毕业设计水利水电工程英文文献翻译

毕业设计水利水电工程英文文献翻译
毕业设计水利水电工程英文文献翻译

毕业设计水利水电工程英文文献翻译

外文文献:

hydraulicturbines and hydro-electric power

Abstract

Power may be developed from water by three fundamental processes : by action of its weight, of its pressure, or of its velocity, or by a combination of any or all three. In modern practice the Pelton or impulse wheel is the only type which obtains power by a single process the action of one or more high-velocity jets. This type of wheel is usually found in high-head developments. Faraday had shown that when a coil is rotated in a magnetic field electricity is generated. Thus, in order to produce electrical energy, it is necessary that we should produce mechanical energy, which can be used to rotate the ‘coil’. The mechanical energy is produced by running a prime mover (known as turbine ) by the energy of fuels or flowing water. This mechanical power is converted into electrical power by electric generator which is directly coupled to the shaft of turbine and is thus run by turbine. The electrical power, which is consequently obtained at the terminals of the

generator, is then transited to the area where it is to be used for doing work.he plant or machinery which is required to produce electricity (i.e. prime mover +electric generator) is collectively known as power plant. The building, in which the entire machinery along with other auxiliary units is installed, is known as power house.

Keywords hydraulic turbines hydro-electric power classification of hydel plants

head scheme

There has been practically no increase in the efficiency of hydraulic turbines since about 1925, when maximum efficiencies reached 93% or more. As far as maximum efficiency is concerned, the hydraulic turbine has about reached the practicable limit of development. Nevertheless, in recent years, there has been a rapid and marked increase in the physical size and horsepower capacity of individual units.

In addition, there has been considerable research into the cause and prevention of cavitation, which allows the advantages of higher specific speeds to be obtained

at higher heads than formerly were considered advisable. The net effect of this progress with larger units, higher specific speed, and simplification and improvements in design has been to retain for the hydraulic turbine the important place which it has long held at one of the most important prime movers.

1. types of hydraulic turbines

Hydraulic turbines may be grouped in two general classes: the impulse type which utilizes the kinetic energy of a high-velocity jet which acts upon only a small part of the circumference at any instant, and the reaction type which develops power from the combined action of pressure and velocity of the water that completely fills the runner and water passages. The reaction group is divided into two general types: the Francis, sometimes called the reaction type, and the propeller type. The propeller class is also further subdivided into the fixed-blade propeller type, and the adjustable-blade type of which the Kaplan is representative.

1.1 impulse wheels

With the impulse wheel the potential energy of the

water in the penstock is transformed into kinetic energy in a jet issuing from the orifice of a nozzle. This jet discharge freely into the atmosphere inside the wheel housing and strikes against the bowl-shaped buckets of the runner. At each revolution the bucket enters, passes through, and passes out of the jet, during which time it receives the full impact force of the jet. This produces a rapid hammer blow upon the bucket. At the same time the bucket is subjected to the centrifugal force tending to separate the bucket from its disk. On account of the stresses so produced and also the scouring effects of the water flowing over the working surface of the bowl, material of high quality of resistance against hydraulic wear and fatigue is required. Only for very low heads can cast iron be employed. Bronze and annealed cast steel are normally used.

1.2 Francis runners

With the Francis type the water enters from a casing or flume with a relatively low velocity, passes through guide vanes or gates located around the circumstance, and flows through the runner, from which it discharges into a draft tube sealed below the tail-water level. All the

runner passages are completely filled with water, which acts upon the whole circumference of the runner. Only a portion of the power is derived from the dynamic action due to the velocity of the water, a large part of the power being obtained from the difference in pressure acting on the front and back of the runner buckets. The draft tube allows maximum utilization of the available head, both because of the suction created below the runner by the vertical column of water and because the outlet of he draft tube is larger than the throat just below the runner, thus utilizing a part of the kinetic energy of the water leaving the runner blades.

1.3 propeller runners

nherently suitable for low-head developments, the propeller-type unit has effected marked economics within the range of head to which it is adapted. The higher speed of this type of turbine results in a lower-cost generator and somewhat smaller powerhouse substructure and superstructure. Propeller-type runners for low heads and small outputs are sometimes constructed of cast iron. For heads above 20 ft, they are made of cast steel, a much more reliable material. Large-diameter propellers

may have individual blades fastened to the hub.

1.4 adjustable-blade runners

The adjustable-blade propeller type is a development from the fixed-blade propeller wheel. One of the best-known units of this type is the Kaplan unit, in which the blades may be rotated to the most efficient angle by a hydraulic servomotor. A cam on the governor is used to cause the blade angle to change with the gate position so that high efficiency is always obtained at almost any percentage of full load.

By reason of its high efficiency at all gate openings, the adjustable-blade propeller-type unit is particularly applicable to low-head developments where conditions are such that the units must be operated at varying load and varying head. Capital cost and maintenance for such units are necessarily higher than for fixed-blade propeller-type units operated at the point of maximum efficiency.

2. thermal and hydropower

As stated earlier, the turbine blades can be made to run by the energy of fuels or flowing water. When fuel is used to produce steam for running the steam turbine, then the power generated is known as thermal power. The fuel

which is to be used for generating steam may either be an ordinary fuel such as coal, fuel oil, etc., or atomic fuel or nuclear fuel. Coal is simply burnt to produce steam from water and is the simplest and oldest type of fuel. Diesel oil, etc. may also be used as fuels for producing steam. Atomic fuels such as uranium or thorium may also be used to produce steam. When conventional type of fuels such s coal, oil, etc. (called fossils ) is used to produce steam for running the turbines, the power house is generally called an Ordinary thermal power station or Thermal power station. But when atomic fuel is used to produce steam, the power station, which is essentially a thermal power station, is called an atomic power station or nuclear power station. In an ordinary thermal power station, steam is produced in a water boiler, while in the atomic power station; the boiler is replaced y a nuclear reactor and steam generator for raising steam. The electric power generated in both these cases is known as thermal power and the scheme is called thermal power scheme.

