光电检测技术实验讲义

光电检测技术实验讲义
光电检测技术实验讲义

光电检测技术实验指导书

电气工程学院

目录

实验一半导体激光器工作域值及输出功率特性的测量 (2)

实验二半导体激光器输出光谱特性曲线的测量 (9)

实验三光电探测原理及特性测试(综合性) (13)

实验四* CCD输出特性及二值化处理实验 (22)

实验五 PSD位移传感器特性实验 (28)

实验六反射式光纤位移传感器原理及定标实验 (32)

实验七光电报警系统设计(设计性) (38)

实验一 半导体激光器工作域值及输出功率特性的测量

一、实验目的

测试半导体激光器工作域值,测量输出功率-电流(P-I )特性曲线和输出功率的稳定性,从而对半导体激光器工作特性有个基本了解。

二、实验内容

1、测试YSLD3125型半导体激光器工作域值。

2、测试YSLD3125型半导体激光器输出功率与电流(P-I )特性曲线。

3、测试YSLD3125型半导体激光器注入电流为30mA 时输出功率的稳定性。

三、实验仪器

1、YSLD3125型半导体激光器(带尾纤输出,FC 型接口) 1只

2、ZY606型LD/ LED 电流源 1台

3、光功率计 1台

4、万用表 1只

四、实验原理

1、激光器一般知识

激光器是使工作物质实现粒子数反转分布产生受激辐射,再利用谐振腔的正反馈,实现光放大而产生激光振荡的。激光,其英文LASER 就是Light Amplification by Stimulated Emission of Radiation (受激辐射的光放大)的缩写。

激光的本质是相干辐射与工作物质的原子相互作用的结果。尽管实际原子的能级是非常复杂的,但与产生激光直接相关的主要是两个能级,设E u 表示较高能级,E l 表示较低能级。原子能在高低能级间越迁,在没有外界影响时,原子可自发的从高能级越迁到低能级,并伴随辐射一个频率为

h E E l u /)(-=ν

的光子,这过程称自发辐射。

若有能量为l u E E h -≥ν的光子作用于原子,会产生两个过程,一是原子吸收光子能量从低能级越迁到高能级,同时在低能级产生一个空穴,称为受激越迁或受激吸收,此激发光子消失;二是原子在激发光子的刺激下,从高能级越迁到低能级,并伴随辐射一个频率

h E E l u /)(-=ν

的光子,这过程称受激辐射。

受激辐射激发光子不消失,而产生新光子,光子增加,而且产生的新光子与激发光子具有相同的频率、相位和偏振态,并沿相同的方向传播,具有很好的相干性,这正是我们所需要的。

受激辐射和受激吸收总是同时存在的,如果受激吸收超过受激辐射,则光子数的减少多于增加,总的效果是入射光被衰减;反之,如果受激辐射超过受激吸收,则入射光被放大。实现受激辐射超过受激吸收的关键是维持工作物质的原子粒子数反转分布。所谓粒子数反转分布就是工作物质中处于高能级的原子多于处于低能级的原子。所以原子的粒子数反转分布是产生激光的必要条件。

实现粒子数反转可以使受激辐射超过受激吸收,光在工作介质中得到放大,产生激光,但工作介质的增益都不足够大,若使光单次通过工作介质而要产生较强度的光,就需要很长的工作物质,实际上这

是十分困难,甚至是不可能的。于是就想到了用光学谐振腔进行光放大。所谓光学谐振腔,实际上是在激光器两端,面对面地装两块反射镜,如下图所示:

一块几乎全反射,一块为部分反射,激光可透过部分反射镜射出。被反射回到工作介质的光,可在工作介质中多次往返,设往返次数为m ,则有效长度为:

mL L eff 2= (m=1,2,3,4…)

L 为工作介质的的实际长度。

由于谐振腔内工作介质存在吸收,反射镜存在透射和散射,而且只有沿轴线方向的光才被放大,因此光受到一定损耗,当增益和损耗相当时,在谐振腔内建立起稳定的激光振荡。即一个激光器,m 有一个确定的值。

谐振腔的另一个作用是选模,光在谐振腔内反射时,反射波将和入射波发生干涉,为了能在腔内形成稳定的振荡,必须满足相干相长的条件,也就是沿腔的纵向(轴线方向)形成驻波的条件,这条件是:

n

q

L 2λ

= 或q

nL

2=

λ 式中,λ为波长,n 是工作介质的折射率,q=1,2,3,4,…,为某一整数,为驻波波幅的个数,它表征了腔内纵向光场的分布,称为激光的纵模,q=1称单纵模激光器,q ≥2称多纵模激光器。每个驻波的频率是不一样的,第q 个驻波的频率由:

L

c q

q 2=ν s m C /1038?=,为光速。

以上两式都说明,虽然由于导带和价带是由许多连续能级组成的有一定宽度的能带,两个能带中不同能级之间电子的跃迁会产生许多不同波长的光波,但只有符合激光振荡的相位条件的那些波长存在,不符合激光振荡的相位条件的那些波长的光将衰减掉,这些波长取决于激光器工作物质的纵向长度L 。

多纵模激光器输出q 个波长的光,但幅度不一样,幅度最大的称为主模,其余的称为边模。 2、半导体激光器的结构

半导体是由大量原子周期性有序排列构成的共价晶体,由于邻近原子的作用,电子所处的能态扩展成能级连续分布的能带,如下图(a )所示,能量低的能带称为价带,能量高的能带称为导带,导带底的能量Eu 和价带顶的能量E l 之间的能量差g

l u E E E =-称为禁带宽度或带隙,不同的半导体材料有

不同的带隙。本征半导体中导带和价带被电子和空穴占据的几率是相同的,N 型半导体导带被电子占据

的几率大,P 型半导体价带被空穴占据的几率大。如下图(b )、(c )所示。

半导体激光器的结构多种多样,基本结构是下图所示的双异质结平面条形结构。这种结构由三层不同类型半导体材料构成,中间层通常为厚度为0.1~0.3μm 的窄带隙P 型半导体,称为有源层,作为工作介质,两侧分别为具有较宽带隙的N 型和P 型半导体,称为限制层。具有不同带隙宽度的两种半导体单晶之间的结构称为异质结。有源层与右侧的N 层之间形成的是P--N 异质结,而与左侧的P 层之间形成的是P--P 异质结,故这种结构又称N-P-P 双异质结构,简称DH 结构。

施加正向偏压后,就能使左侧的N 层向有源层注入电子,右侧的P 层向有源层注入空穴,但由于右侧的P 层带隙宽,导带的能态比有源层高,对注入电子形成了势垒,注入到有源层的电子不可能扩散到P 层,同理,注入到有源层的空穴也不可能扩散到N 层。这样,注入到有源层的电子和空穴被限制在0.1~0.3μm 的有源层内,形成了粒子数的反转分布。

前后两个晶体解理面作为反射镜构成谐振腔。 给半导体激光器施加正向偏压,即注入电流是维持有源层介质的原子永远保持粒子数的反转分布,自发辐射产生的光子作为激发光子诱发受激辐射,受激辐射产生的更多新光子作为新的激发光子诱发更强的受激辐射。

3、半导体激光器的主要特性 (1)输出光功率特性

激光器光功率特性通常用输出光功率与激励电流I 的关系曲线,既P —I 曲线表示。给半导体激光器注入电流,就是给激光器有源层半导体工作介质注入能量,对价带上的载流子(电子)进行激发,当注入电流较小时,导带和价带间载流子不能形成反转分布,这时从导带上跃迁到价带上的载流子主要以自发辐射为主,产生的是荧光,即非相干光。当注入电流达到一定值时,导带和价带间载流子才能形成反转分布,产生受激辐射,激光器才有激光(即相干光)输出,这个一定值称为阈值电流。阈值电流以后,随着注入电流的增大,导带和价带间粒子数差值增大,激光增益系数增大,输出功率增加,并与注入电流近似成线性关系,如下式所示。

()e

hf

I I P P D th f th η?

