(名师整理)人教版数学中考《正多边形和圆》专题复习精品教案

(名师整理)人教版数学中考《正多边形和圆》专题复习精品教案
(名师整理)人教版数学中考《正多边形和圆》专题复习精品教案

中考数学人教版专题复习:正多边形和圆

一、教学内容:

正多边形和圆

1. 正多边形的有关概念.

2. 正多边形和圆的关系.

3. 正多边形的有关计算.

二、知识要点:

1. 正多边形的定义

各边相等、各角也相等的多边形叫做正多边形. 如正三角形(即等边三角形)、正四边形(即正方形)、正五边形、正六边形、正n 边形等.

2. 正多边形与圆的关系

(1)从圆的角度看:等分圆周可获得正多边形,把圆分成n (n ≥3)等份. ①依次连结各分点所得的多边形是这个圆的内接正n 边形.

②经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n 边形.

(2)从正多边形的角度看:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.

3. 正多边形的有关概念

(1)正多边形的中心:正多边形的外接圆(或内切圆)的圆心. (2)正多边形的半径:正多边形外接圆的半径.

(3)正多边形的边心距:中心到正多边形的一边的距离(即正多边形的内切圆的半径).

(4)正多边形的中心角:正多边形每一边所对的圆心角. 正多边形的每一

个中心角的度数是360°

n

.

O R B 1

A 1

B 2

A 2

B 3

A 3C r

4. 正n 边形的对称性

当n 为奇数时,正n 边形只是轴对称图形;当n 为偶数时,正n 边形既是轴对称图形,也是中心对称图形. 5. 一些特殊正多边形的计算公式

边数n 内角A n 中心角αn 半径R 边长a n 边心距r n 周长P n 面积S n

3 60° 120° R 3R 12R 33R

3

43R 2 4 90° 90° R 2R 22R 42R 2R 2 6

120°

60°

R

R

32

R 6R

3

2

3R 2

三、重点难点:

重点是正多边形的概念和计算,难点是正确理解正多边形和圆的关系.

【典型例题】

例1. 如图所示,既是轴对称图形,又是中心对称图形的有__________.

线段

正三角形正方形正五边形正六边形

(1) (2) (3) (4) (5)

解:(1)(3)(5)

评析:因正方形、正六边形的边数为偶数,所以线段、正方形、正六边形既是轴对称图形,又是中心对称图形.

例2. (1)如果一个正多边形的中心角为24°,那么它的边数是__________. (2)正多边形的一个外角等于45°,那么这个正多边形的内角和等于__________,中心角是__________.

分析:利用正多边形的内角和及中心角的计算公式求解. (1)依题意得

360°

n

=24°,∴n =15. (2)n ×45°=360°,∴n =8. 由内角和公式得(8

-2)·180°=1080°,∴中心角为360°

8

=45°.

解:(1)15,(2)1080°,45°.

例3. 如图所示,小明同学在手工制作中,把一个边长为12cm 的等边三角形纸片贴在一个圆形纸片上. 若三角形的三个顶点恰好都在这个圆上,求该圆的半径.

A B

C

O

D

分析:由题意知这个三角形是圆的内接正三角形.

解:如图所示,连结OB ,过O 作OD ⊥BC 于D ,则正△ABC 的中心角=360°

3

120°,∠BOD =1

2×120°=60°,∠OBD =90°-∠BOD =30°,

∴OD =1

2BO.

又BD =12BC =1

2

×12=6(cm ),

∴OB 2-OD 2=62,即OB 2

-(12

OB )2=62,

∴OB =43cm .

评析:把实际问题转化为正三角形的外接圆的问题是解题的关键.

例4. 已知圆内接正方形的面积为8,求同圆内接正六边形的面积. 分析:解决问题的关键是“同圆”,通过圆的半径可以把正方形的条件转化为正六边形的条件,从而解决问题.

解:由正方形的面积为8,可知正方形的边长为22,设该圆半径为R ,正

六边形的边长和边心距分别为a 6和r 6. 则2R =4,a 6=R ,r 6=3

2

·a 6.

∴S 6=6×12a 6·r 6=6×12×2×3

2

×2=6 3.

例5. 用折纸的方法,可直接剪出一个正五边形(如图所示)方法是:拿一张长方形纸对折,折痕为AB ,以AB 的中点O 为顶点将平角五等分,并沿五等份的

线折叠,再沿CD 剪开,使展开后的图形为正五边形,则∠OCD 等于( ) A. 108° B. 90° C. 72° D. 60°

A

B A

B

O

O

C

D

分析:本题考查学生的动手能力和灵活运用所学知识的能力,这里的O 点是所剪正五边形的中心,由题可知∠COD =36°,所以剪得的三角形正好是五边形一边和两条半径所构成的三角形的一半,所以∠OCD =90°. 解:B

例6. 如图(1)、(2)、(3)、…、(n ),M 、N 分别是⊙O 的内接正三角形ABC 、正方形ABCD 、正五边形ABCDE 、…、正n 边形ABCDE …的边AB 、BC 上的点,且BM =CN ,连接OM 、ON.

(1)求图(1)中∠MON 的度数; (2)图(2)中∠MON 的度数是__________,图(3)中∠MON 的度数是__________; (3)试探究∠MON 的度数与正n 边形边数n 的关系(直接写出答案). 分析:(1)连接OB 、OC ,注意△OBM ≌△OCN ,可得∠MON =∠BOC =120°. (2)同理,由△OBM ≌△OCN ,可得∠MON =∠BOC =90°. (3)由(1)(2)知,∠MON =∠BOC ,即∠MON =∠BOC =90°.

A B

C

O M N A B C D

O

M N B

C D E O M

N A

B

C O

M N …(1)(2)

(3)(n )

A

解:(1)方法一:连接OB 、OC ,∵正△ABC 内接于⊙O , ∴∠OBM =∠OCN =30°,∠BOC =120°, 又∵BM =CN ,OB =OC ,∴△OBM ≌△OCN , ∴∠BOM =∠CON ,∴∠MON =∠BOC =120°. 方法二:连接OA 、OB ,∵正△ABC 内接于⊙O. AB =BC ,∠OAM =∠OBN =30°,∠AOB =120°. 又∵BM =CN ,∴AM =BN ,

又∵OA =OB ,∴△AOM ≌△BON ,

∴∠AOM =∠BON ,∴∠MON =∠AOB =120°.

(2)图(2)中,∠MON =360°4=90°,图(3)中,∠MON =360°

5=72°.

(3)图(n )中,∠MON =360°

n

.

评析:(1)△OBM 与△OCN 是旋转全等三角形. 图(1)中△OCN 绕点O 顺时针旋转120°,与△OBM 重合;图(2)旋转90°,图(3)旋转72° (2)

注意由特殊到一般的思想,归纳出∠MON =360°

n

.

【方法总结】

1. 正n 边形的中心角为360°

n

,与正n 边形的一个外角相等,与正n 边形的

一个内角互补. 求中心角常用以上方法.

