计算 (13) 4.1.8、缸盖的设计计算 (13) 4.1.9、液压缸油口的直径计算 (14) 4.1.10、导向套的设计计算 (15) e.内孔中的环形油槽和直油槽要浅而宽,保证润滑条件良好 (15) 4.2液压回路设计 (16) 4.3电路设计 (16) 4.4控制设计 (17) 5. 机电综合课程设计结论 (17) 6.机电综合课程设计的收获、体会和建议 (17) 7. 参考文献 (18) 8.附录 (18)

设计任务书

可伸缩伺服液压缸设计与控制 1.设计目的与意义 油缸是液压传动系统中实现往复运动和小于360°回摆运动的液压执行元件。具有结构简单,工作可靠,制造容易以及使用维护方便、低速稳定性好等优点。因此,广泛应用于工业生产各部门。其主要应用有:工程机械中挖掘机和装载机的铲装机构和提升机构, 起重机械中汽车起重机的伸缩臂和支腿机构,矿山机械中的液压支架及采煤机的滚筒调高装置,建筑机械中的打桩机,冶金机械中的压力机,汽车工业中自卸式汽车和高空作业车,智能机械中的模拟驾驶舱、机器人、火箭的发射装置等。它们所用的都是直线往复运动油缸,即推力油缸。所以进一步研究和改进液压缸的设计制造,提高液压缸的工作寿命及其性能,对于更好的利用液压传动具有十分重要的意义。通过学生自己独立地完成指定的课程设计任务,提高理论联系实际、分析问题和解决问题的能力,学会查阅参考书和工具书的方法,提高编写技术文件的能力,进一步加强设计计算和制图等基本技能的训练,为毕业后成为一名出色的机械工程师打好基础。 2.设计内容和要求 1)理解可伸缩伺服液压缸的功能和工作原理,确定其功能参数; 2)明确可伸缩伺服液压缸的具体结构和控制方式,并给出相关参数; 3)分析和计算可伸缩伺服液压缸机械结构,并确定控制的具体实现。 4)绘制可伸缩伺服液压缸机械图纸和电气电子线路图; 5)撰写技术说明书 2.1确定总体方案 当下各种液压缸规格品种比较少,主要是因各种机械对液压缸的要求差别太大。比如对液压缸的内径、活塞杆直径、液压缸的行程和连接方式等要求不一样。由于本次液压设计主要是实现立式快速的原则,故选双作用单活塞杆立式快速液压缸的设计。采用焊接连接。

液压驱动双油缸不同步的原因与解决方法

液压驱动双油缸不同步的原因与解决方法 作者:李毅民王英洁 2010-10-15 来源:屹立散料机械在线https://www.360docs.net/doc/4211901464.html,/ 液压油缸在斗轮堆取料机、起重机械、工程机械等设备上的得到十分广泛的应用,其特点是机构简单,设计制造方便。而在大多数场合下设备俯仰机构采用的是双油缸驱动,这就带来了双油油缸不同步问题。所谓双油油缸不同步是指两个油缸在运动时活塞杆所行走的位移量不同导致被支撑结构出现被扭曲或承受扭转载荷,严重时被支撑梁会出现过大的扭转角度使得设备无法正常运行或出现被支撑梁应力过大等问题。 双油缸运行不同步的原因: 1、两个油缸外载荷的偏差,如两个油缸的阻力不同、摩擦力不同会导致不平衡。其中阻力小的油缸位移量就会大一些。 2、内部摩擦力的不同,如每个油缸的活塞与油缸之间,活塞杆与密封件之间的摩擦里的差距导致油缸不同步。 3、两个油缸的输油管路上液压油沿程阻力的不同导致油缸出现不同步。 4、控制原件调整的偏差导致流量的偏差出现不同步,如每个油缸使用独立的节流阀会出现进出油的流量的差别影响到两个油缸的同步。 5、被支撑件的油缸支撑点最初就已经出现偏差,即初始状态就是偏斜的。 6、油缸使用时间过长后出现活塞与油缸之间内泄漏导致双油缸不同步。 双油缸运行不同步的解决办法: 1、机械刚性同步与机械传动同步 机械刚性同步是将被驱动件制造成具有足够刚度的结构,当油缸出现不同步现象时靠其自身的较强的刚度来实现同步。这种方式只有在结构设计条件许可的条件下进行。机械传动同步是将被驱动件在条件许可时采用齿轮或齿条的附属设施实现双油缸的同步。这种同步方式需要在机构具有特定条件下实施。 2、回路中使用节流阀 采用节流阀后可以分别调整两个油缸的进出口的液压油流量,达到调整两个油缸速度的目的。最终实现两个油缸同步的调整。优点是比较简单。缺点是同步效果不佳。调整后同步的偏差仍然比较大。 图1 在油缸进出油口加节流阀 3、在液压回路中使用分流阀与集流阀或者调速阀

