初中数学竞赛专题:几何变换

初中数学竞赛专题:几何变换
初中数学竞赛专题:几何变换

初中数学竞赛专题:几何变换

§16.1对称和平移

16.1.1★设M 是边长为2的正三角形ABC 的边AB 的中点.P 是边BC 上的任意一点,求PA PM +的最小值.

C

A'

M'P

A M B

解析 作正三角形ABC 关于BC 的对称图形A BC '△.M '是M 的对称点,故M 是A B '的中 点.PM PM '=,如图所示,则

PA PM PA PM AM ''+=+≥.

连结CM ',易知90ACM '∠=?,所以AM '==.

所以,PA PM +.

16.1.2★★已知ABC △中,60A ∠

BQ QP PC ++最小.

解析 作B 关于直线AC 的对称点B ',C 关于直线AB 的对称点C ',连B C ''与AB 、AC 分别交于点

P 、Q ,则P 、Q 即为所求,如图所示.

C

A'

M'P

A M B

事实上,对于AB 、AC 上的任意点P ',Q ',

BQ Q P P C B Q Q P P C ''''''''''++=++ B C B Q QP PC ''''=++≥ BQ QP PC =++.

评注 因为60A ∠

16.1.3★★求证:直角三角形的内接三角形的周长不小于斜边上高的两倍.

解析 如图所示,设在直角三角形ABC 中,CD 是斜边上的高,PQR △是它的任一内接三角形.

B

D

P A

R

C Q S V

E

T G F

U

将Rt ABC △以BC 为对称轴反射为Rt BCE △,此时PQR △反射为SQV △,再将Rt BCE △以CE 为对称轴反射为Rt FCE △,此时SQV △反射为TUV △延长DC 交EF 于G .

易知FF AB ∥,所以CG CD =,即2GD CD =,且GD 是两平行线AB 与EF 之间的距离. 所以

2PQ QR RP PQ QV VT GD CD ++=++=≥.

16.1.4★★★在ABC △内取一点M 使10MAB ∠=?,30MBA ∠=?.设80ACB ∠=?,

AC BC =.求AMC ∠.

C

H

B

M

E

解析 本题中ABC △为等腰三角形,这就提示我们利用对称性解题,先作一条对称轴,作ABC △的高CH 与直线BM 交于点E 由对称性知,

30EAB EBA ∠=∠=?,

所以20EAM ∠=?, 从而20CAE ∠=?,

因为40AME MAB MBA ∠=∠+∠=?,又

1

402

ACE ACB ∠=∠?=,

所以CAF △≌MAE △, 于是AC AM =,

所以()118040702

AMC ∠=?-?=?.

16.1.5★★在ABC △中,AH 是高,H 在边BC 上,已知45BAC ∠=?,2BH =,3CH =,求ABC △的面积.

解析 作HAC △的关于AC 的对称图形MAC △,作HAB △的关于AB 的对称图形NAB △.分别延长

MC 和NB ,它们相交于L ,如图所示.

A

N

M

B

H C

L

易知90M N ∠=∠=?,且

290NAM BAC ∠=∠=?, AM AH AN ==.

所以,四边形LMAN 是正方形. 设正方形LMAN 的边长为a ,则

3CL a =-,2BL a =-.

在直角三角形BCL 中,由勾股定理知

222BL CL BC +=.

()

()2

2

2325a a -+-=.

解方程,得6a =,即6AH =.所以

1

152

ABC S BC AH =?=△.

16.1.6★★★如图,凸四边形PQRS 的四个顶点分别在边长为a 的正方形ABCD 的四条边上,求

证:PQRS 的周长不小于.

解析 作正方形ABCD 关于BC 的轴对称图形,得到正方形11A BCD ,再作正方形11A BCD 关于1CD 的轴对称图形,得到正方形221A B CD ,再作正方形221A B CD 关于21A D 的轴对称图形,得到正方形

2331A B C D ,而P 、Q 、R 、S 四点的对应点如图所示.

A S D

P B P 1

A 1S 1D 1

R 3

C 3

Q 3B 3

P 3

A 2P 2

B 2Q 2

R C R 1S 2Q

显然

,2AA =,23AP A P ∥,故

32PP AA ∥,

所以四边形PQRS 的周长

PQ QR RS SP +++ 11223PQ QR R S S P =+++

32PP AA ==≥.

即四边形PQRS

的周长不小于.

16.1.7★★★如图,ABC △和ADE △是两个不全等的等腰直角三角形,

90ABC ADE ∠=∠=?,现固定ABC △而将ADE △绕点A 在平面上旋转,试证:不论ADE △旋转到什么

位置,线段EC 上必存在点M 使BMD △力等腰直角三角形.

B

A

D E

C

M

A'

解析 如图,设BMD △为等腰直角三角形,下面证明点M 在线段EC 上. 作A 关于BD 的对称点A ',则A DB ADB '∠=∠. 因为902ADE BDM ∠=?=∠, 所以45EDM A DM A DB ''∠=∠=?-∠

45ADB =?-∠,

又DA DA DE '==.

所以A '又是E 关于DM 的对称点. 同理A '也是C 关于BM 的对称点,因此

EMD A MD '∠=∠,CMB A MD '∠=∠,

又因90BMD ∠=?, 所以180CME ∠=?.

即M 在EC 上(且为EC 的中点).

16.1.8★★★如图,矩形ABCD 中,20AB =,10BC =,若在AC 、AB 上各取一点M 、N ,使BM MN +的值最小,试求出这个最小值.

D

E

C G

F A

N

P M

B

Q

解析 作AB 关于直线AC 的对称线段AE ,即B 、E 关于AC 对称,作N 关于AC 的对称点F ,则F 在

AE 上,且有BE AC ⊥于Q ,NF AC ⊥于P .

由对称变换可知,MN BM MF MB +=+.

欲使MF BM +最小,必须BMF 共线,所以BM MN +最小值为点B 到AE 的距离BG . 在Rt ABC △中,20AB =,10BC =,

所以AB BC

BQ AC

?=

=

则2BE BQ == 在Rt ABQ △中

,

AQ ===20AE AB ==,在ABE △ 中,112

2

ABE S BE AQ AE BG =?=?△,则16BE AQ

BG AE

?=

=.从而BM MN +的最小值为16. 16.1.9★★凸四边形ABCD 中,ABD CBD ∠>∠,ADB CDB ∠>∠.求证:

AB AD BC CD +>+.

D C

E

P

A B

解析将BCD △沿BD 翻折,点C 落在点P .因为ABD CBD ∠>∠,ADB CDB ∠>∠,所以P 必定在ABD △内部.BP 延长线交AD 于点E ,则

AB AD BE FD BP PD BC CD +>+>+=+.

16.1.10★★设S 表示凸四边形ABCD 的面积,证明1()2

S AB CD BC AD ?+?≤.

B A

C

D D'

l

解析如图,作点D 关于AC 的垂直平分线l 的对称点D ',显然ACD △与ACD '△关于l 成轴对称图形.所以

ABCD S S '=

BAD BCD S S ''=+△△,

11

sin sin 22

AB AD BAD BC CD BCD ''''=

??∠+??∠ ()AB AD BC CD ''?+?≤

1

()2

AB CD BC AD =?+?. 16.1.11★★在矩形ABCD 内取一点M ,使180BMC AMD ∠+∠=?,试求BCM DAM ∠+∠的值.

解析 如图将BMC △沿AB 平移至ADM '△,显然MM AD '⊥,BMC AM D '∠=∠.所以,由已知条件

180AM D AMD '∠+∠=?,即A 、M 、D 、M '四点共圆,从而 BCM DAM ADM DAM '∠+∠=∠+∠ 90AMM DAM '=∠+∠=?.

