二次函数知识点汇总(全)

二次函数知识点汇总(全)
二次函数知识点汇总(全)

二次函数知识点

一、二次函数概念:

1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:

⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.

二、二次函数的基本形式

1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2.

2y ax c

=+的性质: 上加下减。

3.

()

2

y a x h =-的性质:

左加右减。

4. ()2

y a x h k =-+的性质:

三、二次函数图象的平移

1. 平移步骤:

方法一:⑴ 将抛物线解析式转化成顶点式()2

y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,

处,具体平移方法如下:

【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位

2. 平移规律

在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”.

方法二:

⑴c bx ax y ++=2

沿

y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成

m c bx ax y +++=2(或m c bx ax y -++=2)

⑵c bx ax y ++=2

沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2

变成

c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)

四、二次函数()2

y a x h k =-+与2y ax bx c =++的比较

从解析式上看,()2

y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,

即2

2424b ac b y a x a a -?

?=++

??

?,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法

五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,

、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).

画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.

六、二次函数2y ax bx c =++的性质

1. 当0a >时,抛物线开口向上,对称轴为2b

x a =-,顶点坐标为2424b ac b a a ??-- ???

,.

当2b x a <-

时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b

x a

=-时,y 有最小值2

44ac b a

-. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ?

??

,.当2b

x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b

x a

=-时,y 有最大值244ac b a -.

七、二次函数解析式的表示方法

1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);

2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);

3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).

注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛

物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.

八、二次函数的图象与各项系数之间的关系

1. 二次项系数a

二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.

⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.

总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b

在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,

当0b >时,02b

a

-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02b

a

-=,即抛物线的对称轴就是y 轴; 当0b <时,02b

a

-

>,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02b

a

->,即抛物线的对称轴在y 轴右侧; 当0b =时,02b

a

-=,即抛物线的对称轴就是y 轴; 当0b <时,02b

a

-

<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.

ab 的符号的判定:对称轴a

b

x 2-

=在y 轴左边则0>ab ,在y 轴的右侧则0

总结:

3. 常数项c

c>时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;

⑴当0

c=时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0;

⑵当0

c<时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.

⑶当0

总结起来,c决定了抛物线与y轴交点的位置.

,,都确定,那么这条抛物线就是唯一确定的.

总之,只要a b c

二次函数解析式的确定:

根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:

1. 已知抛物线上三点的坐标,一般选用一般式;

2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;

3. 已知抛物线与x轴的两个交点的横坐标,一般选用两根式;

4. 已知抛物线上纵坐标相同的两点,常选用顶点式.

九、二次函数图象的对称

二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达

1. 关于x轴对称

2

=---;

y ax bx c

y ax bx c

=++关于x轴对称后,得到的解析式是2

()2

y a x h k

y a x h k

=---;

=-+关于x轴对称后,得到的解析式是()2

2. 关于y轴对称

2

=-+;

y ax bx c

y ax bx c

=++关于y轴对称后,得到的解析式是2

()2

y a x h k

=++;

=-+关于y轴对称后,得到的解析式是()2

y a x h k

3. 关于原点对称

2

=-+-;

y ax bx c

y ax bx c

=++关于原点对称后,得到的解析式是2

()2

=-+-;

y a x h k

y a x h k

=-+关于原点对称后,得到的解析式是()2

4. 关于顶点对称(即:抛物线绕顶点旋转180°)

2

y ax bx c =++关于顶点对称后,得到的解析式是2

2

2b y ax bx c a

=--+-;

()2y a x h k =-+关于顶点对称后,得到的解析式是()2

y a x h k =--+.

5. 关于点()m n ,

对称 ()2

y a x h k =-+关于点()m n ,对称后,得到的解析式是()2

22y a x h m n k =-+-+-

根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.

十、二次函数与一元二次方程:

1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):

一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:

① 当240b ac ?=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方

程()2

00ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.

② 当0?=时,图象与x 轴只有一个交点; ③ 当0?<时,图象与x 轴没有交点.

1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.

2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;

3. 二次函数常用解题方法总结:

⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;

⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;

⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;

⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.

⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以

0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:

图像参考:

y=-2x2

2

y=3(x+4)2

2

y=3x

2

y=-2(x-3)2

2-3

2

十一、函数的应用

二次函数应用??

???

刹车距离何时获得最大利润最大面积是多少

二次函数考查重点与常见题型

1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:

已知以x 为自变量的二次函数2)2(2

2

--+-=m m x m y 的图像经过原点, 则m 的值是

2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个

函数的图像,试题类型为选择题,如:

如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12

-+=bx kx y 的图像大致是( )

A B C D

3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性

的综合题,如:

已知一条抛物线经过(0,3),(4,6)两点,对称轴为3

5

=

x

,求这条抛物线的解析式。 4. 考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极值,有关试题为解答题,如: 已知抛物线2y ax bx c =++(a ≠0)与x 轴的两个交点的横坐标是-1、3,与y 轴交点的纵坐标是-3

2

(1)确定抛物线的解析式;(2)用配方法确定抛物线的开口方向、对称轴和顶点坐标. 5.考查代数与几何的综合能力,常见的作为专项压轴题。

【例题经典】

由抛物线的位置确定系数的符号

例1 (1)二次函数2

y ax bx c

=++的图像如图1,则点)

,

(

a

c

b

M在()

A.第一象限 B.第二象限 C.第三象限 D.第四象限

(2)已知二次函数y=ax2+bx+c(a≠0)的图象如图2所示,?则下列结论:①a、b同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=-2时,x的值只能取0.其中正确的个数是()

A.1个 B.2个 C.3个 D.4个

(1) (2)

【点评】弄清抛物线的位置与系数a,b,c之间的关系,是解决问题的关键.

