丙烯酸树脂玻璃化温度_T_g_的设计和选择

丙烯酸树脂玻璃化温度_T_g_的设计和选择
丙烯酸树脂玻璃化温度_T_g_的设计和选择

玻璃化转变温度的测定

玻璃化转变温度的测定 玻璃化转变温度(T g)是高聚物的一个重要特性参数,是高聚物从玻璃态转变为高弹态的温度.在聚合物使用上,T g一般为塑料的使用湿度上限,橡胶使用温度的下限。从分子结构上讲,玻璃化转变是高聚物无定形部分从冻结状态到解冻状态的一种松弛现象,而不象相转变那样有相交热,所以其是一种二级相变(高分子动态力学内称主转变)。在玻璃化温度下,高聚物处于玻璃态,分子链和链段都不能运动,只是构成分子的原子(或基团)在其平衡位置作振动,而在玻璃化温度时,分子链虽不能移动,但是链段开始运动,表现出高弹性质。温度再升高,就使整个分子链运动而表观出粘流性质。在玻璃化温度时,高聚物的比热客、热膨胀系数、粘度、折光率、自由体积以及弹性模量等都要发生一个突变.DSC测定玻璃化转变温度T g就是基于高聚物在玻璃化温度转变时,热容增加这一性质.在DSC曲线上,其表现为在通过玻璃化转变温度时,基线向吸热方向移动,如图1.35所示.图中A点是开始偏离基线的点。把转变前和转变后的基线延长,两线间的垂直距离△J叫阶差,在△J/2处可以找到C点。从C点作切线与前基线延长线相交于B点。ICTA建议用B点作为玻璃化转变温度T g,实际上,也有取C点或取D点作为T g的。在测定过程中,△J阶差除了与试样玻璃化转变前后的热容C p之差有关外.还与升温速率β有关,此外与DSC灵敏度也有关。 玻璃化转变温度T g除了取决于聚合物的结构之外,还与聚合物的分子星,增塑剂的用量,共聚物或共混物组分的比例,交联度的多少以及聚合物内相邻分子之间的作用力等部有关系. T g与聚合物的重均分子量之间的关系,如下式所示:

玻璃化温度

对于非晶聚物,对它施加恒定的力,观察它发生的形变与温度的关系,通常特称为温度形变曲线或热机械曲线。非晶聚物有三种力学状态,它们是玻璃态、高弹态和粘流态。在温度较低时,材料为刚性固体状,与玻璃相似,在外力作用下只会发生非常小的形变,此状态即为玻璃态:当温度继续升高到一定范围后,材料的形变明显地增加,并在随后的一定温度区间形变相对稳定,此状态即为高弹态,温度继续升高形变量又逐渐增大,材料逐渐变成粘性的流体,此时形变不可能恢复,此状态即为粘流态。我们通常把玻璃态与高弹态之间的转变,称为玻璃化转变,它所对应的转变温度即是玻璃化转变温度,或是玻璃化温度。 玻璃化温度是指无定型聚合物(包括结晶型聚合物中的非结晶部分)由玻璃态向高弹态或者由后者向前者的转变温度。是无定型聚合物大分子链段自由运动的最低温度。 通常用Tg表示。没有很固定的数值,往往随着测定的方法和条件而改变。高聚物的一种重要的工艺指标。在此温度以上,高聚物表现出弹性;在此温度以下,高聚物表现出脆性,在用作塑料、橡胶、合成纤维等时必须加以考虑。如聚氯乙烯的玻璃化温度是80℃。 非晶态(无定形)高分于可以按其力学性质区分为玻璃态、高弹态和粘流态三种状态。高弹态的高分子材料随着温度的降低会发生由高弹态向玻璃态的转变,这个转变称为玻璃化转变。它的转变温度称为玻璃化温度Tg。如果高弹态材料温度升高,高分子将发生由高弹态向粘流态的转变,其转变温度称为粘流温度Tf。 当玻璃态高分子在Tg温度发生转变时,其模量降落达3个数量级,使材料从坚硬的固体突然变成柔软的弹性体,完全改变了材料的使用性能。高分子的其他很多物理性质,如体积(比体积)、热力学性质(比热容、焓)和电磁性质(介电常数和介电损耗、核磁共振吸收谱线宽度等)均有明显的变化。 作为塑料使用的高分子,当温度升高到玻璃化转变温度以上时,便失去了塑料的性能,变成了橡胶。平时我们所说的塑料和橡胶是按它们的Tg是在室温以上还是在室温以下而言的。Tg在室温以下的是橡胶,Tg在室温以上的是塑料。因此从工艺的角度来看,Tg是非晶态热塑性塑料使用的上限温度,是橡胶使用的下限温度Tg是高分子的特征温度之一,可以作为表征高分子的指标。 影响玻璃化转变温度的因素很多。因为玻璃化温度是高分子的链段从冻结到运动的一个转变