16.1.12★★设P 是平行四边形ABCD 内一点,使得PAB PCB ∠=∠, 证明:PBA PDA ∠=∠.

A D P

P'

B

C

解析 如图,把AP 平移至DP ',则BAP CDP '∠=∠,及PBA P CD '∠=∠,PP BC '∥, 所以P PC BCP '∠=∠.

又已知PAB PCB ∠=∠,故P PC CDP ''∠=∠,从而P 、D 、P '、C 四点共圆.于是

P PD P CD ''∠=∠,

又P PD PDA '∠=∠, 所以PBA PDA ∠=∠.

16.1.13★(1)如图(a )所示,在梯形ABCD 中,AD BC ∥.已知:3AD BC +=

,AC

,

BD =,求梯形ABCD 的面积.

(2)如图(b ),在梯形ABCD 中,AD BC ∥.M 是CD 的中点,MN AB ⊥于N .设AB a =,MN h =,求梯形ABCD 的面积.

解析(1)将BD 平移到CE ,连结DE ,

则CE BD ==DE BC =.所以

B

C

A

D E

(a)

A D

E

N

M C

F B

(b)

3AE AD DE AD BC =+=+=.

222AE AC CE =+.

因此90ACE ∠=?. 因为ABC CDE S S =△△,

所以12

ACE ABCD S S AC CE ==?=

△梯形. (2)将AB 平移至EF ,如图(b )所示,EF 过点M .由于MDF △≌MCF △,所以

ABCD ABFE S S AB MN ah ==?=梯形梯形.

评注 本题的两种添平行线法是解梯形问题的常用方法.

16.1.14★★如图,在四边形ABCD 中,AD BC =,E 、F 分别是DC 及AB 中点,FE 的

延长线与AD 及BC 的延长线分别交于点H 、G .求证:AHF BGF ∠=∠.

G H D

A

B'

F B

C

E (a)

解析1如图(a ),将线段CB 平移至AB '.则四边形AB BC '为平行四边形.由于F 是AB 中 点,故C 、F 、B '共线.

现在EF 是CDB '△的中位线,故EF DB '∥,所以

AHF ADB '∠=∠,BGF AB D '∠=∠.

又显然AB BC AD '==.故ADB AB D ''∠=∠. 于是AHF BGF ∠=∠.

G H E C

D M

A

F B

(b)

解析2如图(b ),连结AC ,取AC 中点为M ,连结ME 、MF ,则ME 、MF 分别为CDA △、

ABC △的中位线,所以12ME DA ∥,1

2

MF BC ∥.故

MEF AHF ∠=∠, AFE FGB ∠=∠,

且ME MF =,故MEF MFE ∠=∠, 所以AHF FGB ∠=∠.

16.1.15★★如图,A B ∠=∠,1AA 、1PP 、1BB 均垂直于11A B ,垂足为1A 、1P

、 1B ,117AA =,116PP =,120BB =,1112A B =.求AP BP +的值.

A C D A 1

P 1B 1

E P

B

解析 将1PP 平移到1CA ,C 在线段1AA 上,延长BP 交1AA 于D ,将1DA 平移到1EB ,E 在1BB 上. 因为1AA 、1BB 、1PP 均垂直于11A B ,所以四边形11CA PP 和11DA B E 都是矩形. 由

1116

CA PP ==,

117

AA =,得

1

AC =.又

11

AA BB ∥,所以

PDA B A ∠=∠=∠,90PCD PCA ∠=∠=?,PC PC =.所以Rt PCD △≌Rt PCA △,PA PD =,1CD AC ==.

于是AP BP BD +=,

11115DA AA AD EB =-==, 115BE BB EB =-=.

在Rt BED △中,1112DE A B ==

,13BD ==,也即

13AP BP +=.

16.1.16★★在正三角形ABC 的三条边上,有三条相等的线段12A A 、12B B 、12C C .证明:直线21B C 、

21C A 、21A B 所成的三角形中,三条线段21B C 、21C A 、21A B 与包含它们的边

成比例.

C

A

B

C 1

C 2

3

A 1

A 2

A 3

B 1

B 2B 3

解析 如图,将12C C 平移到2B P ,连结1PA 、1PB 、2PC .因为四边形12BC C P 为平行四边形,所以

1260B B P A ∠=∠=?,21212B P C C B B ==,故12B B P △为正三角形,112B P A A ∥.这样所得四边形121A A B P 为平

行四边形,121A P A B ∥.

因此,由21B C 、21C A 、21A B 这三条线段构成的三角形与12A PC △全等,而12A PC △≌333A B C △,从而命题得证.

16.1.17★★如图所示,2AA BB CC '''===且共点于O ,60AOB BOC COA '''∠=∠=∠=?,

求证

:AOB BOC COA S S S '''++△△△

Q

解析 将A OC '△沿A A '方向平移A A '长的距离,得AQR △,将BOC '△沿BB '方向平移BB '长的距离,得B PR ''△.由于

2OP OQ ==,60POQ ∠=?,

所以2PQ =.

又因'2QR R P OC OC CC ''+=+==,

故R 与R '重合,且P 、R 、Q 三点共线.在正三角形POQ 中,

AOB BOC COA S S S '''++△△△ AOB B PR AQR S S S ''=++△△△

2

2OPQ S <△ 16.1.18★★★如图,由平行四边形的顶点B 引它的高BK 和BH ,已知KH a =,BD b =,求点B 到

BKH △的垂心的距离.

B P

C

H

D K

A

a

H 1

解析 令1H 表示BKH △的垂心.

考虑到1KH BH ⊥,DH BH ⊥,有1KH DH ∥.同理有1HH DK ∥,因而四边形1KDHH ,为平行四边形,平移1BKH △到PDH △位置,显然P 为BC 上一点,所求线段1BH 即PH ,已与KH 位于同一直角三角形中.由于四边形KDPB 为矩形,有PK BD =,于是

1BH PH ===

16.1.19★★★已知ABC △的面积为S ,D 、E 、F 分别为BC 、CA 、AB 上的点,且

1

BD CE AF DC EA FB n

===,试求以AD 、BE 、CF 为边的三角形的面积S '. G

C

E

D

B

F A

解析 如图,过点A 作AG 平行且等于FC .连CG 、GD 、GE ,则四边形AFCG 为平行四边形,GCA CAB ∠=∠. 又

1

1

CG AF AE AE AB AB AB CA n ====

+, 所以CGE △≌ABC △,CEG ACB ∠=∠,因此GE CB ∥. 又因

1=1GE BD

BC n BC

=

+, 所以GE BD =.

于是四边形GEBD 也为平行四边形,从而GD BE =,即ADG △为AD 、BE 、CF 所构成的三角形,它的面积为S '. 在梯形GABC 中,

1

111

GABC

S GC AB GC S

AB AB n +=

=+=+

+梯形, 所以111

GABC S S n ??

=+ ?+?

?

梯形, 而

1

1

ABD S BD S BC n ==

+△, 所以111

ABC CG CD n

S BA BC n n ?=

=?

?++△, 因此()2

111111n S S n n n ??

??'=+--?? ?++??+???? ()

22

1

1n n S n ++=

+.

§16.2旋转

16.2.1★★对于边长为1的正ABC △内任一点P .求证PA PB PC ++.

C

B

P

C'

P'

解析 把ABC △绕点B 旋转60?到CBC '△.则PBP '△为正三角形,且

PC P C ''=,PB PP '=,

因而PA PB PC PA PP P C AC ''''++=++=≥.

16.2.2★★设P 是等边三角形ABC 内一点,3PC =,4PA =,5PB =.试求此等边三角形的边长.