例2.已知二次函数y=ax2+bx+c的图象与x轴交于点(-2,O)、(x1,0),且1O;③4a+cO,其中正确结论的个数为( )

A 1个 B. 2个 C. 3个 D.4个

答案:D

会用待定系数法求二次函数解析式

例3.已知:关于x的一元二次方程ax2+bx+c=3的一个根为x=-2,且二次函数y=ax2+bx+c的对称轴是直线x=2,则抛物线的顶点坐标为( )

A(2,-3) B.(2,1) C(2,3) D.(3,2)

答案:C

例4、(2006年烟台市)如图(单位:m),等腰三角形ABC以2米/秒的速度沿直线L向正方形移动,直到AB与CD重合.设x秒时,三角形与正方形重叠部分的面积为ym2.

(1)写出y与x的关系式;

(2)当x=2,时,y分别是多少

(3)当重叠部分的面积是正方形面积的一半时,

三角形移动了多长时间求抛物线顶点坐标、

对称轴.

例5、已知抛物线y=

12x 2+x-52

. (1)用配方法求它的顶点坐标和对称轴.

(2)若该抛物线与x 轴的两个交点为A 、B ,求线段AB 的长.

【点评】本题(1)是对二次函数的“基本方法”的考查,第(2)问主要考查二次函数与一元二次方程的关系. 例6.已知:二次函数y=ax 2

-(b+1)x-3a 的图象经过点P(4,10),交x 轴于)0,(1x A ,)0,(2x B 两点)(21x x <,

交y 轴负半轴于C 点,且满足3AO=OB .

(1)求二次函数的解析式;(2)在二次函数的图象上是否存在点M ,使锐角∠MCO>∠A CO 若存在,请你求出M 点的横坐标的取值范围;若不存在,请你说明理由. (1)解:如图∵抛物线交x 轴于点A(x 1,0),B(x2,O), 则x 1·x 2=3<0,又∵x 1

∴x 2>O ,x 1

=-3.∴x 12

=1. x 1<0,∴x 1=-1.∴.x 2=3.

∴点A(-1,O),P(4,10)代入解析式得解得a=2 b=3 ∴.二次函数的解析式为y-2x 2

-4x-6. (2)存在点M 使∠MC0<∠ACO .

(2)解:点A 关于y 轴的对称点A ’(1,O),

∴直线A ,C 解析式为y=6x-6直线A'C 与抛物线交点为(0,-6),(5,24). ∴符合题意的x 的范围为-1

当点M 的横坐标满足-1∠ACO . 例7、 “已知函数

c bx x y ++=

2

2

1的图象经过点A (c ,-2)

求证:这个二次函数图象的对称轴是x=3。”题目中的矩形框部分是一段被墨水污染了无法辨认的文字。

(1)根据已知和结论中现有的信息,你能否求出题中的二次函数解析式若能,请写出求解过程,并画出二次函数图象;若不能,请说明理由。

(2)请你根据已有的信息,在原题中的矩形框中,填加一个适当的条件,把原题补充完整。

点评: 对于第(1)小题,要根据已知和结论中现有信息求出题中的二次函数解析式,就要把原来的结论“函

数图象的对称轴是x=3”当作已知来用,再结合条件“图象经过点A (c ,-2)”,就可以列出两个方程了,而解析式中只有两个未知数,所以能够求出题中的二次函数解析式。对于第(2)小题,只要给出的条件能够使求出的二次函数解析式是第(1)小题中的解析式就可以了。而从不同的角度考虑可以添加出不同的条件,可以考虑再给图象上的一个任意点的坐标,可以给出顶点的坐标或与坐标轴的一个交点的坐标等。 [解答] (1)根据c bx x y

++=

2

2

1的图象经过点A (c ,-2)

,图象的对称轴是x=3,得???

????=?

--=++,3212,2212

b

c bc c 解得?

?

?=-=.2,

3c b

所以所求二次函数解析式为.232

12

+-=

x x y 图象如图所示。 (2)在解析式中令y=0,得

0232

12

=+-x x ,解得.53,5321-=+=x x 所以可以填“抛物线与x 轴的一个交点的坐标是(3+)0,5”或“抛物线与x 轴的一个交点的坐标是

).0,53(-

令x=3代入解析式,得,2

5-=y

所以抛物线

232

12+-=

x x y 的顶点坐标为),25,3(-

所以也可以填抛物线的顶点坐标为)2

5

,3(-等等。

函数主要关注:通过不同的途径(图象、解析式等)了解函数的具体特征;借助多种现实背景理解函数;将函数视为“变化过程中变量之间关系”的数学模型;渗透函数的思想;关注函数与相关知识的联系。

用二次函数解决最值问题

例1已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积.

【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.

