第四讲预应力连续梁

第四讲预应力连续梁
第四讲预应力连续梁

第四讲预应力连续梁

一、概述

预应力混凝土连续梁和简支梁比较,有何优缺点呢?

优点:

①在相同的条件之下,连续梁具有较小的设计弯矩、较小的挠度和较大的抗侧刚度,在超载情况下能进行内力重分配,能提高抗弯破坏强度;

②预应力连续梁由于承受的弯矩比简支的小,截面高度小,有利于节约材料;

③预应力连续梁由于可采用穿越几个跨间的通长预应力束,有利于减少锚头和张拉次数;

④由于预应力筋容易弯成波浪型,同一根预应力筋既可用作负弯矩筋,不像钢筋混凝土那样正负钢筋要搭接长度和锚固长度,故可进一步节约钢材。然而,连续梁的工程造价和结构形式、跨度大小、设计准则以及施工条件等许多因素有关,因此,从总造价来看,连续梁不一定比简支梁便宜。

缺点:

①对具有多次反向曲线或有较大转角的预应力筋,摩擦损失值可能会很严重;

②连续梁设计比较复杂,不仅要考虑施加预应力时引起的次应力,有时还要考虑收缩、徐变、温度变化以及支座下沉等原因引起的次应力,这些次应力可能会比较大;

③施加预应力时,如梁的压缩应变受到与它相连构件的约束,需要采取断开或其它可以活动的措施,会增加施工困难和费用。

④对弯矩交变区域的配筋很难处理。

在钢筋混凝土连续梁中,钢筋可以根据弯矩的需要切断、弯起或增加,而预应力连续梁的预应力筋一般都是按几跨中最大弯矩确定的,而且预应力筋都是穿过几个跨的通长束。对弯矩可能发生交变的区段,既要能抵抗正弯矩又需要抵抗负弯矩,除非按部分预应力混凝土设计,采用预应力与非预应力混合配筋,否则不好处理。

尽管有上述各种缺点,但是显而易见,有不少场合预应力连续梁结构是能发挥其优势的。例如:单向或双向实心连续平板,单向或双向预应力密肋板,中跨和大跨公路桥梁以及预制构件可以在现场用后张拼成连续结构的一些工程。

二、预应力连续梁的常用形式

预应力混凝土连续梁可以采用现浇混凝土,也可采用预制混凝土,预应力连续梁常用的布筋形式如图4.1和图4.2所示。现浇预应力连续梁一般都用于跨度

大、自重大难以进行预制、且有条件进行支模的情况。常见的形式有以下几种:

1、采用曲线筋的等截面直梁,如图4.1(a)所示。这种梁分析计算不复杂,模板形状比较简单,常用于短跨预应力连续梁和单向、双向预应力平板或带肋板。

(a)等截面而连续曲线布筋。优点:锚具量小;缺点:摩擦损失大。

(b)变高度梁

(c)加腋截面。特点:曲线筋平缓

(d)加腋(圆弧加腋)

特点:可采用直线筋,且直线筋在支座处(受拉区)仍有作用

(e)采用中间锚固的预应力短束

(f)等截面,互搭截面配筋。优点:摩擦损失小;缺点:锚具量大。

(g)用联结器形成的连续梁

图4.1 现浇预应力混凝土连续梁布筋方案

2、对跨度较大、荷载较重的连续梁,将梁加腋或圆弧形加腋、将底面做成曲线或折线形,预应力筋稍微弯曲或直接采用直线筋,如图4.1(b)、(c)和(d)所示。

这样,可以做到沿梁长各截面均获得最佳的梁高和理想的预应力偏心距。由于预应力筋曲率小,接近于直线,摩擦损失值小。这是大跨梁用得较多的一种方案。

3、将预应力筋于中间支座处互相搭接锚固,简称互搭式,如图4.1(e)和(f)所示。这样,在梁顶面就可以减少每根预应力筋的长度和避免反向曲线,有利于减少摩擦损失值。这种布置需要在梁顶预留放置锚具和张拉千斤顶的凹槽,在张拉和灌浆完毕后再用混凝土封闭。这种短筋和长筋相比,要增加较多锚具。