B

A

C

P 54

3

解析 如图,把CBP △绕点C 逆时针旋转60?,到达CAP '△的位置,显然,

60PCP '∠=?,3P C PP ''==,5AP '=.

在APP '△中,222222345AP P P AP ''+=+==,所以90APP '∠=?.故

9060150APC APP P PC ''∠=∠+∠=?+?=?.

在APC △中,由余弦定理,得

2222cos150AC AP PC AP PC =+-???

2234243=+??+

25=+

所以,等边三角形ABC

的边长是

16.2.3★★设O 是正三角形ABC 内一点,已知115AOB ∠=?,125BOC ∠=?,求以线段OA 、OB 、OC 为边构成的三角形的各角.

解析 以B 为旋转中心,将AOB △按逆时针方向旋转60?,旋转至CDB △,如图所示. 连结OD .由于OB OD =,60OBD ∠=?,所以OBD △是正三角形,故OD OB =. 又CD OA =,故OCD △是以OA 、OB 、OC 为边构成的一个三角形. 因此COD BOC BOD ∠=∠-∠

1256065=?-?=?, ODC BDC BDO ∠=∠-∠ AOB BDO =∠-∠ 1156055=?-?=?,

从而180655560OCD ∠=?-?-?=?.

所以,以线段OA 、OB 、OC 为边构成的三角形的各角分别为65?、55?和60?.

16.2.4★★如图,两个正方形ABCD 与AKLM (顶点按顺时针方向排列),求证:这两个正方形的中心以及线段BM 、DK 的中点是某正方形的顶点.

C

D

Q K L

R

M S

A

P

B

解析 设P 、R 分别是正方形ABCD 、AKLM 的中心,Q 、S 分别是线段DK 、BM 的中点,先证PSR △是以PR 为斜边的等腰直角三角形.

连结BK 、DM ,将ADM △绕A 逆时针旋转90?,则D 、M 分别到B 、K 位置,所以

BK DM =,BK DM ⊥.

因为P 、S 分别是BD 、BM 的中点,所以1

2PS DM ∥.同理12

SR BK ∥.所以PS SR ⊥,且PS SR =.即

PSR △是以PR 为斜边的等腰直角三角形.

同理可证PQR △也是以PR 为斜边的等腰直角三角形.故P 、Q 、R 、S 是正方形的四个顶点.

16.2.5★★正方形ABCD 内有一点P ,1PA =,3PB =

.PD =求正方形ABCD 的面积.

A

D

B C

P

P'

解析 将PAB △绕A 点旋转90?,得P AD '△.连结PP '.易知90PAP '∠=?,1PA P A '==.

于是PP '=

在P PD '△中,222279P P PD P D ''+=+==.所以P PD '△是直角三角形,从而135APD ∠=?. 由余弦定理得

222AD PA PD PD =+?

8=

16.2.6★★在正方形ABCD 的边AB 和AD 上分别取点M 和K ,使得AM AK =,在线段DM 上取点P ,使得PCD PKA ∠=∠.证明:APM ∠是直角.

A

M B

L K P

D

C

解析 如图所示,在边BC 上取点L ,使BL AK =,连结KL 、AP 、PL .

由于PCD PKA ∠=∠,所以P 、C 、D 、K 四点共圆,作四边形PCDK 的外接圆和矩形

KDCL 的外接圆,因为这两个外接圆均过K 、D 、C 三点,从而这两圆是相同的,所以 90LPD LKD ∠=∠=?.

易知Rt MAD △≌Rt LBA △.

故以正方形ABCD 的中心为旋转中心,将Rt LBA △以逆对针方向旋转90?,则LBA △旋转至MAD △,从而AL DM ⊥.又LP DM ⊥,故A 、P 、L 三点共线,所以90APM ∠=?. 16.2.7★★★已知凸六边形123456A A A A A A 中,1223A A A A =,3445A A A A =,5661A A A A =,

135246A A A A A A ∠+∠+∠=∠+∠+∠.求证:

(1)246

123456

12

A A A A A A A A A S S =△;

(2)624212A A A A ∠=∠,246412

A A A A ∠=∠,

26461

2

A A A A ∠=∠.

A 1A 2

A 3

A 4

A 5

A 6

A'4

解析 (1)将234A A A △绕点2A 旋转,使23A A 与21A A 重合,得到214

A A A '△,如图所示.连结46A A '. 因为

135246()()A A A A A A ∠+∠+∠+∠+∠+∠

720=?,

所以135A A A ∠+∠+∠

246360A A A =∠+∠+∠=?.

因此4

161412360A A A A A A A ''∠=?-∠-∠ 135360A A A =?-∠-∠=∠.

从而146A A A '△≌546A A A △,

246A A A △≌24

6A A A '△, 所以246

2464

123456

1

122

A A A A A A A A A A A A A S S S '==△.

(2)由(1)可知

624624126324A A A A A A A A A A A A '∠=∠=∠+∠

2624A A A A =∠-∠,

所以62421

2

A A A A ∠=∠.

同理可证:246412A A A A ∠=∠,264612

A A A A ∠=∠.

评注 本题通过旋转,把234A A A △、456A A A △、612A A A △拼成一个与246A A A △全等的新三角形24

6A A A '.也可以采取向246A A A △内部旋转的方法,把234A A A △、456A A A △、612A A A △放在26A A A 4△的内部,使

之恰好“拼成”246A A A △.

16.2.8★★★如图所示,P 、Q 是边长为1的正方形ABCD 内两点,使得

45PAQ PCQ ∠=∠=?,求PAB PCQ QAD S S S ++△△△的值.

A

D

Q P

B

C

A

D

Q

P

Q'

B

Q''C

(a)

(b)

解析 将AQD △绕点A 顺时针旋转90?至AQ B '△,CQD △绕点C 逆时针旋转90?至CQ B ''△,连结

PQ '、PQ '',则

APQ '△≌APQ △,CPQ ''△≌CPQ △.

又90ABQ CBQ ADQ CDQ '''∠+∠=∠+∠=?,所以Q '、B 、Q ''三点共线,且

BQ DQ BQ '''==,

故PBQ PBQ S S '''=△△, 所以PAB PCQ QAD S S S ++△△△

PAQ PBC QCD S S S =++△△△

1122

ABCD S ==正方形. 16.2.9★★在ABC △中,120A ∠?≥,点P 不与A 重合.求证PA PB PC AB AC ++>+. 解析 如图,将PAB △绕点A 旋转至P AB ''△的位置,使CA 与AB '共线.于是

AB AC AB AC PC PB ''+=+<+.

B'

A

C

P

B

P'

又因为120P AB PAC BAP PAC BAC ''∠+∠=∠+∠=∠?≥,所以

18060PAP BAC '∠=?-∠?≤.

故在等腰PAP '△中,

PA P A PP ''=≥.

因此PB PP P B PA P B PA PB ''''''++=+≤≤, 从而PA PB PC AB AC ++>+.

评注 此题似乎依赖于图形,P 在BAC ∠内,事实上P 在其他位置照样成立,方法完全一样. 16.2.10★★★凸四边形ABCD 中,点M 、N 分别是BC 、CD 的中点,且AM AN a +=(a 是常数),求证:2

2

ABCD

a S <四边形. E

D N

C F

M

B

A

解析 如图所示,将ABM △绕点M 旋转180?得FCM △,将ADN △绕点N 旋转180?得ECN △,连EF ,于是

360ECF ECN BCD FCM ∠=?-∠-∠-∠ 360ADC BCD ABC =?-∠-∠-∠ 180DAB =∠

所以EF 与凸四边形ABCD 的边不相交.故

FCM ECN AEF ABCD AMCN S S S S S =++<△△△四边形四边形

1

22AE AF AM AN ?=?≤ 2

2222AM AN a +??

?=

???