But, when the energy of the flowing water is used to run the turbines, then the electricity generated is

called hydroelectric power. This scheme is known as hydro scheme, and the power house is known as hydel power station or hydroelectric power station. In a hydro scheme, a certain quantity of water at a certain potential head is essentially made to flow through the turbines. The head causing flow runs the turbine blades, and thus producing electricity from the generator coupled to turbine. In this chapter, we are concerned with hydel scheme only.

3.classification of hydel plants

Hydro-plants may be classified on the basis of hydraulic characteristics as follow: ①run-off river plants .②storage plants.③pumped storage plants.④tidal plants. they are described below.

(1)R un-off river plants.

These plants are those which utilize the minimum flow in a river having no appreciable pondage on its upstream side. A weir or a barrage is sometimes constructed across a river simply to raise and maintain the water level at a pre-determined level within narrow limits of fluctuations, either solely for the power plants or for some other purpose where the power plant may be incidental. Such a

scheme is essentially a low head scheme and may be suitable only on a perennial river having sufficient dry weather flow of such a magnitude as to make the development worthwhile.

Run-off river plants generally have a very limited storage capacity, and can use water only when it comes. This small storage capacity is provided for meeting the hourly fluctuations of load. When the available discharge at site is more than the demand (during off-peak hours ) the excess water is temporarily stored in the pond on the upstream side of the barrage, which is then utilized during the peak hours.

he various examples of run-off the river pant are: Ganguwal and Kolta power houses located on Nangal Hydel Channel, Mohammad Pur and Pathri power houses on Ganga Canal and Sarda power house on Sarda Canal.

The various stations constructed on irrigation channels at the sites of falls, also fall under this category of plants.

(2) Storage plants

A storage plant is essentially having an upstream storage reservoir of sufficient size so as to permit,

sufficient carryover storage from the monsoon season to the dry summer season, and thus to develop a firm flow substantially more than minimum natural flow. In this scheme, a dam is constructed across the river and the power house may be located at the foot of the dam such as in Bhakra, Hirakud, Rihand projects etc. the power house may sometimes be located much away from the dam (on the downstream side). In such a case, the power house is located at the end of tunnels which carry water from the reservoir. The tunnels are connected to the power house machines by means of pressure pen-stocks which may either be underground (as in Mainthon and Koyna projects) or may be kept exposed (as in Kundah project).

When the power house is located near the dam, as is generally done in the low head installations ; it is known as concentrated fall hydroelectric development. But when the water is carried to the power house at a considerable distance from the dam through a canal, tunnel, or pen-stock; it is known as a divided fall development.

(3) Pumped storage plants.

A pumped storage plant generates power during peak

hours, but during the off-peak hours, water is pumped back from the tail water pool to the headwater pool for future use. The pumps are run by some secondary power from some other plant in the system. The plant is thus primarily meant for assisting an existing thermal plant or some other hydel plant.

During peak hours, the water flows from the reservoir to the turbine and electricity is generated. During off-peak hours, the excess power is available from some other plant, and is utilized for pumping water from the tail pool to the head pool, this minor plant thus supplements the power of another major plant. In such a scheme, the same water is utilized again and again and no water is wasted.

For heads varying between 15m to 90m, reservoir pump turbines have been devised, which can function both as a turbine as well as a pump. Such reversible turbines can work at relatively high efficiencies and can help in reducing the cost of such a plant. Similarly, the same electrical machine can be used both as a generator as well as a motor by reversing the poles. The provision of such a scheme helps considerably in improving the load

factor of the power system.

(4) Tidal plants

Tidal plants for generation of electric power are the recent and modern advancements, and essentially work on the principle that there is a rise in seawater during high tide period and a fall during the low ebb period. The water rises and falls twice a day; each fall cycle occupying about 12 hours and 25 minutes. The advantage of this rise and fall of water is taken in a tidal plant. In other words, the tidal range, i.e. the difference between high and low tide levels is utilized to generate power. This is accomplished by constructing a basin separated from the ocean by a partition wall and installing turbines in opening through this wall.

Water passes from the ocean to the basin during high tides, and thus running the turbines and generating electric power. During low tide,the water from the basin runs back to ocean, which can also be utilized to generate electric power, provided special turbines which can generate power for either direction of flow are installed. Such plants are useful at places where tidal range is high. Rance power station in France is an

example of this type of power station. The tidal range at this place is of the order of 11 meters. This power house contains 9 units of 38,000 kW.

4.Hydro-plants or hydroelectric schemes may be classified on the basis of operating head on turbines as follows: ①low head scheme (head<15m),②medium head scheme (head varies between 15m to 60 m) ,③high head scheme (head>60m). They are described below:

(1) Low head scheme.

A low head scheme is one which uses water head of less than 15 meters or so. A run off river plant is essentially a low head scheme, a weir or a barrage is constructed to raise the water level, and the power house is constructed either in continuation with the barrage or at some distance downstream of the barrage, where water is taken to the power house through an intake canal.

(2) Medium head scheme

A medium head scheme is one which used water head varying between 15 to 60 meters or so. This scheme is thus essentially a dam reservoir scheme, although the dam height is mediocre. This scheme is having features somewhere between low had scheme and high head scheme.

(3) High head scheme.

A high head scheme is one which uses water head of more than 60m or so. A dam of sufficient height is, therefore, required to be constructed, so as to store water on the upstream side and to utilize this water throughout the year. High head schemes up to heights of 1,800 meters have been developed. The common examples of such a scheme are: Bhakra dam in (Punjab), Rihand dam in (U.P.), and Hoover dam in (U.S.A), etc.