苯并恶嗪_环氧树脂_4_4_二氨基二苯砜三元共混体系玻璃化转变温度的研究

第1期 2010年1月 高 分 子 学 报 ACT A P OLY MER I CA SI N I CA No .1 Jan .,2010 65 32009201207收稿,2009203212修稿;国家自然科学基金(基金号50873062)资助项目;33通讯联系人,E 2mail:guyi@scu .edu .cn 苯并噁嗪/环氧树脂/4,4′2二氨基二苯砜三元共混体系 玻璃化转变温度的研究 3 赵 培 朱蓉琪 顾 宜 33 (四川大学高分子科学与工程学院高分子材料工程国家重点实验室 成都 610065) 摘 要 采用动态热机械分析(DMA )研究了苯并噁嗪/环氧树脂/4,4′2二氨基二苯砜(DDS )三元共混体系玻璃化转变温度(T g )与固化剂DDS 含量的关系.随着DDS 含量的增加,三元体系的交联密度呈现先增加后降低的变化趋势,介于聚苯并噁嗪和苯并噁嗪/环氧树脂体系之间;但是三元体系的T g 却逐渐降低,当DDS 的含量超过20mol%时,低于聚苯并噁嗪的T g .差示扫描量热法(DSC )的结果表明,DDS 对苯并噁嗪和环氧树脂都有很强的固化效果.通过测定体系的凝胶化时间,借助A rrhenius 方程,判断三元体系的初始反应过程,推测了固化体系可能的网络化学结构.对各体系DMA 曲线中损耗模量,储能模量和力学损耗因子的变化情况分析,结果表明体系最终T g 受氢键相互作用、交联密度和网络规整性以及链段的刚性等因素综合影响,其中氢键的类型和相互作用的强弱对T g 的影响最大. 关键词 苯并噁嗪,环氧树脂,二氨基二苯基砜,玻璃化转变温度 苯并噁嗪是一类新型的热固性树脂,具有灵活的分子设计性和优异的热稳定性,原料易得,无需强酸/碱为固化剂,固化过程中无小分子放出,体积收缩率几乎为零;同时拥有酚醛树脂的阻燃性能以及比环氧树脂更优异的机械性能,被广泛应用于日常生活的各个领域 [1~5] .Ishida 的研究 表明,苯并噁嗪的固化过程分为开环和聚合两阶段,噁嗪环开环后形成的酚羟基与Mannich 桥上的氮原子之间,以及与临近的酚羟基和∏键之间存在很强的氢键相互作用,氢键的存在赋予苯并 噁嗪高的模量、玻璃化转变温度(T g )及低的热膨胀系数 [1,5~7] ,同时也限制了链段的运动,阻碍了 自身的聚合反应,使固化体系的化学交联密度相对较低;并且这种物理相互作用会随着温度的升高而逐渐减弱甚至消失 [6~11] .因此从增加苯并噁 嗪体系化学交联密度出发进行改性,对提高聚苯并噁嗪的综合性能具有重要意义. Ishida,R i m dusit 等 [1,12,13] 研究了苯并噁嗪/ 环氧树脂共聚体系的玻璃化转变温度,表明在一定的比例范围内,随着环氧树脂含量的增加,共聚体系的化学交联密度增加,T g 逐渐升高;当环氧树脂过量时,未参加反应的环氧基团会使体系的 T g 降低.但是关于固化剂对苯并噁嗪和环氧树脂 体系T g 影响的相关报道却很少 [14] .为此,在本课 题组前期对二胺型苯并噁嗪/环氧树脂共混体系研究的基础上,本文选用4,4′2二氨基二苯砜 (DDS )为共混体系的固化剂,利用动态热机械分析(DMA )结果从化学交联密度、链段特性、氢键相互作用及网络结构规整性等4个方面研究了DDS 含量对三元共混体系玻璃化转变温度的影 响. 1 实验部分 111 实验原料 二胺型苯并噁嗪(MDA 2BOZ )(实验室自制, 淡黄色块状固体,固含量97%),酚醛型环氧树脂F 251(固含量87%,生益公司提供),4,4′2二氨基 二苯砜(DDS )(白色固体粉末,T m =178℃,广州制药厂),丙酮 (分析纯),甲苯(工业级). 112 共混物及树脂浇铸体的制备 称取一定量的苯并噁嗪和环氧树脂(质量比7∶3),加入混合溶剂(丙酮和甲苯体积比为1∶2),搅拌得到黄色透明液.按比例称取一定量的DDS (见表1),丙酮溶解后加入上述混合液中,搅拌均匀.80℃旋转蒸发,除去溶剂,将得到的透明胶液倒入橡胶模具中.110℃抽真空除残余溶剂,转入

常见聚合物的玻璃化转变温度和表面张力(DOC)

常见高聚物的名称、重复结构单元、熔点与玻璃化转变温度Names, Constitutional Repeating Units, Melting Points and Glass-transition Temperatures of Common High Polymers 序号(No.) , 名称(Name) , 重复结构单元 (Constitutional repeating unit) , 熔点 T m/℃, 玻璃化转变温度T g/℃ 1 , 聚甲醛, , 182.5 , -30.0 2 , 聚乙烯, , 140.0,95.0 , -125.0,-20.0 3 , 聚乙烯基甲醚, , 150.0 , -13.0 4 , 聚乙烯基乙醚, , - , -42.0 5 , 乙烯丙烯共聚物,乙丙橡胶, ,, - , -60.0 6 , 聚乙烯醇, , 258.0 , 99.0 7 , 聚乙烯基咔唑, , - , 200.0 8 , 聚醋酸乙烯酯, , - , 30.0

9 , 聚氟乙烯, , 200.0 , - 10 , 聚四氟乙烯(Teflon) , , 327.0 , 130.0 11 , 聚偏二氟乙烯, , 171.0 , 39.0 12 , 偏二氟乙烯与六氟丙烯共聚物(Viton) , , , - , -55.0 13 , 聚氯乙烯(PVC) , , - , 78.0-81.0 14 , 聚偏二氯乙烯, , 210.0 , -18.0 15 , 聚丙烯, , 183.0,130.0 , 26.0,-35.0 16 , 聚丙烯酸, , - , 106.0 17 , 聚甲基丙烯酸甲酯,有机玻璃, , 160.0 , 105.0 18 , 聚丙烯酸乙酯, , - , -22.0