液压在军工上的含义

液压在军工上的含义 在工业或者军工设备上有很多场合要求两个或多个液压缸同步动作,就产生了液压系统同步问题的要求,根据工况要求和投资成本可以使用多种液压同步的控制方案。 1. 多个普通节流阀或者调速阀同时使用,使用在同步要求不是很高或者同步功能可以通过机械结构进行缓冲的场合,特点是控制简单,投资成本非常低。比如某厂的板坯翻转台就使用这种控制方案,由于其用于线外设备,且对同步要求不是很高,达到基本同步即可满足工艺参数。(附图1)而且这种同步控制方式成本非常低,达到了既满足工艺动作要求,又满足投资成本控制的要求,非常合适此类场合的使用选择。 2. 使用分流集流阀:分流集流阀又称速度同步阀,是分流阀、集流阀、单向分流阀、单向集流阀的总称。它们在液压系统中,可使同一系统中的2—4个相同的执行元件,无论负载大小如何,均能达到速度同步的运行目的。自调式分流集流阀是在分流集流阀基础上,增加了流量、压力自调节能力,使得该阀可以适应大的流量、压力变化范围和大的偏载工作条件。如某钢厂包盖提升机构液压控制如图2 3. 使用同步马达,如某炼钢厂转炉裙罩提升控制,转炉裙罩是一个非常庞大的结构件,与其他设备还有配合要求,因此对其提升的同步有一定的要求,特别是要求可靠性比较高,一旦控制功能发生故障,将会引起严重的后果和巨大的经济损失。为了达到高可靠性,这里优先选择机械原理的同步控制方案,因此比例伺服阀加位置传感器的同步控制方法这里不合适;由于此设备运动过程中与其他设备还有配合要求,因此同步要求比较高,所以普通的分流集流阀在这里精度达不到要求。为了满足上述的工艺动作要求,使用同步马达在这里比较合适。使用精度合适的同步马达可以满足设备的同步控制要求,同时机械同步大大确保了设备的可靠性,确保生产线能够顺利运行,避免生产事故和不可估量的经济损失。 4. 使用同步马达配合普通小型换向阀 在对同步要求较高的时候,而又不愿意增加投资成本,就可以采用另外一种简单可靠的同步控制系统,他的原理是正常情况下使用同步马达保持同步,在油缸的位置传感器检查的同步误差超过设计值的时候,打开小型同步阀对油缸进行微量的调整,使油缸回到同步状态中。如某生产线使用的同步顶升系统附图。此系统顶升力量近百吨,且每动作一次就要求保持位置在40分钟,如此长的保压时间,难免两个油缸产生误差,一般的传统控制方式采用两个比例阀单独控制两个带位置传感器的油缸,保压过程中产生不同步时控制相对应的比例阀来调整油缸,但是这种方式成本较高,且无法避免软件故障带来的事故停产和其他经济损失,为了达到高可靠性,又能够控制设备投资成本,改成如图示的系统后,不仅降低了成本,同时完全实现了原同步控制要求。 5. 使用伺服阀配合液压缸位置传感器 这种控制方式控制的系统同步精度非常高,能够时刻保持同步,而且频响可以达到较高的水平;但是投资成本非常高并且控制方式比较复杂。除非设备要求较高的状态,不推荐使用。如图所示某生产线使用的同步振动系统。此系统对应的两个油缸要求完全同步,且两个油缸件基本没有机械刚度,同时,两个油缸作高速高频往复运动,工艺要求每时每刻两个油缸均保持相同的转态。对这类要求非常苛刻的同步控制,只有采用下图的控制方式来思想。