The naturally available high falls can also be developed for generating electric power. The common examples of such power developments are: Jog Falls in India, and Niagara Falls in U.S.A.

水轮机和水力发电

摘要

水的能量能够经过三种基本方法来获得:利用水的重力作用、水的压力作用或水的流速作用,或者其中任意两种或全部三种作用的组合。在如今的实际应用中,佩尔顿式水轮机或冲击式水轮机是唯一只利用其中一种方法来获取水能的,即利用一束或者好几束高速的水流的作用获得能量的一种水轮机。这种类型的水轮机一般应用在高水头电站上。法拉第曾经指出:线圈在磁场中旋转,就产生了电。因此,为了获得电能,我们必须产生使“线圈”旋转的机械能。用燃料或流水的能量带动原动机(称为涡轮机)就产生了机械能。这种机械能转换成电能是经过电动机来实现的,电动机直接连接在涡轮机轴上,由涡轮机驱动。因此,就在发电机的出线端获得电能,然后输送到需要它做功的地区。发电需要的装置或机械(即原动机+发电机)统称为动力设备。安置所有机械和其它辅助设施的建筑称为发电厂。

关键词水轮机水力发电水电站种类水头系统

从1925年开始,水轮机的最高效率达到93%或稍微高一点就没有再提高了。就最大效率而言,水轮机的对水能的利用率已经达到了实际发展的极限了。然而,在最近几年里,水轮机的大小和单机容量却增长的很快。

另外,人们还对引起空蚀的原因以及怎样预防空蚀做了很多的研究,这些研究使得我们能够在高于以前认为的合适水头下获得更高的比转速。更大的机组,更高的比转速,以及水轮机的设计

上的简化和改进,这几个方面的进步使得水轮机一直以来在作为原动力之一拥有很重要的地位。

1.水轮机的类型

水轮机能够分为两大类:冲击式水轮机——利用高速水流冲击水轮机的一小部分时产生的动能;反击式水轮机——利用充满转轮和过水道的水流所拥有的水的压力和流速两者相结合来获得动力。反击式系列又分成两种通用的型式:弗朗西斯式(有时称作反击式)以及旋桨式。旋桨式又进一步再分为定轮叶式水轮机和以卡普兰式代表的转叶式水轮机。

1.1冲击式水轮机

在冲击式水轮机上,压力钢管中的水从喷嘴孔口中射出,这时水的的势能转换成动能。射流自由地射入水轮室内的空气中,撞击在转轮的碗状戽斗上。戽斗每旋转一周进入射流、经过并从射流转出一次。在这段时间内戽斗承受着射流的全部冲击力。这种冲击力产生一个高速锤击冲打在戽斗上。与此同时,戽斗受到离心力的作用而有脱离它的座盘的趋势,由此而产生的应力以及水流在戽斗的碗状工作面上的冲刷作用都很大,因而需要选用能抵御水力磨损和疲劳的高质量材料,一般都采用青铜和韧化铸钢,只有水头很低时才能用铸铁。

1.2弗朗西斯式转轮

就弗朗西斯式水轮机来说,来自蜗壳或水槽内的流速较低的水,经过位于转轮周围的导叶或一些闸门,然后流经转轮,并从

转轮泄入安置在尾水位以下而不与大气相通的尾水管内。由于水充满所有的水道并作用在转轮的整个周围,因此,仅有一小部分动力来自水的流速所引起的动力作用,而大部分动力则都经过作用在转轮叶片前后工作面上的压力差取得。尾水管能够使能利用的水头得到充分的利用,这一方面是由于转轮下面垂直水柱所产生的吸出作用,另一方面是由于尾水管的出口面积大于紧接转轮下喉管的面积,从而使水流离开转轮叶片时的一部分动能得以利用。

1.3旋桨式转轮

旋桨式机组最适用于低水头电站,在它适用的水头范围内,已产生了显著的经济效果。这种水轮机的转速比较高,以致使发电机的价格较低,并使发电厂房的水下结构和水上结构的尺寸都比较小。低水头、小功率的旋桨式转轮,有时用铸铁来制造。水头高于20英寸时,都用一种更为可靠的材料──铸钢来制造。大直径的螺旋桨可用单个叶片固定在轮毂上制成。

1.4转叶式水轮机

转叶旋桨式水轮机是从定轮叶旋桨式水轮机发展而成的。卡普兰式水轮机是这类水轮机中为人们最为熟悉的一种。它的叶片可由液压伺服器调整到效率最大的角度。利用伺服器上的凸轮能使叶片的角度随阀门的开启位置而变化,从而在所有各种满负载百分率情况下都能保持高效率。

由于转叶旋桨式水轮机组在闸门各种开度情况下效率都高,因

此,它特别适用于那些必须在变负载和变水头条件下运行的低水头电站上。当然,这种机组的投资费用和维护费用要高于只能在一个最大效率点上运行的定轮叶旋桨式水轮机组。

2火电和水电

如上所述,涡轮机叶片是由燃料或流水的能量带动的。用燃料产生蒸汽驱动蒸汽涡轮机时,所产生的电称为火电。由于产生蒸汽的燃料是一般燃料如煤、燃料油等,或是原子能燃料即核燃料。直接燃烧煤产生水蒸气,煤是最简便、最古老的一种燃料。柴油等也能够作为产生蒸汽的燃料。原子燃料如铀、钍也可用于产生蒸汽。用传统燃料如煤、燃料油等(称为矿物燃料)产生蒸汽来带动水轮机时,这种发电厂一般称为普通火力发电厂或热电厂。但当原子燃料用于产生蒸汽时,这种发电厂(基本上属于火力发电厂)称为原子能发电厂或核电厂。一般火力发电厂是用锅炉产生蒸汽的,而原子能发电站是用核反应堆和蒸汽发生器代替锅炉产生蒸汽的。这两种情况产生的电能称为火电。该系统称为火力发电系统。