玻璃化转变温度和SBS

一、玻璃化转变温度定义 1.从实验现象角度定义玻璃化转变温度: 玻璃化转变温度是指由高弹态转变为玻璃态、玻璃态转变为高弹态所对应的温度。 2.从测试角度定义玻璃化转变温度 玻璃化转变温度是指高聚物的力学性质(模量、力学损耗)、热力学性质(比热容、热膨胀系数、焓)、电磁性质(介电性、导电性、内耗峰)、形变(膨胀系数)、光学性质(折光指数)等物理性质发生突变点所对应的温度。 如果把玻璃化转变温度看作是一个转变温区,不是一个定值,这样比较容易理解玻璃化转变现象 二、测定方法 1.膨胀计法在膨胀计内装入适量的受测聚合物,通过抽真空的方法在负压下将对受测聚合物没有溶解作用的惰性液体充入膨胀计内,然后在油浴中以一定的升温速率对膨胀计加热,记录惰性液体柱高度随温度的变化。由于高分子聚合物在玻璃化温度前后体积的突变,因此惰性液体柱高度-温度曲线上对应有折点。折点对应的温度即为受测聚合物的玻璃化温度。 2.折光率法利用高分子聚合物在玻璃化转变温度前后折光率的变化,找出导致这种变化的玻璃化转变温度。 3.热机械法(温度-变形法)在加热炉或环境箱内对高分子聚合物的试样施加恒定载荷;记录不同温度下的温度-变形曲线。类似于膨胀计法,找出曲线上的折点所对应的温度,即为:玻璃化转变温度。 三、结论 前人做过很多实验,都观察到同一个现象:玻璃化转变温度随升温速率升高(升温速率>5℃/min)而增大、降温速率(降温速率>5℃/min)增大而增大。 一、SBS的合成 SBS的合成:以苯乙烯,丁二烯为单体原料,环己烷为溶剂、n-BuLi为引发剂、THF为活化剂,无终止阴离子聚合反应,SiCl4为偶联剂最后加入适量,反应终止加入防老剂。产品为白色半透明的弹性体。 二、SBS的玻璃化温度

常见聚合物的玻璃化转变温度和表面张力

常见高聚物的名称、重复结构单元、熔点与玻璃化转变温度 Names, Constitutional Repeating Units, Melting Points and Glass-transition Temperatures of Common High Polymers 序号(No.) , 名称(Name) , 重复结构单元 (Constitutional repeating unit) , 熔点 T m/℃ , 玻璃化转变温度T g/℃ 1 , 聚甲醛, , 182.5 , -30.0 2 , 聚乙烯, , 140.0,95.0 , -125.0,-20.0 3 , 聚乙烯基甲醚, , 150.0 , -13.0 4 , 聚乙烯基乙醚, , - , -42.0 5 , 乙烯丙烯共聚物,乙丙橡胶, ,, - , -60.0 6 , 聚乙烯醇, , 258.0 , 99.0 7 , 聚乙烯基咔唑, , - , 200.0 8 , 聚醋酸乙烯酯, , - , 30.0

9 , 聚氟乙烯, , 200.0 , - 10 , 聚四氟乙烯(Teflon) , , 327.0 , 130.0 11 , 聚偏二氟乙烯, , 171.0 , 39.0 12 , 偏二氟乙烯与六氟丙烯共聚物(Viton) , , , - , -55.0 13 , 聚氯乙烯(PVC) , , - , 78.0-81.0 14 , 聚偏二氯乙烯, , 210.0 , -18.0 15 , 聚丙烯, , 183.0,130.0 , 26.0,-35.0 16 , 聚丙烯酸, , - , 106.0 17 , 聚甲基丙烯酸甲酯,有机玻璃, , 160.0 , 105.0 18 , 聚丙烯酸乙酯, , - , -22.0

玻璃化温度对环氧树脂空间电荷分布的影响_陈少卿

2011年8月电工技术学报Vol.26 No. 8 第26卷第8期TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY Aug. 2011 玻璃化温度对环氧树脂空间电荷分布的影响 陈少卿彭宗仁王霞 (西安交通大学电力设备电气绝缘国家重点实验室西安 710049) 摘要用电声脉冲法(PEA)测量了纯环氧试样在313K(玻璃化温度以下)及343K(玻璃化温度以上)时的空间电荷分布,并测量了两种温度不同电场强度下的空间电荷特性。实验发现两种温度下的空间电荷特性具有明显的差异。并对环氧树脂表面水分对空间电荷特性的影响进行了讨论。 关键词:玻璃化温度环氧树脂空间电荷表面水分 中图分类号:TM215.1 Effects of Glass Transition Temperature on Space Charge in Epoxy Resin Chen Shaoqing Peng Zongren Wang Xia (State Key Laboratory of Electrical Insulation and Power Equipment Xi’an Jiaotong University Xi’an 710049 China) Abstract The space charge distribution of filler free epoxy resin at temperature below 313K and above 343K are measured with the pulsed electro-acoustic (PEA) method. The space charge distributions under different electrical field at each temperature are also investigated. The results show that the space charge characteristics at each temperature had obvious diversity. The influence of the water content on the space charge generation is also shown and discussed. Keywords:Glass transition temperature, epoxy resin, space charge, surface water 1引言 环氧材料已被广泛作为绝缘材料应用于高压设备、电力电子器件和集成电路封装[1-4]。通常环氧树脂被作为复合材料应用,如加入硅粉应用于电力绝缘或者与皱纹纸复合用作高压套管的绝缘材料等。 空间电荷效应是电力系统中,特别是直流电力系统中引起绝缘破坏的重要因素。近年来随着直流特高压的发展,电力设备中的空间电荷积聚问题,越来越引起广大学者的关注,并已取得了大量的研究结果。但对于纯环氧树脂中空间电荷积聚的研究却少有报道。 众所周知,当聚合物的温度达到其玻璃化温度T g以上时,聚合物的电性能,如电导率、介电常数等会发生改变[5]。本文研究了纯环氧试样在玻璃化温度以上及玻璃化温度以下,不同电场强度下的空间电荷分布,实验发现玻璃化温度对环氧试样的空间电荷积聚特性有重要的影响。最后还对环氧试样表面吸附水分对空间电荷特性的影响进行了讨论。 2 试验方法 2.1试样制备 实验采用E?44601纯环氧树脂,固化剂为桐油酸酐和甲基四氢苯胺复合体系,促进剂为二甲基苄胺。T=373K下,将上、下电极和环氧试样在模具中浇注在一起,固化成型后上、下电极之间的环氧厚度为0.3mm,试样直径约6cm,如图1所示。经测量,环氧试样的玻璃化温度为333K(60℃),体积电阻率为1016~1017?·cm。 2.2空间电荷测量 本文采用电声脉冲(Pulsed Electroacoustic, PEA)法测量环氧试样中空间电荷分布,测量装置 电力设备电气绝缘国家重点实验室中青年基础研究创新基金资助课题。 收稿日期 2009-11-17 改稿日期 2010-01-25