≤. 16.2.11★★★如图,设D 为锐角ABC △内一点,且AC BD AD BC ?=?,

90ADB ACB ∠=∠+?,求

AB CD

AC BD

??的值.

A D

B

C

解析 将线段BD 绕点B 顺时针旋转90?到BE ,连结DE 、CE .

因为ADB CAD CBD ACB ∠=∠+∠+∠,90ADB ACB ∠=∠+?,所以

90CAD CBD ∠+∠=?,又90CBD CBE ∠+∠=?,

则CAD CBE ∠=∠. 由AC BD AD BC ?=?,得

AC AD AD

BC BD BE

==

,于是ACD BCE △∽△,所以ACD BCE ∠=∠, AC AD CD

BC BE EC

==

.从而ACB ACD BCD ECB BCD ECD ∠=∠+∠=∠+∠=∠.所以,ABC DEC △△∽,则AB AC

DE DC

=

,即AB CD AC DE ?=?. 在

Rt BDE △中,BD BE =,DE =,故

AB CD

AC BD

??

高中数学竞赛讲义(16)平面几何

高中数学竞赛讲义(十六) ──平面几何 一、常用定理(仅给出定理,证明请读者完成) 梅涅劳斯定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若三点共线,则 梅涅劳斯定理的逆定理条件同上,若 则三点共线。 塞瓦定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若三线平行或共点, 则 塞瓦定理的逆定理设分别是ΔABC的三边 BC,CA,AB或其延长线上的点,若则三线共点或互相平行。 角元形式的塞瓦定理分别是ΔABC的三边BC,CA,AB所在直线上的点,则平行或共点 的充要条件是 广义托勒密定理设ABCD为任意凸四边形,则AB?CD+BC?AD≥AC?BD,当且仅当A,B,C,D四点共圆时取等号。

斯特瓦特定理设P为ΔABC的边BC上任意一点,P不同于B,C,则有 AP2=AB2?+AC2?-BP?PC. 西姆松定理过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。 西姆松定理的逆定理若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。 九点圆定理三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。 蒙日定理三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴)欧拉定理ΔABC的外心O,垂心H,重心G三点共线,且 二、方法与例题 1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。 例1 在ΔABC中,∠ABC=700,∠ACB=300,P,Q为ΔABC内部两点,∠QBC=∠QCB=100,∠PBQ=∠PCB=200,求证:A,P,Q三点共线。 [证明] 设直线CP交AQ于P1,直线BP交AQ于P2,因为∠ACP= ∠PCQ=100,所以,①在ΔABP,ΔBPQ,ΔABC中由正弦定理有

初中数学竞赛辅导几何变换(旋转)

第2讲几何变换——旋转 典型例题 【例1】C是线段AE上的点,以AC、CE为边在线段AE的同侧作等边三角形ABC、CDE, △是等设AD的中点是M,BE的中点是N,连结MN、MC、NC,求证:CMN 边三角形.Array【例2】如图,两个正方形ABCD和AKLM有一个公共点A.求证:这两个正方形的中心以 及线段BM,DK的中点是某正方形的顶点. L

【例3】 已知:如图,ABC △、CDE △、EHK △都在等边三角形,且A 、D 、K 共线, AD DK =.求证:HBD △也是等边三角形. 【例4】 ABC △是等边三角形,P 是AB 边的中点,Q 是AC 边的中点,R 为BC 边的中点, M 为RC 上任意一点,且PMS △是等边三角形,S 与Q 在PM 的同侧,求证: RM QS =. E C H D B A Q ? S M P C B A R

【例5】 ABCD 是正方形,P 是ABCD 内一点,1PA =,3PB = ,PD =求正方形ABCD 的面积. 【例6】 P 是等边三角形ABC 内的一点,6PA =,8PB =,10PC =.求ABC △的边长. D

【例7】 设O 是等边ABC △内一点,已知115AOB ?∠=,125BOC ?∠=,求以线段OA 、OB 、 OC 为边所构成的三角形的各内角大小. 【例8】 如图,在ABC △中,90ACB ?∠=,AC BC =,P 是ABC △内一点,3PA =,1PB =, 2PC =,求BPC ∠. A P C

如图,已知ABC △中,90A =,AB AC =,D 为BC 上一点,求证:2222BD DC AD +=. 【例9】 如图,在等腰直角ABC △中,90ACB ?∠=,CA CB =,P 、Q 在斜边AB 上,且 45PCQ ?∠=,求证:222PQ AP BQ =+. A D C B A Q B C P

初中数学竞赛第二轮专题复习(4)几何

初中数学竞赛第二轮专题复习(4) 几何 1、如图,D ,E 分别为?AB C的边AB ,AC 上的点,且不与?A BC 的顶点重合.已知AE 的长为m,AC 的长为n,A D,AB的长是关于x 的方程2140x x mn -+=的两个根. (Ⅰ)证明:C ,B,D,E 四点共圆; (Ⅱ)若∠A=90°,且m=4, n=6,求C,B ,D,E 所在圆的半径. 解:(Ⅰ)连接DE,根据题意在△ADE 和△ACB 中,A D×A B=mn=A E×A C,即AD AE AC AB =. 又∠DAE=∠CAB ,从而△ADE ∽△ACB 因此∠AD E=∠A CB ,所以C , B, D, E 四点共圆. (Ⅱ)m=4, n =6时,方程x2-14x +mn=0的两根为x1=2,x 2=12. 故AD =2,AB =12. 取CE 的中点G ,DB 的中点F,分别过G,F 作AC ,AB 的垂线,两垂线相交于H点,连接DH . 因为C , B , D, E 四点共圆,所以C, B , D, E 四点所在圆的圆 心为H,半径为DH. 由于∠A=90°,故GH∥AB,H F∥AC .H F=AG=5,D F=12 (12-2)=5. 故C,B,D,E四点所在圆的半径为 . 2、在等腰?AB C中,顶角∠AC B=80°,过A , B引两直线在?ABC 内交于一点O.若∠O AB=10°, ∠OBA=20°,求∠ACO 的大小,并证明你的结论. 解:60ACO ∠=?(4分) 以OA 为轴翻转OAB ?到OAB '?,连接,CB BB '',由10OAB ∠=?知20BAB '∠=?且AB AB '=,ABB '为等 腰三角形,故80AB B ACB '∠=?=∠,从而知,,,A B B C '四点共圆,再由20ABO ∠=?知60OBB '∠=?,BB O '?为 等边三角形.由四点共圆知100ACB '∠=?,又 30OBC B BC '∠=∠=?,OB B B '=,BC 公共,故OBC B BC '???. 再由100ACB '∠=?,80ACB ∠=?,故20OCB ∠=?,从而得证:60ACO ∠=?. 答题要点:60ACO ∠=? 以OA 为轴翻转OAB ?到OAB '?,连接,CB BB '' ①OBB '?为正三角形;

高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、 塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-=== -, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得 1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高” A B C D F P

还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、 E 、 F 均不是?ABC 的顶点,若1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交于点P ,直线CP 交AB 于点D /,则据塞瓦定理有 / / 1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有/ /AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、 梅涅劳斯定理 A B C D E F P D /

数学竞赛平面几何重要知识点绝对精华

数学竞赛平面几何重要知识点 梅涅劳斯定理: 设D 、E 、F 分别是ABC ?三边(或其延长线)上的三点,则D 、E 、F 三点共线的充要条件是1=??EA CE FC BF DB AD 。 斯德瓦特定理:设P 是ABC ?的边BC 边上的任一点,则 BC PC BP AP BC AB PC AC BP ??+?=?+?222 西摩松定理: 设P 是ABC ?外接圆上任一点,过P 向ABC ?的三边分别作垂线,设垂足为D 、E 、F ,则D 、E 、F 三点共线。