然而,用流水的能量驱动水轮机时,所产生的电称为水电。这种系统称为水力发电系统,而发电厂称为水力发电厂或水电站。在水电系统中必须使具有一定势能和一定数量的水流流经水轮机。势能使水流动,驱动水轮机的叶片,这样与水轮机连接的发电机就发出电能。本章只涉及水力发电系统的内容。

3水力发电站的种类

根据水力特性把水力发电站分为下列几种:①径流式电站,②蓄水式电站,③抽水蓄能电站,④潮汐电站。各类电站分述如下:

(1)径流式电站

这类电站是在河流上游无适宜的水库的情况下利用河流最小流量的电站。有时修建拦河堰坝,把水位提高并保持在预定的数值,只允许在很小的范围内变化。它能够单独为电站服务,或者主要为其它目标服务,兼顾电站。这种方案基本上是一种低水头方案,它仅适用于枯水季流量值得开发的常年性河流。

径流式电站一般具有很小的蓄水库容,有径流时方能利用。这个很小的蓄水库容是为满足每小时负荷的变化而设立的。当河道的来水流量大于发电需要时(在非峰荷期间),多余的水量就暂时蓄存在拦河建筑物上游的小水库中,以供峰荷期间使用。

径流式电站有诸多例子:楠加尔?海德尔运河的冈古瓦尔和科拉水电站,恒河的默罕默德?普尔和帕特里水电站以及萨尔达运河的萨尔达水电站。

在灌溉渠道的跌水处修建的电站也属于径流式水电站。

(2)蓄水式电站

蓄水式电站基本都有一足够大的上游蓄水库,贮存季风季节到干旱夏季的径流量,从而提供一个比枯季最小流量大得多的稳定流量。在这种设计方案中,水坝拦河修筑,电站能够布置在脚下,如巴克拉、希陶库德,里亨得工程等。电站也可能位于大坝

毕业设计外文翻译附原文

外文翻译 专业机械设计制造及其自动化学生姓名刘链柱 班级机制111 学号1110101102 指导教师葛友华

外文资料名称: Design and performance evaluation of vacuum cleaners using cyclone technology 外文资料出处:Korean J. Chem. Eng., 23(6), (用外文写) 925-930 (2006) 附件: 1.外文资料翻译译文 2.外文原文

应用旋风技术真空吸尘器的设计和性能介绍 吉尔泰金,洪城铱昌,宰瑾李, 刘链柱译 摘要:旋风型分离器技术用于真空吸尘器 - 轴向进流旋风和切向进气道流旋风有效地收集粉尘和降低压力降已被实验研究。优化设计等因素作为集尘效率,压降,并切成尺寸被粒度对应于分级收集的50%的效率进行了研究。颗粒切成大小降低入口面积,体直径,减小涡取景器直径的旋风。切向入口的双流量气旋具有良好的性能考虑的350毫米汞柱的低压降和为1.5μm的质量中位直径在1米3的流量的截止尺寸。一使用切向入口的双流量旋风吸尘器示出了势是一种有效的方法,用于收集在家庭中产生的粉尘。 摘要及关键词:吸尘器; 粉尘; 旋风分离器 引言 我们这个时代的很大一部分都花在了房子,工作场所,或其他建筑,因此,室内空间应该是既舒适情绪和卫生。但室内空气中含有超过室外空气因气密性的二次污染物,毒物,食品气味。这是通过使用产生在建筑中的新材料和设备。真空吸尘器为代表的家电去除有害物质从地板到地毯所用的商用真空吸尘器房子由纸过滤,预过滤器和排气过滤器通过洁净的空气排放到大气中。虽然真空吸尘器是方便在使用中,吸入压力下降说唱空转成比例地清洗的时间,以及纸过滤器也应定期更换,由于压力下降,气味和细菌通过纸过滤器内的残留粉尘。 图1示出了大气气溶胶的粒度分布通常是双峰形,在粗颗粒(>2.0微米)模式为主要的外部来源,如风吹尘,海盐喷雾,火山,从工厂直接排放和车辆废气排放,以及那些在细颗粒模式包括燃烧或光化学反应。表1显示模式,典型的大气航空的直径和质量浓度溶胶被许多研究者测量。精细模式在0.18?0.36 在5.7到25微米尺寸范围微米尺寸范围。质量浓度为2?205微克,可直接在大气气溶胶和 3.85至36.3μg/m3柴油气溶胶。