-+=

式中I f 为注入电流,S J h ??=-34

10

628.6为普朗克常数,λ

c

f =

为入射光频率,s

m c /1038

?=为光速,λ为入射光波长,e 为电子电量,ηD 为外微分量子效率,I th 为阈值电流,P th 为阈值功率。图线表示如下:

半导体激光器 LD 的P-I 特性曲线

根据P-I 曲线可以求出激光器的阈值电流I th 和外微分量子效率ηD :将P-I 曲线的线性部分作直线与横坐标相交,交点处的电流值即为激光器的阈值电流;曲线线性部分的斜率为e

hf

D η,由曲线求得斜率,

可计算ηD 。

(2)温度特性

激光器输出光功率是随温度而变化的,有两个原因:一是激光器阈值电流I th 随温度升高而增大,二是激光器外微分量子效率ηD 随温度升高而减小。温度升高时,I th 增大,ηD 减小,输出光功率明显下降,达到一定温度时,激光器就不激射了。当以直流电流驱动时,阈值电流I th 随温度的变化更加明显。

五、设备简介

1、 ZY -YSLD3125型激光器

我们所用ZY -YSLD3125型半导体激光器是具有多量子阱F-P 腔激光器LD ,内置背景光探测器PD ,这种激光器使用时具有下图所示四种型式:

图中,LD 为激光器,PD 为背景光探测器。PD-N side dwon 的管是探测器PD 的负(N )与激光器LD 的负(N )或正(P )相连,PD-P side dwon 的管是探测器PD 的正负(P )与激光器LD 的负(N )或正(P )相连,与激光器LD 的负(N ))相连的称为DVD 型管,与激光器LD 的正(P )相连的称为POINT 型管。所用ZY -YSLD3125型激光器为PD-N side dwon 的POINT 型管,单模光纤同轴封装,带尾纤FC 连接。性能指标如下表所示

参数符

测试条件

最小

典型值最大值单位

额定功率Pout Iop=Ith+20 0.2 - 1 mW 中心波长λCW 1290 1310 1330 nm

光谱宽度Δ

λ

CW - 2 5 nm

阈值电流Ith CW -10 15 mA

工作电流Iop CW -Ith+20 -mA

探测器电流Im CW 100 --μA

探测器暗电流Id CW --0.1 nA 表中CW表示连续。管脚图如下

2、ZY606型LD/ LED电流源

本机为激光二极管(LD)专用测试设备,可广泛用于650nm、780nm、808nm、850nm、980nm、1310nm、1550nm等各种中小功率LD的电流测试及老化测试。设备内部带APC(Automatic Power Control)电路及ACC(Automatic Current Control)电路,可以实现以下三种功能:

1) LD电源

2) Iop及Im电流测试

3) LD恒功老化及恒流老化

性能指标

供给电流(Iop)max:150mA

反馈测量电流(Im)max:2000uA

Iop的测量准确度:±0.5mA

Iop分辨率:0.1mA

Im测量准确度:±5uA

Im分辨率:1uA

仪器的结构

仪器的前面板如下图所示

POWER 电源开关

IOP 激光器工作电流显示

Im 激光器探测电流显示

PD正、PD负、LD正、LD负待测激光器插入座

DVD、POINTER 待测激光器类型转换钮,按下测DVD型

恒功、恒流恒功或恒流测量转换钮

粗调、细调激光器工作电流调节钮

操作说明

1)本机只能对PD-N side down的LD进行测量,不能用来测量PD-P side down安装的激光器,否则会损坏激光器。

照度实验报告

照度实验报告 一、背景 作业场所的合理采光与照明,对生产中的效率、卫生和安全都有重要的意义。它是工作 场所设计中的重要项目,无论是天然采光还是人工照明,其主要目的都是给人们的生活和生 产提供必需的视觉条件。 适当的照度设计应遵循工效学的原则,使照度设置达到保证物体的轮廓立体视觉,有利 于辨认物体的高低,深浅,前后远近及相对位置,有利于眼睛的辨色能力,有利于大视野, 降低疲劳、减少错误和工伤事故的发生。提高照度值可以提高识别速度和主体视觉,从而提 高工作效率和准确度。但照度值提高到使人产生眩光时,会降低工作效率。此外,利用照明 设计对人的情绪的影响,根据场所功能的需求,可使光环境对人产生兴奋或抑制的作用。在 绿色照明理念的指导下,人工照明应考虑节能和环保的要求。 二、实验目的 正确熟悉和使用照度计,采集光环境数据,并通过分析数据来判断光环境的照度是否合 理,假如不合理则提出合理的改善措施。 三、实验场所 上海海洋大学图书馆二楼大厅自习室(室外) 四、实验要求 1、照度采集 2、对自习室的照度情况进行分析 3、分析光照度合理性,并提出改善措施 五、分析 1、主观分析 (1)、主观评价调查数据 (2)、主观评价结果分析 a、计算每个项目的评分s(n): s(n)= 式中,s(n)为第n个项目的评分 p(m)为第m个状态的分值,其中,p(1)=0,p(2)=10,p(3)=50,p(4)=100, v (n,m)为第n个评价项目的第m个状态所得的票数。所以: s(1)= s(2)= s(3)= s(4)= s(5)= s(6)= =16.4 =10.8 =12.4 =12.6 =12.4 =12.6 s(7)= s(8)= s(9)= s(10)= b、计算总的光环境指数 s s= =9.2 =8.2 =9.4 =10 式中,w(n)为第n个评价项目权值,设其权值均为1 所以: s=11.4 为了便于分析和确定评价结果,本方法将光环境质量按光环境的指数范围分为四个质量 等级,其质量等级的划分及其含意如下表所示: 因为10<11.4<=50所以根据上表的结论,本实验的光环境质量等级为3,含义是: 问题较大 2、客观分析(照度数据采集及分析)(1)、照度采集现场 在进行照度值测量的时间点上我们选择了一个晴朗的下午2点~3点之间,光照十分充足, 因为时间和条件的限制就没有对阴天和晚上进行测量和分析。 图书馆二楼自习室现场

