基于小波理论

基于小波理论
基于小波理论

3)基于小波理论的模型(Wavelet Based Model)小波分析方法是对一组已知的交通流时间序列v0i(将原始信号视为尺度0上的信号)和选定的尺度函数ψ(t)、小波函数φ(t)及其对应的分解系数序列{an}、{bn}、重构系数序列{pn}、{qn},进行N 尺度的分解,得到一个基本时间序列信号vji和一组干扰信号wji(j=1,2,…,N),然后利用其他预测方法(如ARMA)对分解后的近似信号、干扰信号进行预测,将分解信号及相应的预测结果利用重构算法(如Mallat 算法)得到原尺度的信号及其预测结果[18]。在小波分析中,多尺度方法对于高频扰功信号具有较强的适应能力,在强干扰作用下,该方法较之普通的时间序列方法具有更强的抗干扰能力,因此多尺度时间序列的方法更适用于短时交通流的预测。但是对信号进行二进小波分解时,每次分解都将使信号样本减少一半,进行分解后只能依据较少的样本数据来进行阶数和参数的估计,影响重构模型和预测精度。而且同时还需要利用其他时间序列方法,这本身就影响了预测精度,限制了它的应用,而且也没有考虑相邻路段的影响。

4)基于分形理论的模型(Fractal Based Model)

分形理论是描述复杂系统的一种强有力的工具。广义地,我们把形态、功能、信息等方面具有的自相似的研究对象统称为分形,把研究分形的性质及其应用的科学称为分形理论,分形几何揭示了系统的无标度性或自相似性,而分维是描写分形的定量参数,通常是一个分数。一般地,如果某个形体是由将整个形体缩小到1/β的βD个形体所构成,则称 D 为相似维数。由于短时交通系统存在自相似性,使得短时交通流量具有可预测性。短时交通流的分形预测方法的关键是分维,一般利用建立在H.Whitney 的拓扑嵌入理论及 F.Takens 证明的状态空间重构的理论之上的G-P 算法进行计算。就是利用观测到的交通流时间序列vi(t-k)(k=1,2,…,P),确定原交通流系统的嵌入空间维数m和时滞参数τ,从而在m维上建立一个与原交通流系统拓扑结构相同的动力学系统。对于m 维欧氏空间上的动力学系统v。=f(v)(其中v=(v1,v2,…,vn)是系统的状态向量,也可以看做系统相空间上的一个点),随着时间的推延,其相空间上的轨迹可能渐进地趋向于其上的某个子集A(A是系统的吸引子),这样对系统特性的研究也就转化为对吸引子的研究。

利用分形理论进行交通流量预测,存在很大的适应性和有效性。但是利用分形方法进行预测有一个基本前提,即:当前的交通流演化过程与过去出现的交通流的变化过程具有自相似性。因此分形预测只能在无标度区间内作尺度变换,一

旦逾越此区间,自相似将不复存在,系统也没有分形就规律了,这就限制了观测时间跨度。而且利用分形理论进行短时交通流预测的研究,在现阶段还仅仅是进行分维,若要用于预测,还需要进一步的研究。

3.交通仿真模型(Traffic Simulation Model)

Junchaya et al.在1992 年提出“因为实际中影响交通的因素很多,很难用理论公式把所有的复杂因素都考虑进去,交通仿真模型可以提供一个唯一的手段来进行评价”[15]。交通仿真已经成为一个很重要的分析交通问题的工具。一般来说,交通仿真模型把车辆当作实体,用计算机模拟实际道路交通情况,对道路的交通状况进行仿真,得到道路预测的交通信息。因此,严格意义上说,交通仿真模型不能用于交通流预测的目的,因为它需要输入用于预测的交通流数据。而且,交通仿真模型不能实现实时性。然而,一旦交通流量数据能够通过其他的方法预测得到后,仿真模型可以提供一种估计动态旅行时间的方法。换句话说,仿真模型提供了一个交通流、占有率和旅行时间之间关系的一个模拟实际的计算方法。

当使用传统的仿真模型时,如CROSIM 和SIMTraffic,要预先确定出行者的出行路径,这就要使用动态交通分配(DTA Model)的结果。DTA 模型通过采集到的交通流数据和出行者出行选择的行为用于估计随时间变化的网络的状态。DTA 模型通常分为以下三种:以数学为基础、以变分方程为基础、以主观控制理论为基础或者以仿真为基础的启发式模型[14]。所有这些方法的共同点是他们都是以传统的静态的交通分配的假设解决随时间变化的动态交通流问题,并且对任何一个网络没有一个方法是通用的方法。

动态交通分配在采集实时交通数据资料的基础上,按照一定的准则将动态交通需求量合理地分配到路网上,不断更新出行分布,从而得到路段实时交通量的方法,以实现降低交通拥挤程度和提高路网运行效率的目的。此类方法目标明确,理论清晰,但也存在以下不足之处:①假设条件苛刻,在实际路网中无法得到相应信息或取得信息的代价昂贵;②某些模型的解释性虽然较好,但无法求解或求解难度大,优化时间长,预测的实时性差,需要在实践中难于做到或无法做到的动态OD 信息;③由于采用递推方式的计算,造成了误差的积累,使得分配结果的可靠度降低;④过分强调精确的系统最优或用户最优分配结果,加大了模型求解的难度,也不适合在大规模路网上实现应用。为改善动态交通分配模型的不足,已有一些学者利用仿真来模拟动态交通分配,虽取得了一定的成就,但也没

有得到可靠性很好的结果。

4.综合模型(Integrated Model)

基于上面谈到的各类预测模型,每类模型各有其优点、缺陷和适用条件,将各类模型组合起来“扬长避短”,得到更加理想的结果,这就是综合模型的目标。

1969 年,J.N.Bates 和C.W.J.Granger 首次提出了组合预测的理论和方法,将不同的预测方法进行组合,以求产生较好的预测效果。现在发展的综合模型主要有:基于神经网络的综合模型、基于小波理论的综合模型、基于混沌理论的综合模型等[24]。

Kalman滤波理论

卡尔曼滤波由Kalman和Bucy在1960年提出,它是一种时域上的状态空间方

法,相对于20世纪40年代Winner创立的在方法论上使用频域法的Winner滤波理论,Kalman滤波算法应用的范围更加广泛,自被提出以来,它已经成为很多领域,它已经成为信号处理、通信与控制等的基本计算工具之一,在航空、航天工业过程以及社会经济等各领域具有广泛的应用。1965年,由John将其最早应用在气象预报上。