玻璃化温度

指无定型聚合物(包括结晶型聚合物中的非结晶部分)由玻璃态向高弹态或者由后者向前者的转变温度。是无定型聚合物大分子链段自由运动的最低温度, 但是,他不是制品工作温度的上限。比如,橡胶的工作温度必须在玻璃化温度以上,否则就失去高弹性。指无定型聚合物(包括结晶型聚合物中的非结晶部分)由玻璃态向高弹态或者由后者向前者的转变温度。是无定型聚合物大分子链段自由运动的最低温度,也是制品工作温度的上限。玻璃化温度Tg:指无定型聚合物(包括结晶型聚合物中的非结晶部分)由玻璃态向高弹态或者由后者向前者的转变温度。是无定型聚合物大分子链段自由运动的最低温度。 应考范围包括:高分子的基本概念及常识、自由基聚合、自由基共聚合、阴离子聚合、阳离子聚合、配位聚合、逐步聚合、聚合方法、聚合物的化学反应、聚合物分析及表征。 摘要:通过对热固性树脂的热变形温度、马丁耐热、玻璃化转变温度、绝缘耐热等级以及耐腐蚀使用温度五个温度概念辨析,帮助人们在使用过程中理清头绪,正确选择树脂,有效应用于实际生产。 关键词:热固性树脂热变形温度马丁耐热玻璃化转变温度绝缘耐热等级耐腐蚀使用温度 随着国民经济的发展,树脂基复合材料的应用越来越广,但是对于作为树脂基复合材料主体材料树脂的很多性能概念人们还是混淆不清,不能很好的利用各种树脂的特性为人们服务,特别是各种温度指标特性的了解。热固性树脂的温度指标很多,例如:热变形温度、马丁耐热、玻璃化转变温度、绝缘耐热等级、热扭转温度、脆化温度、失强温度等,我们在本文中就着重对树脂的热变形温度、马丁耐热、玻璃化转变温度、绝缘耐热等级以及耐腐蚀使用温度五个温度概念辨析,而对其它概念就不一一加以赘述,帮助人们在使用过程中理清头绪,正确选择树脂,有效应用于实际生产。 1. 玻璃化转变温度 热固性树脂固化物均是线性非晶相高聚物,线性非晶相高聚物由于温度改变(在一定应力下)可呈现三种力学状态,即玻璃态、高弹态和粘流态。 当温度较高时,大分子和链段都能进行热运动。这时高聚物成为粘流态,受外力作用时,分子间相互滑动而产生形变;除去外力后,不能回复原状,所以形变是不可逆的,这种形变称为粘性流动形变或塑性形变,出现这种形变的温度称为流动温度Tf,这种状态成为粘流态(又叫塑性态)。如果把处于粘流态的高聚物逐渐降低温度。粘度也就逐渐增大,最后呈弹性状态,加应力时产生缓慢的形变,解除外力后又能缓慢地回复原状,这种状态叫高弹态。当温度继续下降,高聚物变得越来越硬,在外力作用时只产生很小的形变这种状态叫玻璃态。热固性树脂固化物是在玻璃态使用的,所以Tg愈高愈好,也是衡量树脂耐热性的一个指标。如:898高交联环氧乙烯基树脂的Tg=190℃,就具有高耐热性,在烟气脱硫工业中可以承受200℃的高温。

常见聚合物的玻璃化转变温度和表面张力

6 ,聚乙烯醇 7 ,聚乙烯基咔唑 200.0 8 ,聚醋酸乙烯酯 OCOCHs 30.0 常见高聚物的名称、重复结构单元、熔点与玻璃化转变温度 Names, Con stituti onal Repeat ing Un its. Melt ing Points and Glass-tra nsiti on Temperatures of Common High Polymers 序号(No.),名称(Name),重复结构单元 (Con stituti onal repeati ng unit) , 熔点 T m / C ,玻璃化转变温度 T g /C 1 ,聚甲醛, '■ 1- , 182.5 , -30.0 CHspH 3 ,聚乙烯基甲醚 , '''- ,150.0 , -13.0 ------- CHsCH ----------- 4 ,聚乙烯基乙醚 , ''-,-,-42.0 ------- C HspH 5 ,乙烯丙烯共聚物,乙丙橡胶 -,-60.0 ------ C H 2CH 2 ,聚乙烯 140.0,95.0 , -125.0,-20.0 CH 2 CHg 99.0 CHspH

CH 2CH 聚氟乙烯, ,200.0 ,- 聚四氟乙烯 仃eflon), '二 1 - , 327.0 , 130.0 聚偏二氟乙烯, -- -亠 ,171.0 , 39.0 12 ,偏二氟乙烯与六氟丙烯共聚物 (Viton), CF 2 CF -55.0 CH 2CH 聚氯乙烯(PVC), CH 2CM 聚丙烯 , ,183.0,130.0 , 26.0,-35.0 ------ CH 2CH ------- 聚丙烯酸, ebon , - , 106.0 ------ CH 2C(CH 3) ----------- 聚甲基丙烯酸甲酯,有机玻璃 , 1 : , 160.0 , 105.0 ----- CHI 2CH -------- 聚丙烯酸乙酯 , 「丄:心",-,-22.0 9 , 10 11 13 14 15 16 17 18 CF 2 78.0-81.0 聚偏二氯乙烯 CCI 5 210.0 , -18.0