6、共角定理:设ABC ?和C B A '''?中有一个角相等或互补(不妨设A=A ')则 C A B A AC AB S S C B A ABC ' '?''?='''?? 与圆有关的重要定理 4.四点共圆的主要判定定理 (1)若∠1=∠2,则A 、B 、C 、D 四点共圆; (2)若∠EAB=∠BCD ,则A 、B 、C 、D 四点共圆; (3)若PA ?PC=PB ?PD ,则A 、B 、C 、D 四点共圆; 三角形的五心 三角形的三条中线共点,三条角平分线共点,三条高线共点,三条中垂线共点。三角形的垂心、重心、外心共线(欧拉线),并且重心把连结垂心和外心的线段分成2∶1的两段。三角形的外心和内心的距离)2(r R R d -=。此公式称为欧拉式,由此还得到r R 2≥。当且仅当△ABC 为正三角形时,d=0,此时R=2r.其中R 和r 分别是三角形外接圆半径和内切圆半径。 与△的一边及另两边的延长线均相切的圆称为△的旁切圆,旁切圆的圆心称为旁心。

重要例题 例1.设M 是任意ABC ?的边BC 上的中点,在AB 、AC 上分别取点E 、F,连EF 与AM 交于N ,求证:)(21AF AC AE AB AN AM +=(1978年辽宁省中学数学竞赛) 例 2. 已知点O 在ABC ?内部,022=++OC OB OA .OCB ABC ??与的面积之比为_________________. 例3. 如图①,P 为△ABC 内一点,连接P A 、PB 、PC ,在△P AB 、△PBC 和△P AC 中,如果存在一个三角形与△ABC 相似,那么就称P 为△ABC 的自相似点. ⑴如图②,已知Rt △ABC 中,∠ACB =90°,∠ACB >∠A ,CD 是AB 上的中线,过点B 作BE ⊥CD ,垂足为E ,试说明E 是△ABC 的自相似点. ⑵在△ABC 中,∠A <∠B <∠C . ①如图③,利用尺规作出△ABC 的自相似点P (写出作法并保留作图痕迹); ②若△ABC 的内心P 是该三角形的自相似点,求该三角形三个内角的度数.

数学初中竞赛大题训练:几何专题(含答案)

数学初中竞赛大题训练:几何专题 1.阅读理解: 如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”.证明“四点共圆”判定定理有:1、若线段同侧两点到线段两端点连线夹角相等,那么这两点和线段两端点四点共圆;2、若平面上四点连成的四边形对角互补,那么这四点共圆.例:如图1,若∠ADB=∠ACB,则A,B,C,D四点共圆;或若∠ADC+∠ABC=180°,则A,B,C,D四点共圆. (1)如图1,已知∠ADB=∠ACB=60°,∠BAD=65°,则∠ACD=55°; (2)如图2,若D为等腰Rt△ABC的边BC上一点,且DE⊥AD,BE⊥AB,AD=2,求AE 的长; (3)如图3,正方形ABCD的边长为4,等边△EFG内接于此正方形,且E,F,G分别在边AB,AD,BC上,若AE=3,求EF的长. 解:(1)∵∠ADB=∠ACB=60°, ∴A,B,C,D四点共圆, ∴∠ACD=∠ABD=180°﹣∠ADB﹣∠BAD=180°﹣60°﹣65°=55°, 故答案为:55°; (2)在线段CA取一点F,使得CF=CD,如图2所示: ∵∠C=90°,CF=CD,AC=CB, ∴AF=DB,∠CFD=∠CDF=45°, ∴∠AFD=135°, ∵BE⊥AB,∠ABC=45°, ∴∠ABE=90°,∠DBE=135°, ∴∠AFD=∠DBE, ∵AD⊥DE,

∴∠ADE=90°, ∵∠FAD+∠ADC=90°,∠ADC+∠BDE=90°, ∴∠FAD=∠BDE, 在△ADF和△DEB中,, ∴△ADF≌△DEB(ASA), ∴AD=DE, ∵∠ADE=90°, ∴△ADE是等腰直角三角形, ∴AE=AD=2; (3)作EK⊥FG于K,则K是FG的中点,连接AK,BK,如图3所示:∴∠EKG=∠EBG=∠EKF=∠EAF=90°, ∴E、K、G、B和E、K、F、A分别四点共圆, ∴∠KBE=∠EGK=60°,∠EAK=∠EFK=60°, ∴△ABK是等边三角形, ∴AB=AK=KB=4,作KM⊥AB,则M为AB的中点, ∴KM=AK?sin60°=2, ∵AE=3,AM=AB=2, ∴ME=3﹣2=1, ∴EK===, ∴EF===.

高中数学竞赛题之平面几何

第一讲 注意添加平行线证题 在同一平面,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁. 添加平行线证题,一般有如下四种情况. 1 为了改变角的位置 大家知道,两条平行直线被第三条直线所截,同位角相等,错角相等,同旁角互补.利用这些 性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 设P 、Q 为线段BC 上两点,且BP =CQ ,A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA . 在△DBP =∠AQC 中,显然 ∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知 △DBP ≌△AQC . 有DP =AC ,∠BDP =∠QAC . 于是,DA ∥BP ,∠BAP =∠BDP . 则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP . 所以AB =AC . 这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅. 例2 如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE . 由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . ∥= A D B P Q 图1 P E D G A B F C 图2

高中复习数学竞赛基础平面几何知识点总结

高中数学竞赛平面几何知识点基础 1、相似三角形的判定及性质 相似三角形的判定: (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似; (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.); (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.); (4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似.). 直角三角形相似的判定定理: (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似; (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 常见模型: 相似三角形的性质: (1)相似三角形对应角相等 (2)相似三角形对应边的比值相等,都等于相似比 (3)相似三角形对应边上的高、角平分线、中线的比值都等于相似比 (4)相似三角形的周长比等于相似比 (5)相似三角形的面积比等于相似比的平方 2、内、外角平分线定理及其逆定理 内角平分线定理及其逆定理: 三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。 如图所示,若AM平分∠BAC,则AB AC =BM MC 该命题有逆定理: 如果三角形一边上的某个点与这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连

线是三角形的一条角平分线 外角平分线定理: 三角形任一外角平分线外分对边成两线段,这两条线段和夹相应的内角的两边成比例。 如图所示,AD平分△ABC的外角∠CAE,则BD DC =AB AC 其逆定理也成立:若D是△ABC的BC边延长线上的一点, 且满足BD DC =AB AC ,则AD是∠A的外角的平分线 内外角平分线定理相结合: 如图所示,AD平分∠BAC,AE平分∠BAC的外角 ∠CAE,则BD DC =AB AC =BE EC 3、射影定理 在Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射 影定理如下: BD2=AD·CD AB2=AC·AD BC2=CD·AC 对于一般三角形: 在△ABC中,设∠A,∠B,∠C的对边分别为a,b,c,则有 a=bcosC+ccosB b=ccosA+acosC c=acosB+bcosA 4、旋转相似 当一对相似三角形有公共定点且其边不重合时,则会产生另 一对相似三角形,寻找方法:连接对应点,找对应点连线和 一组对应边所成的三角形,可以得到一组角相等和一组对应 边成比例,如图中若△ABC∽△AED,则△ACD∽△ABE 5、张角定理 在△ABC中D为BC边上一点,则 sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 6、圆内有关角度的定理 圆周角定理及其推论: (1)圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半(2)同弧所对的圆周角相等 (3)直径所对的圆周角是直角,直角所对的弦是直径