近来,卡尔曼滤波在计算机图像处理中也取得了较为广泛的应用,如车辆识别,人脸跟踪识别等。在国外,Okutani和Stephanedes以及Vyhotkaspc均提出过基于卡尔曼滤波的交通流预测模型。在中国,杨兆升、朱中也曾于1999年提出用来预测行程时间的卡尔曼滤波模型[71。

基于以上的研究成果,用卡尔曼滤波预测模型来对短时交通流时间序列进行跟踪预测是可行的。

基于理论统计模型中最优估计kalman滤波(KF)是一种先进的数据处理方法,已在交通需求预测领域中得到很好的应用[19],它具有预测因子选择灵活,预测精度较高,预测时间短的优点,在计算机发展较为迅速的今天,kalman滤波在预测方面的应用将会日益增多,它还可以结合混沌理论与信息融合理论来提高预测精

度。所以,本文将着重研究使用kalman滤波来实现交通流的预测。

卡尔曼滤波理论推导过程

Kalman滤波是由Kalman于1960年提出的[20],它把信号过程看作一个白噪声作用下线性系统的输出,滤波算法由系统的状态方程、观测方程、观测噪声、系统噪声的统计特性组合而成。此算法打破了Wiener滤波的局限性,对平稳一维随机过程与非平稳多维随机过程均可以进行估计,所以它是Wiener滤波的扩展。

Kalman滤波是一套能够用计算机实现的递推算法,处理的对象为随机信号,滤波器输入和输出之间由时间更新与观测更新算法联系在一起,最终佔计信号由系统方程与观测方程计算得出。

线性动态时间系统信号流图表示如图2-3所示:

在上述信号流图中,我们可以提取两个方程[22]:

(1) 过程方程

x(n + 1) = F(n +1, n)x(n) + v, (n) (2-10)

x(X)是可以描述系统动态行为的最小数据集合,它由系统预测所需要的,与系统历史状态有关的最少数据组成。+ 为状态一步转移矩阵,Vi(/7)表示系统随机过程噪声。

(2) 观测方程

y{n) = C(n)x(}i) + v,in) (2-11)

为观测向量,即观测值。C(?)为己知的观测矩阵,V2(?)是观测噪声,V2(?)的统计特性为

用卡尔曼滤波进行预测所要完成的任务是:建立合适的状态方程和观测方程,确定方程中变量的初始统计特性,已知特定观测序列的情况下,求出的最优估计值5(/7),且与满足最小均方误差准则。

Kalman滤波方程的直观推导如下[7】:

现将Kalman滤波推导公式变量和参数归纳如表2-1所示:

定义

.1.1基于Ka Iman滤波的交通流预测模型设计

设某路段r时刻的交通流量为;r(r), r时刻后的r个时刻交通流量为;r(r+r),考虑r时刻的交通流量与它前三个时刻的交通流量密切相关,则;r(r+r)的预测值r(r+:o可用以下表达式给出【14]-

Y\t + T) = H.Vir) + H,V(t -1) + H^V(t-2) + w(t)

(4-1)

其中K(r), K(r-l), F(r —2)分别为此路段r 、r-1、r-2时刻所测交通流量,。、//, 、//,为参数矩阵,M

为方便使用Kalman滤波理论对状态变量出预估计,进行以下整合变换:

C{T) = iViT),V(T-\),V(T-2))

(4-2)

X(T) = (H?H?H,f

(4-3)

将其和Kalman滤波理论比对,可得交通流预测模型如下:

X(t) = F(t)X(t-\) + u(t-\)

(4-4)

Y'{T + T) = C{T)X{r) + Mit)

(4-5)

其中,Z(r)为状态向量,;r'(r + r)为观测向量,C(r)为观测矩阵,F(r)为状态转

移矩阵。

应用kalman滤波理论对其进行交通流预测,预测步骤如下(7】:

1.设定初始参数。

卡尔曼滤波方程里面的状态转移矩阵F(1,0)初始值设置为单位矩阵/ ,维数为3x3 。

过程噪声相关矩阵的初始值:在matlab仿真软件中,采用随机函数和协方差函数求解。

Q,(i)^cow(randni3,l));测量噪声相关矩阵的初始值:在matlab仿真软件中,采用随机

函数m?6/A7(U)求解。在本文中,采用的观测数据为一维时间序列,所以02(0 = randn(l,\)。

状态向量预测估计的初始值y(i,o) = [o],它的误差自相关矩阵为零矩阵。状态向量滤波

估计初始值y(U) = [0],它的误差自相关矩阵为零矩阵。

2.利用卡尔曼滤波理论递推预测[21]。

1) 设定递推循环变量/,递推次数为预测长度;

2) 观测矩阵更新:C = [Yreal(i),Yreal(i -1), Yreal(i - 2)]

对卡尔曼滤波增益进行计算:G(/) = F(/+i,/)/:o',/-i)c"(/)ir'(/);

3) 计算信息误差矩阵::^(/) = _K/)-C(/)F(/,/ —l)A^(/|/-l);

4) '. = 1时,X(1,1)=X(1);

/ # 1时,X(i,i) = F(i,i -\)X(i -1,/-1) + G(/)XO

i = 1时,1(1,0)误差相关矩阵/^1,0) = [0];

K(i + \,i) = F(i +1, i)K{i)F" (/ +1, /■) + a (0

5) 计算/+ 1时刻状态向量的估计值1(/ + 1,/) = F(/ + 1,/)X(/,/)