2. 正多边形的外接圆半径R 与边长a 、边心距r 之间的关系式为R 2

=r 2

+(

12

a )2,这是把正n 边形分成了2n 个全等的直角三角形,把正n 边形的有关计算转化为直角三角形中的问题.

【预习导学案】 (弧长和扇形面积)

一、预习前知

1. 圆的周长公式是__________. 其中π是圆的周长与它的直径的比值,叫做__________,它是一个常数,π=3.1415926…,根据问题精确度的要求来取π的近似值.

2. 圆的面积公式是__________.

3. 如图所示,阴影部分由圆心角的两条半径和圆心角所对的弧围成的图形叫做__________,这是__________的一部分.

4. 圆柱可以看作是__________而得到的图形,旋转轴叫做__________,圆柱侧面上平行于轴的线段叫做__________,两个底面之间的距离是__________,圆柱的侧面展开图是__________.

5. 圆柱的侧面积S 侧=__________,全面积S 表=__________.

二、预习导学

1. 半径为R 的圆中,n °的圆心角所对的弧长l =__________.

2. 半径为R ,圆心角为n °的扇形面积的计算公式是__________,半径为R ,弧长为l 的扇形面积计算公式是__________.

3. 圆锥可以看作是__________而得到的图形,连结圆锥的顶点和底面圆上任意一点的线段叫做__________,连结圆锥的顶点和底面圆心的线段叫做__________,圆锥的侧面展开图是__________.

4. 圆锥的侧面积S 侧=__________,全面积S 表=__________. 反思:(1)如何求不规则图形的面积.

(2)圆锥的侧面展开后所得扇形的半径、弧长与圆锥的哪些量对应?

【模拟试题】(答题时间:50分钟) 一、选择题

1. 若一个正多边形的一个外角是40°,则这个正多边形的边数是( ) A. 10 B. 9 C. 8 D. 6

2. 下列命题中正确的是( ) A. 正多边形都是中心对称图形

B. 正多边形一个内角的大小与边数成正比

C. 正多边形一个外角的大小随边数的增加而减小

D. 边数大于3的正多边形对角线都相等

3. 一个正多边形的中心角是36°,则其一定是( ) A. 正五边形 B. 正八边形 C. 正九边形 D. 正十边形

4. 正多边形的一边所对的中心角与该正多边形一个内角的关系是( ) A. 两角互余 B. 两角互补 C. 两角互余或互补 D. 不能确定

5. 圆内接正三角形的边心距与半径的比是( ) A. 2∶1 B. 1∶2 C. 3∶4 D. 3∶2

6. 下列命题中:①三边都相等的三角形是正三角形;②四边都相等的四边形是正四边形;③四角都相等的四边形是正四边形;④各边都相等的圆的内接多边形是正多边形. 其中正确的有( )

A. 1个

B. 2个

C. 3个

D. 4个

*7. 已知四边形ABCD 内接于⊙O ,给出下列三个条件:①︵AB =︵BC =︵CD =︵

DA ;②AB =BC =CD =DA ;③∠A =∠B =∠C =∠D. 则在这些条件中,能够判定四边形ABCD 是正四边形的条件共有( )

A. 0个

B. 1个

C. 2个

D. 3个

**8. A 点是半圆上一个三等分点,B 点是︵

AN 的中点,P 是直径MN 上一动点,⊙O 的半径为1,则AP +BP 的最小值为( )

O

A

B

M

N

P

A. 1

B.

22

C. 2

D. 3-1

二、填空题

1. 用一张圆形的纸片剪一个边长为4cm 的正六边形,则这个圆形纸片的半径最小为__________cm .

2. 如果一个正多边形的内角和是900°,则这个多边形是正__________边形.

3. 正十边形至少绕中心旋转__________度,它与原正十边形重合.

4. 若正三角形、正方形、正六边形的周长都相等,它们的面积分别为S 3、S 4、S 6,则S 3、S 4、S 6由大到小的排列顺序是__________. ]

5. 正六边形DEFGHI 的顶点都在边长为6cm 的正三角形ABC 的边上,则这个正六边形的边长是__________cm .

*6. 如图是某广场地面的一部分,地面的中央是一块正六边形地砖,周围用正三角形和正方形的大理石密铺,从里向外共铺了12层(不包括正六边形地砖),每一层的外边界都围成一个多边形. 若正中央正六边形地砖的边长为0.5米,则第12层的外边界所围成的多边形的周长是__________.

三、解答题

1. 解答下列各题:

(1)分别求出正十边形、正十二边形的中心角.

(2)已知一个正多边形的一个中心角为18°,求它的内角的度数. (3)正六边形的两条平行边间的距离为12cm ,求它的外接圆的半径. 2. 如图所示,求中心为原点O ,顶点A 、D 在x 轴上,半径为4cm 的正六边形ABCDEF 的各个顶点坐标.

x

y O

A B C D E F

3. 用一块半径R =60cm 的圆形木料,做“八仙桌”(正方形)桌面或“八角桌”(正八边形)桌面,哪个面积大?大多少?(结果保留三个有效数字)

**4. 请阅读,完成证明和填空. 九年级数学兴趣小组在学校的“数学长廊”中兴奋地展示了他们小组探究发现的结果,内容如下:

A A A B

B

B C

C

C

D D

O O

O

M M M N

N N E

图1

图2

图3

(1)如图1,正三角形ABC 中,在AB 、AC 边上分别取点M 、N ,使BM =AN ,连接BN 、CM ,发现BN =CM ,且∠NOC =60°. 请证明:∠NOC =60°.

(2)如图2,正方形ABCD 中,在AB 、BC 边上分别取点M 、N ,使AM =BN ,连接AN 、DM ,那么AN =__________,且∠DON =__________度.

(3)如图3,正五边形ABCDE 中,在AB 、BC 边上分别取点M 、N ,使AM =BN ,连接AN 、EM ,那么AN =__________,且∠EON =__________度.

(4)在正n 边形中,对相邻的三边实施同样的操作过程,也会有类似的结论. 请大胆猜测,用一句话概括你的发现:______________________________.

【试题答案】 一、选择题

1. B

2. C

3. D

4. B

5. B

6. B

7. C

8. C (提示:如图所示,作点B 关于直线MN 的对称点B ’,连结OB ’,PB ’,BB ’.

O

A

B

M

N P

B'

二、填空题

1. 4

2. 七

3. 36

4. S 6>S 4>S 3

5. 2

6. 39米

三、解答题

1. (1)正十边形的中心角为360°10=36°,正十二边形的中心角是360°

12

30°. (2)中心角为18°的正多边形的边数为360

18

=20,正二十边形的内角为

(20-2)·180°

20

=162°. (3)由题意得r 6=6(cm ),由于正六边形的边长

与半径相等,∴R 2=(12R )2+r 62

,∴34

R 2=36,R =43(cm ).