例2 某产品每件成本10元,试销阶段每件产品的销售价x (元)?与产品的日销售量y (件)之间的关系如下表:

x (元) 15 20 30 … y (件) 25 20 10 …

若日销售量y 是销售价x 的一次函数.

(1)求出日销售量y (件)与销售价x (元)的函数关系式;

(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元 【解析】(1)设此一次函数表达式为y=kx+b .则1525,

220

k b k b +=??+=? 解得k=-1,b=40,?即一次函数表达式

为y=-x+40.

(2)设每件产品的销售价应定为x 元,所获销售利润为w 元 w=(x-10)(40-x )=-x 2

+50x-400=-(x-25)2

+225.

产品的销售价应定为25元,此时每日获得最大销售利润为225元.

【点评】解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点:(1)设未知数在“当某某为何值时,什么最大(或最小、最省)”的设问中,?“某某”要设为自变量,“什么”要设为函数;(2)?问的求解依靠配方法或最值公式,而不是解方程.

例3.你知道吗平时我们在跳大绳时,绳甩到最高处的形状可近似地看为抛物线.如图所示,正在甩绳的甲、

乙两名学生拿绳的手间距为4 m ,距地面均为1m ,学生丙、丁分别站在距甲拿绳的手水平距离1m 、2.5 m 处.绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高是1.5 m ,则学生丁的身高为(建立的平面直角坐标系如右图所示) ( )

A .1.5 m

B .1.625 m

C .1.66 m

D .1.67 m 分析:本题考查二次函数的应用 答案:B

★二次函数知识点汇总★

1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.

2.二次函数2ax y =的性质

(1)抛物线2ax y =)(0≠a 的顶点是坐标原点,对称轴是y 轴.(2)函数2ax y =的图像与a 的符号关系.

①当0>a 时?抛物线开口向上?顶点为其最低点;②当0

3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.

4.二次函数c bx ax y ++=2

用配方法可化成:()k h x a y +-=2的形式,其中

a

b a

c k a b h 4422

-=

-=,.

5.二次函数由特殊到一般,可分为以下几种形式:

①2ax y =;②k ax y +=2;③()2

h x a y -=;④()k h x a y +-=2

;⑤c bx ax y ++=2.

6.抛物线的三要素:开口方向、对称轴、顶点. ①a 决定抛物线的开口方向:

当0>a 时,开口向上;当0

7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法

(1)公式法:a b ac a b x a c bx ax y 44222

2

-+??

? ??+=++=,∴顶点是

),(a b ac a b 4422--,对称轴是直线a

b

x 2-

=. (2)配方法:运用配方法将抛物线的解析式化为()k h x a y +-=2

的形式,得到顶点为(h ,k ),对称轴是h x =.

(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.

★用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失★

9.抛物线c bx ax y ++=2中,c b a ,,的作用

(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.

(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线a

b x 2-=,故:

①0=b 时,对称轴为y 轴;②0>a

b (即a 、b 同号)时,对称轴在y 轴左侧;

③0

b

(即a 、b 异号)时,对称轴在y 轴右侧.

(3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.

当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0

b .

10.几种特殊的二次函数的图像特征如下:

11.用待定系数法求二次函数的解析式

(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2

.已知图像的顶点或对称轴,通常选择顶点式.

(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点

(1)y 轴与抛物线c bx ax y ++=2得交点为(c ,0)

(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2). (3)抛物线与x 轴的交点

二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程

02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判

别式判定:

①有两个交点?0>??抛物线与x 轴相交;

②有一个交点(顶点在x 轴上)?0=??抛物线与x 轴相切; ③没有交点?0

同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.

(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组

???++=+=c

bx ax y n

kx y 2

的解的数目来确定: ①方程组有两组不同的解时?l 与G 有两个交点;

②方程组只有一组解时?l 与G 只有一个交点;③方程组无解时?l 与G 没有交点. (6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为

()()0021,,,x B x A ,由于1x 、2x 是方程02

=++c bx ax 的两个根,故 a

c

x x a b x x =?-=+2

121,

()

()

a a ac

b a c

a b x x x x x x x x AB ?=

-=-??

? ??-=--=

-=

-=44422

212

212

2121

13.二次函数与一元二次方程的关系:

(1)一元二次方程c bx ax y ++=2就是二次函数c bx ax y ++=2当函数y 的值为0时的情况. (2)二次函数c bx ax y ++=2的图象与x 轴的交点有三种情况:有两个交点、有一个交点、

没有交点;当二次函数c bx ax y ++=2的图象与x 轴有交点时,交点的横坐标就是当0=y 时自变量x 的值,即一元二次方程02=++c bx ax 的根.

(3)当二次函数c bx ax y ++=2的图象与x 轴有两个交点时,则一元二次方程c bx ax y ++=2有两个不相等的实数根;当二次函数c bx ax y ++=2的图象与x 轴有一个交点时,则一元二次方程02=++c bx ax 有两个相等的实数根;当二次函数c bx ax y ++=2的图象与x 轴没有交点时,则一元二次方程02=++c bx ax 没有实数根 14.二次函数的应用:

(1)二次函数常用来解决最优化问题,这类问题实际上就是求函数的最大(小)值; (2)二次函数的应用包括以下方面:分析和表示不同背景下实际问题中变量之间的二次函数关系;

运用二次函数的知识解决实际问题中的最大(小)值.

15.解决实际问题时的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等.