常见聚合物的玻璃化转变温度和表面张力教学内容

常见聚合物的玻璃化转变温度和表面张力

常见高聚物的名称、重复结构单元、熔点与玻璃化转变温度Names, Constitutional Repeating Units, Melting Points and Glass-transition Temperatures of Common High Polymers 序号(No.) , 名称(Name) , 重复结构单元 (Constitutional repeating unit) , 熔点 T m/℃, 玻璃化转变温度T g/℃ 1 , 聚甲醛, , 182.5 , -30.0 2 , 聚乙烯, , 140.0,95.0 , -125.0,-20.0 3 , 聚乙烯基甲醚, , 150.0 , -13.0 4 , 聚乙烯基乙醚, , - , -42.0 5 , 乙烯丙烯共聚物,乙丙橡胶, ,, - , -60.0 6 , 聚乙烯醇, , 258.0 , 99.0 7 , 聚乙烯基咔唑, , - , 200.0 8 , 聚醋酸乙烯酯, , - , 30.0

9 , 聚氟乙烯, , 200.0 , - 10 , 聚四氟乙烯(Teflon) , , 327.0 , 130.0 11 , 聚偏二氟乙烯, , 171.0 , 39.0 12 , 偏二氟乙烯与六氟丙烯共聚物(Viton) , , , - , -55.0 13 , 聚氯乙烯(PVC) , , - , 78.0-81.0 14 , 聚偏二氯乙烯, , 210.0 , -18.0 15 , 聚丙烯, , 183.0,130.0 , 26.0,-35.0 16 , 聚丙烯酸, , - , 106.0 17 , 聚甲基丙烯酸甲酯,有机玻璃, , 160.0 , 105.0 18 , 聚丙烯酸乙酯, , - , -22.0

聚合物的玻璃化转变温度

聚合物的玻璃化转变温度 姓名:罗新杰学号:班级:高分子材料与工程一班 摘要:在高分子科学中,聚合物的玻璃化转变是一个非常重要的现象,玻璃化转变是非晶 态高分子材料固有的性质,是高分子运动形式转变的宏观体现,它直接影响到材料的使用性能和工艺性能,因此长期以来它都是高分子物理研究的主要内容。本文主要简单地介绍玻璃化转变温度的相关知识和理论。 前言:玻璃化转变温度(Tg)是非晶态聚合物的一个重要的物理性质,也是凝聚态物理基础理论中的一个重要问题和难题,是涉及动力学和热力学的众多前沿问题。玻璃转变的理论一直在不断的发展和更新。从20世纪50年代出现的到现在还在不断完善的模态祸合理论及其他众多理论,都只能解决玻璃转变中的某些问题。一个完整的玻璃转变理论仍需要人们作艰苦的努力。 对于非晶聚物,对它施加恒定的力,观察它发生的形变与温度的关系,通常特称为温度-形变或热机械曲线。非晶聚物有四种力学状态,它们是玻璃态、粘弹态、高弹态和粘流态。在温度较低时,材料为刚性固体状,与玻璃相似,在外力作用下只会发生非常小的形变,此状态即为玻璃态,当温度继续升高到一定范围后,材料的形变明显地增加,并在随后的一定温度区间形变相对稳定,此状态即为高弹态,温度继续升高形变量又逐渐增大,材料逐渐变成粘性的流体,此时形变不可能恢复,此状态即为粘流态。我们通常把玻璃态与高弹态之间的转变,称为玻璃化转变,它所对应的转变温度即是玻璃化转变温度,或是。 高分子材料玻璃化转变的表征可提供丰富的信息,例如固化程度、热历史、材料的最高服役温度,共聚、共混物组分的相容性和相分离,组分的定性和定量等等,因此长期以来它都是高分子物理研究的主要内容。所以我们得研究和掌握不同高分子玻璃化转变温度的测试方法,并比较不同测试方法的优缺点。 通过对玻璃化转变温度的不断研究,人们逐渐了解了影响玻璃化转变温度的不同因素,从而能更加灵活的处理和运用聚合物的玻璃化转变温度。让玻璃化转变温度得到更加广泛的应用。 1、玻璃化转变 玻璃化转变是指无定形或半结晶的聚合物材料中的无定形区域在降温过程中从橡胶态或高弹态转变为玻璃态的一种可逆变化。在橡胶态/高弹态时,分子能发生相对移动(即分子重排);在玻璃态,分子重排被冻结。从分子结构上讲,玻璃化转变温度是高聚物无定形部分从冻结状态到解冻状态的一种松弛现象,而不像相转变那样有相变热,所以它是一种二级相变(高分子动态力学中称主转变)。在玻璃化转变温度以下,高聚物处于玻璃态,分子链和链段都不能运动,只是构成分子的原子(或基团)在其平衡位置作振动;而在玻璃化转变温度时分子链虽不能移动,但是链段开始运动,表现出高弹性质,如果温度再升高,进一步达到粘流温度,就使整个分子链运动而表现出粘流性质。所以在聚合物使用上,玻璃化转变温度一般为塑料的使用湿度上限,橡胶使用温度的下限。 2、玻璃化转变温度的测定方法 2.1热分析法