6) 根据状态预估计值计算观测值的预测估计值J

滤波估计值计算观测值的滤波估计_y(/,0 = C{i)X{U)。

7) 循环变量递增1,重复上述3至7步骤,直至循环变量等于预测长度。

研究生《小波理论及应用》复习题

2005年研究生《小波理论及应用》复习题 1. 利用正交小波基建立的采样定理适合于:紧支集且有奇性(函数本身或其导数不连续)的函数(频谱无限的函数)。Shannon 采样定理适合于频谱有限的信号。 2. 信号的突变点在小波变换域常对于小波变换系数模极值点或过零点。并且信号奇异性大小同小波变换的极值随尺度的变化规律相对立。只有在适当尺度下各突变点引起的小波变化才能避免交迭干扰,可以用于信号的去噪、奇异性检测、图象也缘提取、数据压缩等。 3. 信号在一点的李氏指数表征了该点的奇异性大小,α越大,该点的光滑性越小,α越小,该点的奇异性越大。光滑点(可导)时,它的1≥α;如果是脉冲函数,1-=α;白噪声时0≤α。 4. 做出三级尺度下正交小波包变换的二进数图,小波包分解过程?说明小波基与小波包基的区别? 5. 最优小波包基的概念:给定一个序列的代价函数,然后在小波包基中寻找使代价函数最小的基――最优基。 6. 双通道多采样率滤波器组的传递函数为: ()()()()()()()()()()()()()z X z G z G z H z H z X z G z G z H z H z Y z Y z Y -??????-++??????+=+=∧∧∧∧212121请根据此式给出理想重建条件: 为了消除映象()z X -引起的混迭:()()()()0=-+-∧ ∧z G z G z H z H

为了使()z Y 成为()z X 的延迟,要求:()()()()k CZ z G z G z H z H -∧∧=+ (C,K 为任一常数) 7. 正交镜像对称滤波器()()n h n g ,的()jw e G 与()jw e H 以2π=w 为轴左右对称。如果知道QMF 的()n h ,能否确定()()()n h n g n g ∧ ∧,,? ()()()n h n g n 1-= ,()()()n g n h n 1--=∧ , ()()()n h n g n 1-=∧ 8. 试列出几种常用的连续的小波基函数 Morlet 小波,Marr 小波,Difference of Gaussian (DOG ),紧支集样条小波 9. 试简述海森堡测不准原理,说明应用意义? 10. 从连续小波变换到离散小波变换到离散小波框架-双正交小波变换-正交变换、紧支集正交小波变换,其最大的特点是追求变换系数的信息冗余小,含有的信息量越集中。 11. 解释紧支集、双正交、正交小波、紧支集正交小波、光滑性、奇异性。 12. 已知共轭正交滤波器组(CQF )()n h 请列出()()()n g n h n g ∧ ∧,,。 ()()() ()()()()()()???????-=--=-=---=∧∧n h n N g n g n N h n h n N h n g n n 11 13. 共轭正交滤波器()()n g n h ,的()jw e G 与()jw e H 的关系与QMF 情况

小波变换的基本原理

10.2小波变换的基本原理 地质雷达的电磁波信号和地震波信号都是非平稳随机时变信号,长期以来,因非平稳信号处理的理论不健全,只好将其作为平稳信号来处理,其处理结果当然不满意。近年来,随着科学技术的发展和进步,国内外学术界已将注意力转向非平稳随机信号分析与处理的研究上,其中非平稳随机信号的时频表示法是研究热点之一。在这一研究中,戈勃展开、小波变换、维格纳分布与广义双线性时频分布等理论发展起来,这些方法既可以处理平稳信号过程,也可以处理非平稳随机时变信号。 小波变换是上世纪80年代中后期逐渐发展起来的一种数学分析方法。1984年法国科学家J.M OLET在分析地震波的局部特性时首先使用了小波这一术语,并用小波变换对地震信号进行处理。小波术语的含义是指一组衰减震动的波形,其振幅正负相间变化,平均值为零,是具有一定的带宽和中心频率波组。小波变换是用伸缩和平移小波形成的小波基来分解(变换)或重构(反变换)时变信号的过程。不同的小波具有不同带宽和中心频率,同一小波集中的带宽与中心频率的比是不变的,小波变换是一系列的带通滤波响应。它的数学过程与傅立叶分析是相似的,只是在傅立叶分析中的基函数是单频的调和函数,而小波分析中的基函数是小波,是一可变带宽内调和函数的组合。 小波变换在时域和频域都具有很好的局部化性质,较好地解决了时域和频域分辨率的矛盾,对于信号的低频成分采用宽时窗,对高频成分采用窄时窗。因而,小波分析特别适合处理非平稳时变信号,在语音分析和图象处理中有广泛的应用,在地震、雷达资料处理中将有良好的应用前景。 下边就小波分析的基本原理、主要作用及在雷达资料处理中的应用三方面作以介绍。 10.2.1小波分析的基本原理 小波函数的数学表达

小波变换的原理及matlab仿真程序讲解学习

小波变换的原理及m a t l a b仿真程序

基于小波变换的信号降噪研究 2 小波分析基本理论 设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。当Ψ(t)满足条件[4,7]: 2 () R t dw w C ψψ =<∞? (1) 时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列: ,()( )a b t b t a ψ -= ,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。 对于任意的函数f(t)∈L 2( R)的连续小波变换为: ,(,),()( )f a b R t b W a b f f t dt a ψψ-=<>= ? (3) 其逆变换为: 211()(,)()f R R t b f t W a b dadb C a a ψ ψ+-= ?? (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参

数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。 3 小波降噪的原理和方法 3.1 小波降噪原理 从信号学的角度看 ,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如图所示[6]: 小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下形式: (k)()()S f k e k ε=+* k=0.1…….n-1 其中 ,f( k)为有用信号,s(k)为含噪声信号,e(k)为噪声,ε为噪声系数的标准偏差。 假设e(k)为高斯白噪声,通常情况下有用信号表现为低频部分或是一些比较平稳的信号,而噪声信号则表现为高频的信号,下面对 s(k)信号进行如图结构的小波分解,则噪声部分通常包含在Cd1、Cd2、Cd3中,只要对 Cd1,Cd2,Cd3作相应的小波系数处理,然后对信号进行重构即可以达到消噪的目的。

小波变换理论及应用

2011-2012 学年第一学期 2011级硕士研究生考试试卷 课程名称:小波变换理论及应用任课教师:考试时间:分钟 考核类型:A()闭卷考试(80%)+平时成绩(20%); B()闭卷考试(50%)+ 课程论文(50%); C(√)课程论文或课程设计(70%)+平时成绩(30%)。 一、以图示的方式详细说明连续小波变换(CWT)的运算过程,分析小波变换的内涵;并阐述如何从多分辨率(MRA)的角度构造正交小波基。(20分) 二、综述小波变换理论与工程应用方面的研究进展,不少于3000字。(25分) 三、运用MATLAB中的小波函数和小波工具箱,分别对taobao.wav语音信号在加噪之后的taobao_noise.wav信号进行降噪处理,要求列出程序、降噪结果及降噪的理论依据。(25分) 四、平时成绩。(30分)