口诀--- ---- Y 反对X ,X 反对Y ,都反对原点

2 自变量的取值范围:

分式分母不为零,偶次根下负不行;零次幂底数不为零,

函数图像的移动规律:

若把一次函数解析式写成y=k(x+0)+b,

二次函数的解析式写成y=a(x+h)2+k的形式,

则用下面后的口诀:

“左右平移在括号,上下平移在末稍,

左正右负须牢记,上正下负错不了”。

一次函数图像与性质口诀:

一次函数是直线,图像经过仨象限;

正比例函数更简单,经过原点一直线;

两个系数k与b,作用之大莫小看,

k是斜率定夹角,b与Y轴来相见,

k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;

k的绝对值越大,线离横轴就越远。

二次函数图像与性质口诀:

二次函数抛物线,图象对称是关键;

开口、顶点和交点,它们确定图象限;

开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。若求对称轴位置, 符号反,一般、顶点、交点式,不同表达能互换。

反比例函数图像与性质口诀:

反比例函数有特点,双曲线相背离的远;

k为正,图在一、三(象)限;k为负,图在二、四(象)限;

图在一、三函数减,两个分支分别减;图在二、四正相反,两个分支分别添;线越长越近轴,永远与轴不沾边。

函数学习口决:正比例函数是直线,图象一定过原点,k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键;

反比例函数双曲线,待定只需一个点,正k落在一三限,x增大y在减,图象上面任意点,矩形面积都不变,对称轴是角分线x、y的顺序可交换;

二次函数抛物线,选定需要三个点,a的正负开口判,c的大小y轴看,△的符号最简便,x轴上数交点,a、b 同号轴左边抛物线平移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键。

求定义域:

求定义域有讲究,四项原则须留意。

负数不能开平方,分母为零无意义。

指是分数底正数,数零没有零次幂。

限制条件不唯一,满足多个不等式。

求定义域要过关,四项原则须注意。

负数不能开平方,分母为零无意义。

分数指数底正数,数零没有零次幂。

限制条件不唯一,不等式组求解集。

解一元一次不等式:

先去分母再括号,移项合并同类项。

系数化“1”有讲究,同乘除负要变向。

先去分母再括号,移项别忘要变号。

同类各项去合并,系数化“1”注意了。

同乘除正无防碍,同乘除负也变号。

解一元二次不等式:

首先化成一般式,构造函数第二站。

判别式值若非负,曲线横轴有交点。

a正开口它向上,大于零则取两边。

代数式若小于零,解集交点数之间。

方程若无实数根,口上大零解为全。

小于零将没有解,开口向下正相反。

用公式法解一元二次方程

要用公式解方程,首先化成一般式。

调整系数随其后,使其成为最简比。

确定参数abc,计算方程判别式。

判别式值与零比,有无实根便得知。

有实根可套公式,没有实根要告之。

用常规配方法解一元二次方程:

左未右已先分离,二系化“1”是其次。

一系折半再平方,两边同加没问题。

左边分解右合并,直接开方去解题。

初三.二次函数知识点总结

二次函数知识点总结 二次函数知识点: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c , ,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项 系数0a ≠,而b c , 可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c , ,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: 结论:a 的绝对值越大,抛物线的开口越小。 总结:

2. 2 =+的性质: y ax c 结论:上加下减。 总结:

3. ()2 =-的性质: y a x h 结论:左加右减。 总结: 4. ()2 =-+的性质: y a x h k

总结: 1. 平移步骤: ⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法 如下:

【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 请将2245y x x =++利用配方的形式配成顶点式。请将2y ax bx c =++配成 ()2 y a x h k =-+。 总结: 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者 通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式 2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧, 左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c , 关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.

二次函数知识点大全

二次函数知识点归纳及提高训练 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2ax y =)(0≠a 的顶点是坐标原点,对称轴是y 轴.(2)函数2 ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点;②当0a 时,开口向上;当0a b (即a 、b 同号)时,对称轴在y 轴左侧; ③0c ,与y 轴交于正半轴;③0

初三数学二次函数知识点总结

初三数学 二次函数 知识点总结 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数, 0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,.

二次函数知识点整理

二次函数知识点整理: 1.二次函数的图象特征与a ,b ,c 及判别式ac b 42-的符号之间的关系 (1)字母a 决定抛物线的形状. 即开口方向和开口大小;决定二次函数有最大值或最小值. a >0时开口向上,函数有最小值; a <0时开口向下,函数有最大值; a 相同,抛物线形状相同,可通过平移、对称相互得到; a 越大,开口越小. (2)字母b 、a 的符号一起决定抛物线对称轴的位置. ab=0 (a ≠0,b=0), 对称轴为y 轴; ab >0(a 与b 同号),对称轴在y 轴左侧; ab <0(a 与b 异号),对称轴在y 轴右侧. (3)字母c 决定抛物线与y 轴交点的位置. c=0, 抛物线经过原点; c >0,抛物线与y 轴正半轴相交; c <0,抛物线与y 轴负半轴相交. (4)ac b 42-决定抛物线与x 轴交点的个数. ac b 42-=0,抛物线与x 轴有唯一交点(顶点); ac b 42->0抛物线与x 轴有两个不同的交点; ac b 42-<0抛物线与x 轴无交点. 2.任意抛物线()k h x a y +-=2 都可以由抛物线2ax y =经过平移得到,具体平移方法如 下: 【注意】 二次函数图象间的平移,可看作是顶点间的平移,因此只要掌握了顶点是如何平移的,就掌握了二次函数间的平移. 二次函数图象间对称变换也是同样的道理. 3.用待定系数法求二次函数的解析式 确定二次函数的解析式一般需要三个独立条件,根据不同条件选不同的设法 (1)设一般式:c bx ax y ++=2 (a ,b ,c 为常数、a ≠0)