4、用联结器形成的连续梁,如图4.1(g)所示。预应力筋常采用高强粗钢筋,端头带有拧联结器的螺丝口;也可以采用钢丝束和钢铰线和其它形式的联结器。施工方法是先浇筑第一跨并张拉到规定预应力值之后,接着浇筑第二跨,通过联结器将先后两跨的预应力筋联结,待混凝土达到规定的强度后张拉第二跨以形成两跨连续梁。用同样的方法可以形成三跨或更多跨的连续梁。由于每次只张拉一根梁,所以,摩擦损失值较小。

国外实践经验表明,预应力连续梁一般以采用先张混凝土简支梁,于就位后通过后张束以拼成连续梁最为经济。对中小跨度的梁,梁处于简支状态承受自重和施工荷载,于拼装完成之后,由连续梁承受增加的恒载和活载,这种承受全部活载,而只承受部分荷载的梁,称为部分连续性的连续梁。长跨梁一般均分成若干段进行预制,然后将块体放在支架上用后张束进行拼装,这种全部恒载与活载均由连续梁承担的梁,称为全连续性的连续梁。常见的形式有以下几种:

1、从整个连续梁的一端到另一端用通长的后张束将预制构件拼成连续梁的方案,如图4.2(a)所示。首先将预制梁架设就位,接着对支座处梁端接缝浇灌混凝土,等混凝土结硬后,对布置于梁顶面预留明槽内或布置于上翼板预留孔道

内的预应力筋进行张拉,以形成连续梁。这种方案施工简单,但用钢量不省,因为不管需要与否,在梁的全部长度内均配置同样面积的预应力配筋。

2、采用帽式预应力短筋以形成支座处连续性的方案,如图4.2(b)所示。预应力筋取用钢丝或钢铰线,从梁底面穿入和张拉。由于曲率大,预应力摩擦损失大。

3、于支座顶面配置较短的负弯矩筋以形成连续梁,如图4.2(c)所示。这个方案比图4.2(a)的方案节省钢材,但要多用锚具。

4、用联结器达到连续性的方法,如图4.2(d)所示。该方法适用于各种张帽体系,但对高强粗钢筋更为有利。这种方法可以分跨依次张拉,每次只拉一跨,可以避免一次拉几跨而出现的较大摩擦损失值。施工方法是将下一根准备张拉的梁的预应力筋,用联结器接在前一根梁已张锚完毕的预应力筋锚具上,然后再在梁的另一端进行张拉,这种方法与图4.1(g)的现浇方案基本相同。

(a)用通长束;(b)用支座束;(c)用支座短束;(d)用支座处联接器;

(e)用后张束拼装块体;(f)用非预应力负弯筋;(g)用后张束连续板的接头

图4.2 装配式预应力混凝土连续梁布筋方案

5、采用悬臂法施工是国内外都用得比较多的建造长跨桥的方法,如图4.2(e)所示。将梁身分成若干段,每段为一个预制块或一现浇混凝土段,梁身从桥墩两边一段一段地对称向跨中拼接延伸,每一段都与已安装完毕的前一段用后张束拼在一起,形成一对从桥墩伸出的悬臂梁。于跨中合拢后可以用后张束形成

连续梁,也可以做成铰节点。

6、在支座处梁顶面配置非预应力负弯矩钢筋并浇灌面层混凝土,如图 4.2(f)所示。可以很容易使预制预应力构件在活载下成为连续梁。如果希望恢复恒载连续性,可以在浇筑面层混凝土之前对预制梁加以支撑。根据国内试验资料,这种由预应力筋承担正弯矩、由Ⅱ级螺纹钢筋承担负弯矩的叠合式连续板具有良好的使用性能,破坏前具有充分进行内力重分布的能力,如图4.2(g)所示。