光电管特性的研究讲义

课题光电管特性的研究 1.了解光电效应实验的基本规律和光的量子性; 教学目的 2.测定光电管的伏安特性,研究光电流强度与加在光电管两极间电压的关系; 3.测定光电管的光电特性,研究光电流强度与照在光电管阴极上光通量的关系。重难点 1.光电管的伏安特性和光电特性; 2.最小二乘法处理数据。 教学方法讲授、讨论、实验演示相结合。 学时 3个学时 一、前言 光电效应是指在光的作用下,从物体表面释放电子的现象,所逸出的电子称为光 电子。这种现象是1887年赫兹研究电磁波时发现的。在光电效应中,光不仅在被吸 收或发射时以能量h 的微粒出现,而且以微粒形式在空间传播,充分显示了光的粒 子性。 1905年爱因斯坦引入光量子理论,给出了光电效应方程,成功地解释了光电效应 的全部实验规律。1916年密立根用光电效应实验验证了爱因斯坦的光电效应方程,并 测定了普朗克常量。爱因斯坦和密立根都因为光电效应方面的杰出贡献,分别获得 1921年和1923年诺贝尔物理学奖。而今光电效应已经广泛地应用于各科技领域,例 如利用光电效应制成的光电管、光电倍增管等光电转换其间,把光学量转换成电学量 来测量。光电元件已成为石油钻井、传真电报、自动控制等生产和科研中不可缺少的 元件。 二、实验仪器 暗匣(内装光电管及小灯泡及米尺);光电效应实验仪(包括24V稳压电源、12V 可调稳压电源、1 3位数子电压表和电流表,分别指示光电管电压、光源电流和光电 2 流、调节光电管电压的电位器、调小灯电流的可变电阻)。

三、实验原理 金属或金属化合物在光的照射下有电子逸出的现象,称为光电效应,或称为光电发射。产生光电发射的物体表面通常接电源负极,所以又称为光电阴极,光电阴极往往不由纯金属制成,而常用锑钯或银氧钯的复杂化合物制成,因为这些金属化合物阴极的电子逸出功远较纯金属小,这样就能在较小光照下得到较大的光电流。把光电阴极和另一个金属电极-阳极仪器封装在抽成真空的玻璃壳里就成了光电管。光电管在现代科学技术中如自动控制、有声电影、电视、以及光讯号测量等方面都有重要的应用。 1905年爱因斯坦提出“光子”概念,光是由一些能量E h ν=的粒子组成的粒子流。按照光子理论,光电效应是光子与电子碰撞,光子把全部能量(h ν)传给电子,电子获得的能量,一部分用来克服金属表面对它的束缚,另一部分成为该电子(光电子)逸出金属表面后的动能。根据能量守恒有 2 max 12 h mv W ν=+ 该式就是著名的爱因斯坦光电效应方程。由于 一个电子只能吸收一个光子的能量,该式表明光电子的初动能与入射光的频率呈线性关系,与入射光子数无关。 本实验是利用真空光电管来研究这一实验的基本规律,验证爱因斯坦的光电子理论。实验原理图如图5.12-1所示,C 为光电管的阴极,A 为光电管的阳极,调节R ,可在A 、C 两极间获得连续变化的电压。光的强弱决定于光子的多少,当用一定强度的光照射到光电管阴极时,光子(h ν)流 射到C 上打出光电子,阴极释放的电子在电场的作用下向阳极迁移,回路中将形成光电流。光电流的大小与光电管两极间电压及光电管阴极的光通量(光通量与光强成正比)都有关。

光电探测技术实验报告

光电探测技术实验报告 班级:08050341X 学号:28 姓名:宫鑫

实验一光敏电阻特性实验 实验原理: 光敏电阻又称为光导管,是一种均质的半导体光电器件,其结构如图(1)所示。由于半导体在光照的作用下,电导率的变化只限于表面薄层,因此将掺杂的半导体薄膜沉积在绝缘体表面就制成了光敏电阻,不同材料制成的光敏电阻具有不同的光谱特性。光敏电阻采用梳状结构是由于在间距很近的电阻之间有可能采用大的灵敏面积,提高灵敏度。 实验所需部件: 稳压电源、光敏电阻、负载电阻(选配单元)、电压表、 各种光源、遮光罩、激光器、光照度计(由用户选配) 实验步骤: 1、测试光敏电阻的暗电阻、亮电阻、光电阻 观察光敏电阻的结构,用遮光罩将光敏电阻完全掩 盖,用万用表测得的电阻值为暗电阻 R暗,移开遮光罩,在环境光照下测得的光敏电阻的 阻值为亮电阻,暗电阻与亮电阻之差为光电阻,光 电阻越大,则灵敏度越高。 在光电器件模板的试件插座上接入另一光敏电阻, 试作性能比较分析。 2、光敏电阻的暗电流、亮电流、光电流 按照图(3)接线,电源可从+2~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮则暗电流L暗=V暗/R L,亮电流L亮=V亮/R L,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。 分别测出两种光敏电阻的亮电流,并做性能比较。 图(2)几种光敏电阻的光谱特性 3、伏安特性: 光敏电阻两端所加的电压与光电流之间的关系。 按照图(3)分别测得偏压为2V、4V、6V、8V、10V、12V时的光电流,并尝试高照射光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。将所测得的结果填入表格并作出V/I曲线。 注意事项: 实验时请注意不要超过光电阻的最大耗散功率P MAX, P MAX=LV。光源照射时灯胆及灯杯温度均很高,请勿用手触摸,以免烫伤。实验时各种不同波长的光源的获取也可以采用在仪器上的光源灯泡前加装各色滤色片的办法,同时也须考虑到环境光照的影响。

逸出功的测定实验报告

光电效应测普朗克常数 在近代物理学中,光电效应在证实光的量子性方面有着重要的地位。1905 年爱因斯坦在普朗克量子假说的基础上圆满地解释了光电效应,约十年后密立根以精确的光电效应实验证实了爱因斯坦的光电效应方程,并测定了普朗克常数。而今光电效应已经广泛地应用于各科技领域,利用光电效应制成的光电器件(如:光电管、光电池、光电倍增管等)已成为生产和科研中不可缺少的器件。 【实验目的】 1. 测定光电效应的基本特性曲线,加深对光的量子性的理解; 2. 学习验证爱因斯坦光电方程的实验方法,并测定普朗克常数。 【实验仪器】 ZKY—GD1光电效应测试仪、汞灯及电源、滤色片(五个)、光阑(两个)、光电管、测试仪(含光电管和微电流放大器) 图1 实验仪器实物图 【实验原理】 1.光电效应与爱因斯坦方程 用合适频率的光照射在某些金属表面上时,会有电子从金属表面逸出,这种现象叫做光电效应,从金属表面逸出的电子叫光电子。为了解释光电效应现象,爱因 斯坦提出了“光量子”的概念,认为对于频率为的光波,每个光子的能量为

式中,为普朗克常数,它的公认值是=6.626。 按照爱因斯坦的理论,光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子,电子所获得的能量,一部分用来克服金属表面对它的约束,其余的能量则成为该光电子逸出金属表面后的动能。爱因斯坦提出了著名的光电方程: (1)式中,为入射光的频率,为电子的质量,为光电子逸出金属表面的初速 度,为被光线照射的金属材料的逸出功,为从金属逸出的光电子的最大初动能。 由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电 子都不能到达阳极,光电流才为零。这个相对于阴极为负值的阳极电位被称为光电效应的截止电压。 显然,有 (2)代入(1)式,即有 (3)由上式可知,若光电子能量,则不能产生光电子。产生光电效应的最低频率是,通常称为光电效应的截止频率。不同材料有不同的逸出功,因