若已知条件是图象上的三点,将已知条件代入所设一般式,求出a,b,c 的值 (2)设顶点式:()k h x a y +-=2 (a,h,k 为常数,a ≠0) 若已知二次函数图象的顶点坐标或对称轴方程与最大值(或最小值),将已知条件代入所设顶点式,求出待定系数,最后将解析式化为一般形式. (3)设两点式:()()21x x x x a y --=(a ≠0,a 、1x 、2x 为常数) 若已知二次函数图象与x 轴的两个交点的坐标为()()0,0,21x x ,将第三点(m,n ) 的坐标(其中m ,n 为已知数)或其他已知条件代入所设交点式,求出待定系数a ,最后将解析式化为一般形式. 4. 二次函数c bx ax y ++=2(a ≠0)与一元二次方程02=++c bx ax 的关系 (1)二次函数c bx ax y ++=2(a ≠0)中,当y=0时,就变成了一元二次方程02=++c bx ax (2)一元二次方程02=++c bx ax 的根就是二次函数c bx ax y ++=2的图象与x 轴交点的横坐标. (3)二次函数的图象与x 轴交点的个数与一元二次方程根的个数一致. (4)在它俩的关系中,判别式△=ac b 42-起着重要作用. 二次函数的图象与x 轴有两个交点?对应方程的△>0 二次函数的图象与x 轴有一个交点?对应方程的△=0 二次函数的图象与x 轴无交点 ?对应方程的△<0 5.二次函数应用 包括两方面 (1)用二次函数表示实际问题中变量之间的关系; (2)用二次函数解决最大化问题即最值问题.

第22章二次函数总复习

第22章 二次函数总复习 一、【复习目标】 1、掌握二次函数的概念、基本性质,二次函数解析式的求法; 2、熟练掌握二次函数的图象与性质,并会利用二次函数的图象与性质解决实际应用问题. 二、【复习导学】 (二)知识点梳理: 1、二次函数概念:一般地,形如 (a b c ,,是常数,0a ≠)的函数,叫做二次函数. 其中a 是二次项系数,b 是一次项系数,c 是常数项. 注:与一元二次方程类似,二次项系数0a ≠,而b c ,可以为零;等号左边是函数,右边是关于 自变量x 的二次式,x 的最高次数是2. 2、二次函数的基本形式 (1)形如:2y ax =的二次函数的图象和性质:a 的绝对值越大,抛物线的开口越小 (2)形如:k ax y +=的二次函数的图象和性质:上加下减. (3)形如:y a x h =-的二次函数的图象和性质:(h 前面是负号时:h>0向右平移,h<0时向左平移)

(4)形如:y a x h k =-+的二次函数的图象和性质: 左加右减(变的是x 的变量),上加下减(变的是函数值) ,即如: 由y=ax 2 向左平移2个为单位再向下平移3个单位得到:y=a (x+2)2-3 ; 由y=ax 2向右平移2个为单位再向上平移3个单位得到:y=a (x-2)2+3 . 3、二次函数()2 y a x h k =-+与c bx ax y ++=2 的比较: 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -??=++ ?? ?,则对于c bx ax y ++=2 来说:2424b ac b h k a a -=-= ,, 即对称轴是:a b x 2-=对,顶点坐标是:)44,2(2a b ac a b --. 4、二次函数c bx ax y ++=2 图象的画法: 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 注:画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 5、二次函数c bx ax y ++=2 的性质: (1)当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <- 时, y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值244ac b a -. (2)当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ???,.当2b x a <- 时, y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值244ac b a -. 6、二次函数解析式的表示方法 (1)一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);知道三点的坐标用一般式. (2)顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);知道顶点坐标或对称轴和最值时用顶点式. (3)交点式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标),当函数与x 轴有 两个交点时,用交点式. 注:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线 与x 轴有交点,即2 40b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 7、抛物线c bx ax y ++=2 中,c b a ,,的作用: (1)a 决定开口方向及开口大小:当a >0时,二次函数开口 ;当a 0时,二次函数开口向下. |a | 越大,开口越小,|a | 越小,开口越大. (2)b 和a 共同决定抛物线对称轴的位置:∵抛物线c bx ax y ++=2的对称轴是直线a b x 2- =

(完整版)九年级上册数学二次函数知识点汇总,推荐文档

新人教版九年级上二次函数知识点总结 知识点一:二次函数的定义 1.二次函数的定义: 一般地,形如(是常数,)的函数,叫做二次函数.2y ax bx c =++a b c ,,0a ≠其中是二次项系数,是一次项系数,是常数项. a b c 知识点二:二次函数的图象与性质抛物线的三要素:开口、对称轴、顶 ??点 2. 二次函数的图象与性质 ()2 y a x h k =-+(1)二次函数基本形式的图象与性质:a 的绝对值越大,抛物线的开口越小 2y ax = (2)的图象与性质:上加下减 2y ax c =+