(一)连续小波变换(CWT )的运算过程及内涵 将平方可积空间中任意函数f (t )在小波基下展开,称这种展开为函数f (t )的连续小波变换(Continue Wavelet Transform ,简记CWT )其表达式为 t a b t t f a b a f W d )(*)(||1),(? ∞+∞--=ψψ ( 1.1) 其中,a ∈R 且a ≠0。式(1.19)定义了连续小波变换,a 为尺度因子,表示与频率相关的伸 缩,b 为时间平移因子。其中)(| |1)(,a b t a t b a -=ψψ为窗口函数也是小波母函数。 从式(1.1)可以得出,连续小波变换计算分以下5个步骤进行。 ① 选定一个小波,并与处在分析时段部分的信号相比较。 ② 计算该时刻的连续小波变换系数C 。如图1.5所示,C 表示了该小波与处在分析时段内的信号波形相似程度。C 愈大,表示两者的波形相似程度愈高。小波变换系数依赖于所选择的小波。因此,为了检测某些特定波形的信号,应该选择波形相近的小波进行分析。 图1.5 计算小波变换系数示意图 ③ 如图1.6所示,调整参数b ,调整信号的分析时间段,向右平移小波,重复①~②步骤,直到分析时段已经覆盖了信号的整个支撑区间。 ④ 调整参数a ,尺度伸缩,重复①~③步骤。 ⑤ 重复①~④步骤,计算完所有的尺度的连续小波变换系数,如图1.7所示。 C =0.2247

小波变换基本原理

第五章 小波变换基本原理 问题 ①小波变换如何实现时频分析?其频率轴刻度如何标定? —尺度 ②小波发展史 ③小波变换与短时傅里叶变换比较 a .适用领域不同 b.STFT 任意窗函数 WT (要容许性条件) ④小波相关概念,数值实现算法 多分辨率分析(哈尔小波为例) Daubechies 正交小波构造 MRA 的滤波器实现 ⑤小波的历史地位仍不如FT ,并不是万能的 5.1 连续小波变换 一.CWT 与时频分析 1.概念:? +∞ ∞ --ψ= dt a b t t S a b a CWT )( *)(1),( 2.小波变换与STFT 用于时频分析的区别 小波 构造? 1910 Harr 小波 80年代初兴起 Meyer —小波解析形式 80年代末 Mallat 多分辨率分析—WT 无须尺度和小波函数—滤波器组实现 90年代初 Daubechies 正交小波变换 90年代中后期 Sweblews 第二代小波变换

3.WT 与STFT 对比举例(Fig 5–6, Fig 5–7) 二.WT 几个注意的问题 1.WT 与)(t ψ选择有关 — 应用信号分析还是信号复原 2.母小波)(t ψ必须满足容许性条件 ∞<ψ=? ∞ +∞ -ψdw w w C 2 )( ①隐含要求 )(,0)0(t ψ=ψ即具有带通特性 ②利用ψC 可推出反变换表达式 ??+∞∞-+∞ ∞-ψ -ψ= dadb a b t b a CWT a C t S )(),(11 )(2 3.CWT 高度冗余(与CSTFT 相似) 4.二进小波变换(对平移量b 和尺度进行离散化) )2(2)()(1 )(2 ,22,,n t t a b t a t n b a m m n m b a m m -ψ=ψ?-ψ= ??==--ψ dt t t S n CWT d n m m m n m )(*)()2,2(,,?+∞ ∞ ---ψ=?= 5.小波变换具有时移不变性 ) ,()() ,()(00b b a C W T b t S b a C W T t S -?-? 6.用小波重构信号 ∑∑ ∑∑+∞-∞=+∞ -∞ =+∞-∞=+∞ -∞ =ψψ= m n m n n m n m n m n m t d t d t S )(?)(?)(,,,,正交小波 中心问题:如何构建对偶框架{} n m ,?ψ

小波分析考试题及答案

一、叙述小波分析理论发展的历史和研究现状 答:傅立叶变换能够将信号的时域和特征和频域特征联系起来,能分别从信号的时域和频域观察,但不能把二者有机的结合起来。这是因为信号的时域波形中不包含任何频域信息,而其傅立叶谱是信号的统计特性,从其表达式中也可以看出,它是整个时间域内的积分,没有局部化分析信号的功能,完全不具备时域信息,也就是说,对于傅立叶谱中的某一频率,不能够知道这个频率是在什么时候产生的。这样在信号分析中就面临一对最基本的矛盾——时域和频域的局部化矛盾。 在实际的信号处理过程中,尤其是对非常平稳信号的处理中,信号在任一时刻附近的频域特征很重要。如柴油机缸盖表明的振动信号就是由撞击或冲击产生的,是一瞬变信号,单从时域或频域上来分析是不够的。这就促使人们去寻找一种新方法,能将时域和频域结合起来描述观察信号的时频联合特征,构成信号的时频谱,这就是所谓的时频分析,亦称为时频局部化方法。 为了分析和处理非平稳信号,人们对傅立叶分析进行了推广乃至根本性的革命,提出并开发了一系列新的信号分析理论:短时傅立叶变换、时频分析、Gabor 变换、小波变换Randon-Wigner变换、分数阶傅立叶变换、线形调频小波变换、循环统计量理论和调幅—调频信号分析等。其中,短时傅立叶变换和小波变换也是因传统的傅立叶变换不能够满足信号处理的要求而产生的。 短时傅立叶变换分析的基本思想是:假定非平稳信号在不同的有限时间宽度内是平稳信号,从而计算出各个不同时刻的功率谱。但从本质上讲,短时傅立叶变换是一种单一分辨率的信号分析方法,因为它使用一个固定的短时窗函数,因而短时傅立叶变换在信号分析上还是存在着不可逾越的缺陷。 小波变换是一种信号的时间—尺度(时间—频率)分析方法,具有多分辨率分析(Multi-resolution)的特点,而且在时频两域都具有表征信号局部特征的能力,使一种窗口大小固定不变,但其形状可改变,时间窗和频率窗都可以改变的时频局部化分析方法。小波变换在低频部分具有较高的频率分辨率和较低的时间分辨率。在高频部分具有较高的时间分辨率和较低的频率分辨率,很适合于探测正常信号中夹带的瞬态反常现象并展示其成分,所以被誉为分析信号的显微镜。 小波分析最早应用在地震数据压缩中, 以后在图像处理、故障诊断等方面取得了传统方法根本无法达到的效果. 现在小波分析已经渗透到了自然科学、应用