同步油缸

高精度同步液压缸JZP 系列 同步运行 JZP 同步缸是由若干个结构尺寸相同的液压缸串联而成的,由于它每节腔体结构尺寸相同,所以各腔的出口流量相同。同时,JZP 同步缸内部采用了德国最先进的密封,可以在具有不同负载的情况下获得较高的同步精度,这种功能是调速阀、同步阀或同步马达不能够实现的。JZP 同步缸是线性运动与同步马达的旋转运动不同。 同步精度 JZP 同步缸同步精度的决定性因素与分流马达基本相同。想获得高水准的同步精度,就必须减小负载的不均衡程度、降低系统的压力等级、因为压力越高,泄漏量越大。在理想的状态下,即各腔负载相同的情况下,它能获得非常高的同步精度。同时,同步误差还受到加工精度的影响,因此它不可能达到100%的同步,必定会存在同步误差。根据实验,我们得出同步液压缸JZP 在不同压差下的同步精度大致成线性关系。 性能特点 y JZP 同步缸可以使用各种矿物油工作介质,特殊JZP 同步缸可以使用水乙二醇、磷酸酯以及乳化液等工作介质。 y JZP 同步缸可以承受-35℃~+80℃的工作温度,高温JZP 同步缸可以承受-35℃~+220℃的工作温度。 y 介质油清洁度应达到NAS1638-9级或ISO4406-19/15 级以上。

y JZP同步缸单腔最小流量可以达到0.1 L/min,最低启动压力小于0.3Mpa,内部压力损失小,仅为7 bar。 y JZP同步缸工作速度最大为0.5 m/s,高速缸可以达到2 m/s。 y JZP同步缸,同步精度高、运行过程中噪声小,可以应用在剧场的舞台升降、印刷行业、建筑行业中的重型机械、倾卸车等行业。 同步缸的用途 y JZP同步缸除了能够等容积分配流量外,其胜公司还可以提供非等容积同步缸,当您需要非等容积同步缸时请联系其胜公司。 y同步油缸也可以做“增压器”使用,使系统的出口压力高于进口压力,但要注意增压腔的出口压力不可以超过同步缸的工作压力。(具体使用方法参考同步马达“增压器”的使用) 同步缸典型应用回路液压原理图

双活塞杆双作用活塞式液压缸结构设计

目录 1设计的依据、原则和步骤 (3) 1.1引言 (3) 1.2设计的依据 (3) 1.3设计的一般原则 (3) 1.4设计的一般步骤 (4) 2设计的题目、技术参数、目的和要求 (5) 2.1设计题目 (5) 2.2设计技术参数 (5) 2.3设计目的 (5) 2.4设计要求 (5) 3液压缸缸体结构形式的确定 (5) 3.1结构初型 (5) 4液压缸性能参数与结构参数的计算 (6) 4.1液压缸工作负载力分析和计算 (6) 4.2 液压缸的液压力计算和工作压力的选择 (7) 4.3液压缸速度比的确定 (7) 4.4液压缸速度计算和流量选择 (7) 4.5液压缸综合结构参数及安全系数的选择 (8) 5缸筒设计与计算 (9) 5.1缸筒与缸盖的连接形式 (9) 5.2对缸筒的要求及材料选择 (11) 5.3缸筒的计算 (11) 5.4缸筒加工的技术要求 (13) 5.5缸筒头部法兰厚度 (14) 5.6缸筒—缸盖的连接计算 (15) 5.7 缸盖的材料和技术要求 (15) 5.8缸盖厚度的确定 (16) 5.9最小导向长度的确定 (16) 5.10缸体长度的确定 (16) 6活塞组件设计 (16) 6.1活塞设计 (16) 6.2活塞与活塞杆的连接结构 (17) 6.3活塞杆设计 (18)

6.4活塞杆及连接件强度校核 (19) 6.5活塞杆液压缸稳定性校核 (20) 7液压缸油口和排气装置设计 (21) 7.1油口设计 (21) 7.2排气装置设计 (22) 参考文献 (23)