此外,采用预应力芯棒作为负弯矩配筋,也是一种可行的方法,并已在桥梁上用过。

二、预应力连续梁在预加力作用下的弹性分析

(一)在预加力作用下简支梁与连续梁内力状态的区别

预应力简支梁如图4.3所示,从图中可以看出:预加力对简支梁不产生支座反力,形成自平衡体系,支座反力为零。

预应力连续梁如图4.4所示,从图中可以看出:连续梁产生支座反力,有约束变形,内部自相平衡,但产生了“次应力”或“次内力”。这正是它们的根本区别。

图4.3 预应力混凝土简支梁

图4.4 预应力混凝土连续梁的反拱和反力

预应力混凝土简支梁是静定结构,它在预加应力所引起的变形可自由发展,因此不会产生支座反力,截面弯矩只是附加压力的偏心产生的偏心弯矩,通常称为主弯矩,下面用M 1表示。因此预应力混凝土预压应力的合力使用点沿梁长的轨迹线(简称为C 线,即压力线或称为c . g . c 线)与预应力筋的截面几何重心线(简称为c . g . s 线)是重合的。Central gride strand

预应力混凝土连续梁由于预加力引起的变形受赘余支座的约束,就会存在支座反力,因此梁截面中除了主弯矩外,还会存在由于赘余支座反力而引起的次弯矩M 2,如图4.5所示,而且,这种次弯矩在两相邻支座之间的跨内是按线性分布的。对于预应力连续梁来说预加力所引起的弯矩即由主弯矩和次弯矩组成,最终弯矩为综合弯矩(M ),即M =M 1+M 2

由于预应力连续梁除了主弯矩以外还存在次弯矩,因此,其C 线和c . g . s 线是不重合的,在任意截面上C 线和c. g. s 线的偏离距离为:p 2N M a 。

由于M 2是线性分布的,因此,a 也是线性分布的,这就说明次弯矩的存在并不改变C 线的本征形状,如图4.6所示。

图4.5 次弯矩图

图4.6 次弯矩对C 线的影响

(二)预应力连续梁弹性分析的基本假定

为了简化计算,如图4.7所示,作如下假定:

1°预应力钢筋的偏心和构件的长度比,是一个很小的值;

2°预应力的摩擦损失可以忽略不计;

3°预应力筋的截面积沿梁的全长不变。

图4.7 简支梁的基本假定

其中,第2°和第3°条假定说明:p N =Constant. 若梁为深梁时要慎重!

由第1°条假定可知,当l

e 很小时,c. g. s 线任一点的切线与c. g. s 线的夹角θ很小,可以取0.1sin ≈θ,θθ≈cos ,θθ≈tg 。

(三)连续梁在预加应力作用下弹性分析的方法(等效荷载法)

具体步骤如下:

1、计算预加力引起的主弯矩,并画出主弯矩的弯矩图,任意截面的主弯矩,可以近似地按下式计算:

e N M p 1= (4.1) 式中:p N ——预加力;

e ——任意截面处p N 作用点对梁的混凝土截面几何重心轴(c. g. s 线)的

偏心距。

2、根据材料力学中受弯构件,M 、V 与荷载q 之间的关系,则

x

M d d V = (4.2) 2

2x v dx M d d d q == (4.3) 根据主要弯矩M 1图可以求出预加力对梁产生的等效荷载e q ,即

2

12e dx M d q = (4.4) 通常预加力引起的等效荷载的作用方向与梁的外加荷载(恒+活等重力荷载)是相反的。

3、将等效荷载作用于连续梁上,并求其弯矩,即得到综合弯矩M ,并画出综合弯矩图。

4、求次弯矩

任意截面的次弯矩按下式求得:

12M M M -= (4.5)

【例题1】一跨度为l 的两跨等跨连续梁,预应力筋的c. g. s 线为抛物线(如图

4.8(a)),预加力已知为p N ,试分析此梁的主弯矩、次弯矩和综合弯矩。

图4.8 例题1图

解:①建立c. g. s 线的理论曲线方程(抛物线)