2. A (-4,0)、B (-2,-23)、C (2,-23)、D (4,0)、E (2,23)、F (-2,23)

3. “八仙桌”的面积为7200平方厘米,“八角桌”的面积为72002平方厘米,所以“八角桌”比“八仙桌”的面积大2980平方厘米.

4. (1)证明:∵△ABC 是正三角形,∴∠A =∠ABC =60°,AB =BC ,在△ABN

和△BCM 中,????

?AB =BC

∠A =∠ABC

AN =BM

,∴△ABN ≌△BCM . ∴∠ABN =∠BCM. 又∵∠ABN +

∠OBC =60°,∴∠BCM +∠OBC =60°,∴∠NOC =60°. (2)在正方形中,AN

=DM ,∠DON =90°. (3)在正五边形中,AN =EM ,∠EON =108°. (4)以上

所求的角恰好等于正n 边形的内角(n -2)·180°

n

.

正多边形和圆教案

正多边形和圆(一)教案 教材分析 学生在前面已经学习了正多边形的概念,了解正多边形的各边相等、各内角相等以及多边形内角和的运算公式。在本册中学习了圆及圆的有关性质,理解圆中弧与弦的关系,从而为本节课研究正多边形与圆的关系打下了良好的基础,本节课先通过观察美丽的图案,让学生感受到数学来源于生活。接下来研究正多边形和圆的关系,按由特殊到一般的规律,以正五边形为例进行探索和证明,并将结论推广到正n边形。让学生体会到化归思想在研究问题中的重要性。培养学生观察、比较、分析问题的能力,发展了学生合情推理能力和演绎推理能力。 教学目标 知识技能:了解正多边形与圆的关系,了解正多边形的中心、半径、边心距、中心角等概念。能运用正多边形的知识解决圆的有关计算问题。 数学思考;通过正多边形与圆的关系的教学培养学生观察、猜想、推理、迁移的能力。 解决问题:进一步向学生渗透“特殊——一般”再“一般——特殊”的唯物辩证法思想,体会化归思想在研究问题中的重要性,能综合运用所学知识和技能解决问题。 情感态度:学生经历观察、发现、探究等数学活动,感受到数学来源于生活,又服务于生活,体会到事物之间是相互联系,相互作用的。 重点难点 教学重点:探索正多边形与圆的关系,了解正多边形的有关概念,并能进行计算。 教学难点:探索正多边形与圆的关系。 教学过程: 一、观察图案,提出问题 (设计说明:学生通过观看美丽的图案,欣赏生活中正多边形形状的物体,让学生感受到数学来源于生活,从中感受到数学美,并提出本节课所要研究的问题。) 问题l:观看教科书图24。3-1,这些美丽的图案,都是在日常生活中我们经常能看到的,利用正多边形得到的物体。你能从这些图案中找出正多边形来吗? 教师引导学生回忆、理解正多边形的概念。 问题2:菱形,矩形,正方形是正多边形吗? 问题3:通过观察图案,你们知道正多边形和圆有什么关系吗? 问题4:给你一个圆,怎样就能做出一个正多边形来? (教师引导学生观察、思考,学生分组讨论、交流,发表各自见解) 此问题比较抽象,是本节课的难点。教师要求学生观察教材图案,会发现正多边形的边数多给人一种接近圆的印象。教师展示课件:在圆中依次出现几条相等的弦,学生会想到弧相等,教师迸一步引导学生明确只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形。

中考数学-圆的切线证明方法

专题-------圆的切线证明 我们学习了直线和圆的位置关系,就出现了新的一类习题,就是证明一直线是圆的切线.在我们所学的知识范围内,证明圆的切线常用的方法有: 一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M,求证:DM与⊙O相切. 证明一:连结OD. ∵AB=AC, ∴∠B=∠C. ∵OB=OD, ∴∠1=∠B. ∴∠1=∠C. D ∴OD∥AC. ∵DM⊥AC, ∴DM⊥OD. ∴DM与⊙O相切 证明二:连结OD,AD. ∵AB是⊙O的直径, ∴AD⊥BC. 又∵AB=AC,

∴∠1=∠2. ∵DM ⊥AC , ∴∠2+∠4=900 ∵OA=OD , ∴∠1=∠3. ∴∠3+∠4=900. 即OD ⊥DM. ∴DM 是⊙O 的切线 例2 如图,已知:AB 是⊙O 的直径,点C 在⊙O 上,且∠CAB=300,BD=OB ,D 在AB 的延长线上. 求证:DC 是⊙O 的切线 证明:连结OC 、BC. ∵OA=OC , ∴∠A=∠1=∠300. ∴∠BOC=∠A+∠1=600. 又∵OC=OB , ∴△OBC 是等边三角形. ∴OB=BC. ∵OB=BD , ∴OB=BC=BD. ∴OC ⊥CD. ∴DC 是⊙O 的切线. 例3 如图,AB 是⊙O 的直径,CD ⊥AB ,且OA 2=OD ·OP . 求证:PC 是⊙O 的切线. C D

证明:连结OC ∵OA 2=OD ·OP ,OA=OC , ∴OC 2=OD ·OP , OC OP OD OC . 又∵∠1=∠1, ∴△OCP ∽△ODC. ∴∠OCP=∠ODC. ∵CD ⊥AB , ∴∠OCP=900. ∴PC 是⊙O 的切线. 二、若直线l 与⊙O 没有已知的公共点,又要证明l 是⊙O 的切线,只需作OA ⊥l ,A 为垂足,证明OA 是⊙O 的半径就行了,简称:“作垂直;证半径” 例4 如图,AB=AC ,D 为BC 中点,⊙D 与AB 切于E 点. 求证:AC 与⊙D 相切. 证明一:连结DE ,作DF ⊥AC ,F 是垂足.

中考数学专题训练圆专题复习

——圆 ◆知识讲解 一.圆的定义 1、在一个平面内,线段OA绕着它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。 2、圆是到定点的距离等于定长的所有点的集合。 3、确定一个圆需要两个要素:一是位置二是大小,圆心确定其位置,半径确定其大小。 4、连接圆上任意两点的线段叫弦,经过圆心的弦叫直径。圆上任意两点间的部分叫做圆弧,简称弧。以A、B为端点的弦记作“圆弧AB”,或者“弧AB”。大于半圆的弧叫作优弧(用三个字母表示,如ABC)叫优弧;小于半圆的弧(如AB)叫做劣弧。 二、垂直于弦的直径、弧、弦、圆心角 1、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弦。 2、垂径定理逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。 3、在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。 在同圆或等圆中,等弧所对的圆心角相等。 在等圆中,弦心距相等的弦相等。 三、圆周角 1、定义:顶点在圆上,并且角的两边和圆相交的角。 2、定理:一条弧所以的圆周角等于这条弧所对的圆心角的一半。 3、推论:(1)在同圆或等圆中,同弧或等弧所以的圆周角相等。 (2)直径所对的圆周角是直角,90°的圆周角所对的弦是直径。 四、点和圆的位置关系 1、设⊙O的半径为r,点到圆心的距离为d。 则d>r ?点在圆外,d=r ?点在圆上,d