(3)的图象与性质:左加右减 ()2 y a x h =-

(4)二次函数的图象与性质 ()2 y a x h k =-+ 3. 二次函数的图像与性质 c bx ax y ++=2 (1)当时,抛物线开口向上,对称轴为,顶点坐标为. 0a >2b x a =-2424b ac b a a ??-- ??? ,当时,随的增大而减小;当时,随的增大而增大;当时,2b x a <- y x 2b x a >-y x 2b x a =-有最小值 .y 2 44ac b a - (2)当时,抛物线开口向下,对称轴为,顶点坐标为. 0a <2b x a =-2424b ac b a a ??-- ??? ,当时,随的增大而增大;当时,随的增大而减小;当时,2b x a <- y x 2b x a >-y x 2b x a =-有最大值 .y 2 44ac b a -

4. 二次函数常见方法指导 (1)二次函数2y ax bx c =++图象的画法①画精确图 五点绘图法(列表-描点-连线) 利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图. ②画草图 抓住以下几点:开口方向,对称轴,与y 轴的交点,顶点.(2)二次函数图象的平移平移步骤: ①将抛物线解析式转化成顶点式,确定其顶点坐标;()2 y a x h k =-+()h k ,② 可以由抛物线经过适当的平移得到具体平移方法如下: 2 ax 【【【(h <0)【【【 【【(h >0)【【【(h 【【|k|【【【 平移规律:概括成八个字“左加右减,上加下减”.(3)用待定系数法求二次函数的解析式①一般式:.已知图象上三点或三对、 的值,通常选择一般式. ②顶点式:.已知图象的顶点或对称轴,通常选择顶点式. ③交点式: .已知图象与轴的交点坐标 、 ,通常选择交点式. (4)求抛物线的顶点、对称轴的方法 ①公式法:,∴顶点是,对称轴a b ac a b x a c bx ax y 44222 2 -+ ??? ? ?+=++=),(a b ac a b 4422--是直线.a b x 2- =②配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(, ()k h x a y +-=2 h ),对称轴是直线. k h x =

中考数学复习专题二次函数知识点归纳

二次函数知识点归纳 一、二次函数概念 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: o o 结论:a 的绝对值越大,抛物线的开口越小。 总结: 2. 2y ax c =+的性质: 结论:上加下减。 a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()00, y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0. 0a < 向下 ()00, y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.

总结: 3. ()2 y a x h =-的性质: 结论:左加右减。 总结: 4. ()2 y a x h k =-+的性质: 总结: a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()0c , y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c . 0a < 向下 ()0c , y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c . a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()0h , X=h x h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0. 0a < 向下 ()0h , X=h x h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0. a 的符号 开口方向 顶点坐标 对称轴 性质

(完整版)二次函数知识点汇总(全)

二次函数知识点(第一讲) 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质:(上加下减)

3. ()2 y a x h =-的性质:(左加右减) 4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.

方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数() 2 y a x h k =-+与2 y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到 前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中2424b ac b h k a a -=-= ,. 五、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方 向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为: 顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值2 44ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值244ac b a -. 七、二次函数解析式的表示方法 1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠); 3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).

人教版九年级上册 第22章 二次函数复习知识点总结和题型讲解

二次函数复习知识点 一、二次函数概念: 1.二次函数的概念:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数a≠0,而 b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数y=ax2+bx+c的结构特征: ⑴等号左边是函数,右边是关于自变量x的二次多项式。(①含自变量的代数式是整式, ②自变量的最高次数是2,③二次项系数不为0.) ⑵a b c ,,是常数,a是二次项系数,b是一次项系数,c是常数项. 二、二次函数的基本形式 1. y=ax2的性质: 2. y=ax2+k的性质:(k上加下减) 3. y=a(x-h)2的性质:(h左加右减)

4. y =a (x -h)2 +k 的性质: 5. y =ax 2 +bx+c 的性质: 三、二次函数的图象与各项系数之间的关系 1. 二次项系数a. (a 决定了抛物线开口的大小和方向) 二次函数2y ax bx c =++中,a 作为二次项系数,显然a ≠0 ① 当0a >时,抛物线开口向上,当0a <时,抛物线开口向下; ②a 的绝对值越大,开口越小,反之a 的绝对值越小,开口越大。 总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b (a 和b 共同决定抛物线对称轴的位置) .抛物线c bx ax y ++=2 的对称轴是直线a b x 2- =,故:①0=b 时,对称轴为y 轴;② (即a 、b 同号)时,对称轴在y 轴左侧;③ (即a 、b 异号)时,对称轴在y 轴右侧.