高中数学竞赛题之平面几何

第一讲 注意添加平行线证题 在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁. 添加平行线证题,一般有如下四种情况. 1 为了改变角的位置 大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利 用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 设P 、Q 为线段BC 上两点,且BP =CQ ,A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA . 在△DBP =∠AQC 中,显然 ∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知 △DBP ≌△AQC . 有DP =AC ,∠BDP =∠QAC . 于是,DA ∥BP ,∠BAP =∠BDP . 则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP . 所以AB =AC . 这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅. 例2 如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE . 由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . 显然,四边形PBCE 、PADE 均为平行四边形.有 ∠BCE =∠BPE ,∠APE =∠ADE . 由∠BAF =∠BCE ,可知 ∠BAF =∠BPE . 有P 、B 、A 、E 四点共圆. 于是,∠EBA =∠APE . 所以,∠EBA =∠ADE . 这里,通过添加平行线,使已知与未知中的四个角通过P 、B 、A 、E 四点共圆,紧密联系起来.∠APE 成为∠EBA 与∠ADE 相等的媒介,证法很巧妙. 2 欲“送”线段到当处 利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题. 例3 在△ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、BC 的垂线,M 、N 、Q 为垂足.求证:PM +PN =PQ . 证明:如图3,过点P 作AB 的平行线交BD 于F ,过点F 作BC 的平行线分别交PQ 、AC 于K 、G ,连PG . 由BD 平行∠ABC ,可知点F 到AB 、BC 两边距离相等.有KQ =PN . 显然,PD EP =FD EF =GD CG ,可知PG ∥EC . 由CE 平分∠BCA ,知GP 平分∠FGA .有PK =PM .于是, PM +PN =PK +KQ =PQ . 这里,通过添加平行线,将PQ “掐开”成两段,证得PM =PK ,就有PM +PN =PQ .证法非常简捷. 3 为了线段比的转化 ∥= A D B P Q 图1P E D G A B F C 图2 A N E B Q K G C D M F P 图3

初中数学竞赛 几何专题:点共线问题(含答案)

初中数学竞赛 几何专题:点共线问题(含答案) 1. 锐角三角形ABC 中,45BAC ∠=?,BE 、CF 是两条高,H 为ABC △的垂心,M 、K 分别是BC 、 AH 的中点.证明:MK 、EF 和OH 共点,这里O 为ABC △的外心. 解析 如图,由条件45BAE ∠=?,可知AEB △和AFC △都是等腰直角三角形,而O 为AB 、BC 的中垂线上的点,故EO AB ⊥,FO AC ⊥,于是EO CF ∥,FO BE ∥,从而四边形EOFH 为平行四边形.故EF 与OH 的交点为EF 的中点. 另一方面,M 、K 为BC 、AH 的中点,结合直角三角形斜边上的中线等于斜边的一半,可知 12EM MF BC ==,1 2 EK KF AH ==.即四边形EKFM 为菱形,所以EF 与KM 的交点亦是EF 的中点. 从而命题获证. 2. 四边形SPNM 与PFET 都是正方形,且点S 、P 、T 共线,点N 、P 、F 共线,连结MT 、SE , 点S 在MT 上的射影是点A ,点T 在SE 上的射影是点B ,求证:点A 、P 、B 共线. 解析 设AB 与ST 交于点P ',又设ATS α∠=,TSE β∠=.于是由180ASB ATB ∠+∠=?,有 tan cot ASB ATB S SP AS BS P T S AT BT αβ'?===?'?△△ MS ST MS SP ST TE TE PT = ?== , 即点P 与点P '重合. 3. 在矩形ABCD 的边AB 、BC 、CD 、DA 上分别取异于顶点的K 、L 、M 、N ,已知KL MN ∥.证明KM 与LN 的交点O 在矩形的对角线BD 上. 解析 连结OB 、OD . B M N A S P T F E D M C N O L A K B

人教版九年级数学竞赛专题:平面几何的定值问题(含答案)

人教版九年级数学竞赛专题:平面几何的定值问题(含答案) 【例1】 如图,已知P 为正方形ABCD 的外接圆的劣弧上任意一点.求证:为定值. AD ⌒ PA PC PB P A B C D 【例2】 如图,AB 为⊙O 的一固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C 作弦 CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当点C 在上半圆(不包括A ,B 两点)上移动时,点P ( ) A.到CD 的距离保持不变 B.位置不变 C.等分 D.随C 点的移动而移动 DB ⌒ A

【例3】 如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂 线的垂足.求证:不管ST 滑到什么位置,∠SPM 是一定角. B 【例4】 如图,扇形OAB 的半径OA =3,圆心角∠AOB =90°.点C 是上异于A ,B 的动点,过点C AB ⌒ 作CD ⊥OA 于点D ,作CE ⊥OB 于点E .连接DE ,点G ,H 在线段DE 上,且DG =GH =HE .(1)求证:四边形OGCH 是平行四边形; (2)当点C 在上运动时,在CD ,CG ,DG 中,是否存在长度不变的线段?若存在,请求出该线段AB ⌒ 的长度; (3)求证:CD 2+3CH 2是定值. B O A C E H G D 【例5】 如图1,在平面直角坐标系xOy 中,点M 在x 轴的正半轴上,⊙M 交x 轴于A ,B 两点,交y 轴于C ,D 两点,且C 为弧AE 的中点,AE 交y 轴于G 点.若点A 的坐标为(-2,0),AE =8.

小学数学竞赛几何题集锦

小学数学竞赛几何图形集锦 第一部分基础题 1、(06年清华附中考题) 如图,在三角形ABC 中,,D 为BC 的中点,E 为AB 上的一点,且BE=13 AB,已知四边形EDCA 的面积是35,求三角形ABC 的面积. 2、(06年西城实验考题) 四个完全一样的直角三角形和一个小正方形拼成一个大正方(如图)如果小正方形面积是1平方米,大正方形面积是5平方米,那麽直角三角形中,最短的直角边长度是______米. 3、(05年101中学考题) 一块三角形草坪前,工人王师傅正在用剪草机剪草坪.一看到小灵通,王师傅热情地招呼,说:“小灵通,听说你很会动脑筋,我也想问问你,这块草坪我把它分成东、西、南、北四部分(如图).修剪西部、东部、南部各需10分钟,16分钟,20分钟.请你想一想修 4、(05年三帆中学考题) 右图中AB=3厘米,CD=12厘米,ED=8厘米,AF=7厘米.四边形ABDE 的面积是平方厘米. 5、 (06年北大附中考题)

三角形ABC 中,C 是直角,已知AC =2,CD =2,CB=3,AM=BM ,那么三角形AMN (阴影部分)的面积为多少? 6、(★★)如右图所示,已知三角形ABC 面积为1,延长AB 至D ,使BD=AB ;延长BC 至E ,使CE=2BC ;延长CA 至F ,使AF=3AC , 求三角形DEF 的面积。 7、(★★)右图是一块长方形耕地,它由四个小长方形拼合而成,其中三个小长方形的面积分别为15、18、30公顷,问图中阴影部分的面积是多少? 8、正方形ABFD 的面积为100平方厘米,直角三角形ABC 的面 积,比直角三角形(CDE 的面积大30平方厘米,求DE 的长是多少? 9、(★★★)如下图,已知D 是BC 的中点,E 是CD 的中点,F 是AC 的中点,且ADG ?的 面积比EFG ?的面积大6平方厘米。?的面积是多少平方厘米 ABC ? A B C D E F G 10、(★★)长方形ABCD 的面积为36平方厘米,E 、F 、G 分别为边AB 、BC 、CD 的中点,H 为AD 边上的任一点。求图中阴影部分的面积是多少?