环境工程、给排水专业外文参考文献译文

浮选柱处理含油废水的研究 摘要:本文介绍了一种为处理含油废水而开发的新型溶气浮选柱装置。溶气浮选柱将溶气气浮法和浮选柱巧妙的加以结合运用,溶解空气在柱体分离系统中释放。本文对这种具有潜在应用价值的柱体系统分离含油废水中油分的效果进行了研究,在一系列的 实验中该装置均取得了理想的分离效果,同时还对溶气浮选柱中采用的气泡产生器的曝气效果进行了专门研究。 关键词:含油废水;分离;气浮;气泡发生器;溶气浮选柱 一、引言 含油废水是石油开发利用过程中产生的面积广,数量大的污染源。废水中的油分包括浮油,分散油,乳化油,溶解油和油-固结合物。含油废水常用的处理技术有物理法、物理化学法、化学破乳法、生物化学法和电化学法。分离难易程度取决于油分在水体中的存在形式。含油废水中的浮油一般可以采用重力分离技术予以去除,溶解油可以通过生物处理法将其去除,而以胶体状态存在的分散油和乳化油由于其平均粒径小,化学稳定性咼而难以去除。 近年来,浮选技术由于具有分离效率高,资金投入少,运行费用低的特点而吸引了众多学者的关注,并且已经开发出一些新型的快速高效的含油废水处理装置。Feng P B 和其合作者开发出一种高效节能浮选柱进行含油废水处理,其油分的去除率可以达到90% 左右。GU Xuqing等人开发出一种新型多级环流式浮选柱可处理含油废水,其独特的流体环流模式极大的提高了油珠和气泡之间的接触几率,分离效果显著,5分钟内,分离 效率可以达到96%-97%0Xiao K L等人用多级浮选柱处理含油废水,空气分散在装置的柱体托盘底部,含油废水在柱体的各个托盘中进行处理,除油率达94%。 含有乳化油的废水处理较为困难,为保证浮选效率,分离时要求气泡粒径小,并且在分离区域中形成安静的水力学环境。分离区应当又长又窄这一概念引发了利用柱状体作为分离设备这一设计理念。由此产生了一种叫做溶气浮选柱的新型设备,溶解空气在该装置的柱体分离系统中析出,以此来处理含油废水。 二、材料与方法 (一)材料 实验废水是用胜利油田的脱水脱气原油配制的乳化油经过稀释得到的。水样经过三 十分钟的高速搅拌混合以保证油珠完全地分散到水中。采用激光粒度分析仪分析油珠的 粒径分布;平均粒径为18.15微米,约有77.8%的粒子的粒径在25微米左右或更小(图

本科毕业论文内部控制外文文献翻译完整版中英对照

A Clear Look at Internal Controls: Theory and Concepts Hammed Arad (Philae) Department of accounting, Islamic Azad University, Hamadan, Iran Barak Jamshedy-Navid Faculty Member of Islamic Azad University, Kerman-shah, Iran Abstract: internal control is an accounting procedure or system designed to promote efficiency or assure the implementation of a policy or safeguard assets or avoid fraud and error. Internal Control is a major part of managing an organization. It comprises the plans, methods, and procedures used to meet missions, goals, and objectives and, in doing so, support performance-based management. Internal Control which is equal with management control helps managers achieve desired results through effective stewardship of resources. Internal controls should reduce the risks associated with undetected errors or irregularities, but designing and establishing effective internal controls is not a simple task and cannot be accomplished through a short set of quick fixes. In this paper the concepts of internal controls and different aspects of internal controls are discussed. Keywords: Internal Control, management controls, Control Environment, Control Activities, Monitoring 1. Introduction The necessity of control in new variable business environment is not latent for any person and management as a response factor for stockholders and another should implement a great control over his/her organization. Control is the activity of managing or exerting control over something. he emergence and development of systematic thoughts in recent decade required a new attention to business resource and control over this wealth. One of the hot topic a bout controls over business resource is analyzing the cost-benefit of each control. Internal Controls serve as the first line of defense in safeguarding assets and preventing and detecting errors and fraud. We can say Internal control is a whole system of controls financial and otherwise, established by the management for the smooth running of business; it includes internal cheek, internal audit and other forms of controls. COSO describe Internal Control as follow. Internal controls are the methods employed to help ensure the achievement of an objective. In accounting and organizational theory, Internal control is defined as a process effected by an organization's structure, work and authority flows, people and management information systems, designed to help the organization accomplish specific goals or objectives. It is a means by which an organization's resources are directed, monitored, and measured. It plays an important role in preventing and detecting fraud and protecting the organization's resources, both physical (e.g., machinery and property) and intangible (e.g., reputation or intellectual property such as trademarks). At the organizational level, internal control objectives relate to the reliability of financial reporting, timely feedback on the achievement of operational or strategic goals, and compliance with laws and regulations. At the specific transaction level, internal control refers to the actions taken to achieve a specific objective (e.g., how to ensure the organization's payments to third parties are for valid services rendered.) Internal control

土木地质岩土工程专业毕业英文翻译原文和译文

Failure Properties of Fractured Rock Masses as Anisotropic Homogenized Media Introduction It is com monly ack no wledged that rock masses always display disc on ti nu ous surfaces of various sizes and orie ntatio ns, usually referred to as fractures or joi nts. Si nee the latter have much poorer mecha ni cal characteristics tha n the rock material, they play a decisive role in the overall behavior of rock structures,whose deformati on as well as failure patter ns are mai nly gover ned by those of the join ts. It follows that, from a geomecha ni cal engin eeri ng sta ndpo int, desig n methods of structures inv olvi ng joi nted rock masses, must absolutely acco unt for such ‘‘ weakness' ' surfaeesahalysis. The most straightforward way of deali ng with this situati on is to treat the joi nted rock mass as an assemblageof pieces of in tact rock material in mutual in teracti on through the separat ing joint in terfaces. Many desig n-orie nted methods relat ing to this kind of approach have been developed in the past decades, among them,the wedlnown ‘‘ block theory, ' ' which attempts to ide ntify pote n- tially unstable lumps of rock from geometrical and kinematical considerations (Goodman and Shi 1985; Warburton 1987; Goodman 1995). One should also quote the widely used distinet element method, originating from the works of Cundall and coauthors (Cundall and Strack 1979; Cundall 1988), which makes use of an explicit ?nite-difference numerical scheme for computing the displacements of the blocks considered as rigid or deformable bodies. In this con text, atte nti on is primarily focused on the formulatio n of realistic models for describ ing the joint behavior. Since the previously men ti oned direct approach is beco ming highly complex, and the n numerically untractable, as soon as a very large number of blocks is involved, it seems advisable to look for alter native methods such as those derived from the con cept of homogenization. Actually, such a concept is already partially conveyed in an empirical fashion by the famous Hoek and Brown ' s criterion (Hoek and Brown 1980; Hoek 1983). It stems from the in tuitive idea that from a macroscopic point of view, a rock mass in tersected by a regular network of joint surfaces, may be perceived as a homogeneous continuum. Furthermore, owing to the existence of joint preferential orientations, one should expect such a homoge ni zed material to exhibit ani sotropic properties. The objective of the present paper is to derive a rigorous formulation for the failure criteri on of a joi nted rock mass as a homoge ni zed medium, from the kno wledge of the joi nts and rock material respective criteria. In the particular situation where twomutually orthogonal joint sets are con sidered, a closed-form expressi on is obta in ed, giving clear evide nce of the related stre ngth ani sotropy. A comparis on is performed on an illustrative example betwee n the results produced by the homogenization method,making use of the previously determined criterion, and those obtained by means of a computer code based on the distinct element method. It is show n that, while both methods lead to almost ide ntical results for a den sely fractured rock mass, a ‘‘ size ' ' or ‘‘ scale effect ' ' is observed in the case of a joints. The second part of the paper is then devoted to proposing a method which attempts to capture such a scale effect, while still tak ing adva ntage of a homoge ni zati on tech niq ue. This is achieved by resorting to a micropolar or Cosserat continuum description of the fractured rock mass,