《光电子技术实验》指导书

《光电子技术实验》指导书 北京航空航天大学 仪器科学与光电工程学院 2010年12月 实验规则及注意事项 由于本实验课所用设备属于高技术实验系统,许多组件价格昂贵,易于损坏,所以实验者在做实验前应该充分复习实验大纲上的内容,实验者在做实验时应注意以下几点事项: 1.操作光纤时应注意不能用力拉扯光纤,不能随意弯曲光纤。实验时不要用手碰动与实验无关的光纤部分。 2.实验调节电流时注意不要使工作电流超过限额。电流过大有可能损坏光源和光探测器以及其它有源器件。 3.不能直视光纤、激光器出射的光束! 4.调节光学微调架时要小心、轻力,严禁强力搬拧光学微调架。 目录 实验1:光源与光纤耦合调整及光纤损耗特性测量实验 (4) 实验2:光纤温度传感系统特性实验 (8) 实验一.光源与光纤耦合调整及光纤损耗特性测量实验 一.实验目的 (1)了解提高光源与光纤耦合效率的原理及方法。重点掌握光路调整及光纤处理的基本方法。

(2) 了解光纤损耗的定义,掌握光纤衰减的测试方法。 二. 实验原理 1. 光源与光纤耦合调整实验原理 (1) 直接耦合:这种方法将光纤的端面直接靠近光源的发光面,为了保证耦合 的效率,光纤的端面必须经过特殊处理,而且光纤端面与光源发光面的距离要尽可能的近。光源的发光面不应该大于纤芯的横截面面积,这是为了避免较大的耦合损耗。通常带尾纤的光源都使用这种耦合方式。这种耦合方法对光源耦合封装工艺技术要求较高。 (2) 使用透镜耦合:具体方法描述如下——将光源发出的光通过透镜聚焦到光 纤的纤芯上,可以使光源与光纤的耦合效率提高。具体原理见图1。 五维调节架五维调节架 图1.透镜耦合 (3) 利用五维调节架对光纤入端及出端进行位置调整,使输出功率达到最大。 (4) 耦合效率的计算(适合所有的耦合方法): 2 1P P ≡η 其中P 1为输出功率,P 2为输入功率。 2. 光纤损耗特性测量实验 光纤衰减是光纤中光功率减少量的一种度量,它取决于光纤的工作波长类型和长度,并受测量条件的影响。

光电检测试验讲义

光电检测试验讲义

实验一 光敏电阻特性参数测量及暗光街灯实验 一、实验目的: 1、了解光敏电阻的电阻特性,掌握光敏电阻的伏安特性及其随光照强度的变化规律。 2、利用光敏电阻的电阻变化特性,将之作为街灯自动点亮与熄灭的传感器件,掌握基于光敏电阻的暗光街灯的工作原理及应用。 二、实验原理: 光敏电阻是最典型的光电效应器件,即其电导率随光照强度而发生变化。半导体光电导器件是利用半导体材料的光电导效应制成的光电探测器件。本实验旨在测定光敏电阻在不同光照环境下的电阻值,并测定其伏安特性随光照强度的变化规律。 根据实验测定,光敏电阻的电阻值随光亮度的增大而迅速减小。利用这一特性,设计了暗光街灯演示实验。其原理是当环境变暗时光敏电阻的阻值增大,当亮度降低到一定值时,即光敏电阻值增大到某一阈值时,光电传感电路系统自动点亮小灯泡,从而达到与暗光街灯相似的目的。 三、实验所需单元: 直流稳压电源,光敏电阻,数字电压表,电流(毫安)表,暗光街灯电路, 小灯泡(负载),万用表。 四、实验步骤: (一)光敏电阻特性测试 万用表 图 1.1 暗、 图 1.2 伏安 mA U I

(1) 光敏电阻的暗、亮电阻测定。如图3.1所示,用万用表从光敏电子两端测定它在不同光照条件下的电阻值,将测得的结果填入表格。 (2) 光敏电阻伏安特性测定。按图1.2所示连接各元件和单元,检查连接无误后,开启电源。用一挡光物(如黑纸片或瓶盖)遮住光敏电阻(视为全暗),分别接插不同的电压U 值(可调电压的获取:通过面板“电机控制1”或“电机控制2”的Vin 输入5V ,Vout 可输出如0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0, 4.5,5.0V 等不同电压值),利用电流表测定流过光敏电阻的电流值I ,数字电压表测定U 值。 改变光敏电阻的光照强度(如全暗、日光灯、手电筒、激光照射),重复测定I 与U 的关系,可得到图1.3所示的伏安特性关系曲线族。 (3) 分析上述测量结果, 进一步了解光敏电阻的光敏特性,掌握其中的变化规律。 光 照 状 况 全 暗 日光灯照射 手电筒斜照射 手电筒直照射 激光照射 光敏电阻值(k ) I U 图 1.3 光敏电 光照

光电探测实验报告

光电探测技术 实验报告 班级:10050341 学号:05 姓名:解娴

实验一光敏电阻特性实验 一、实验目的 1.了解一些常见的光敏电阻的器件的类型; 2.了解光敏电阻的基本特性; 3.测量不同偏置电压下的光敏电阻的电压与电流,并作出V/A曲线。 二、实验原理 伏安特性显示出光敏电阻与外光电效应光电元件间的基本差别。这种差别是当增加电压时,光敏电阻的光电流没有饱和现象,因此,它的灵敏度正比于外加电压。 光敏电阻与外光电效应光电元件不同,具有非线性的光照特性。各种光敏电阻的非线性程度都是各不相同的。 大多数场合证明,各种光敏电阻均存在着分析关系。这一关系为 式中,K为比例系数;是永远小于1的分数。 光电流的增长落后于光通量的增长,即当光通量增加时,光敏电阻的积分灵敏度下降。 这样的光照特性,使得解算许多要求光电流与光强间必需保持正比关系的问题时不能利用光敏电阻。 光照的非线性特性并不是一切光敏半导体都必有的。目前已有就像真空光电管—样,它的光电流随光通量线性增大的光敏电阻的实验室试样。光敏电阻的积分灵敏度非常大,最近研究出的硒—鎘光敏电阻达到12A/lm,这比普通锑、铯真空光电管的灵敏度高120,000倍。

三、实验步骤 1、光敏电阻的暗电流、亮电流、光电流 按照图1接线,电源可从+2V~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮。则暗电流L暗=V暗/RL,亮电流L亮=V亮/RL,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。 2、伏安特性 光敏电阻两端所加的电压与光电流之间的关系即为伏安特性。按照图1接线,分别测得偏压为2V、4V、6V、8V、10V时的光电流,并尝试高照度光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。将所测得的结果 填入表格并做出V/I曲线。 图1光敏电阻的测量电路 偏压2V4V6V8V10V12V 光电阻I 四、实验数据 实验数据记录如下: 光电流: E/V246810 U/V0.090.210.320.430.56 I/uA1427.54255.270.5 暗电流:0.5uA 实验数据处理:

光电显示技术期末复习资料

光电显示技术期末复习资料 第一章绪论 (2) 1、光电显示器件有哪些分类? (3) 2、表征显示器件的主要性能指标有哪些? (3) 3、简述色彩再现原理。 (3) 4、人眼的视觉特性 (3) 5、简述人眼的视觉原理。 (4) 第二章液晶显示技术(LCD) (4) 1、简述液晶的种类与特点。 (4) 2、简述热致液晶分类和特点。 (5) 3、试述液晶显示器的特点。 (5) 4、什么是液晶的电光效应? (5) 5、LCD显示产生交叉效应的原因是什么? 用什么方法克服交叉效应? (5) 6、液晶有哪些主要的物理特性? (5) 7、简述TFT-LCD的工作原理。 (6) 8、简述TN-LCD的基本结构及工作原理。 (6) 9、液晶显示器驱动方法有哪几种方式? (7) 10、液晶显示控制器有哪些特性? (7) 11、自然光和偏振光的区别是什么?简述偏振光的分类及线偏振光的特点。 (7) 12、LCD结构和显示原理。 (7) 第四章发光二极管LED和有机发光二极管OLED显示技术 (10) 1、简述有机发光二极管显示器发光过程。 (10) 2、以ITO阳极-空穴传输层-发光层-电子传输层-金属阴极结构OLED为 例说明每一功能层的作用,并简述其工作原理。 (10) 3、简述影响OLED发光效率的主要因素和提高发光效率的措施。 (11) 4、OLED如何实现彩色显示? (11) 5、简述LED工作原理。 (11) 6、简述LED驱动方式。 (12) 7、OLED的结构与工作原理。 (12) 8、OLED的特点有哪些? (12) 第六章激光显示技术(LDT) (12) 1、激光具有哪些特性? (13) 2、激光用于显示具有哪些优势? (13) 第七章新型光电显示技术 (13) 1、场致发射显示(FED)结构及工作原理 (13) 2、真空荧光显示器(VFD)结构及工作原理 (14) 第八章大屏幕显示技术 (14) 1、DLP特点及工作原理 (14) 2、LCOS特点及工作原理 (15)

光电检测技术的现状及发展趋势

光电检测作为光学与电子学相结合而产生的一门新兴检测技术,主要包括光信息获取、光电变换、光信息测量以及测量信息的智能化处理等,具有精度高、速度快、距离远、容量大、非接触、寿命长、易于自动化和智能化等优点,在国民经济各行业中得到了迅猛的发展和广泛的应用,如光扫描、光跟踪测量,光纤测量,激光测量,红外测量,图像测量,微光、弱光测量等,是当前最主要和最具有潜力的光电信息技术。本文从光电检测技术本身特点出发,分析其发展现状及发展趋势。 一、光电检测技术的概述 光电检测技术是光学与电子学相结合而产生的一门新兴检测技术。它主要利用电子技术对光学信号进行检测,并进一步传递、储存、控制、计算和显示。光电检测技术从原理上讲可以检测一切能够影响光量和光特性的非电量。它可通过光学系统把待检测的非电量信息变换成为便于接受的光学信息,然后用光电探测器件将光学信息量变换成电量,并进一步经过电路放大、处理,以达到电信号输出的目的。然后采用电子学、信息论、计算机及物理学等方法分析噪声产生的原因和规律,以便于进行相应的电路改进,更好地研究被噪声淹没的微弱有用信号的特点与相关性,从而了解非电量的状态。微弱信号检测的目的是从强噪声中提取有用信号,同时提高测系统输出信号的信噪比。 光电检测的系统机构比较简单,分为信号的处理器,受光器,光源。在实际检测过程中,受光器在获得感知信号后,就会被反映为不同形状、颜色的信号,同时根据这些器件所处在的不同位置,就能够将他分为反射型与透过型的两种比较的模式。光电检测的媒介光应当是自然的光,例如白炽灯或者萤光灯。特别是随着这些技术的发展,光电技术也取得的非常好发展。由于投光器在发出光后,会以不一样的方式触摸这些被检测物中,直到照射到检测系统中的受光器中,同时受光器在此刺激下,会产生一定量的电流,这就是我们常说的光敏性的原件,实际生活中应用比较广泛的有三极管、二极管。 光电检测技术主要包括光电变换技术、光信息获取与光信息测量技术以及测量信息的光电处理技术等。光电检测技术将光学技术与电子技术相结合实现对各种量的测量,它具有高精度、高速度、远距离、大量程、非接触测量等特点。 二、光电检测技术的发展现状

光纤通信系统实验指导书

光纤通信系统实验指导书 光纤通信系统实验指导书 桂林电子科技大学信息科技学院 二零零九年三月 目录 实验一数字光纤传输测试系统实验 (2) 实验二SDH点对点组网2M配置实验 (9)

实验三SDH 链型组网配置实验 (17) 实验四SDH 环形组网配置实验 (27) 实验一数字光纤传输测试系统实验 概述 光纤通信是利用光波作为载波,以光纤作为传输媒质实现信息传输,是一种最新的通信技术。 光纤是光导纤维的简称。光纤通信是以光波为载频,以光导纤维为传输媒质

的一种通信方式。光纤通信使用的波长在近红外区,即波长800~1800nm,可分为短波长波段(850nm)和长波长波段(1310nm和1550nm),这是目前所采用的三个通信窗口。 通信发展过程是以不断提高载频频率来扩大通信容量,光是一种频率极高的电磁波(3×1014HZ),因此用光作载波进行通信容量极大,是过去通信方式的千百倍,具有极大的吸引力,是通信发展的必然方向。 光纤通信有许多优点:首先它有极宽的频带。目前我国已完成了10Gbps的光纤通信系统,这意味着在125um的光纤中可以传输大约11万路电话。其次,光纤的传输损耗很小,传统的同轴电缆损耗约在5dB/Km以上,站间距离不足10Km;而工作在1.55um的光纤最低已达到0.2dB/Km的损耗,站间无中继传输可达100Km以上。另外,光纤通信还具有抗电磁干扰、抗腐蚀、抗辐射等特点,它 。 在地球上有取之不尽,用之不竭的光纤原材料—SiO 2 光纤通信可用于市话中继线,长途干线通信,高质量彩色电视传输,交通监控指挥,光纤局域网,有线电视网和共用天线(CATV)系统。 波分复用技术(WDM)的出现,使光纤传输技术向更高的领域发展,实现信息宽带、高速传输。 光纤通信将会在光同步数字体系(SDH)、相干光通信、光纤宽带综合业务数字网(B—ISDN)、用户光纤网、ATM及全光通信有进一步发展。 光纤通信系统主要由三部分组成:光发射机、传输光纤和光接收机。其电/光和光/电变换的基本方式是直接强度调制和直接检波。实现过程如下:输入电信号既可以是模拟信号(如视频信号、电话语音信号、正弦波或三角波信号),也可以是数字信号(如计算机数据、PCM编码信号、数字信号源信号);调制器将输入的电信号转换成适合驱动光源器件的电流信号并用来驱动光源器件,对光源器件进行直接强度调制,完成电/光变换的功能;光源 输出的光信号直接耦合到传输光纤中,经一定长度的光纤传输后送达接收端;在接收端,光电检测器对输入的光信号进行直接检波,将光信号转换成相应的电信号,再经过放大恢复等电信号处理过程,以弥补线路传输过程中带来的信号损伤(如损耗、波形畸变),最后输出和原始输入信号相一致的电信号,从而完成整个传送过程。 根据所使用的光波长、传输信号形式、传输光纤类型和光接收方式的不同,光纤通信系统可分成:

光电检测技术实验设计

光电检测技术 实验报告 题目:光电报警系统的设计和制作学院:仪器科学与光电工程学院专业:测控技术与仪器 班级: 学生姓名: 指导老师:

实验三 光电报警系统的设计和制作 一、设计任务 红外报警器系统的原理框图如图1所示。由红外光源发出的红外辐射被红外探测器接收,红外辐射信号变为电信号,经信号放大和处理电路后送报警电路。系统分成发送和接收两部分,分开放置。当没有人和物体进入这两部分之间,红外辐射没有被阻挡时,报警处于不报警状态。一旦有人或物体进入这两部分之间。红外辐射被阻挡,报警器立即翻转到报警状态。 图1 红外报警器系统原理框图 二、设计方案 (1)发射端电路 用NE555组成振荡器来驱动发光管,NE555构成多谐振荡器原题图如图2所示。下面对照电路图简述其工作原理及参数选择。 图2 多谐振荡器 注:1地 GND 2触发 3输出 4复位 5控制电压 6门限(阈值) 7放电 8电源电压Vc 当3脚为高电平(略低于Vc 时),输出电压将通过R1对C1充电。A 点电压按指数规律上升,时间常数为R1C1。 当A 点电压上升到上限阙值电压(约2Vc/3时),定时器输出翻转成低电平

(略大于0V)。这时,A点电压将随C1放电而按指数规律下降。当A点下降到下限阙值电压(约Vc/3)时,定时器输出变成高电平,调整R2的阻值得到严格的方波输出。 用NE555组成振荡器来驱动发光管时,要注意发光管上串联一个限流电阻。使输出电流小于或等于发光管的最大正向电流 F I。若振荡器输出电压为Vo,则 限流电阻R取值为F F O I V V R - ≥ 。如果限流电阻低于上述公式所得值,或未加限流电阻,则会造成发光管和定时器烧毁。 D2 LED 图3 振荡发射电路原理图 (2)光电检测、比较报警电路 D4 LED R8 500 图4 光电检测放大器电路原理图比较报警电路的设计利用光敏二极管的反向特性,当接收到光信号时,光敏二极管导通良好,产生电压,放大器即可对信号处理;当没有接收到光信号时,光敏二极管截止,放大器的同相端电压几乎为0。利用1/2LF353构成的光放大器,如图所示。用1/2LF353构成一个比较放大器。放大器的正端加2V左右偏压,负端加信号电压。当光线未阻断时,从主放大器来的交流信号经二极管检波电路,再经低通滤波器后得到直流电压,使后面的放大器负载输入端电位大于(或等于)正输入端电位。

光电探测实验报告

* * 光电探测技术 实验报告

* * 班级:10050341 学号:05 姓名:解娴 实验一光敏电阻特性实验 一、实验目的 1.了解一些常见的光敏电阻的器件的类型; 2.了解光敏电阻的基本特性; 3.测量不同偏置电压下的光敏电阻的电压与电流,并作出V/A曲线。

二、实验原理 伏安特性显示出光敏电阻与外光电效应光电元件间的基本差别。这种差别是当增加电压时,光敏电阻的光电流没有饱和现象,因此,它的灵敏度正比于外加电压。 光敏电阻与外光电效应光电元件不同,具有非线性的光照特性。各种光敏电阻的非线性程度都是各不相同的。 大多数场合证明,各种光敏电阻均存在着分析关系。这一关系为 I kα =Φ Φ 式中,K为比例系数;是永远小于1的分数。 光电流的增长落后于光通量的增长,即当光通量增加时,光敏电阻的积分灵敏度下降。 这样的光照特性,使得解算许多要求光电流与光强间必需保持正比关系的问题时不能利用光敏电阻。 光照的非线性特性并不是一切光敏半导体都必有的。目前已有就像真空光电管—样,它的光电流随光通量线性增大的光敏电阻的实验室试样。光敏电阻的积分灵敏度非常大,最近研究出的硒—鎘光敏电阻达到12A/lm,这比普通锑、铯真空光电管的灵敏度高120,000倍。 三、实验步骤 1、光敏电阻的暗电流、亮电流、光电流 按照图1接线,电源可从+2V~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮。则暗电流L暗=V暗/RL,亮电流L亮=V亮/RL,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。 2、伏安特性 光敏电阻两端所加的电压与光电流之间的关系即为伏安特性。按照图1

光电显示技术实验讲义

实验一有机发光器件(OLED)参数测量 一、实验目的: 1.了解有机发光显示器件的工作原理及相关特性; 2.掌握OLED性能参数的测量方法; 二、实验原理简介: 1979年,柯达公司华裔科学家邓青云(Dr. C. W. Tang)博士发现黑暗中的有机蓄电池在发光,对有机发光器件的研究由此开始,邓博士被誉为OLED之父。 OLED (Organic Light Emitting Display,中文名有机发光显示器)是指有机半导体材料和发光材料在电场驱动下,通过载流子注入和复合导致发光的现象。OLED用ITO透明电极和金属电极分别作为器件的阳极和阴极,在一定电压驱动下,电子和空穴分别从阴极和阳极注入到电子和空穴传输层,电子和空穴分别经过电子和空穴传输层迁移到发光层,并在发光层中相遇,形成激子并使发光分子激发,后者经过辐射弛豫而发出可见光。辐射光可从ITO一侧观察到,金属电极膜同时也起了反射层的作用。 图1:OLED结构示意图 与LCD相比,OLED具有主动发光,无视角问题,重量轻,厚度小,高亮度,高发光效率,发光材料丰富,易实现彩色显示,响应速度快,动态画面质量高,使用温度范围广,可实现柔软显示,工艺简单,成本低,抗震能力强等一系列的优点。 如果一个有机层用两个不同的有机层来代替,就可以取得更好的效果:当正极的边界层供应载流子时,负极一侧非常适合输送电子,载流子在两个有机层中间通过时,会受到阻隔,直至会出现反方向运动的载流子,这样,效率就明显提高了。很薄的边界层重新结合后,产生细小的亮点,就能发光。如果有三个有机层,分别用于输送电子、输送载流子和发光,效率就会更高。