小波变换及其应用_李世雄

现代数学讲座 小波变换及其应用 李世雄 (安徽大学数学系 合肥 230039) 科学技术的迅速发展使人类进入了信息时代。在信息社会中人们在各种领域中都会涉及各种信号(语音,音乐,图像,金融数据,……)的分析、加工、识别、传输和存储等问题。长期以来,傅里叶变换一直是处理这方面问题最重要的工具,并且已经发展了一套内容非常丰富并在许多实际问题中行之有效的方法。但是,用傅里叶变换分析处理信号的方法也存在着一定的局限性与弱点,傅里叶变换提供了信号在频率域上的详细特征,但却把时间域上的特征完全丢失了。小波变换是80年代后期发展起来的新数学分支,它是傅里叶变换的发展与扩充,在一定程度上克服了傅里叶变换的弱点与局限性。本文从信号分析与处理的角度来介绍小波变换的基本理论与应用,使具有微积分基础的读者通过本文能对这一新的数学分支有一初步了解。小波变换在函数论、微分方程、数值计算等方面也有着重要的应用,有兴趣的读者可参看[1][4]。 (一)从傅里叶变换谈起 数学中经常用变换这一技巧将问题由繁难化为简易,初等数学中用对数将较繁难的乘除法化为简易的加减法就是很典型的一个例子。而傅里叶变换(简称FT )则是利用积分将一个函数f (t )(-∞

小波分析的基本理论

东北大学 研究生考试试卷 考试科目:状态监测与故障诊断 课程编号: 阅卷人: 考试日期: 2013.12 姓名:王培军 学号: 1300483 注意事项 1.考前研究生将上述项目填写清楚 2.字迹要清楚,保持卷面清洁 3.交卷时请将本试卷和题签一起上交 东北大学研究生院

小波分析的基本理论 小波分析是当前应用数学和工程学科中一个迅速发展的新领域,是分析和处理非平稳信号的一种有力工具。经过大量学者不断探索研究,它是以局部化函数所形成的小波基作为基底而展开的。小波分析在保留傅里叶分析优点的基础上,具有许多特殊的性能和优点。而小波分析则是一种更合理的时频表示和子带多分辨分析方法。所以理论基础渐已扎实,理论体系逐步完善,在工程领域已得到广泛应用。 1 小波变换理论 1.1 连续小波变换 定义1.1 小波函数的定义:设(x )为一平方可积函数,也即(x ) L 2 (R ),若其傅里叶变换(ω)满足条件: C ψ=∫|ψ?(ω)| |ω| d ω<+∞+∞?∞ 1-1 则称(x )是一个基本小波或小波母函数(Mother Wavelet ),并称上式为小 波函数的容许性条件。 由定义1.1可知,小波函数具有两个特点: (1)小:它们在时域都具有紧支集或近似紧支集。由定义的条件知道任何满足可容许性条件的L 2(R )空间的函数都可以作为小波母函数(包括实数函数或复数函数、紧支集或非紧支集函数等)。但是在一般的情况下,常常选取紧支集或近似紧支集的同时具有时域和频域的局部性实数或复数函数作为小波母函,让小波母函数在时域和频域都具有较好的局部特性,这样可以更好的完成实验。 (2)波动性:若设ψ?(ω)在点ω=0连续,则由容许性条件得: ∫ψ(x )dx =ψ?(0)=0+∞ ?∞ 1-2 也即直流分量为零,同时也就说明(x )必是具有正负交替的波动性,这也是其 称为小波的原因。 定义1.2 连续小波基函数的定义:将小波母函数(x )进行伸缩和平移,设其收缩因子(即尺度因子)为a,平移因子为b,使其平移伸缩后的函数为a,b (x ),则有: ψa ,b (x )=|a |? 12 ψ( x?b a ),a >0,b ∈R 1-3 称a,b (x )为依赖于参数a,b 的小波基函数。由于伸缩因子a,平移因子b 都是取连续变化的值,因此又称a,b (x )为连续小波基函数。它们是一组函数系列,这组函数系列是由同一母函数(x )经伸缩和平移后得到的。 定义1.3 若f (x ) L 2(R ),函数f(x)在小波基下进行展开,则f(x)的连续小波变换(CWT)定义为: W ψf(a ,b)={f (x ),ψa ,b (x )}=√ a f (x )ψ(x?b a )??????????dx +∞?∞ 1-4 由定义1.3可知,小波基具有收缩因子a 和平移因子b,若将函数在小波基下展开,就是把一个时间函数投影到二维的时间-尺度相平面上,把一个一维函数变换为一个二维函数

小波变换去噪基础地的知识整理

1.小波变换的概念 小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。有人把小波变换称为“数学显微镜”。 2.小波有哪几种形式?常用的有哪几种?具体用哪种,为什么? 有几种定义小波(或者小波族)的方法: 缩放滤波器:小波完全通过缩放滤波器g——一个低通有限脉冲响应(FIR)长度为2N和为1的滤波器——来定义。在双正交小波的情况,分解和重建的滤波器分别定义。 高通滤波器的分析作为低通的QMF来计算,而重建滤波器为分解的时间反转。例如Daubechies和Symlet 小波。 缩放函数:小波由时域中的小波函数 (即母小波)和缩放函数 (也称为父小波)来定义。 小波函数实际上是带通滤波器,每一级缩放将带宽减半。这产生了一个问题,如果要覆盖整个谱需要无穷多的级。缩放函数滤掉变换的最低级并保证整个谱被覆盖到。 对于有紧支撑的小波,可以视为有限长,并等价于缩放滤波器g。例如Meyer小波。 小波函数:小波只有时域表示,作为小波函数。例如墨西哥帽小波。 3.小波变换分类 小波变换分成两个大类:离散小波变换 (DWT) 和连续小波转换 (CWT)。两者的主要区别在于,连续变换在所有可能的缩放和平移上操作,而离散变换采用所有缩放和平移值的特定子集。 DWT用于信号编码而CWT用于信号分析。所以,DWT通常用于工程和计算机科学而CWT经常用于科学研究。 4.小波变换的优点 从图像处理的角度看,小波变换存在以下几个优点: (1)小波分解可以覆盖整个频域(提供了一个数学上完备的描述) (2)小波变换通过选取合适的滤波器,可以极大的减小或去除所提取得不同特征之间的相关性 (3)小波变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分辨率(宽分析窗口),在高频段,可用低频率分辨率和高时间分辨率(窄分析窗口) (4)小波变换实现上有快速算法(Mallat小波分解算法) 另: 1) 低熵性变化后的熵很低; 2) 多分辨率特性边缘、尖峰、断点等;方法, 所以可以很好地刻画信号的非平稳特性 3) 去相关性域更利于去噪; 4) 选基灵活性: 由于小波变换可以灵活选择基底, 也可以根据信号特性和去噪要求选择多带小波、小波包、平移不变小波等。 小波变换的一个最大的优点是函数系很丰富, 可以有多种选择, 不同的小波系数生成的小波会有不同的效果。噪声常常表现为图像上孤立像素的灰度突变, 具有高频特性和空间不相关性。图像经小波分解后可得到低频部分和高频部分, 低频部分体现了图像的轮廓, 高频部分体现为图像的细节和混入的噪声, 因此, 对图像去噪, 只需要对其高频系数进行量化处理即可。 5.小波变换的科学意义和应用价值