一般表达式为:c bx ax y ++=2

对于本题,根据边界条件有:

???????=+-=+=????????==-====e

lb a l e b l a l c e

y l x e y l x y x 2224

0,,20,0 联立求解:26l

e a =,l e b 5-=,c =0,于是: )65(62x l x l e y --= ②求主弯矩,并画出弯矩图

任意截面的主要矩M 1:

)65(62p 1x l l

ex N M -?-= 跨中:e N M l x p 21-==

支座B 处:e N M l x p 1==

主弯矩如图4.8(b )所示。

③根据弯矩图求e q

M 1方程对x 微分两次可得:

2p e 12l e

N q = 如以5

.1f e =,代入上式可得2p e 8l f N q = q e 的作用方向是向上的,如图4.9所示。

图4.9 等效荷载图

④根据等效荷载求综合弯矩

图4.10 弯矩计算图

如图4.10所示,B 支座处,e N l l

e N l q M p 22p 2e B 15)12(8181=== 跨中22l 处,e N e N e N M l q M p p p B 2e 75.02

1515281-=+=+-=中 综合弯矩如图4.8(d )所示。

⑤次弯矩

12M M M -=

在B 支座处:e N e N e N M p p p B 25.05.1=-= 在跨中2l 处:e N e N e N M l

p p p 2225.0)(75.0=---=

2M 见图4.8(c )所示。

从本例题可以看出,次弯矩在梁中不产生等效荷载,但引起支座反力。次弯矩的“次”,指的是产生的原因,因为它是预加力的副产品,并不存在于超静定梁中,不是指在数量大小的次要。恰恰相反,不仅不是次要而且有时在数值上会超过主弯矩,并在梁的应力和强度方面起重要的作用。

常见的c. g. s线的等效荷载

q如图4.11和表4.1。

e

图4.11 预应力引起的等效荷载及弯矩

表4.1 几种常用预应力筋线形的等效荷载与弯矩

习题:试求下图中的主弯矩,综合弯矩和次弯矩。

图4.12 习题图

(四)次弯矩计算其它方法(补充部分)-―弯矩-面积法计算次弯矩次弯矩是超静定预应力混凝土结构设计的一项重要内容,因而关于次弯矩的计算,各国学者提出了多种方法,常用的是等效荷载法,但大家最熟悉的、概念最清晰的是弯矩-面积法。

传统的确定梁的斜率和挠度的弯矩-面积法,可用来求解超静定结构中由于后张预应力产生的次弯矩。弯矩-面积法的原理是大家所熟悉的,现用一个例子来说明。

【例题2】有一双跨连续梁,矩形截面,尺寸为30cm×60cm,配置曲线连续预应力筋,每跨都为抛物线形,其偏心距如图4.13所示。有效预应力为1000kN,并假定其沿梁全长相等恒定的。试用弯矩-面积法求预应力引起的主弯矩、次弯矩及综合弯矩。

图4.13 双跨连续梁预应力束轮廓线

解:预应力值与其偏心距的乘积即得主弯矩,如图4.14(a )所示。

图4.14 用弯矩-面积法分析超静定预应力混凝土梁

所给的结构是一次超静定的,故可令中间支座B 为多余约束。当移去B 支座后,在预应力引起的主弯矩1M 作用下梁将向上位移b0δ;而B 支座处的次反力b R 将使梁向下位移bb δ。因B 支座处的位移实际上为零,故有bb b0δδ=。