双活塞杆双作用活塞式 液压缸结构设计 1设计的依据、原则和步骤 1.1引言 一部现代机器通常由机架、原动机、传动装置和工作机构四个主要部分构成,其中机架为载体,原动机的作用是进行能量形式的转换,为机器提供适当形式的动力,传动装置的作用是进行动力的传递,工作机构即执行机构,其作用是消耗能量而做功。如果原动机将其他形式的能转换成液压能,执行元件消耗液压能而做功,则称为液压机械或液压机。液压机械的执行元件即做功元件是液压马达和液压缸。液压马达和液压缸是通用化和标准化程度很高的液压元件,用户或设计者在研制一部新的液压机械时,应尽量选择标准化的液压元件,以避免金钱的浪费和时间、精力的消耗。但由于使用要求的千差万别,液压元件的专用化设计是不可避免的,其中以液压缸设计居多。这是由于液压缸配置的灵活性,设计、制造比较容易,维护比较方便的特点决定的。因而,相对其他液压元件而言,液压缸的设计是极为常见的,这也是工程技术人员必须具有的一种基本技能。 1.2设计的依据 液压缸与机器及机器上的机构直接相联系,对于不同的机构,液压缸的具体用途和工作性能也不同,因此设计之前,要进行全面地分析和研究,收集必要的原始资料并加以整理作为设计的依据。 (1)了解和掌握液压缸在机器上的用途和工作要求。 (2)了解液压缸工作环境条件。 (3)了解外部负载情况。 (4)了解液压缸运动形态及安装的约束条件。 (5)了解液压系统的情况。 (6)了解有关国家标准、技术规定和其他参考资料。 1.3设计的一般原则

液压多缸同步方法的选择

液压多缸同步方法的选择 This model paper was revised by the Standardization Office on December 10, 2020

1有关程控液压同步分流器 第一章概况 液压技术是实现现在传动与自动化控制的关键技术之一,液压技术以器特有的特性,可以实现体积小,高响频,易扩展,柔性传输,无缝无级变速,可操控性能好,易于实现直线运动等优点征服世界,从而世界各国都对液 压工业的发展给予了很大在重视,而液压同步技术,则是液压技术里的一 个很大的分支,有这举足轻重的地位,特别是在高精度,高响频率,大流量,长行程领域.然而,这个技术基本全部掌握在国外几家大公司受力,因此很多地方的运用都受到了这样那样的限制. 一目前运用的液压多缸同步优缺点分析 1: 同步阀同步: 同步阀是最老的技术之一,使用分流截流方式实现同步,有点的价格便宜,安装方便.流量范围大.缺点精度低,抗偏载能力差,需要反复调节, 只适用同步要求不高,没有同步危险的地方.属于低端产品,也比较成熟. 误差终点补偿.如果出现偏载严重或者油缸卡滞,同步效果随即失效. 正常同步精度5%-10% 1 无调节同步阀 2可调节同步阀 3 电控调节同步阀 2、同步缸同步:

同步缸是容积同步,同步精度高,抗偏载能力强,对油品抗污染能力强, 价格相应较高,属于被动同步, 缺点是体积大, 流量小, 补油困难, 安装受限, 体积不能做的很大, 否则会严重影响同步精度和安全, 油缸出现内泄补油困难.可以在合适的地方使用.液压油不循环,容易升温和污染,影响系统工作. 正常同步精度0.1%-5% 1 同步缸(流量小) 2 串联油缸(制作工艺要求高) 3 双出头油缸串联(压力损失大,加工精度要求高,维修困难) 4 同步缸是同步精度理论上的0,但是由于制造精度的原因,不能做 得很大,在流量,小行程时可以采用,大流量,大行程时,不适合. 3、同步马达(同步分流马达): 同步马达也是采用容积同步方式, 用同心轴连接,同步性能好,抗偏载能力强,抗污染能力强, 缺点体积大,价格高, 维修困难,使用有限制,必须在转速范围才可以, 目前是主流,使用范围广.也可用于增压. 同步精度1%-10% 1 柱塞同步马达(精度高)价格昂贵,维修困难. 2 齿轮同步马达(精度低)

相关文档
最新文档