中考数学专题复习圆的综合的综合题

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E. (1)如图1,求证:∠DAC=∠PAC; (2)如图2,点F(与点C位于直径AB两侧)在⊙O上,BF FA =,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG; (3)在(2)的条件下,如图3,若AE=2 3 DG,PO=5,求EF的长. 【答案】(1)证明见解析;(2)证明见解析;(3)EF=32. 【解析】 【分析】 (1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可; (2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案; (3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出 EH∥DG,求出OM=1 2 AE,设OM=a,则HM=a,AE=2a,AE= 2 3 DG,DG=3a, 求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO= 1 2 MO BM =,tanP= 1 2 CO PO =,设 OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】 (1)证明:连接OC, ∵PC为⊙O的切线,

∴OC⊥PC, ∵AD⊥PC, ∴OC∥AD, ∴∠OCA=∠DAC, ∵OC=OA, ∴∠PAC=∠OCA, ∴∠DAC=∠PAC; (2)证明:连接BE交GF于H,连接OH, ∵FG∥AD, ∴∠FGD+∠D=180°, ∵∠D=90°, ∴∠FGD=90°, ∵AB为⊙O的直径, ∴∠BEA=90°, ∴∠BED=90°, ∴∠D=∠HGD=∠BED=90°, ∴四边形HGDE是矩形, ∴DE=GH,DG=HE,∠GHE=90°, ∵BF AF =, ∴∠HEF=∠FEA=1 2 ∠BEA=190 2 o ?=45°, ∴∠HFE=90°﹣∠HEF=45°, ∴∠HEF=∠HFE, ∴FH=EH, ∴FG=FH+GH=DE+DG; (3)解:设OC交HE于M,连接OE、OF, ∵EH=HF,OE=OF,HO=HO, ∴△FHO≌△EHO, ∴∠FHO=∠EHO=45°,

正多边形与圆教案

正多边形和圆 一、学习目标: 1知识与技能: (1)了解正多边形的中心、半径、边心距、中心角等概念。 (2)能运用正多边形的知识解决圆的有关计算问题。 2过程与方法: (1)学生在探讨正多边形有关计算过程中,体会到要善于发现问题,解决问题,发展学生的观察、比较、分析、概括及归纳的逻辑思维能力和逻辑推理能力。 (2)在探索正多边形有关过程中,学生体会化归思想在解决问题中的重要性,能综合运用所学的知识和技能解决问题。 3情感、态度与价值观: ' (1)学生经历观察、发现、探究等数学活动,感受到数学来源于生活,又服务于生活,体会到事物之间是相互联系,相互作用的。 (2)运用已有的正多边形的知识解决问题的活动中获得成功的体验,建立学习自信心。 二、教学重难点: 教学重点:理解正多边形和圆中心正多边形半径、中心角、边心距、边长之间的关系,并能进行有关计算。 教学难点:理解正多边形和圆中心正多边形半径、中心角、边心距、边长之间的关系以及把正多边形的计算问题转化为解直角三角形的问题。 三、教学方法:引导学生采用自主合作探究的方式进行学习 四、教学准备:PPT课件、圆规、直尺 五、教学过程: 导入: 前面我们学习了许多图形与圆的关系,如:点和圆、直线和圆、四边形和圆以及圆与圆的关系,还有什么图形我们没有与圆联系上呢(多边形)那么今天我就和同学们一起来探讨正多边形与圆。看看它们之间有怎样的联系,又给我们带来什么样的知识。 / (一)自习交流: 1.带着以下问题自主预习教材105页至106页的内容,勾画你认为重要的地方和有 疑问的地方。 ①什么是多边形多边形的内角和与外角怎么计算的 ②正多边形和圆有什么关系 ③结合图形说说正多边形的中心、中心角、边心距、半径,并结合以前的知 识说说它们的特点 ④结合图形说一说如何计算正多边形的中心角、边心距、半径、周长和面 积 2.师生交流重要知识点: (1)正多边形:各边相等,各角也相等的多边形叫做正多边形。 如正五边形:AB=BC=CD=DE=EA ∠A=∠B=∠C=∠D=∠E (

中考数学总复习专题六圆的有关证明与计算试题新人教版

专题六圆的有关证明与计算 圆的切线的判定与性质 【例1】(2016·临夏州)如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A,B,D三点. (1)求证:AB是⊙O的直径; (2)判断DE与⊙O的位置关系,并加以证明; (3)若⊙O的半径为3,∠BAC=60°,求DE的长. 分析:(1)连接AD,证AD⊥BC可得;(2)连接OD,利用中位线定理得到OD与AC平行,可证∠ODE为直角,由OD为半径,可证DE与圆O相切;(3)连接BF,先证三角形ABC为等边三角形,再求出BF的长,由DE为三角形CBF中位线,即可求出DE的长. 解:(1)连接AD,∵AB=AC,BD=DC,∴AD⊥BC,∴∠ADB=90°,∴AB为圆O的直径 (2)DE与圆O相切,证明:连接OD,∵O,D分别为AB,BC的中点,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∵OD为圆的半径,∴DE与圆O相切 (3)∵AB=AC,∠BAC=60°,∴△ABC为等边三角形,∴AB=AC=BC=6,连接BF,∵AB为圆O的直径,∴∠AFB=∠DEC=90°,∴AF=CF=3,DE∥BF,∵D为BC的中点,∴E为CF的中点,即DE为△BCF中位线,在Rt△ABF中,AB=6,AF=3,根据勾股定理得BF=错误!=3错误!,则DE=错误!BF=错误! 圆与相似 【例2】(2016·泸州)如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且∠A=∠EBC. (1)求证:BE是⊙O的切线; (2)已知CG∥EB,且CG与BD,BA分别相交于点F,G,若BG·BA=48,FG=2,DF=2BF,求AH的值. 分析:(1)证∠EBD=90°即可;(2)由△ABC∽△CBG得错误!=错误!,可求出BC,再由△BFC∽△BCD得BC2=BF·BD,可求出BF,再求出CF,CG,GB,通过计算发现CG=AG,可证CH=CB,即可求出AC. 解:(1)连接CD,∵BD是直径,∴∠BCD=90°,即∠D+∠CBD=90°,∵∠A=∠D,∠A=∠EBC,∴∠CBD+∠EBC=90°,∴BE⊥BD,∴BE是⊙O切线 (2)∵CG∥EB,∴∠BCG=∠EBC,∴∠A=∠BCG,又∵∠CBG=∠ABC,∴△ABC∽△ CBG,∴BC BG =\f(AB,BC),即BC2=BG·BA=48,∴BC=4错误!,∵CG∥EB,∴CF⊥BD,∴△BFC∽△BCD,∴BC2=BF·BD,∵DF=2BF,∴BF=4,在Rt△BCF中,CF= \r(BC2-FB2)=42,∴CG=CF+FG=5错误!,在Rt△BFG中,BG=错误!=3错误!,∵