环氧树脂

环氧树脂Epoxy Resin 化学化工学院 2011级高分子材料与工程 C31114047 刘谢非 2014/6/15

环氧树脂 简介:环氧树脂泛指分子中含有两个或两个以上环氧集团的有机化合物,大都属于低分子量化合物。环氧树脂具有优良的物理机械和电绝缘性能、与各种材料的粘结性能、以及灵活的工艺使用性。本文主要介绍环氧树脂的结构、制备与应用。 关键词:环氧树脂结构制备应用 Epoxy resin Abstract:Epoxy resin is a kind of Organic compound which molecules contain two or more than two epoxy groups, mostly belonging to the low molecular weight compounds. Epoxy resin has excellent physical and mechanical and electrical insulation properties, and a variety of bonding properties of materials, and flexible use of technology. This paper mainly introduces the structure, preparation and application of epoxy resin. Key words: epoxy resin structure preparation application 环氧树脂泛指含有2个或2个以上环氧基,以脂肪族、脂环族或芳香族等有机化合物为骨架并能通过环氧基团反应形成有用的热固性产物的高分子低聚体,由于具有优良的黏结性、电绝缘性、机械性能、耐腐蚀性等,在国民经济的许多领域得到广泛应用,但是环氧树脂的耐热性和耐冲击损伤性差,在很大程度上限制了其应用范围[1]。 一、环氧树脂的结构 1.定义 环氧树脂:凡含有二个以上环氧基团的高分子化合物统称为环氧树脂。一般指由环氧氯丙烷与二酚基丙烷(双酚A)缩聚而成的双酚A型环氧树脂,即通用环氧树脂。 2.分类

玻璃化转变温度(Tg值)

在材料学中,Tg指的就是玻璃化转变温度,其英文名字为glass transition temperature。学过高分子物理的人都知道,非晶态聚合物在一定应力下,由于温度的改变,可呈现三种物理状态:玻璃态、高弹态(橡胶态)、粘流态。(感兴趣的朋友可找《高分子物理》书详细研究下) 非晶态聚合物的温度形变曲线 玻璃化转变温度指的就是非晶态聚合物(也包括晶态聚合物中的非晶态部分)在玻璃态向高弹态之间转变时的温度,是无定型聚合物大分子链段自由运动的最低温度。 从分子结构上讲,玻璃化转变温度是高聚物无定形部分从冻结状态到解冻状态的一种松弛现象,而不像相转变那样有相变热,所以它不是一级相变。在玻璃化转变温度以下,高聚物处于玻璃态,分子链和链段都不能运动,只是构成分子的原子(或基团)在其平衡位置作振动;而在玻璃化转变温度时分子链虽不能移动,但是链段开始运动,表现出高弹性质,温度再升高,就使整个分子链运动而表现出粘流性质。 目前Tg的测试方法主要有:热机械分析法(TMA)、差热分析法(DTA)和示差扫描量热法(DSC)三种。其中最方便的方法是用DSC测量比热容随温度的变化。此外,还可以用核磁共振谱仪(NMR)来测定。其原理主要是聚合物的许多物理性能如热容、密度、热膨胀系数、电导率等都在该温度范围发生急剧变化,从而可以通过检测这些变化来测定其Tg。由于它们的测试方法原理不同,因而测试结果相差较大,不能相比。 玻璃化转变温度(Tg)是非晶态聚合物的一个非常重要的物理参数,那在实际应用中有什么指导作用呢?由于热固性树脂的固化物都属于非晶态聚合物,而产品都是在玻璃态使用,因此Tg越高,也就意味着产品的耐温性能越好。因此,Tg是衡量树脂耐温性能一个非常重要的指标。 既然聊起了温度,除了玻璃化转变温度,长弓侠还想跟大家再聊一个,那就是热变形温度。 热变形温度(全称负荷热变形温度,英文缩写:HDT)指的是对高分子材料或聚合物施加一定的负荷,以一定的速度升温,当达到规定形变时所对应的温度。是表达被测物的受热与变形之间关系的参数,用来衡量聚合物或高分子材料耐热性优劣的一种量度。 负荷不同,测出来的热变形温度的数值肯定也不一样,因此在说明热变形温度的时候一定要指明所施加的负荷,也就是相对应的标准。测量热变形温度的标准有很多,目前国内比较通用的有:国标(GB/T 1634.2)、国际标准化组织标准(ISO 75-2)、美国材料试验学会标准(ASTM D648)以及欧共体标准等。 一般热变形温度通过热变形维卡温度测定仪来测定。 Tg和HDT的异同:

玻璃化转变温度

玻璃化转变温度 科技名词定义 中文名称: 玻璃化转变温度 英文名称: glass transition temperature 定义: 非晶态聚合物或部分结晶聚合物中非晶相发生玻璃化转变所对应的温度。其值依赖于温度变化速率和测量频率,常有一定的分布宽度。 应用学科: 材料科学技术(一级学科);高分子材料(二级学科);高分子科学(二级学科) 以上内容由全国科学技术名词审定委员会审定公布 目录 玻璃化转变概述 玻璃化转变温度的测定方法 用途 编辑本段玻璃化转变概述 玻璃化转变是非晶态高分子材料固有的性质,是高分子运动形式转变的宏观体现,它直接影响到材料的使用性能和工艺性能,因此长期以来它都是高分子物理研究的主要内容。由于高分子结构要比低分子结构复杂,其分子运动也就更为复杂和多样化。根据高分子的运动力形式不同,绝大多数聚合物材料通常可处于以下四种物理状态(或称力学状态):玻璃态、粘弹态、高弹态(橡胶态)和粘流态。而玻璃化转变则是高弹态和玻璃态之间的转变,从分子结构上讲,玻璃化转变温度是高聚物无定形部分从冻结状态到解冻状态的一种松弛现象,而不象相转变那样有相变热,所以它是一种二级相变(高分子动态力学中称主转变)。在玻璃化转变温度以下,高聚物处于玻璃态,分子链和链段都不能运动,只是构成分子的原子(或基团)在其平衡位置作振动;而在玻璃化转变温度时分子链虽不能移动,但是链段开始运动,表现出高弹性质,温度再升高,就使整个分子链运动而表现出粘流性质。玻璃化转变温度(Tg)是非晶态聚合物的一个重要的物理性质,也是凝聚态物理基础理论中的一个重要问题和难题,是涉及动力学和热力学的众多前沿问题.玻璃转变的理论一直在不断的发展和更新.从20世纪50年代出现的自由体积理论到现在还在不断完善的模态涡合理论及其他众多理论,都只能解决玻璃转变中的某些问题.一个完整的玻璃转变理论仍需要人们作艰苦的努力. 对于非晶聚物,对它施加恒定的力,观察它发生的形变与温度的关系,通常特称为温度形变曲线或热机械曲线。非晶聚物有四种力学状态,它们是玻璃态、粘弹态、高弹态和粘流态。