二次函数知识点总结及典型题目

二次函数知识点总结及典型题目 一.定义: 一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 二次函数的图象是抛物线,所以也叫抛物线y=ax2+bx+c ;抛物线关于对称轴对称且以对称轴为界,一半图象上坡,另一半图象下坡;其中c 叫二次函数在y 轴上的截距, 即二次函数图象必过(0,c )点. 二.二次函数2ax y =的性质 (1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0

最新史上最全初三数学二次函数知识点归纳总结

二次函数知识点归纳及相关典型题 第一部分 基础知识 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2 ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2 ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0a 时,开口向上;当0

7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法 (1)公式法:a b ac a b x a c bx ax y 44222 2 -+ ??? ? ? +=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2 的形式,得到顶点为(h ,k ),对称轴是直线 h x =. (3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对 称轴,对称轴与抛物线的交点是顶点. 用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线c bx ax y ++=2 中,c b a ,,的作用 (1)a 决定开口方向及开口大小,这与2 ax y =中的a 完全一样. (2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2 的对称轴是直线 a b x 2- =,故:①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0c ,与y 轴交于正半轴;③0

人教版初三数学二次函数知识点及难点总结

初三数学二次函数知识点总结 二次项系数a决定二次函数图像的开口方向和大小. 当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口. |a|越大,则二次函数图像的开口越小. 1、决定对称轴位置的因素 一次项系数b和二次项系数a共同决定对称轴的位置. 当a与b同号时(即ab>0),对称轴在y轴左;因为对称轴在左边则对称轴小于0,也就是- b/2a0,所以b/2a要小于0,所以a、b要异号 可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab< 0 ),对称轴在y轴右. 事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值.可通过对二次函数求导得到. 2、决定二次函数图像与y轴交点的因素 常数项c决定二次函数图像与y轴交点. 二次函数图像与y轴交于(0,c) 一、二次函数概念: 1.二次函数的概念:一般地,形如2 =++(a b c y ax bx c ,,是常数,0 a≠)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0 a≠,而b c,可以为零.二次函数的定义域是全体实数. 2. 二次函数2 =++的结构特征: y ax bx c ⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2. ⑵a b c ,,是常数,a是二次项系数,b是一次项系数,c是常数项.

二、二次函数的基本形式 1. 二次函数基本形式:2 =的性质: y ax a 的绝对值越大,抛物线的开口越小。Array 2. 2 =+的性质:上加下减。 y ax c

二次函数知识点归纳

二次函数知识点归纳 一.二次函数的一般形式:y=ax2+bx+c(a≠0)。强调a≠0. 二.性质 1. 2.y=ax2+c 3.y=a(x-h)2+k 4. 注:顶点在y轴上无一次项(或顶点的横坐标为0):顶点在x轴上函数是一个完全平方式(或顶点的纵坐标为0) 三.二次函数的三种形式:1.当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。2.当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。3.当已知抛物线与x轴的交点或交点横坐标时,通常设为

交点式y =a(x -x 1)(x -x 2) 四.平移 五.如何将实际问题转化为二次函数问题,从而利用二次函数的性质解决最大利润问题,最大面积问题。 练习 1.已知函数4m m 2 x )2m (y -++=是关于x 的二次函数,求:(1)满足条件的m 值; (2)m 为何值时,抛物线有最低点?求出这个最低点.这时当x 为何值时,y 随x 的增大而增大?(3)m 为何值时,函数有最大值?最大值是什么?这时当x 为何值时,y 随x 的增大而减小? 2.抛物线y =x 2+bx +c 的图象向左平移2个单位。再向上平移3个单位,得抛物线y =x 2-2x +1,求:b 与c 的值。 3.通过配方,求抛物线y =12 x 2-4x +5的开口方向、对称轴及顶点坐标,再画出图象。 4.根据下列条件,求出二次函数的解析式。 (1)抛物线y =ax 2+bx +c 经过点(0,1),(1,3),(-1,1)三点。 (2)抛物线顶点P(-1,-8),且过点A(0,-6)。 (3)已知二次函数y =ax 2+bx +c 的图象过(3,0),(2,-3)两点,并且以x =1为对称轴。 (4)已知二次函数y =ax 2+bx +c 的图象经过一次函数y =- 2 3x +3的图象与x 轴、y 轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y =a(x -h)2+k 的形式。 5.如图,已知直线AB 经过x 轴上的点A(2,0),且与抛物线y =ax 2相交于B 、C 两点,已知B 点坐标为(1,1)。 (1)求直线和抛物线的解析式; (2)如果D 为抛物线上一点,使得△AOD 与△OBC 的面积相等,求D 点坐标。