人教版九年级数学上册《24.3 正多边形和圆》 教案 第2课时

第二十四章圆 24.3 正多边形和圆 第2课时 一、教学目标 1.巩固正多边形与圆的关系. 2.掌握用尺规画图作正多边形. 二、教学重点及难点 重点:画特殊的正多边形. 难点:利用直尺与圆规作特殊的正多边形. 三、教学用具 多媒体课件,三角板、直尺、圆规、量角器. 四、相关资源 五、教学过程 【复习回顾,引入新课】 师生活动:教师展示复习的课件,让学生回顾上节课所学知识. 设计意图:通过复习正多边形与圆相关定义,为本节课学习正多边形画法作好铺垫.【合作探究,形成新知】 实际生活中,经常遇到画正多边形的问题,比如画一个六角螺帽的平面图、画一个五角星等,这些问题都与等分圆周有关,我们一起探究正六边形的画法. 我们可以用量角器画正六边形吗?如果可以,请说说作图原理. 师生活动:四人一组,小组讨论、交流,一名学生回答,全班订正.学生回答不足的地方,教师补充. 归纳用“量角器等分圆”: 依据:同圆中相等的圆心角所对应的弧相等. 操作:两种情况:其一是依次画出相等的圆心角来等分圆,这种方法比较准确,但是麻烦;其二是先用量角器画一个圆心角,然后在圆上依次截取等于该圆心角所对弧的等弧,于是得到圆的等分点,这种方法比较方便,但画图的误差积累到最后一个等分点,使画出的正多边形的边长误差较大. 【例题分析,深化提升】

例有没有其他作正六边形的方法?你能用尺规作出圆的内接正六边形吗?试试看. 师生活动:教师组织学生思考作图的方法,先让学生独立思考,再与小组同学协作完成,有方法的小组通过实物投影展示,对完成较好的同学给予表扬.教师引导学生观察正六边形,从而使其回忆起正六边形的边长等于半径,找到作图的方法,然后学生自己动手作图.设计意图:充分发挥学生的发散思维,让学生充分利用手中的工具,实际操作,认真思考,从而培养学生的动手能力. 【练习巩固,综合应用】 已知⊙O的半径为1 cm,求作⊙O的内接正八边形. 解:(1)如图所示,作直径AC,使AC=2 cm. (2)作AC的中垂线BD交⊙O于B,D两点. (3)连接AD,作AD的中垂线交AD于M点. ,,的中点E,F,G. (4)用同样的方法作出AB BC CD (5)依次连接各分点,即得正八边形. 正八边形AEBFCGDM即为所求作的⊙O的内接正八边形. 设计意图:巩固正多边形画法. 六、课堂小结 学完这节课你有哪些收获? 1.量角器画正多边形 2.尺规作正多边形 师生活动:学生自己总结,不全面的由其他学生补充完善.教师重点关注:不同层次学生对本节知识的理解、掌握程度. 设计意图:让学生总结出自己的收获,理清思路、整理经验,从而形成良好的学习习惯,同时也提出自己的疑问和困惑便于教师及时反馈. 七、板书设计 24.3 正多边形和圆(2) 1.量角器画正多边形 2.尺规作正多边形

深圳中考数学专题--圆

2017届深圳中考数学专题——圆 一.解答题(共30小题) 1.如图,AB是⊙O的直径,点C,D在⊙O上,且AD平分∠CAB,过点D作AC的垂线,与AC的延长线相交于点E,与AB的延长线相交于点F. (1)求证:EF与⊙O相切; (2)若AB=6,AD=4,求EF的长. 2.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE. (1)求证:直线DF与⊙O相切; (2)若AE=7,BC=6,求AC的长. 3.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心、OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE. (1)判断DE与⊙O的位置关系,并说明理由; (2)求证:BC2=CD?2OE; (3)若cos∠BAD=,BE=6,求OE的长.

4.如图,已知BC为⊙O的直径,BA平分∠FBC交⊙O于点A,D是射线BF上的一点,且满足=,过点O作OM⊥AC于点E,交⊙O于点M,连接BM,AM. (1)求证:AD是⊙O的切线; (2)若sin∠ABM=,AM=6,求⊙O的半径. 5.如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦于点E,交⊙O 于点F,且CE=CB. (1)求证:BC是⊙O的切线; (2)连接AF、BF,求∠ABF的度数; (3)如果CD=15,BE=10,sinA=,求⊙O的半径.

6.如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C. (1)求证:PE是⊙O的切线; (2)求证:ED平分∠BEP; (3)若⊙O的半径为5,CF=2EF,求PD的长. 8.如图,△ABC中,以AC为直径的⊙O与边AB交于点D,点E为⊙O上一点,连接CE并延长交AB于点F,连接ED. (1)若∠B+∠FED=90°,求证:BC是⊙O的切线; (2)若FC=6,DE=3,FD=2,求⊙O的直径. 9.如图,△ABC为等边三角形,以边BC为直径的半圆与边AB,AC分别交于D,F两点,过点D作DE⊥AC,垂足为点E. (1)判断DF与⊙O的位置关系,并证明你的结论; (2)过点F作FH⊥BC,垂足为点H,若AB=4,求FH的长(结果保留根号).

24.3正多边形和圆教案

24.3 正多边形和圆教案 教学内容 1.正多边形和圆的有关概念:正多边形的外接圆,正多边形的中心,?正多边形的半径,正多边形的中心角,正多边形的边心距. 2.在正多边形和圆中,圆的半径、边长、边心距中心角之间的等量关系. 3.正多边形的画法. 教学目标 了解正多边形和圆的有关概念;理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会应用多边形和圆的有关知识画多边形. 复习正多边形概念,让学生尽可能讲出生活中的多边形为引题引入正多边形和圆这一节间的内容. 重难点、关键 1.重点:讲清正多边形和圆中心正多边形半径、中心角、弦心距、?边长之间的关系. 2.难点与关键:通过例题使学生理解四者:正多边形半径、中心角、?弦心距、边长之间的关系. 教学过程 一、复习引入 请同学们口答下面两个问题. 1.什么叫正多边形? 2.从你身边举出两三个正多边形的实例,正多边形具有轴对称、?中心对称吗?其对称轴有几条,对称中心是哪一点? 老师点评:1.各边相等,各角也相等的多边形是正多边形. 2.实例略.正多边形是轴对称图形,对称轴有无数多条;?正多边形是中心对称图形,其对称中心是正多边形对应顶点的连线交点. 二、探索新知 如果我们以正多边形对应顶点的交点作为圆心,过点到顶点的连线 为半径,能够作一个圆,很明显,这个正多边形的各个顶点都在这个圆上,如图,?正六边形ABCDEF ,连结AD 、CF 交于一点,以O 为圆心,OA 为半径作圆,那么肯定B 、C 、?D 、E 、F 都在这个圆上. 因此,正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆. 我们以圆内接正六边形为例证明. 如图所示的圆,把⊙O ?分成相等的6?段弧,依次连接各分点得到六边ABCDEF ,下面证明,它是正六边形. ∵AB=BC=CD=DE=EF ∴AB=BC=CD=DE=EF 又∴∠A= 12BCF=1 2(BC+CD+DE+EF )=2BC ∠B=12CDA=1 2 (CD+DE+EF+FA )=2CD ∴∠A=∠B 同理可证:∠B=∠C=∠D=∠E=∠F=∠A