初中数学竞赛几何证明题综合训练

几何证明题综合训练 1. 线段或角相等的证明 (1) 利用全等△或相似多边形; (2) 利用等腰△; (3) 利用平行四边形; (4) 利用等量代换; (5) 利用平行线的性质或利用比例关系 (6) 利用圆中的等量关系等。 2. 线段或角的和差倍分的证明 (1) 转化为相等问题。如要证明a=b±c ,可以先作出线段p=b±c ,再去证明a=p , 即所谓“截长补短”,角的问题仿此进行。 (2) 直接用已知的定理。例如:中位线定理,Rt △斜边上的中线等于斜边的一半; △的外角等于不相邻的内角之和;圆周角等于同弧所对圆心角的一半等等。 3. 两线平行与垂直的证明 (1) 利用两线平行与垂直的判定定理。 (2) 利用平行四边形的性质可证明平行;利用等腰△的“三线合一”可证明垂直。 (3) 利用比例关系可证明平行;利用勾股定理的逆定理可证明垂直等。 【竞赛例题剖析】 【例1】从⊙O 外一点P 向圆引两条切线PA 、PB 和割线PCD 。从A 点作弦AE 平行于CD ,连结BE 交CD 于F 。求证:BE 平分CD 。 【分析1】构造两个全等△。 连结ED 、AC 、AF 。 CF=DF ←△ACF ≌△EDF ← ←? ?? ?? ?????←←∠=∠∠=∠=∠←∠=∠←??? ∠=∠=四点共圆、、、P B F A ABP AFC ABP AEF EFD EFD AFC CD //AE EDF ACF ED AC ←∠PAB=∠AEB=∠PFB 【分析2】利用圆中的等量关系。连结OF 、?? ?? ?=∠←=∠←=、、、P B F O 90 OBP 90OFP DF CF 0 ←∠PFB=∠POB ← ←? ??←∠=∠←∠=∠是切线、PB PA AEB POB CD //AE AEB PFB

初中数学竞赛平面几何常用公式及例题讲解

面积公式A bc B ac C ab S ABC sin 2 1sin 21sin 21===? ))()((c p b p a p p S ABC ---=? 2/)(c b a p ++= 和角公式 A B B A B A cos sin cos sin )sin(+=+ A B B A B A sin sin cos cos )cos(-=+ B A B A B A tan tan 1tan tan )tan(-+=+ 差角公式 A B B A B A cos sin cos sin )sin(-=- A B B A B A sin sin cos cos )cos(+=- B A B A B A tan tan 1tan tan )tan(+-=-

常用角度的三角比

相关练习题: 1.已知ABC ?中,,75 =∠B ,60 =∠C ,10=BC 求AB 与AC 的长及三角形的面积 2.求证面积公式A bc B ac C ab S ABC sin 2 1sin 21sin 21===? 3.求证海伦公式 ))()((c p b p a p p S ABC ---=? 2/)(c b a p ++= 4. 已知ABC ?中,,7=AB ,8=BC ,9=AC 求sinA , sinB , sinC 5.在等腰三角形ABC 中,AB=1,∠A=900,点E 为腰AC 中点,点F 在底边BC 上,且FE ⊥BE ,求△CEF 的面积。 6.已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点是P ,AB=BD ,且PC=0.6,求四边形ABCD 的周长. 7.在△ABC 中,∠ABC =600,点P 是△ABC 内的一点,使得∠APB =∠BPC =∠CPA ,且PA =8,PC =6,则PB = 。 A B C E F A B C P

高中数学竞赛讲义_平面几何

平面几何 一、常用定理(仅给出定理,证明请读者完成) 梅涅劳斯定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','C B A 三点共线,则 .1''''''=??B C AC A B CB C A BA 梅涅劳斯定理的逆定理 条件同上,若.1''''''=??B C AC A B CB C A BA 则',','C B A 三点共线。 塞瓦定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','CC BB AA 三线平行或共点,则.1''''''=??B C AC A B CB C A BA 塞瓦定理的逆定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若.1''''''=??B C AC A B CB C A BA 则',','CC BB AA 三线共点或互相平行。 角元形式的塞瓦定理 ',','C B A 分别是ΔABC 的三边BC ,CA ,AB 所在直线上的点,则',','CC BB AA 平行或共点的充要条件是.1'sin 'sin 'sin 'sin 'sin 'sin =∠∠?∠∠?∠∠BA B CBB CB C ACC AC A BAA 广义托勒密定理 设ABC D 为任意凸四边形,则AB ?CD+BC ?AD ≥AC ?BD ,当且仅当A ,B ,C ,D 四点共圆时取等号。 斯特瓦特定理 设P 为ΔABC 的边BC 上任意一点,P 不同于B ,C ,则有 AP 2=AB 2?BC PC +AC 2?BC BP -BP ?PC. 西姆松定理 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。 西姆松定理的逆定理 若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。 九点圆定理 三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。 蒙日定理 三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴) 欧拉定理 ΔABC 的外心O ,垂心H ,重心G 三点共线,且.2 1GH OG = 二、方法与例题 1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。 例1 在ΔABC 中,∠ABC=700,∠ACB=300,P ,Q 为ΔABC 内部两点,∠QBC=∠QCB=100,∠ PBQ=∠PCB=200,求证:A ,P ,Q 三点共线。 [证明] 设直线CP 交AQ 于P 1,直线BP 交AQ 于P 2,因为∠ACP=∠PCQ=100,所以 CQ AC QP AP =1 ,①在ΔABP ,ΔBPQ ,ΔABC 中由正弦定理有

2018-2019初中数学竞赛专题复习 极限几何100题

1. 如图,在△ABC 中,AB =2AC ,AD 是角平分线,E 是 BC 边的中点,EF ⊥AD 于点 F ,CG ⊥AD 于点 G , 3 若 tan ∠CAD= 4 ,AB =20,则线段 EF 的长为 C F 2. 如图,在△ABC 中,tan ∠ACB=3,点D 、E 在 BC 边上,∠DAE = 1 ∠BAC ,∠ACB =∠DAE +∠B ,点 2 F 在线段 AE 的延长线上,AF =AD ,若 CD =4,CF =2,则 AC 边的长为 3. 如图,在△ABC 中,∠A=30°,点 D 、E 分别在 AB 、AC 边上,BD=CE=BC ,点 F 在 BC 边上,DF 与 BE 1 交于点 G 。若 BG=1,∠BDF= 2 ∠ACB ,则线段 EG 的长为

4. 如图,在△ABC 中,∠A =60°,角平分线 BD 、CE 交于点 F ,若 BC =3CD ,BF =2,则 BC 边的长为 E B 5. 如图,在△ABC 中,AB =AC ,∠ACD =45°,点 E 在射线 BD 上,AE//CD ,AE =DE ,若 BD =1,CD = 5,则 AE 的长为 6. 如图,△ABC 中,∠AB =90°,CD 是 AB 边上的中线,点 F 在线段 AD 上,点 F 在 CD 延长线上,AE = DF ,连接 CE 、BF ,若∠AEC =∠DFB ,AC = 2 3 ,DF = 1,则线段 CE 的长为 A B 7. 如图,在等边△ABC 中,D 为 AB 边上一点,连接 CD ,在 CD 上取一点E ,连接BE ,∠BED =60°,若 3

全国高中数学联赛平面几何题

全国高中数学联赛平面几何题 1.(2000) 如图,在锐角三角形ABC 的BC 边上有两点E 、F ,满足∠BAE =∠CAF ,作FM ⊥AB ,FN ⊥AC (M 、N 是垂足),延长AE 交三角形ABC 的外接圆于D .证明:四边形AMDN 与三角形ABC 的面积相等. 2. (2001) 如图,△ABC 中,O 为外心,三条高AD 、BE 、CF 交于点H ,直线ED 和AB 交于点M ,FD 和AC 交于点N . 求证:(1) OB ⊥DF ,OC ⊥DE ; (2) OH ⊥MN . 3.(2002) 4.(2003) 过圆外一点P 作圆的两条切线和一条割线,切点为A ,B 所作割线交圆于C ,D 两点,C 在P ,D 之间,在弦CD 上取一点Q ,使∠DAQ =∠PBC .求证:∠DBQ =∠PAC . A B C D E F M N