毕业设计英文翻译

使用高级分析法的钢框架创新设计 1.导言 在美国,钢结构设计方法包括允许应力设计法(ASD),塑性设计法(PD)和荷载阻力系数设计法(LRFD)。在允许应力设计中,应力计算基于一阶弹性分析,而几何非线性影响则隐含在细部设计方程中。在塑性设计中,结构分析中使用的是一阶塑性铰分析。塑性设计使整个结构体系的弹性力重新分配。尽管几何非线性和逐步高产效应并不在塑性设计之中,但它们近似细部设计方程。在荷载和阻力系数设计中,含放大系数的一阶弹性分析或单纯的二阶弹性分析被用于几何非线性分析,而梁柱的极限强度隐藏在互动设计方程。所有三个设计方法需要独立进行检查,包括系数K计算。在下面,对荷载抗力系数设计法的特点进行了简要介绍。 结构系统内的内力及稳定性和它的构件是相关的,但目前美国钢结构协会(AISC)的荷载抗力系数规范把这种分开来处理的。在目前的实际应用中,结构体系和它构件的相互影响反映在有效长度这一因素上。这一点在社会科学研究技术备忘录第五录摘录中有描述。 尽管结构最大内力和构件最大内力是相互依存的(但不一定共存),应当承认,严格考虑这种相互依存关系,很多结构是不实际的。与此同时,众所周知当遇到复杂框架设计中试图在柱设计时自动弥补整个结构的不稳定(例如通过调整柱的有效长度)是很困难的。因此,社会科学研究委员会建议在实际设计中,这两方面应单独考虑单独构件的稳定性和结构的基础及结构整体稳定性。图28.1就是这种方法的间接分析和设计方法。

在目前的美国钢结构协会荷载抗力系数规范中,分析结构体系的方法是一阶弹性分析或二阶弹性分析。在使用一阶弹性分析时,考虑到二阶效果,一阶力矩都是由B1,B2系数放大。在规范中,所有细部都是从结构体系中独立出来,他们通过细部内力曲线和规范给出的那些隐含二阶效应,非弹性,残余应力和挠度的相互作用设计的。理论解答和实验性数据的拟合曲线得到了柱曲线和梁曲线,同时Kanchanalai发现的所谓“精确”塑性区解决方案的拟合曲线确定了梁柱相互作用方程。 为了证明单个细部内力对整个结构体系的影响,使用了有效长度系数,如图28.2所示。有效长度方法为框架结构提供了一个良好的设计。然而,有效长度方法的

给水排水工程毕业设计正文外文翻译

1 设计任务及设计资料 1.1 设计任务 根据有关部门的批准,新乡某置业有限公司拟建一幢十五层商住楼,该建筑属一类高层建筑,地上一至三层为商场,四层以上为住宅;地下二层为设备用房,地下一层为车库,顶层设有水箱间。室内外高差为0.60m。 要求完成该高层住宅楼的建筑给水排水工程设计,并与土建工程配套。具体内容包括三部分: (1)建筑给水系统设计:生活给水; (2)建筑消防系统设计:包括消火栓给水系统、自动喷水灭火系统、灭火器的布置; (3)建筑排水系统设计:生活排水。 1.2 设计依据 (1)建筑设计资料包括建筑各层平面图、电梯机房平面图、水箱间给排水放大图。 (2)设计规范《高层民用建筑设计防火规范》GB 50045—95、《建筑给水排水设计规范》GB 50015—2003、《自动喷水灭火系统设计规范》GB 50084—2001等、《建筑灭火器配置设计规范》GB J140—90等。 1.3 市政给水排水资料及设计过程 1.3.1 给水水源及给水设计 采用两路市政给水供给,市政自来水接管管径为DN200,接管标高为地面下1.0m,供水压力为0.27MPa,市政管网不允许直接抽水。 建筑内采用独立的生活给水系统。根据设计资料,已知室外给水管网常年水头为27米,不能满足该建筑的用水要求,故室内给水系统采用分区给水方式,分为高低两区。低区地下2–3层由城市管网直接供水,采用下行上给供水方式;高区4–15层由水泵水箱联合供水,采用上行下给供水方式。但高区最下层(即4层)静水压力超过了0.45MPa, 故在这三层的横支管上设减压阀。高区管道路径为:城市管网-->地下贮水池-->水泵-->层顶水箱-->高区各层用水点。为供水安全,高区与低区连通,见图1–1。