6.中考数学圆的综合证明题

中考复习——圆的综合证明题 1.如图,在Rt△ABC中, ACB=90°,AO是△ABC的角平分线,以O为圆心,OC为半径作⊙O (1)求证:AB是⊙O的切线. (2)已知AO交⊙O于点E,延长AO交⊙O于点D,tanD=1 2 ,求 AE AC 的值. (3)在(2)的条件下,设⊙O的半径为3,求AB的长. 4.如图①,半圆O的直径AB=6,AM和BN是它的两条切线,CP与半圆O相切于点P,并于AM,BN分别相交于C,D两点. (1)请直接写出∠COD的度数; (2)求AC?BD的值; 5.如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.(1)求证:∠ACD=∠B; (2)如图2,∠BDC的平分线分别交AC,BC于点E,F,求tan∠CFE的值; 6.如图,AB是⊙O的弦,点C为半径OA的中点,过点C作CD⊥OA交弦AB于点E,连接BD,且DE=DB.

(1)判断BD 与⊙O 的位置关系,并说明理由; (2)若CD =15,BE =10,tanA=512 ,求⊙O 的直径. 7.如图,直线AB 经过⊙O 上的点C ,直线AO 与⊙O 交于点E 和点D ,OB 与OD 交于点F ,连接DF , DC .已知OA =OB ,CA =CB ,DE =10,DF =6. (1)求证:①直线AB 是⊙O 的切线;②∠FDC =∠EDC ; (2)求CD 的长. 8.如图,在Rt ABC 中,∠C =90°,点O 在AB 上,经过点A 的⊙O 与BC 相切于点D ,与AC ,AB 分别相 交于点E ,F ,连接AD 与EF 相交于点G . (1)求证:AD 平分∠CAB (2)若OH ⊥AD 于点H ,FH 平分∠AFE ,DG =1. ①试判断DF 与DH 的数量关系,并说明理由; ②求⊙O 的半径. 10.如图,△ABC 是⊙O 的内接三角形,AB 是⊙O 的直径, OD ⊥AB 于点O ,分别交AC 、CF 于点E 、 D ,且D E =DC . A B C D E F G H O

中考数学圆综合题汇编

25题汇编 1. 如图,AB 是⊙O 的直径,BC 是⊙O 的切线,切点为B ,AD 为弦,OC ∥AD 。 (1)求证:DC 是⊙O 的切线; (2)若OA=2,求OC AD 的值。 2. 如图,⊙O 是△ABC 的外接圆,∠B=60°,CD 是⊙O 的直径,P 是CD 延长线上的一点,且AP=AC (1)求证:直线AP 是⊙O 的切线; (2)若AC=3,求PD 的长。 D C B A O C B

3. 如图,已知AB 是⊙O 的直径,AM 和BN 是⊙O 的两条切线,点E 是⊙O 上一点,点D 是AM 上一点,连接DE 并延长交BN 于点C ,连接OD 、BE ,且OD ∥BE 。 (1)求证:DE 是⊙O 的切线; (2)若AD=1,BC=4,求直径AB 的长。 4. 如图,△ABC 内接于⊙O ,弦AD ⊥AB 交BC 于点E ,过点B 作⊙O 的切线交DA 的延长线于点F ,且∠ABF=∠ABC 。 (1)求证:AB=AC ; (2)若EF=4,2 3 tan F ,求DE 的长。 M N E D C B A O

5. 在△ABC 中,AB=AC ,以AB 为直径作⊙O ,交BC 于点D ,过点D 作DE ⊥AC ,垂足为E 。 (1)求证:DE 是⊙O 的切线; (2)若AE=1,52=BD ,求AB 的长。 6. 如图,AB 是⊙O 的直径,C 是⊙O 上一点,AD 垂直于过点C 的直线,垂足为D ,且AC 平分 ∠BAD 。 (1)求证:CD 是⊙O 的切线; (2)若62=AC ,AD=4,求AB 的长。 A

《正多边形与圆》教案

《正多边形与圆》教案 教学目标 1、使学生理解正多边形概念,初步掌握正多边形与圆的关系; 2、通过正多边形定义教学,培养学生归纳能力;通过正多边形与圆关系定理的教学培 养学生观察、猜想、推理、迁移能力; 3、进一步向学生渗透“特殊——一般再一般——特殊”的唯物辩证法思想. 4、掌握圆内接正多边形的两种画法: (1)用量角器等分圆周法作正多边形; (2)用尺规作图法作特殊的正多边形. 教学重点 正多边形的概念与正多边形和圆的关系. 教学难点 对定理的理解以及定理的证明方法. 教学活动设计 (一)观察、分析、归纳: 观察、分析: 1.等边三角形的边、角各有什么性质? 2.正方形的边、角各有什么性质? 归纳:等边三角形与正方形的边、角性质的共同点. 教师组织学生进行,并可以提问学生问题. (二)正多边形的概念: 1.概念:各边相等、各角也相等的多边形叫做正多边形.如果一个正多边形有n(n≥3)条边,就叫正n边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形.2.概念理解: ①请同学们举例,自己在日常生活中见过的正多边形.(正三角形、正方形、正六边形,……) ②矩形是正多边形吗?为什么?菱形是正多边形吗?为什么? 矩形不是正多边形,因为边不一定相等.菱形不是正多边形,因为角不一定相等. (三)分析、发现: 问题:正多边形与圆有什么关系呢? 发现:正三角形与正方形都有内切圆和外接圆,并且为同心圆. 分析:正三角形三个顶点把圆三等分;正方形的四个顶点把圆四等分.要将圆五等分,

把等分点顺次连结,可得正五边形.要将圆六等分呢? (四)多边形和圆的关系的定理 定理:把圆分成n(n≥3)等份: 1.依次连结各分点所得的多边形是这个圆的内接正n边形; 2.经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.我们以n=5的情况进行证明. 已知:⊙O中,TP、PQ、QR、RS、ST分别是经过点A、B、C、D、E的⊙O的切线.求证:(1)五边形ABCDE是⊙O的内接正五边形; (2)五边形PQRST是⊙O的外切正五边形. 引导学生分析、归纳证明思路: 说明:(1)要判定一个多边形是不是正多边形,除根据定义来判定外,还可以根据这个 定理来判定,即:①依次连结圆的n(n≥3)等分点,所得的多边形是正多迫形;②经过圆的n (n≥3)等分点作圆的切线,相邻切线相交成的多边形是正多边形. (2)要注意定理中的“依次”、“相邻”等条件. (3)此定理被称为正多边形的判定定理,我们可以根据它判断一多边形为正多边形 或根据它作正多边形. (五)整多边形的画法 你能用量角器等分圆周法和尺规作图法作出圆O的内接正四边形和正八边形吗? O