玻璃化转变温度Tg

玻璃化转变温度Tg <<高分子物理>> 姓名:刘玉萍 学号:51140606194 专业:高分子化学与物理

一、概述 对于非晶聚物,对它施加恒定的力,观察它发生的形变与温度的关系,通常特称为温度形变曲线或热机械曲线。非晶聚物有四种力学状态,它们是玻璃态、粘弹态、高弹态和粘流态。 玻璃化转变是高弹态和玻璃态之间的转变,从分子结构上讲,玻璃化转变温度是高聚物无定形部分从冻结状态到解冻状态的一种松弛现象。在玻璃化转变温度以下,高聚物处于玻璃态,分子链和链段都不能运动,只是构成分子的原子(或基团)在其平衡位置作振动;而在玻璃化转变温度时分子链虽不能移动,但是链段开始运动,表现出高弹性质,温度再升高,就使整个分子链运动而表现出粘流性质。

二、Tg的主要影响因素 Tg是表征聚合物性能的一个重要指标,从分子运动的角度看,它是链段开始“冻结”的温度,因此: 凡是导致链段的活动能力增加的因素均使Tg下降, 而导致链段活动能力下降的因素均使Tg上升。 ①:主链结构为-C-C-、-C-N-、-Si-O-、-C-O-等单键的非晶态聚合物的Tg依次降低。 ②:侧基为极性取代基时,取代基极性越大则Tg越高:为非极性取代基时,取代基的体积越大则Tg越高。 ③:当分子量较低时,Tg随分子量增加而增加;当分子量达到某一临界值时,Tg→Tg(∞),不再随分子量改变。 ④:升温速率(降温速率):升温(降温)速率越快,测得的Tg越高。 ⑤:此外,增塑剂、共聚、交联、结晶等都对聚合物的Tg 产生影响。 三、测试方法 原理:利用高聚物在发生玻璃化转变的同时各种物理参数均发生变化的特性进行测定。主要的测试方法有:①热-机械曲线法②膨胀法③电性能法④DTA法⑤DSC法值得注意的是对同一样品来说不同的测试方法会产生不同的测试结果[1]

环氧树脂基本知识

博罗县强力复合材料有限公司 环 氧 树 脂 基 本 知 识 二零零六年十一月 博罗县强力复合材料有限公司

产品知识资料 一、公司的简介和经营范围 博罗县强力复合材料有限公司成立于2002年8月,最初成立于东莞市黄江镇,后于2003年9月搬迁至广东省惠州市博罗县龙溪镇小蓬岗管理区,紧靠东江,毗邻东莞市桥头镇,交通便利。公司并于2006年3月3日成立浙江省宁波办事处;2008年3月成立上海办事处,负责华东地区的市场销售。我们公司专业从事环氧树脂胶及固化剂的二次加工,是集研发、生产、销售、服务于一体的专业公司,本公司已于2007年11月顺利通过英国摩迪公司ISO9001认证,并且相关产品已获得美国UL-94V0级的阻燃认证以及欧盟RoHS环保认证。我们的产品广泛应用于电子电器、工艺饰品、体育用品、建筑建材等行业,主要起到灌注密封、粘接固定、封装保护、绝缘防潮等作用。本公司技术人员还可根据客户的要求,研发各种不同性能的环氧树脂胶粘剂,在固化条件、耐温等级、颜色、表面光泽、透明度、硬度等方面,作适当的调配,满足客户不同的需求! 二、环氧树脂及环氧树脂胶粘剂的基本知识 (一)、环氧树脂的概念: 环氧树脂是指高分子链结构中含有两个或两个以上环氧基团的高分子化合物的总称,属于热固性树脂,代表性树脂是双酚A型环氧树脂。 (二).环氧树脂的特点(通常指双酚A型环氧树脂) 1.单独的环氧树脂应用价值很低,它需要与固化剂配合使用才有实用价值。 2.高粘接强度:在合成胶粘剂中环氧树脂胶的胶接强度居前列。 3.固化收缩率小,在胶粘剂中环氧树脂胶的收缩率最小,这也是环氧树脂胶固化胶接高的原因之一。例如: 酚醛树脂胶:8—10% ;有机硅树脂胶:6—8% 聚酯树脂胶:4—8%;环氧树脂胶:1—3% 若经过改性加工后的环氧树脂胶收缩率可降为0.1—0.3%,热膨胀系数为6.0×10-5/℃ 4.耐化学性能工好:在固化体系中的醚基、苯环和脂肪羟基不易受酸碱侵蚀。在海水、石油、煤油、10%H2SO4、10%HCl、10%HAc、10%NH3、10%H3PO4和30%Na2CO3中可以用两年;而在50%H2SO4和10%HNO3常温浸泡半年;10%NaOH(100℃)浸泡一个月,性能保持不变。 5.电绝缘性优良:环氧树脂的击穿电压可大于35kv/mm 6.工艺性能良好、制品尺寸稳定、耐性良好和吸水率低。 双酚A型环氧树脂的优点固然好,但也有其缺点: ①.操作粘度大,这在施工方面显的有些不方便 ②.固化物性能脆,伸长率小。 ③.剥离强度低。 ④.耐机械冲击和热冲击差。 (三).环氧树脂的应用与发展 1.环氧树脂的发展史: 环氧树脂是1938年由P.Castam申请瑞士专利,由汽巴公司在1946年研制