会计内部控制中英文对照外文翻译文献

会计内部控制中英文对照外文翻译文献(文档含英文原文和中文翻译) 内部控制系统披露—一种可替代的管理机制 根据代理理论,各种治理机制减少了投资者和管理者之间的代理问题(Jensen and Meckling,1976; Gillan,2006)。传统上,治理机制已经被认定为内部或外部的。内部机制包括董事会及其作用、结构和组成(Fama,1980;Fama and Jensen,1983),管理股权(Jensen and Meckling,1976)和激励措施,起监督作用的大股东(Demsetz and Lehn,1985),内部控制系统(Bushman and Smith,2001),规章制度和章程条款(反收购措施)和使用的债务融资(杰森,1993)。外部控制是由公司控制权市场(Grossman and Hart,1980)、劳动力管理市场(Fama,1980)和产品市场(哈特,1983)施加的控制。 各种各样的金融丑闻,动摇了世界各地的投资者,公司治理最佳实践方式特别强调了内部控制系统在公司治理中起到的重要作用。内部控制有助于通过提供保证可靠性的财务报告,和临时议会对可能会损害公司经营目标的事项进行评估和风险管理来保护投

资者的利益。这些功能已被的广泛普及内部控制系统架构设计的广泛认可,并指出了内部控制是用以促进效率,减少资产损失风险,帮助保证财务报告的可靠性和对法律法规的遵从(COSO,1992)。 尽管有其相关性,但投资者不能直接观察,因此也无法得到内部控制系统设计和发挥功能的信息,因为它们都是组织内的内在机制、活动和过程(Deumes and Knechel,2008)。 由于投资者考虑到成本维持监控管理其声称的(Jensen and Meckling,1976),内部控制系统在管理激励信息沟通上的特性,以告知投资者内部控制系统的有效性,是当其他监控机制(该公司的股权结构和董事会)比较薄弱,从而为其提供便捷的监控(Leftwich et等, 1981)。存在的替代机制一直是人们在不同公司治理文献中争论的话题(Rediker and Seth, 1995;Fernandez and Arrondo,2005),基于威廉姆森(1983年)的替代假说认为,特定控制机制的边际作用取决于其在公司治理制度的相对重要性。 在本文中,我们认为披露内部控制系统的特点是在管理者选择的监控机制时存在一个可替代治理机制。Leftwich(1981)认为“管理者选择一个监控包,监测包的组成取决于各种监控机制的成本与效益”(P.59)。 特别是,我们重点关注内部控制系统和监控包的另外两个机制 (公司的所有权结构和董事会) 间的关系,根据有关文献(Jensen and Meckling,1976;Fernandez and Arrondo,2005;Gillan,2006)它们在管理行为监控方面发挥相关作用。我们假设认为,内部控制系统的特性取决于激励由企业的股权结构和董事会发挥监督作用。 因此,我们研究了三年间在四个不同的证券交易所上市(伦敦、巴黎、法兰克福和米兰)160家欧洲公司内部控制系统披露程度,通过利用这个国际范例,我们能够描绘出不同的体制环境的某些功能。 我们发现证据表明内部控制系统披露代替了监测方面所发挥的作用与所有制结构、制度所有权、在董事会上独立董事比例和会计审计委员会的专家成员的比率相关。 我们再加上通过内部会计控制的披露所发挥的管理作用,采用以往文献的完整披露架构,使我们能够详细地从内容和信息管理的程度上内制披露上进行交流。而公司治理的最佳做法要求披露内部控制系统的特性,他们没有提供管理应该披露和披露程度的指令。这样的管理缺乏指示使内部控制系统存在随意性。 本文提供了实证支持威廉姆森(1983年成立)在不同的治理机制下的替代假说,它有相应的政策含义。虽然大多数公司治理研究考虑一个互补的披露机制管理采用强化公

土木工程岩土外文翻译

1 Basic mechanics of soils Loads from foundations and walls apply stresses in the ground. Settlements are caused by strains in the ground. To analyze the conditions within a material under loading, we must consider the stress-strain behavior. The relationship between a strain and stress is termed stiffness. The maximum value of stress that may be sustained is termed strength. 1.1 Analysis of stress and strain 1)Special stress and strain states 2)Mohr circle construction 3)Parameters for stress and strain Stresses and strains occur in all directions and to do settlement and stability analyses it is often necessary to relate the stresses in a particular direction to those in other directions. normal stress σ = F n / A shear stress τ = F s / A normal strain ε = δz / z o shear strain γ = δh / z o Note that compressive stresses and strains are positive, counter-clockwise shear stress and strain are positive, and that these are total stresses (see effective stress). 1.1.1 Special stress and strain states In general, the stresses and strains in the three dimensions will all be different. There are three special cases which are important in ground engineering:

毕业设计_英语专业论文外文翻译

1. Introduction America is one of the countries that speak English. Because of the special North American culture, developing history and the social environment, American English has formed its certain unique forms and the meaning. Then it turned into American English that has the special features of the United States. American English which sometimes also called United English or U.S English is the form of the English language that used widely in the United States .As the rapid development of American economy, and its steady position and strong power in the world, American English has become more and more widely used. As in 2005, more than two-thirds of English native speakers use various forms of American English. The philologists of the United States had divided the English of the United States into four major types: “America n creating”; “Old words given the new meaning”; “Words that eliminated by English”;“The phonetic foreign phrases and the languages that are not from the English immigrates”[1]. Compared to the other languages, American English is much simple on word spelling, usage and grammar, and it is one of the reasons that American English is so popular in the world. The thesis analyzes the differences between American English and British English. With the main part, it deals with the development of American English, its peculiarities compared to that of British English, its causes and tendency. 2. Analyses the Differences As we English learners, when we learning English in our junior or senior school, we already came across some words that have different spellings, different pronunciations or different expressions, which can be represented by following contrasted words: spellings in "color" vs. "colour"; pronunciations in "sec-re-ta-ry" vs. "sec-re-try";