小波变换及其应用

实验三小波变换及其应用 实验目的 1、通过观察小波变换系数建立对小波变换及其有关性质的感性认识。 2、掌握小波变换及重构方法;了解小波变换基本应用。 实验内容 1、图像二维离散小波变换及其重构; 2、小波变换在去噪、压缩、图像增强上的应用。 实验原理 1、“小波”就是小区域、长度有限、均值为0的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与 Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。 小波转换分成两个大类:离散小波变换 (DWT) 和连续小波转换 (CWT)。两者的主要区别在于,连续转换在所有可能的缩放和平移上操作,而离散转换采用所有缩放和平移值的特定子集。 小波变换的公式有内积形式和卷积形式,两种形式的实质都是一样的。它要求的就是一个个小波分量的系数也就是“权”。其直观意义就是首先用一个时窗最窄,频窗最宽的小波作为尺子去一步步地“量”信号,也就是去比较信号与小波的相似程度。信号局部与小波越相似,则小波变换的值越大,否则越小。当一步比较完成后,再将尺子拉长一倍,又去一步步地比较,从而得出一组组数据。如此这般循环,最后得出的就是信号的小波分解(小波级数)。 当尺度及位移均作连续变化时,可以理解必将产生大量数据,作实际应用时并不需要这么多的数据,因此就产生了离散的思想。将尺度作二进离散就得到二进小波变换,同时也将信号的频带作了二进离散。当觉得二进离散数据量仍显大时,同时将位移也作离散就得到了离散小波变换。 2、二维离散小波变换常用函数

小波变换及应用

小波变换及应用 一. 为什么研究小波变换 傅立叶变换(Fourier Transform ,缩写为FT )由下列公式定义: 正变换公式 ?()()i t f f t e dt ωω∞ --∞ =?? (1) 逆变换公式 ? ∞ ∞ -?= dt e f t f t i ωωπ )(?21 )( (2) 分析: 1.对于确定信号和平稳随机过程,傅立叶变换把时间域与频率域联系起来,许多在时域内难以看清的问题,在频域中往往表现得非常清楚。 2.变换积分核t i e ω±的幅值在任何情况下均为1,即1=±t i e ω,因此,频 谱)(?ωf 的任一频率点值是由时间过程)(t f 在整个时间域),(∞-∞上的贡献决定的;反之,过程)(t f 在某一时刻的状态也是由)(?ωf 在整个频率域),(∞-∞上的贡献决定的。)(t f 与)(?ωf 彼此之间是整体刻画,不能够反映各自在局部区域上的特征,因此不能用于局部分析。特别是傅立叶变换的积分作用平滑了非平稳过程的突变成分。要知道所分析的信号在突变时刻的频率成分,傅立叶变换是无能为力的。 3.实际中存在许多信号具有局部时间范围(特别是突变时刻)内的信号特征(一般是频率成分),例如,在音乐和语音信号中,人们所关心的是什么时刻奏什么音符,发出什么样的音节;图像信号中的细节信息,如边缘特征。 4.为了对非平稳信号作较好的分析,可以对信号在时域上加一个窗函数 )(τ-t g ,使其对信号)(t f 进行乘积运算以实现在τ附近的开窗,再对加窗的信 号进行傅立叶分析,这就是短时傅立叶变换(Short Time Fourier Transform, 缩写为STFT ),或者称为加窗傅立叶变换(Windowed Fourier Transform )。STFT 定义如下: (,)()()i t f S f t g t e dt ωωττ∞ --∞ =-? (3)

小波理论及其应用

小波理论及其应用练习题 1. 小波理论中标架(Frame )都起什么作用?标架理论中满足什么条件才能使小波正交?紧支撑标 架条件包含小波容许条件吗? 2. MATLAB 中的二维离散小波变换和一维连续小波变换函数是什么?举例说明。 3. 图像处理中,MA TLAB 中的二维离散小波变换给出的低频部分的每个点代表全局的低通信息呢 还是局部的低通信息?如果是局部的,是什么样的局部信息? 4. 根据一维函数f (x )的Fourier 级数展开与它的Fourier 变换,论述它们之间的联系及在频谱分 析中的应用。 5. 令一维函数2 4 3221)(x e x f - = π 的Fourier 变换为)(?ωf 。证明)(?ωf 的L 2范数为1。 6. 设有实对称函数g (t)=g (-t),||g(t)||2=1。用g (t )的平移做频率调制)()(,s t g e t g t i s -=ωω作为窗 口函数对)()(2 R L ∈?t f 做如下变换 >=<)(),(),(,t g t f s Sf s ωω 这样的变换被称为Gabor 变换,或成为短时Fourier 变换。令)(1 )(s t g s t g s =。问Gabor 变换与下面的变换 >=<)(1 ), (),(s t g s t f s Lf ω 之间的区别是什么?举具体的g(t)说明在一维信号和图像处理中使用它们,将得到什么样的信息? 7. 小波理论中有Heisenberg 测不准原理4 12 2 ≥ ωσσt (注:有的书籍中也写成122≥ωσσt ,这是由于函数前面的系数不同导致的),用频谱域和空间域(频谱空间和实空间)来论述Heisenberg 测不准原理给出的意义。 8. 证明:若)(1R L ∈f ,则它的Fourier 变换)(?ωf 是ω的连续函数。 9. 根据基本小波)(x ψ的容许条件?+∞<<ωωωψ d | ||)(?|02证明:?=0)(dx x ψ。 10.请论述连续小波变换的频谱含义。根据你的论述,论证连续小波变换是否可应用于图像边缘提 取问题上的个人观点。 11.在许多边缘检测等问题中经常使用被称为墨西哥草帽的小波函数