中考数学专题训练圆的证明与计算(含答案)

圆的证明与计算 1.如图,已知△ABC 内接于△O , P 是圆外一点,P A 为△O 的切线,且P A =PB ,连接 OP ,线段 AB 与线段 OP 相交于点D . (1)求证:PB 为△O 的切线; (2)若P A =4 5PO ,△O 的半径为10,求线段 PD 的长. 第1题图 (1)证明:△△△△△△OA △OB △ 第1题解图 △P A △PB △OA △OB △OP △OP △ △△OAP △△OBP (SSS)△ △△OAP △△OBP △ △P A △△O △△△△ △△OAP △90°△ △△OBP △90°△ △OB △△O △△△△ △PB △△O △△△△

△△Rt△AOP △△OA △PO 2 △△4 5PO △2△10△ △△PO △50 3△ △cos△AOP △AO OP △OD AO △ △OD △6△ △PD △PO △OD △32 3. 2. △△△△△ABC △△AB △AC △△D △BC △△△△△AD △DC △△A △B △D △△△△O △AE △△O △△△△△△DE . △1△△△△AC △△O △△△△ △2△△cos C △3 5△AC △24△△△△AE △△. 第2题图 (1)证明:△AB △AC △AD △DC △ △△C △△B △△DAC △△C △ △△DAC △△B △ △△△E △△B △ △△DAC △△E △ △AE △△O △△△△ △△ADE △90°△ △△E △△EAD △90°△ △△DAC △△EAD △90°△ △△EAC △90°△

△OA △△O △△△△ △AC △△O △△△△ (2)解:△△△△△△D △DF △AC △△F △ 第2题解图 △DA △DC △ △CF △1 2AC △12△ △Rt△CDF △△△cos C △CF CD △3 5△ △DC △20△ △AD △20△ △Rt△CDF △△△△△△△△1622==CF CD DF -△ △△ADE △△DFC △90°△△E △△C △ △△ADE △△DFC △ △AE DC △AD DF △ △AE 20△1620 △△△AE △25△ △△O △△△AE △25. 3.如图,在△ABC 中,AB =BC ,以AB 为直径作△O ,交BC 于点D ,交AC 于点E ,过点E 作△O 的切线EF ,交BC 于点F . (1)求证:EF △BC ; (2)若CD =2,tan C =2,求△O 的半径.

中考数学综合题专题【圆】专题训练含答案

中考数学综合题专题【圆】专题训练含答案 一、选择题 1.(北京市西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于 ( ) (A ) 15 (B ) 30 (C ) 45 (D ) 60 2.(北京市西城区)如果圆柱的高为20厘米,底面半径是高的 41,那么这个圆柱的侧面积是 ( ) (A )100π平方厘米 (B )200π平方厘米 (C )500π平方厘米 (D )200平方厘米 3.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用 现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =寸,求直径CD 的长”.依题意,CD 长为 ( ) (A )2 25寸 (B )13寸 (C )25寸 (D )26寸 4.(北京市朝阳区)已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( ) (A )6 (B )25 (C )210 (D )214 5.(北京市朝阳区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘 米,那么此圆锥的底面半径的长等于 ( ) (A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米 6.(天津市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘 米和17厘米,则这两圆的圆心距为 ( ) (A )7厘米 (B )16厘米 (C )21厘米 (D )27厘米 7.(重庆市)如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于 ( )

中考数学圆的综合综合经典题及详细答案

中考数学圆的综合综合经典题及详细答案 一、圆的综合 1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题: (1)求证:CD 是⊙O 的切线; (2)若BC=4,CD=6,求平行四边形OABC 的面积. 【答案】(1)证明见解析(2)24 【解析】 试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可; (2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解. 试题解析:(1)证明:连接OD , ∵OD=OA , ∴∠ODA=∠A , ∵四边形OABC 是平行四边形, ∴OC ∥AB , ∴∠EOC=∠A ,∠COD=∠ODA , ∴∠EOC=∠DOC , 在△EOC 和△DOC 中, OE OD EOC DOC OC OC =?? ∠=∠??=? ∴△EOC ≌△DOC (SAS ), ∴∠ODC=∠OEC=90°, 即OD ⊥DC , ∴CD 是⊙O 的切线; (2)由(1)知CD 是圆O 的切线, ∴△CDO 为直角三角形, ∵S △CDO = 1 2 CD?OD , 又∵OA=BC=OD=4,

∴S△CDO=1 2 ×6×4=12, ∴平行四边形OABC的面积S=2S△CDO=24. 2.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O). (1)求⊙M的半径; (2)若CE⊥AB于H,交y轴于F,求证:EH=FH. (3)在(2)的条件下求AF的长. 【答案】(1)4;(2)见解析;(3)4. 【解析】 【分析】 (1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长; (2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论; (3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】 (1)如图(一),过M作MT⊥BC于T连BM, ∵BC是⊙O的一条弦,MT是垂直于BC的直径, ∴BT=TC=1 2 3 ∴124 ; (2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB, ∴∠HBC+∠BCH=90°

正多边形和圆教案

24.3 正多边形和圆教案 教学任务分析 板书设计 课后反思

教学过程设计

问题与情境师生行为设计意图活动一:复习提问 1.什么样的图形叫做正多 边形? 展示图片(课本P 113 页图 片),你还能举出一些这样的 例子吗? 2.正多边形与圆有什么关系呢? (引出课题) 活动二:等分圆周 问题:为什么等分圆周就能得到正多边形呢? 教师提出问题,学生进行 回答:各边相等,各角相等的 多边形叫做正多边形.并举出 生活中的例子. 教师可再展示一些图片让 学生欣赏. 学生根据教师提出的问题 进行思考,回忆圆的有关知识, 进而回答教师提出的问题.即 等分圆周,就可以得到圆内接 正多边形,这个圆叫做这个正 多边形的外接圆. 教师提出问题后,学生认 真思考、交流,充分发表自己 的见解,并互相补充.教师在 学生归纳的基础上进行补充, 并以正五边形为例进行证明. 复习正多边形的概 念,为今天的课程做准 备. 激发学生的学习兴 趣. 培养学生的思维品 质,将正多边形与圆联 系起来.并由此引出今 天的课题. 教学过程设计