给排水工程屋顶排水中英文对照外文翻译文献

中英文对照外文翻译 (文档含英文原文和中文翻译) Short and Long Term Advantage roof drainage design performance Decade has witnessed great changes in the design of the roof drainage system recently, particularly, siphon rainwater drainage system has been gradually improved, and there is likely to be the key application. At the same time these changes, urban drainage system design has undergone tremendous changes, because the scope of a wider urban drainage system design for sustainable development, as well as people for climate change flooding more attention. The main contents of this article is how to design roof drainage systems and make a good performance. Special attention is how to get rid of bad habits already formed the design, but also need to consider innovative roof drainage system, such as green roofs and rainwater harvesting systems. Practical application: In the past few years, the design of the roof rainwater drainage system has undergone tremendous changes. On large buildings, siphon rainwater drainage technology has been very common, as well as green roofs because it is conducive to green development, being more and more applications. Taking into account the ongoing research, this article focuses on how to effectively design a variety of roof rainwater drainage system, and make it achieve the desired design effect. 1. Introduction In the past decade, the city and the water drainage system design has been widely accepted thinking about sustainable urban drainage system, or the optimal management direction. The main principles of the design of these systems is both a local level in line with the quality of development, but also to create some economic benefits for the investors. This principle has led to the development of new changes in the sump. Although the application of such a device is

审计学内部控制中英文对照外文翻译文献

中英文翻译 内部控制爆炸① 摘要:Power的1997版书以审计社会为主题的探讨使得审计活动在联合王国(英国)和北美得到扩散。由审计爆炸一同带动的是内部控制制度的兴起。审计已经从审计结果转向审计制度和内部控制,它已然成为公众对公司治理和审计监管政策的辩论主题。Power表示对什么是有效的内部控制各方说法不一。本人对内部控制研究方面有一个合理的解释。内部控制对非常不同概念的各个领域的会计进行探究,并研究如何控制不同水平的组织。因此,内部控制研究的各类之间的交叉影响是有限的,而且,许多内部会计控制是研究是再更宽广的公司治理问题的背景下进行的。所以,许多有关内部控制制度对公司治理的价值观点扔需要进行研究。 关键词:机构理论;公司治理;外部审计;内部审计;内部控制制度;管理控制 1 概述 Power的1997版书以审计社会为主题的探讨使得审计活动在联合王国(英国)和北美得到扩散。由审计爆炸一同带动的是内部控制制度的兴起。审计已经从审计结果转向审 ①Maastricht Accounting and Auditing Research and Education Center (MARC), Faculty of Economics and Business Administration, Universiteit Maastricht, P.O. Box 616, 6200 MD Maastricht, The Netherlands s.maijoor@marc.unimaas.nl Fax: 31-43-3884876 Tel: 31-43-3883783

计制度和内部控制,它已然成为公众对公司治理和审计监管政策的辩论主题。例如,在最近的对于欧洲联盟内外部审计服务的内部市场形成的辩论中,监管建议建立关于内部控制和内部审计制度。虽然对有关内部控制的价值期望高,但Power表示对什么是有效的内部控制各方说法不一。本人对内部控制研究方面有一个合理的解释。内部控制是对非常不同概念的各个领域的会计进行探究,并研究如何控制不同水平的组织。因此,内部控制研究的各类之间的交叉影响是有限的,而且,许多内部会计控制是研究是再更宽广的公司治理问题的背景下进行的。所以,许多有关内部控制制度对公司治理的价值观点扔需要进行研究。 在审计和公司治理的公共政策辩论中,内部控制的概念越来越得到重视。公共越来越关注内部控制,令人对power在1997年英国和北美的书中的审计社会的现状有所信服。此书的主题是在Anglo-Saxon经济体的审计活动:审计爆炸的扩散。Power表示,联合开发与审计爆炸带动了内部控制制度兴起。增加监管问责制是公众对审计和公司治理政策辩论机构内部控制系统的一部分。然而Power注意到,尽管公众对内部控制的关注度迅速增加,内部控制的概念还是很模糊。他支出,内部控制是什么,内部控制的有效性的界定是内部控制的最基本问题。 本文讨论研究内部控制的兴起,认为内部控制的研究也有一些潜在的问题。首先,在以往的研究中,长期的内部控制涵盖完全不同的概念。其次,有关的内部控制研究机构的规模是有限的,要从孤立的学科进行交叉使用得到结果很难。因此,内部控制是尚未独立的研究范畴。最后,以往的对内部控制的研究没有彻底解决在审计和公司治理的公共政策辩论中谈到的内部控制有关问题。假设的内部控制、财务报告和公司治理的基本关系也没有被证实。 本文解构如下:在开始对内部控制进行研究和讨论之前,先介绍了两个主要的,在Power1997的书中所提出的发展:第一部分讨论了审计爆炸,第二部分讨论了内部控制的崛起。两者也讲被从欧盟的角度评论。第三部分讨论了什么是内部控制,并从会计研究的三个主要观点出发,研究内部控制制度。第四部分确定了内部控制和公司治理的公共政策辩论所承担的四个基本关系,并讨论之前的相关研究。最后一节提供了一个总结和结论。 2 内部控制的崛起 不论是否存在审计爆炸,Power1997和1998在审计中变得越来越重要。根据Power (1997年83爷),因为内部控制系统的可审计假设使得审计爆炸成为可能。根据更具体

相关文档
最新文档