小波变换的原理及matlab仿真程序

基于小波变换的信号降噪研究 2 小波分析基本理论 设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。当Ψ(t)满足条件[4,7]: 2 () R t dw w C ψψ =<∞? (1) 时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列: ,()( )a b t b t a ψ -= ,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。 对于任意的函数f(t)∈L 2( R)的连续小波变换为: ,(,),()( )f a b R t b W a b f f t dt a ψψ-=<>= ? (3) 其逆变换为: 211()(,)()f R R t b f t W a b dadb C a a ψ ψ+-= ?? (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。 3 小波降噪的原理和方法 3.1 小波降噪原理 从信号学的角度看 ,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如 图所示[6] : 小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下

小波变换

小波变换理论及应用 ABSTRACT:小波理论是近几年发展起来的新的信号处理技术,因其在时间域和频率域都可以达到高的分辨率,被称为“数学显微镜”,在数值信号处理领域应用广泛,发展非常快。但其涉及较多的数学知识,以及巧妙的数字计算技巧,对于非数学专业的科研人员,要完全掌握其中的精妙之处,有一定的难度。正是考虑到这一点,本文的开始部分不过多说明小波分析的数学理论,只是以尽量简短的篇幅介绍必要的预备知识,接着阐述小波变换理论。在理解了小波变换理论的基础上,再举例说明小波变换在实际中的应用。 第一章小波变换理论 这一章用尽量简短的篇幅和通俗的语言介绍小波变换的基本概念。 1.1.从傅里叶变换到小波变换 一、傅里叶变换 在信号处理中重要方法之一是傅里叶变换(Fourier Transform),它架起了时间域和频率域之间的桥梁。图1.1给出了傅里叶分析的示意图。 图1.1 傅里叶变换示意图 定义x(t)的傅里叶变换X(ω): ?∞∞-- =dt e t x X t jω ω) ( ) ( (1) X(ω)的傅里叶反变换x(t): ?∞∞- =ω ω π ωd e X t x t j ) ( 2 1 ) ( (2) 对很多信号来说,傅里叶分析非常有用。因为它能给出信号中包含的各种频率成分。但是,傅里叶变换有着严重的缺点:变换之后使信号失去了时间信息,它不能告诉人们在某段时间里发生了什么变化。而很多信号都包含有人们感兴趣的非稳态(或)特性,如漂移、趋势项、突然变化以及信号的开始或结束。这些特性是信号的重要部分。因此傅里叶变换不适于分析处理这类信号。

二、短时傅里叶变换 为了克服傅里叶变换的缺点,D.Gabor(1946)提出了短时傅里叶变换(Short Time Fourier Transform), 又称为盖博(Gabor)变换或者加窗傅里叶变换(Windowed Fourier Transform)。图1.2给出了短时傅里叶变换的示意图。 图1.2短时傅里叶变换 盖博变换把一个时间信号变换为时间和频率的二维函数,它能够提供信号在某个时间段和某个频率范围的一定信息。这些信息的精度依赖于时间窗的大小。盖博变换的缺点是对所有的频率成分,所取的时间窗的大小都相同。然而,对很多信号为了获得更精确的时间或频率信息,需要可变的时间窗。 三、小波变换 小波变换提出了变化的时间窗。当需要精确的低频信息时,采用长的时间窗,当需要精确的高频信息时,采用短的时间窗。图1.3给出了时间域信号、傅 里叶变换、短时傅里叶变换和小波变换对比的示意图。 时间域频率域 短时傅里叶变换小波变换 图1.3 小波变换示意图 1.2.连续小波变换 什么是小波?小波是一个衰减的波形,它在有限的区域里存在(不为零), 且其均值为零。小波变换采用改变时间-频率窗口形状的方法,很好的解决了时

小波变换的原理及matlab仿真程序

基于小波变换的信号降噪研究 2小波分析基本理论 设Ψ(t)∈L 2(R)(L 2(R)表示平方可积的实数空间,即能量有限的信号空间),其傅立叶变换为Ψ(t)。当Ψ(t)满足条件[4,7]: 2 ()R t dw w C ψψ=<∞?(1) 时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到 一个小波序列: ,()()a b t b t a ψ-=,,0a b R a ∈≠(2) 其中a 为伸缩因子,b 为平移因子。 对于任意的函数f(t)∈L 2(R) 的连续小波变换为: ,(,),()()f a b R t b W a b f f t dt a ψψ-=<>= (3)其逆变换为:21 1()(,)()f R R t b f t a b dadb C a a ψψ+-=??(4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。 3小波降噪的原理和方法 3.1小波降噪原理 从信号学的角度看,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波,但由于在去噪后,还能成功地保留信号特征,所以在这一点上又优于传统的低通滤波器。由此可见,小波去噪实际上是特征提取和低通滤波的综合,其流程框图如图所示[6]: 特征提取 低通滤波 特征信号 重建信号 小波分析的重要应用之一就是用于信号消噪,一个含噪的一维信号模型可表示为如下形式:带噪信号

小波变换的原理及matlab仿真程序

基于小波变换的信号降噪研究 2 小波分析基本理论 设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。当Ψ(t)满足条件[4,7]: 2()R t dw w C ψψ=<∞? (1) 时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列: ,()()a b t b t a ψ-= ,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。 对于任意的函数f(t)∈L 2( R)的连续小波变换为: ,(,),()()f a b R t b W a b f f t dt a ψψ-=<>= ?(3) 其逆变换为: 21 1()(,)()f R R t b f t W a b dadb C a a ψψ+-=?? (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。 3 小波降噪的原理和方法 3.1 小波降噪原理 从信号学的角度看 ,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如 图所示[6]: 小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下