教学过程设计

教学过程设计

问题与情境师生行为设计意图 活动五:方案设计 某学校在教学楼前的圆形广场中,准备建造一个花 园,并在花园内分别种植牡丹、月季和杜鹃三种花卉。 为了美观,种植要求如下: (1)种植4块面积相等的牡丹、4块面积相等的月 季和一块杜鹃。(注意:面积相等必须由数学知识作保 证) (2)花卉总面积等于广场面积 (3)花园边界只能种植牡丹花,杜鹃花种植在花园 中间且与牡丹花没有公共边。 请你设计种植方案:(设计的方案越多越好;不同 的方案类型不同.) 活动六:课堂小结 1.本节课中,你有什么收获与大家交流? 2. 布置作业:P 116页:练习;P 117 页:2,4.并与大家交 流. 教师要关 注学生对问题 的理解,对等 分圆周方法的 掌握程度. 教师提出 问题后,让学 生认真思考 后,设计出最 美的图案,并 用实物投影展 示自己的作 品. 要求①尺 规作图;②说 明画法;③指 出作图依据; ④学生独立完 成. 教师巡 视,对画的好 的学生给予表 扬,对有问题 的学生给予指 导. 学生归纳 总结本节课的 内容,教师作 补充. 教师布置 作业,学生记 录. 应用等 分圆周的 方法作图. 发展学 生作图的 能力,对学 生进行美 的教育,发 展学生作 图能力. 巩固本 节课所学 的内容. 停 图5 扩展资料:

“中考数学专题复习 圆来如此简单”经典几何模型之隐圆专题(含答案)

经典几何模型之隐圆”“圆来如此简单” 一.名称由来 在中考数学中,有一类高频率考题,几乎每年各地都会出现,明明图形中没有出现“圆”,但是解题中必须用到“圆”的知识点,像这样的题我们称之为“隐圆模型”。 正所谓:有“圆”千里来相会,无“圆”对面不相逢。“隐圆模型”的题的关键突破口就在于能否看出这个“隐藏的圆”。一旦“圆”形毕露,则答案手到擒来! 二.模型建立 【模型一:定弦定角】 【模型二:动点到定点定长(通俗讲究是一个动的点到一个固定的点的距离不变)】 【模型三:直角所对的是直径】 【模型四:四点共圆】 ` 三.模型基本类型图形解读 【模型一:定弦定角的“前世今生”】 【模型二:动点到定点定长】

【模型三:直角所对的是直径】 【模型四:四点共圆】 四.“隐圆”破解策略 牢记口诀:定点定长走圆周,定线定角跑双弧。 直角必有外接圆,对角互补也共圆。五.“隐圆”题型知识储备

3 六.“隐圆”典型例题 【模型一:定弦定角】 1.(2017 威海)如图 1,△ABC 为等边三角形,AB=2,若P 为△ABC 内一动点,且满足 ∠PAB=∠ACP,则线段P B 长度的最小值为_ 。 简答:因为∠PAB=∠PCA,∠PAB+∠PAC=60°,所以∠PAC+∠PCA=60°,即∠APC=120°。因为A C定长、∠APC=120°定角,故满足“定弦定角模型”,P在圆上,圆周角∠APC=120°,通过简单推导可知圆心角∠AOC=60°,故以AC 为边向下作等边△AOC,以O 为圆心,OA 为半径作⊙O,P在⊙O 上。当B、P、O三点共线时,BP最短(知识储备一:点圆距离), 此时B P=2 -2 2.如图1所示,边长为2的等边△ABC 的原点A在x轴的正半轴上移动,∠BOD=30°,顶点A 在射线O D 上移动,则顶点C到原点O的最大距离为。

24.3 正多边形和圆教学设计

24.3 正多边形和圆 教学内容 1.正多边形和圆的有关概念:正多边形的外接圆,正多边形的中心,?正多边形的半径,正多边形的中心角,正多边形的边心距. 2.在正多边形和圆中,圆的半径、边长、边心距中心角之间的等量关系. 3.正多边形的画法. 教学目标 1.知识与技能 了解正多边形和圆的有关概念;理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会应用多边形和圆的有关知识画多边形. 复习正多边形概念,让学生尽可能讲出生活中的多边形为引题引入正多边形和圆这一节间的内容. 2.过程与方法 (1)积极引导学生从事观察、测量、平移、旋转、推理证明等活动.?了解概念,理解等量关系,掌握定理及公式. (2)在教学过程中,鼓励学生动手、动口、动脑,并进行同伴之间的交流. 3.情感、态度与价值观 经历探索圆及其相关结论的过程,发展学生的数学思考能力;通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验;利用现实生活和数学中的素材,设计具有挑战性的情景,激发学生求知、探索的欲望. 重难点、关键 1.重点:讲清正多边形和圆中心正多边形半径、中心角、弦心距、?边长之间的关系. 2.难点与关键:通过例题使学生理解四者:正多边形半径、中心角、?弦心距、边长之间的关系. 教学过程 一、复习引入 请同学们口答下面两个问题. 1.什么叫正多边形? 2.从你身边举出两三个正多边形的实例,正多边形具有轴对称、?中心对称吗?其对称轴有几条,对称中心是哪一点? 老师点评:1.各边相等,各角也相等的多边形是正多边形. 2.实例略.正多边形是轴对称图形,对称轴有无数多条;?正多边形是中心对称图形,其对称中心是正多边形对应顶点的连线交点. 二、探索新知 如果我们以正多边形对应顶点的交点作为圆心,过点到顶点的连线 为半径,能够作一个圆,很明显,这个正多边形的各个顶点都在这个圆

中考数学圆的证明讲义

【2017】23.如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时. (1)求弦AC的长; (2)求证:BC∥PA. 【2016】23.如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF ∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G. 求证: (1)FC=FG; (2)AB2=BC?BG.

【2014】23、(本题满分是8分) 如图,⊙O的半径为4,B是⊙O外一点,连接OB,且OB=6.过点B作⊙O的切线BD,切点为D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为C. (1)求证:AD平分∠BAC; (2)求AC的长。 A B D O C (第23题图)

【2013】23、(本题满分8分)如图,直线l 与⊙O 相切于点D ,过圆心O 作EF ∥l 交⊙O 于E 、F 两点,点A 是⊙O 上一点,连接AE 、AF,并分别延长交直线l 于B 、C 两点, (1)求证:∠ABC+∠ACB=0 90 (2)当⊙O 得半径R=5,BD=12时,求tan ACB 的值. 【2012】23.(8分)如图,PA 、PB 分别与⊙O 相切于点A 、B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N . (1)求证:OM=AN ; (2)若⊙O 的半径R=3,PA=9,求OM 的长. (第23题图)

【2011】23.(本题满分8分)如图,在△ABC 中,0 60B =∠,⊙O 是△ABC 外接圆,过点A 作的切线,交CO 的延长线于P 点,CP 交⊙O 于D (1) 求证:AP=AC (2) 若AC=3,求PC 的长 【2010】23.如图,在RT △ABC 中∠ABC=90°,斜边AC 的垂直平分线交BC 与D 点,交AC 与E 点,连接BE (1)若BE 是△DEC 的外接圆的切线,求∠C 的大小? (2)当AB=1,BC=2是求△DEC 外界圆的半径

相关文档
最新文档