EI

EI

EI 33.3333)33.33335000(231020010215.230010322b0-=+-=????????? ?????+??? ?????-=

δ b b bb 67.166310102152R EI

R EI -=??? ?????-=δ 0bb b0=+δδ

) ( kN 20b ↓-=R

故在该连续梁中,支座反力b R 作用下的次弯矩图如图4.14(c )所示。 将次弯矩图与主弯矩图叠加后得到综合弯矩图如图4.14(d )所示。

(五)等效荷载法计算次弯矩

尽管弯矩-面积法计算次弯矩的概念比较清晰而熟悉,但当主弯矩图形较为复杂及超静定结构次数较多时,用弯矩-面积法计算次弯矩是很麻烦的,而等效荷载法的计算相对比较简单。根据等效荷载的概念,等效荷载产生的效应即是预应力在结构中产生的效应,因而等效荷载在超静定预应力结构中产生的弯矩为综合弯矩。

一般说来,在分析结构内力(弯矩)时将轴力忽略。但是,要强调的是,在用等效荷载法计算超静定结构截面内应力时,不能忘记预应力产生的轴力作用。

【例题3】我们用【例题2】来说明等效荷载法分析次弯矩的方法和步骤。

图4.15 用等效荷载分析超静定梁

解:①求等效荷载

在图4.15中,预应力束为中间对称的两段抛物线,根据式(4.4)可求得等效荷载如下:

kN/m 2410)2/2.02.0(1000882

20

pe =+??==l e N q ②用弯矩分配法求等效荷载下连续梁的综合弯矩,对于对称的双跨连续梁的对称荷载作用下可分配弯矩等于0。所以,在这特定的情况下,双跨连续梁的弯矩图与一端固定,一端简支的单跨梁相同,如图4.15(b)所示。

m kN 30010248

18122B ?=??==ql M AB 跨及BC 跨跨中综合弯矩为:

m kN 1502

1B BC AB ?===M M M 与图4.14(d)中相比,两种计算方法求得的综合弯矩作用。

③主弯矩图。如图4.15(d)所示,即主弯矩为预应力pe N 偏心距e 的乘积。 ④由综合弯矩减去主弯矩,即得次弯矩,结果如图4.15(e)所示。

下面我们再举一个框架的例子来说明用等效荷载法求次弯矩的过程。

【例题4】某工业厂房的主体结构为预应力混凝土框架结构,底层结构简图如图

4.16所示。大梁的预应力筋轮廊线由三段抛物线组成,靠两端的抛物线段与中间抛物段在距边柱中心线2.7m 处相连并相切。h 1=312mm ,h 2=728mm ,设有效预应力值为1000kN 。

图4.16 某厂房主框架简图

解:①求等效荷载

框架两端2.7m 内为向下的等效均布荷载*1q ,中间12.6m 内是向上的等效均

布荷载*2q 两端作用的弯矩为363kN ·m 。

kN/m 597.854

.5312.0100082*1=??=

q kN/m 684.366.12728.0100082*2=??=q m kN 363363.010000?=?=M

等效荷载如图4.17(a)所示。

图4.17 等效荷载分析超静定框架结构

②用弯矩分配求综合弯矩

在*1q 作用下两端固定梁BC 的固端弯矩为:

)18

7.223(67.22*1B A ?-?-==q M M =-280.8kN ·m 在*2q 作用下的两端固定梁BC 的固端弯矩为:

m

kN 12.870 2.5118)24/6.12(684.36])18

6.12(3[(18246.122*2B A ?=???=-???-==q M M

利用对称结构,梁和柱的分配系数:

409.082

.538.244.338.238.286.0419.1219.12==+=?+??=柱μ 591.0=梁μ

弯矩分配过程如图4.17(b)所示。

跨中综合弯矩为等效荷载作用下简支梁跨中弯矩减去支座弯矩。 跨中综合弯矩为:

m

kN 3.54368.49631298.135168.4967.22597.85186.1228186.12684.362?=--=-?-??? ?