常见聚合物玻璃化转化温度

Names, Constitutional Repeating Units, Melting Points and Glass-transition Temperatures of Common High Polymers 序号(No.) 名称(Name) 重复结构单元(Constitutional repeating unit) 熔点Tm/℃玻璃化转变温度Tg/℃ 1 聚甲醛182.5 -30.0 2 聚乙烯140.0, 95.0 -125.0, -20.0 3 聚乙烯基甲醚150.0 -13.0 4 聚乙烯基乙醚- -42.0 5 乙烯丙烯共聚物,乙丙橡胶,- -60.0 6 聚乙烯醇258.0 99.0 7 聚乙烯基咔唑- 200.0 8 聚醋酸乙烯酯- 30.0 9 聚氟乙烯200.0 - 10 聚四氟乙烯(Teflon) 327.0 130.0 11 聚偏二氟乙烯171.0 39.0 12 偏二氟乙烯与六氟丙烯共聚物(Viton) ,- -55.0 13 聚氯乙烯(PVC) - 78.0-81.0 14 聚偏二氯乙烯210.0 -18.0 15 聚丙烯183.0,130.0 26.0,-35.0 16 聚丙烯酸- 106.0 17 聚甲基丙烯酸甲酯,有机玻璃160.0 105.0 18 聚丙烯酸乙酯- -22.0 19 聚(α-腈基丙烯酸丁酯)- 85.0 20 聚丙烯酰胺- 165.0 21 聚丙烯腈317.0 85.0 22 聚异丁烯基橡胶1.5 -70.0 23 聚氯代丁二烯,氯丁橡胶43.0 -45.0 24 聚顺式-1,4-异戊二烯,天然橡胶36.0 -70.0

常见聚合物的玻璃化转变温度和表面张力

常见高聚物的名称、重复结构单元、熔点与玻璃 化转变温度 Names, Constitutional Repeating Units, Melting Points and Glass-transition Temperatures of Common High Polymers 序号(No.) , 名称(Name) , 重复结构单元 (Constitutional repeating unit) , 熔点 T m/℃ , 玻璃化转变温度T g/℃ 1 , 聚甲醛 , , 182.5 , -30.0 2 , 聚乙烯 , , 140.0,95.0 , -125.0,-20.0 3 , 聚乙烯基甲醚 , , 150.0 , -13.0 4 , 聚乙烯基乙醚 , , - , -42.0 5 , 乙烯丙烯共聚物,乙丙橡胶 , , , - , -60.0 6 , 聚乙烯醇 , , 258.0 , 99.0

7 , 聚乙烯基咔唑 , , - , 200.0 8 , 聚醋酸乙烯酯 , , - , 30.0 9 , 聚氟乙烯 , , 200.0 , - 10 , 聚四氟乙烯(Teflon) , , 327.0 , 130.0 11 , 聚偏二氟乙烯 , , 171.0 , 39.0 12 , 偏二氟乙烯与六氟丙烯共聚物(Viton) , , , - , -55.0 13 , 聚氯乙烯(PVC) , , - , 78.0-81.0 14 , 聚偏二氯乙烯 , , 210.0 , -18.0 15 , 聚丙烯 , , 183.0,130.0 , 26.0,-35.0 16 , 聚丙烯酸 , , - , 106.0

玻璃化温度(整理)

玻璃化温度 玻璃化转变是高聚物的一种普遍现象,因为即使是结晶高聚物,也难以形成100%的结晶,总有非晶区存在。在高聚物发生玻璃化转变时,许多物理性能发生了急剧的变化特别是力学性能。在只有几度范围的转变温度区间前后,模量将改变三到四个数量级,使材料从坚硬的固体,突然变成柔软的弹性体,完全改变了材料的使用性能。作为塑料使用的高聚物,当温度升高到发生玻璃化转变时,失去了塑料的性能,变成了橡胶;而作为橡胶使用的材料,当温度降低到发生玻璃化转变时,便丧失橡胶的高弹性,变成硬而脆的塑科。因此,玻璃化转变是高聚物的一个非常重要的性质。研究玻璃化转变现象,有着重要的理论和实际意义。 而玻璃化温度是在决定应用一个非晶高聚物之前需要知道的一个最重要的参数,如何测量这一参数自然也是很重要的。另一方面对玻璃化转变现象的研究,也必须解决实际测量的问题。测量玻璃化温度的方法很多,原则上说,所有在玻璃化转变过程中发生显著变化或突变的物理性质,都可以利用来测量玻璃化温度。这些方法大致可以分成下面四类:1)利用体积变化的方法,2)利用热力学性质变化的方法,3)利用力学性质变化的方法,4)利用电磁性质变化的方法。 一、玻璃化转变的理论 对于玻璃化转变现象,至今尚无完善的理论可以做出完全符合实验事实的正确解释。已经提出的理论很多,主要的有三种:自由体积理论、热力学理论和动力学理论。 1、自由体积理论 自由体积理论认为,在玻璃化转变温度Tg以下,玻璃态中的分子链段运动和自由体积是被冻结的;玻璃化转变动力学理论认为,大分子局域链构象重排涉及到主链上单键的旋转,存在位垒,当温度在Tg以上时,分子运动有足够的能量去克服位垒,但当温度降至Tg以下时,分子热运动不足以克服位垒,于是便发生了分子运动的冻结。因此,高分子链在以下的运动一般被认为是冻结的。 自由体积理论最初是由Fox和Flory提出来的。他们认为液体或固体物质,其体积由两部分组成:一部分是被分子占据的体积,称为已占体积;另一部分是

相关文档
最新文档