为提高电子的注入效率,OLED阴极材料的功函数需尽可能的低,功函数越低,发光亮度越高,使用寿命越长。可以使用Ag 、Al 、Li 、Mg 、Ca 、In等单层金属阴极,也可以将性质活泼的低功函数金属和化学性能较稳定的高功函数金属一起蒸发形成合金阴极。如Mg: Ag(10: 1),Li:Al (0.6%Li),功函数分别为3.7eV和3.2eV,合金阴极可以提高器件的量子效率和稳定性,同时能在有机膜上形成稳定坚固的金属薄膜。此外还有层状阴极和掺杂复合型电极。层状阴极由一层极薄的绝缘材料如LiF, Li2O,MgO,Al2O3等和外面一层较厚的Al组成,其电子注入性能较纯Al电极高,可得到更高的发光效率和更好的I-V特性曲线。掺杂复合型电极将掺杂有低功函数金属的有机层夹在阴极和有机发光层之间,可大大改善器件性能,其典型器件是ITO/NPD/AlQ/AlQ(Li)/Al,最大亮度可达30000Cd/m2,如无掺Li层器件,亮度为3400Cd/m2。 为提高空穴的注入效率,要求阳极的功函数尽可能高。作为显示器件还要求阳极透明,一般采用的有Au、透明导电聚合物(如聚苯胺)和ITO导电玻璃,常用ITO玻璃。 载流子输送层主要是空穴输送材料(HTM)和电子输运材料(ETM)。空穴输送材料(HTM)需要有高的热稳定性,与阳极形成小的势垒,能真空蒸镀形成无针孔薄膜。最常用的HTM均为芳香多胺类化合物,主要是三芳胺衍生物。TPD:N,N′-双(3-甲基苯基)-N,N′-二苯基-1,1′-二苯基-4,4′-二胺NPD: N,N′-双(1-奈基)-N,N′-二苯基-1,1′-二苯基-4,4′-二胺。电子输运材料(ETM)要求有适当的电子输运能力,有好的成膜性和稳定性。ETM一般采用具有大的共扼平面的芳香族化合物如8-羟基喹啉铝(AlQ),1,2,4一三唑衍生物(1,2, 4-Triazoles,TAZ),PBD,Beq2,DPVBi等,它们同时又是好的发光材料。 OLED的发光材料应满足下列条件: 1)高量子效率的荧光特性,荧光光谱主要分布400-700nm可见光区域。 2)良好的半导体特性,即具有高的导电率,能传导电子或空穴或两者兼有。 3)好的成膜性,在几十纳米的薄层中不产生针孔。 4)良好的热稳定性。 按化合物的分子结构,有机发光材料一般分为两大类: 1) 高分子聚合物,分子量10000-100000,通常是导电共轭聚合物或半导体共轭聚合物,可用旋涂方法成膜,制作简单,成本低,但其纯度不易提高,在耐久性,亮度和颜色方面比小分子有机化合物差。 2) 小分子有机化合物,分子量为500-2000,能用真空蒸镀方法成膜,按分子结构又分为两类:有机小分子化合物和配合物。 有机小分子发光材料主要为有机染料,具有化学修饰性强,选择范围广,易于提纯,量子效率高,可产生红、绿、蓝、黄等各种颜色发射峰等优点,但大多数有机染料在固态时存在浓度淬灭等问题,导致发射峰变宽或红移,所以一般将它们以低浓度方式掺杂在具有某种载流子性质的主体中,主体材料通常与ETM和HTM层采用相同的材料。掺杂的有机染料,应满足以下条件: a. 具有高的荧光量子效率 b. 染料的吸收光谱与主体的发射光谱有好的重叠,即主体与染料能量适配,从主体到染料能有效地能量传递; c. 红绿兰色的发射峰尽可能窄,以获得好的色纯;

光电测试技术复习资料汇编

PPT中简答题汇总 1. 价带、导带、禁带的定义及它们之间的关系。施主能级和受主能级的定义及符号。答: 价带:原子中最外层电子称为价电子,与价电子能级相对应的能带称为价带;E V(valence) 导带:价带以上能量最低的允许带称为导带;E C(conduction) 禁带:导带与价带之间的能量间隔称为禁带。Eg(gap) 施主能级:易释放电子的原子称为施主,施主束缚电子的能量状态。E D(donor) 受主能级:容易获取电子的原子称为受主,受主获取电子的能量状态。E A( acceptor ) 2. 半导体对光的吸收主要表现为什么?它产生的条件及其定义。半导体对光的吸收主要表现为本 征吸收。 半导体吸收光子的能量使价带中的电子激发到导带,在价带中留下空穴,产生等量的电子与空穴,这种吸收过程叫本征吸收。 产生本征吸收的条件:入射光子的能量( h V要大于等于材料的禁带宽度E g 3. 扩散长度的定义。扩散系数和迁移率的爱因斯坦关系式。多子和少子在扩散和漂移中的作用。 扩散长度:表示非平衡载流子复合前在半导体中扩散的平均深度。 扩散系数D (表示扩散的难易)与迁移率卩(表示迁移的快慢)的爱因斯坦关系式: D=(kT/q)卩kT/q为比例系数 漂移主要是多子的贡献,扩散主要是少子的贡献。 4. 叙述p-n 结光伏效应原理。 当P-N 结受光照时,多子( P 区的空穴,N 区的电子)被势垒挡住而不能过结,只有 少子( P 区的电子和N 区的空穴和结区的电子空穴对)在内建电场作用下漂移过结,这导致在N 区有光生电子积累,在P 区有光生空穴积累,产生一个与内建电场方向相反的光生电场,其方向由P区指向N区。 5. 热释电效应应怎样解释?热释电探测器为什么只能探测调制辐射? 在某些绝缘物质中,由于温度的变化引起极化状态改变的现象称为热释电效应。因为在恒定光辐射作用下探测器的输出信号电压为零,既热释电探测器对未经调制的光辐射不会有响应。 6. 简述红外变象管和象增强器的基本工作原理。红外变象管:红外光通过光电导技术成象到光电导靶面上,形成电势分布图象,利用调制的电子流使荧光面发光。 象增强器:光电阴极发射的电子图像经电子透镜聚焦在微通道板上,电子图像倍增后在均匀电场作用下投射到荧光屏上。 7. 简述光导型摄像管的基本结构和工作过程 基本结构包括两大部分:光电靶和电子枪。工作过程:通过光电靶将光学图象转变成电学图象,电子枪发出的电子束对光电靶进行扫描,将电学图象转换成仅随时间变化的电信号(视频信号)传送出去。

光电探测器特性测量实验报告

实验1 光电探测器光谱响应特性实验 实验目的 1. 加深对光谱响应概念的理解; 2. 掌握光谱响应的测试方法; 3. 熟悉热释电探测器和硅光电二极管的使用。 实验内容 1. 用热释电探测器测量钨丝灯的光谱特性曲线; 2. 用比较法测量硅光电二极管的光谱响应曲线。 实验原理 光谱响应度是光电探测器对单色入射辐射的响应能力。电压光谱响应度 ()v R λ定义为在波长为λ的单位入射辐射功率的照射下,光电探测器输出的信号 电压,用公式表示,则为 () ()() v V R P λλλ= (1-1) 而光电探测器在波长为λ的单位入射辐射功率的作用下,其所输出的光电流叫做探测器的电流光谱响应度,用下式表示 () ()() i I R P λλλ= (1-2) 式中,()P λ为波长为λ时的入射光功率;()V λ为光电探测器在入射光功率 ()P λ作用下的输出信号电压;()I λ则为输出用电流表示的输出信号电流。为简 写起见,()v R λ和()i R λ均可以用()R λ表示。但在具体计算时应区分()v R λ和()i R λ,显然,二者具有不同的单位。 通常,测量光电探测器的光谱响应多用单色仪对辐射源的辐射功率进行分光来得到不同波长的单色辐射,然后测量在各种波长的辐射照射下光电探测器输出的电信号()V λ。然而由于实际光源的辐射功率是波长的函数,因此在相对测量中要确定单色辐射功率()P λ需要利用参考探测器(基准探测器)。即使用一个光