5.(2004)在锐角三角形ABC 中,AB 上的高CE 与AC 上的高BD 相交于点H ,以DE 为直径的圆分别交AB 、AC 于F 、G 两点,FG 与AH 相交于点K 。已知BC=25,BD=20,BE=7,求AK 的长。 6.(2005) 7.(2006)以B 0和B 1为焦点的椭圆与△AB 0B 1的边AB i 交于点 C i (i =0,1). 在AB 0的延长线上任取点P 0,以B 0为圆心,B 0P 0 为半径作圆弧P 0Q 0⌒ 交C 1B 0的延长线于Q 0;以C 1为圆心,C 1Q 0 为半径作圆弧Q 0P 1⌒ 交B 1A 的延长线于点P 1;以B 1为圆心,B 1P 1 为半径作圆弧P 1Q 1⌒ 交B 1C 0的延长线于Q 1;以C 0为圆心,C 0Q 1 为半径作圆弧Q 1P 0'⌒ ,交AB 0的延长线于P 0'. 试证: ⑴ 点P 0'与点P 0重合,且圆弧P 0Q 0⌒与P 0Q 1⌒ 相切于点P 0; ⑵ 四点P 0,Q 0,Q 1,P 1共圆. P B 1 B 0 C 1P 1 P 0 Q 1Q 0 A C 0

小学六年级数学竞赛几何问题

学习必备 欢迎下载 小学数学竞赛辅导测卷(几何问题部分) 1、 如图是边长4厘米的正方形,则阴影部分 的周长是( )厘米。 2、如图∠1=( )度。 3、如图的长方形纸片,若按虚线剪成四块,这四 块纸片可拼成一个正方形。那么所拼成的正方 形的周长是( )厘米。 4有9个小长方形,它们的长和宽分别相等,用 这9个小长方形拼成的大长方形(如图)的面积是 45平方厘米。这个长方形的周长是( )厘米。 5、如图,阴影部分的面积是( )。 6、如图长方形ABCD 中,AD =15厘米,AB =8厘米, 四边形OEFG 的面积是9平方厘米。则阴影部分的 面积是( )。 7、在正方形里面画四个小三角形(如图), 三角形Ⅰ与Ⅱ的面积之比是2﹕1;三角形Ⅲ与Ⅳ的面积相等; 三角形Ⅰ、Ⅱ、Ⅲ的面积之和是4 1平方米; 三角形Ⅱ、Ⅲ、Ⅳ的面积之和是61平方米。 那么四个小三角形面积之总和是( )平方米。 8、一个正方形(如图),被分成四个长方形,它们的 面积分别是101米2、51米2、103米2、52米2。图中 阴影部分是正方形,它的面积是( ) 9、有三个小正方体,拼成如图的样子,表面积比原来减少 了16平方厘米。则小正方体的棱长是( )厘米。 10、如图是一个表面被涂上红色的棱长10厘米的正方体 木块,如果把它沿虚线切成8个正方体,这些小正方体中没 有被涂上红色的所有表面积和是( )平方厘米。 11、如图:把四边形ABCD 的各边都延长至原来的2倍, 得到一个新四边形EFGH 。如果ABCD 的面积为5平方 厘米,则EFGG 的面积为( )平方厘米。 镇 年级 班 姓 座号 …………………线………………………………封………………………密……………………… 1题 9 单位:厘米 第3题 1 30° 42° 第2题 第4题 G F E O D C B A 第6题 第8题 第10题 B A H G F E D C 第11题 第9题

全国初中数学竞赛辅导(初3)第17讲平面几何中的定值问题(20200614140122)

第十七讲平面几何中的定值问题 定值问题的证明或计算,一般是通过图形的定量,如线段和定角来讨论的.如果问题中已明确给出定值,那么一般通过线段和角的和、差、倍、分的推导或计算来解决;如果问题中未给出定值,可以利用特殊的方法推测出定值,然后再加以一般化的证明.下面举几个例题,说明上述思考方法. 例1 如图3-80.已知△ABC中,AB=AC,P是其底边BC上任一点,设AP交△ABC的外接圆于Q点,求证:AP·AQ为定值. 分析欲证AP·AQ为定值,我们先用特殊化方法找出这个定值是什么, 然后再给以一般化的证明.为此,我们取P与B(或C)重合,则Q点也必与B(或C)重合,则AP·AQ应等于AB2(定值),以下证明这个推测.证连 结BQ.因为AB=AC,所以 ∠ABC=∠ACB. 又因为∠ACB=∠AQB,所以 ∠ABC=∠AQB. 又因为∠BAQ=∠PAB,所以 所以 AP·AQ=AB2(定值). 注意如果连结QC,将怎样证明?请读者思考. 例2 如图3-81.已知△ABC中,AB=AC,如果直线EF,MN都垂直于BC,试证明:不论MN,EF怎样平行移动,只要MN,EF之间的距离不变,五边形AMNFE的周长是一个定值.

分析从图3-81中可以发现,如果引AD⊥BC于D,由已知条件可知AB(或AC),AD,NF,BD(或CD)都为定值,因此,若五边形AMNFE的周长转化为以上各线段的表达式,则可判定其为定值. 证作AD⊥BC于D,则 所以 所以 又因为 所以 所以

所以 由于△ABC为确定的等腰(AB=AC)三角形,所以AD,BD,CD,AB为定值,又因为EF,MN之间距离为定长,所以NF为定值.所以五边形AMNFE的周长为定值. 例3 设OA,OB是已知圆O的任意两条半径,过B引BE⊥OA于E,过E作EP⊥AB于P.求证:OP2+EP2为定值(图3-82). 分析由已知A,B为⊙O上任意两点,如果固定A,让B在圆上移动,当B点移动到半圆中点时,BE变成了半径r,E与O重合, 证延长OP交⊙O于C,D(图3-82).因为在直角三角形AEB中,∠AEB=90°,EP⊥AB于P,所以 EP2=AP·PB=CP·PD =(OC-OP)·(OD+OP) =r2-OP2,

初中联赛难度经典几何题(精编版,精选10年初中数学联赛,各地竞赛,中考压轴的高难度几何经典题)

初中几何经典难题 1、已知:如图,O 是半圆的圆心,C、E 是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF. 2、已知:如图,P 是正方形ABCD 内点,∠PAD=∠PDA=150. 求证:△PBC 是正三角形. 3、如图,已知四边形ABCD、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形. A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1

4、已知:如图,在四边形ABCD 中,AD=BC,M、N 分别是AB、CD 的中点,AD、BC 的延长线交MN 于E、F. 求证:∠DEN=∠F. 5、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM⊥BC 于M.(1)求证:AH=2OM; (2)若∠BAC=600,求证:AH=AO. 6、设MN 是圆O 外一直线,过O 作OA⊥MN 于A,自A 引圆的两条直线,交圆于B、C 及D、E,直线EB 及CD 分别交MN 于P、Q. 求证:AP=AQ. A N F E C D M B · A D H E M C B O · G A O D B E C Q P N M

P C G F B Q A D E 7、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC、DE,设CD、EB 分别交MN 于P、Q. 求证:AP=AQ. 8、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半. 9、如图,四边形ABCD 为正方形,DE∥AC,AE=AC,AE 与CD 相交于F. 求证:CE=CF. ·O Q P B D E C N M ·A A F D E C B

相关文档
最新文档