小波变换简介

小波分析是当前数学中一个迅速发展的新领域,它同时具有理论深刻和应用十分广泛的双重意义。 小波变换的概念是由法国从事石油信号处理的工程师J.Morlet在1974年首先提出的,通过物理的直观和信号处理的实际需要经验的建立了反演公式,当时未能得到数学家的认可。正如1807年法国的热学工程师J.B.J.Fourier提出任一函数都能展开成三角函数的无穷级数的创新概念未能得到著名数学家https://www.360docs.net/doc/433097220.html,grange,https://www.360docs.net/doc/433097220.html,place 以及A.M.Legendre的认可一样。幸运的是,早在七十年代,A.Calderon表示定理的发现、Hardy空间的原子分解和无条件基的深入研究为小波变换的诞生做了理论上的准备,而且J.O.Stromberg还构造了历史上非常类似于现在的小波基;1986年著名数学家Y.Meyer偶然构造出一个真正的小波基,并与S.Mallat合作建立了构造小波基的同样方法及其多尺度分析之后,小波分析才开始蓬勃发展起来,其中比利时女数学家I.Daubechies撰写的《小波十讲(Ten Lectures on Wavelets)》对小波的普及起了重要的推动作用。它与Fourier变换、窗口Fourier变换(Gabor变换)相比,这是一个时间和频率的局域变换,因而能有效的从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis),解决了Fourier 变换不能解决的许多困难问题,从而小波变化被誉为“数学显微镜”,它是调和分析发展史上里程碑式的进展。 小波分析的应用是与小波分析的理论研究紧密地结合在一起地。现在,它已经在科技信息产业领域取得了令人瞩目的成就。电子信息技术是六大高新技术中重要的一个领域,它的重要方面是图象和信号处理。现今,信号处理已经成为当代科学技术工作的重要部分,信号处理的目的就是:准确的分析、诊断、编码压缩和量化、快速传递或存储、精确地重构(或恢复)。从数学地角度来看,信号与图象处理可以统一看作是信号处理(图象可以看作是二维信号),在小波分析地许多分析的许多应用中,都可以归结为信号处理问题。现在,对于其性质随实践是稳定不变的信号,处理的理想工具仍然是傅立叶分析。但是在实际应用中的绝大多数信号是非稳定的,而特别适用于非稳定信号的工具就是小波分析。 事实上小波分析的应用领域十分广泛,它包括:数学领域的许多学科;信号分析、图象处理;量子力学、理论物理;军事电子对抗与武器的智能化;计算机分类与识别;音乐与语言的人工合成;医学成像与诊断;地震勘探数据处理;大型机械的故障诊断等方面;例如,在数学方面,它已用于数值分析、构造快速数值方法、曲线曲面构造、微分方程求解、控制论等。在信号分析方面的滤波、去噪声、压缩、传递等。在图象处理方面的图象压缩、分类、识别与诊断,去污等。在医学成像方面的减少B超、CT、核磁共振成像的时间,提高分辨率等。 (1)小波分析用于信号与图象压缩是小波分析应用的一个重要方面。它的特点是压缩比高,压缩速度快,压缩后能保持信号与图象的特征不变,且在传递中可以抗干扰。基于小波分析的压缩方法很多,比较成功的有小波包最好基方法,小波域纹理模型方法,小波变换零树压缩,小波变换向量压缩等。 (2)小波在信号分析中的应用也十分广泛。它可以用于边界的处理与滤波、时频分析、信噪分离与提取弱信号、求分形指数、信号的识别与诊断以及多尺度边缘检测等。

小波分析理论简介

小波分析理论简介

小波分析理论简介 刘玉民 (一) 傅立叶变换伟大的历史贡献及其局限性 1 Fourier 变换 1807年,由当年随拿破仑远征埃及的法国数学、物理学家傅立叶(Jean Baptistle Joseph Fourier ,1786-1830),提出任意一个周期为T (=π2)的函数)(t f ,都可以用三角级数表示: ) (t f = ∑∞ -∞ =k ikt k e C = 2 0a + ∑∞ =1 cos k k kt a + ∑∞ =1 sin k k kt b (1) k C = π 21?-π 20 )(dt e t f ikt = * ikt e f , (2) k k k C C a -+= ) (k k k C C i b --= (3) 对于离散的时程 )(t f ,即 N 个离散的测点值 m f ,=m 0,1,2,……,N-1, T 为测量时间: ) (t f = 2 0a +) sin cos (12 1 ∑-=+N k k k k k t b t a ωω+ t a N N 2 2 cos 21 ω= ∑-=10 N k t i k k e C ω (4) 其中 ∑-== 1 2cos 2 N m m k N km x N a π ,=k 0,1,2,…,2 N (5)

∑-== 1 2sin 2N m m k N km x N b π , =k 1,2,…, 2 N -1 (6) ∑-=-= 1 )/2(1N m N km i m k e x N C π ,=k 0,1,2,…,N-1 (7) t N k k ?=π ω2 ,N T t =? (8) 当T ∞→ 时,化为傅立叶积分(即 Fourier 变换): ?∞∞ --= dt e t f f t i ωω)()() = t i e f ω, (9) ω ωπ ωd e f t f t i )(21)(? ∞ ∞ -= ) (10) 傅立叶变换的理论是人类数学发展史上的一个里程碑,从1807 年开始,直到1966年(1807年傅立叶提出任意一个周期函数都可以表示为傅立叶级数的结论是有误的,直到1966年才证明了2L 可积的周期函数才能表示为傅立叶级数),整整用了一个半世纪多,才发展成熟。她在各个领域产生了深刻的影响,得到了广泛的应用,推动了人类文明的发展。其原因是,傅立叶理论不仅仅在数学上有很大的理论价值,更重要的是傅立叶变换或傅立叶积分得到的频谱信息具有物理意义。所以说,傅立叶理论是万古流芳的。 数学上的插值方法。 除傅立叶级数外,还有拉格朗日插值,有限元插值,勒让德多项式插值即高斯积分使用的插值方法。 遗憾的是,这种理论具有一定的局限性: (1) 傅立叶变换的三种形式中的傅立叶系数都是常数,不随时间 t 变化,因而只能处理频谱成分不变的平稳信号,相反的,在处理非平稳信号时会

相关文档
最新文档