谱响应度为()f R λ的探测器为基准,用同一波长的单色辐射分别照射待测探测器和基准探测器。由参考探测器的电信号输出(例如为电压信号)()f V λ可得单色辐射功率()=()()f P V R λλλ,再通过(1-1)式计算即可得到待测探测器的光谱响应度。 本实验采用单色仪对钨丝灯辐射进行分光,得到单色光功率()P λ ,这里用响应度和波长无关的热释电探测器作参考探测器,测得()P λ入射时的输出电压为()f V λ。若用f R 表示热释电探测器的响应度,则显然有 ()()f f f V P R K λλ= (1-3) 这里f K 为热释电探测器前放和主放放大倍数的乘织,即总的放大倍数。在本实验中=100300f K ?,f R 为热释电探测器的响应度,实验中在所用的25Hz 调制频率下,=900/f R V W 。 然后在相同的光功率()P λ下,用硅光电二极管测量相应的单色光,得到输出电压()b V λ,从而得到光电二极管的光谱相应度 ()() ()()()b b f f f V K V R P V R K λλλλλ= = (1-4) 式中b K 为硅光电二极管测量时总的放大倍数,这里=150300b K ?。 实验仪器 单色仪、热释电探测器组件、光电二极管探测器组件、选频放大器、光源。

光电显示技术课程标准

广州康大职业技术学院 《光电显示技术》课程标准 一、基本信息 适用对象:应用电子技术专业学生 制定时间:2010年6月 学分:3 学时:56 课程代码: 所属系部:自动化系 制定人:吴闽 批准人:陶廷甫 二、课程的目标 1、专业能力目标 (1)掌握光电显示技术的基本原理,各种显示器件的驱动方法,相应的电路技术、特性与应用。 (2)从工程技术应用的角度出发,使学生掌握常见半导体光电器件的工作原理,理解半导体光电器件中的基本物理概念。 (3)了解半导体光电器件的发展水平,为后读课程学习和工程的实践应用打下基础。 2、方法能力目标 (1)通过本课程的学习,应使学生对光电子技术中的基本概念、基本技术和基本器件有比较全面、系统的认识。 (2)培养学生分析和解决工程技术问题的能力,为进一步学习相关专业课程打下基础。 3、社会能力目标 (1)灵活运用已学理论知识,分析问题和解决问题的能力; (2)敢为人先、勇于创新的开拓精神。 (3)学习和掌握最新专业知识的能力。 三、整体教学设计思路 1、课程定位 本课程重点介绍电子显示技术及其在各领域的应用,对现有的电子显示技术进行了全面的讲解和比较,重点介绍了液晶显示;等离子体显示;发光二极管显示;激光显示等显示技术,并介绍了与显示技术有关的人眼生理学、光度学、色度学及显示系统参数、图像质量评价等内容。主要内容

有:绪论;视觉特性与光度学、色度学原理;显示系统的要求与图象质量评价;真空阴极射线管显示技术;液晶显示;等离子体显示;电致发光显示;发光二极管显示;激光显示;投影显示等。 2、课程开发思路 激光器的发明,解决了光频载波的产生问题,从此电子技术的各种基本概念几乎都移植到了光频段,电子学与光学之间的鸿沟在概念上消失了,产生了光频段的电子技术,即光电子技术。当然由于波段不同,电子学波段和光频段在相应器件的结构上完全不同。尽管如此,从电子学频段扩展的意义上讲,光电子技术就是电子技术在光频段的开拓和发展;从技术发展的角度上讲,光电子技术也是电子技术与光学技术相结合的产物。为了使这门课程的教学达到预定的能力目标,在课程教学内容的选取上,从使用者的角度出发,坚持理论联系实际,以技术应用为主,着眼于提高学生选择正确的光电器件、解决实际工程中检测项目的目的来实施教学。 四、教学内容 1.学时分配

光电检测技术实验讲义

光电检测技术实验指导书 电气工程学院

目录 实验一半导体激光器工作域值及输出功率特性的测量 (2) 实验二半导体激光器输出光谱特性曲线的测量 (9) 实验三光电探测原理及特性测试(综合性) (13) 实验四* CCD输出特性及二值化处理实验 (22) 实验五 PSD位移传感器特性实验 (28) 实验六反射式光纤位移传感器原理及定标实验 (32) 实验七光电报警系统设计(设计性) (38)

实验一 半导体激光器工作域值及输出功率特性的测量 一、实验目的 测试半导体激光器工作域值,测量输出功率-电流(P-I )特性曲线和输出功率的稳定性,从而对半导体激光器工作特性有个基本了解。 二、实验内容 1、测试YSLD3125型半导体激光器工作域值。 2、测试YSLD3125型半导体激光器输出功率与电流(P-I )特性曲线。 3、测试YSLD3125型半导体激光器注入电流为30mA 时输出功率的稳定性。 三、实验仪器 1、YSLD3125型半导体激光器(带尾纤输出,FC 型接口) 1只 2、ZY606型LD/ LED 电流源 1台 3、光功率计 1台 4、万用表 1只 四、实验原理 1、激光器一般知识 激光器是使工作物质实现粒子数反转分布产生受激辐射,再利用谐振腔的正反馈,实现光放大而产生激光振荡的。激光,其英文LASER 就是Light Amplification by Stimulated Emission of Radiation (受激辐射的光放大)的缩写。 激光的本质是相干辐射与工作物质的原子相互作用的结果。尽管实际原子的能级是非常复杂的,但与产生激光直接相关的主要是两个能级,设E u 表示较高能级,E l 表示较低能级。原子能在高低能级间越迁,在没有外界影响时,原子可自发的从高能级越迁到低能级,并伴随辐射一个频率为 h E E l u /)(-=ν 的光子,这过程称自发辐射。 若有能量为l u E E h -≥ν的光子作用于原子,会产生两个过程,一是原子吸收光子能量从低能级越迁到高能级,同时在低能级产生一个空穴,称为受激越迁或受激吸收,此激发光子消失;二是原子在激发光子的刺激下,从高能级越迁到低能级,并伴随辐射一个频率 h E E l u /)(-=ν 的光子,这过程称受激辐射。 受激辐射激发光子不消失,而产生新光子,光子增加,而且产生的新光子与激发光子具有相同的频率、相位和偏振态,并沿相同的方向传播,具有很好的相干性,这正是我们所需要的。 受激辐射和受激吸收总是同时存在的,如果受激吸收超过受激辐射,则光子数的减少多于增加,总的效果是入射光被衰减;反之,如果受激辐射超过受激吸收,则入射光被放大。实现受激辐射超过受激吸收的关键是维持工作物质的原子粒子数反转分布。所谓粒子数反转分布就是工作物质中处于高能级的原子多于处于低能级的原子。所以原子的粒子数反转分布是产生激光的必要条件。 实现粒子数反转可以使受激辐射超过受激吸收,光在工作介质中得到放大,产生激光,但工作介质的增益都不足够大,若使光单次通过工作介质而要产生较强度的光,就需要很长的工作物质,实际上这

相关文档
最新文档