人教版九年级上册 第22章 二次函数图像与性质知识点题型总结

二次函数图像及性质 【二次函数的定义】 一般地,形如2y ax bx c =++(a b c ,, 为常数,0a ≠)的函数称为x 的二次函数,其中x 为自变量,y 为因变量,a 、b 、c 分别为二次函数的二次项、一次项和常数项系数. 注意:和一元二次方程类似,二次项系数0a ≠,而b 、c 可以为零.二次函数的自变量的取值范围是 全体实数. 【二次函数的图象】 1.二次函数图象与系数的关系 (1)a 决定抛物线的开口方向 当0a >时,抛物线开口向上;当0a <时,抛物线开口向下.反之亦然. a 决定抛物线的开口大小:a 越大,抛物线开口越小;a 越小,抛物线开口越大. 温馨提示:几条抛物线的解析式中,若a 相等,则其形状相同,即若a 相等,则开口及形状相同,若a 互为相反数,则形状相同、开口相反. (2)b 和a 共同决定抛物线对称轴的位置(抛物线的对称轴:2b x a =-) 当0b =时,抛物线的对称轴为y 轴; 当a 、b 同号时,对称轴在y 轴的左侧; 当a 、b 异号时,对称轴在y 轴的右侧. (3)c 的大小决定抛物线与y 轴交点的位置(抛物线与y 轴的交点坐标为()0c , ) 当0c =时,抛物线与y 轴的交点为原点; 当0c >时,交点在y 轴的正半轴; 当0c <时,交点在y 轴的负半轴. 2.二次函数图象的画法 五点绘图法: 利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 3.点的坐标设法 ⑴ 一次函数y ax b =+(0a ≠)图像上的任意点可设为()11x ax b +, .其中10x =时,该点为直线与y 轴交点. ⑵ 二次函数2y ax bx c =++(0a ≠)图像上的任意一点可设为() 2111x ax bx c ++,.10x =时,该点为抛物线与y 轴交点,当12b x a =- 时,该点为抛物线顶点. ⑶ 点()11x y , 关于()22x x ,的对称点为()212122x x y y --,. 4.二次函数的图象信息 ⑴ 根据抛物线的开口方向判断a 的正负性. ⑵ 根据抛物线的对称轴判断2b a -的大小. ⑶ 根据抛物线与y 轴的交点,判断c 的大小. ⑷ 根据抛物线与x 轴有无交点,判断24b ac -的正负性. ⑸ 根据抛物线所经过的已知坐标的点,可得到关于a b c ,,的等式. ⑹ 根据抛物线的顶点,判断244ac b a -的大小.

九年上第二十二章 二次函数全章知识点总结

二次函数 二次函数的定义:一般地,形如 ()0,,2≠++=a c b a c bx ax y 是常数的函数,叫做二次函数,x 是 自变量,c b a ,,分别是函数解析式的二次项系数、一次项系数和常数项。 开口方向:二次函数c bx ax y ++=2图像是一条抛物线,二次项系数()0≠a a 决定二次函数图像的开口方向,当0>a ,二次函数图像开口向上,当0a ,a 越大,抛物线的开口越小。 在直角坐标系中画出二次函数2 2 1x y -=,2x y -=,22x y -=的 图像,观察图像可知三个二次函数图像的顶点坐标,对称轴都相同,开口大小逐渐减小。规律:0

相反的。0>a ,当a b x 2-<时,y 随x 的增大而减小,当a b x 2- >时,y 随x 的增大而增大。0时,y 随x 的增大而减小。 二次函数的顶点:二次函数对称轴与二次函数图像的交点便是二 次函数的顶点。二次函数的顶点坐标是???? ??--a b ac a b 44,22,当 0>a 时,二次函数的顶点是图像的最低点。0a 时,二次函数取得最小值 a b ac 442-,无最大值。当0a 时,二次函数取得最小值a b ac 442 -,最大值是21,y y 中的较大者。当0

中考数学二次函数知识点总结

中考数学二次函数知识点总结 I. 定义与定义表达式 一般地,自变量x和因变量y之间存有如下关系:y=ax^2+bx+c (a, b, c为常数,a z0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,lal还能够决定开口大小,lal越大开口就越小,IaI 越小开口就越大. )则称y 为x 的二次函数。 二次函数表达式的右边通常为二次三项式。 II. 二次函数的三种表达式 一般式:y=ax A2+bx+c (a, b, c 为常数,a z0) 顶点式:y=a(x-hF2+k[抛物线的顶点P (h, k)] 交点式:y=a(x-x)(x-x)[ 仅限于与x 轴有交点A(x, 0)和B( x, 0) 的抛物线] 注:在 3 种形式的互相转化中,有如下关系: h=-b/2a k=(4ac-bA2)/4a x,x=(- b±V bA2-4ac)/2a III. 二次函数的图像 在平面直角坐标系中作出二次函数y=xA2 的图像,能够看出,二次函数的图像是一条抛物线。 IV. 抛物线的性质 1. 抛物线是轴对称图形。对称轴为直线x=-b/2a 。 对称轴与抛物线的交点为抛物线的顶点P。特别地,当b=0时,抛物 线的对称轴是y 轴(即直线x=0)

2. 抛物线有一个顶点P,坐标为:P(-b/2a , (4ac-"2)/4a)当-b/2a=0 时,P在y轴上;当△二b^2-4ac=0时,P在x轴上。 3. 二次项系数a 决定抛物线的开口方向和大小。 当a>0时,抛物线向上开口;当a v0时,抛物线向下开口。|a|越大,则抛物线的开口越小。 4. 一次项系数b 和二次项系数a 共同决定对称轴的位置。 当a与b同号时(即ab> 0),对称轴在y轴左; 当a与b异号时(即ab v 0),对称轴在y轴右。 5. 常数项c 决定抛物线与y 轴交点。 抛物线与y 轴交于(0, c) 6. 抛物线与x 轴交点个数 △=b A2-4ac >0时,抛物线与x轴有2个交点。 △=bA2-4ac=0时,抛物线与x轴有1个交点。 △=bA2-4ac v 0时,抛物线与x轴没有交点。 X的取值是虚数(x=-b±V bA2 —4ac的值的相反数,乘上虚数i,整个式子除以2a) V. 二次函数与一元二次方程 特别地,二次函数(以下称函数)y=axA2+bx+c, 当y=0 时,二次函数为关于x 的一元二次方程(以下称方程),即 axA2+bx+c=0 此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。

相关文档
最新文档