?-??=M 在预应力作用下的综合弯矩如图4.17(c )所示。

或如图4.18的计算也可求得跨中综合弯矩。

图4.18 综合弯矩计算图

③求主弯矩

支座处及跨中主弯矩分别为:

m kN 363363.010001pe 11?=?=?=e N M

(+) m kN 677677.010002pe 12?=?=?=e N M

(-) ④求次弯矩

支座处次弯矩为:m kN 68.13368.49636321?-=-=M

跨中处次弯矩为:m kN 7.133)3.543(67712?-=---=M

可见支座处的次弯矩与跨中次弯矩相同,再次表明节点间的次弯矩为直线变化。

用新规范计算预应力混凝土连续梁

用新规范计算预应力混凝土连续梁 谢宝来 【摘要】本文为用新规范进行桥梁结构设计的一个算例,其重点讨论了预应力混凝土构件纵向受力性能的计算方法和计算过程,以及对新规范的一些理解,其中包括汽车冲击系数、上下缘正负温差、翼缘有效宽度、极限承载能力(塑性)和应力(弹性)计算等,同时也说明了一些构造方面的要求。 【关键词】规范预应力混凝土冲击系数有效宽度 一、设计概况 该桥为京津高速公路跨越永定新河的一座特大桥,单幅桥宽16.5米,特大桥是因为长度超过了1000米,以永定新河的交角为45度,跨越河流时采用三联3x55米,用PZ造桥机施工的预应力混凝土连续箱梁,此处平曲线半径为5000米,当然小半径也可以采用此施工工艺。第一阶段施工为简支单悬臂,施工长度为55米简支加11米(悬臂为跨径的五分之一,此处弯矩最小,为施工缝的最加位置)悬臂,平移模板,第二阶段施工长度为44米加11米悬臂,最后施工剩下的44米。主要预应力钢束均为单向张拉,最大单向张拉长度为66米。按预应力砼A 类构件设计。 二、设计参数 (一)桥宽:16.5m(1+0.75+3x3.75+3+0.5); (二)跨径:3x55m; (三)梁高:3.0m; (四)荷载标准:公路-I级;计算车道数:3;横向折减系数:0.78; (五)二期荷载:100mm厚沥青混凝土;80mmC40防水混凝土;两侧栏杆20kN/m。 (六)采用的主要规范: 《公路桥涵设计通用规范》(JTG-D60-2004); 《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG-D62-2004); (七)选用材料: ①混凝土C50:f cd =22.4MPa,f td =1.83MPa,E c =3.45x104MPa;

预应力混凝土曲线箱梁设计论文

预应力混凝土曲线箱梁设计 摘要:简述预应力砼弯箱梁的受力特点与计算方法,并以厦安高速厦门互通a匝道桥第三联r=110m 、跨径(35+42+35)m的预应力砼箱梁设计为例,探讨了小半径大跨度预应力箱梁设计的计算与构造措施。 关键词:预应力砼弯梁,小半径大跨度,桥梁设计 中图分类号:tu528.571文献标识码:a 文章编号: abstract: briefly prestressed concrete curved box the mechanical characteristics, and the calculation method, and with a high share of tall ann xiamen ramp bridges part 3 r = 110 m, span length (35 + 42 + 35) m prestressed concrete box girder of design as an example, this paper discusses the small radius of the design of large span prestressed concrete box girder calculation and structural measures. keywords: prestressed concrete beam bending, small radius big span, bridge design 1引言 随着高速公路与城市快速路的兴建以及城市建设的进一步发展,社会对交通设施的要求越来越高,互通式立体交叉日益增多。互通式立体交叉中的匝道很多是单车道或双车道的小半径弯桥,常用半径为50~150m,常用桥梁上部结构形式为钢筋混凝土或预应力

预应力混凝土连续梁桥

一预应力混凝土连续梁桥 1.力学特点及适用范围 连续梁桥在结构重力和汽车荷载等恒、活载作用下,主梁受弯,跨中截面承受正弯矩,中间支点截面承受负弯矩,通常支点截面负弯矩比跨中截面正弯矩大。作为超静定结构,温度变化、混凝土收缩徐变、基础变位以及预加力等会使桥梁结构产生次内力。 由于预应力结构可以有效地避免混凝土开裂,能充分发挥高强材料的特性,促使结构轻型化,预应力混凝土连续梁桥具有比钢筋混凝土连续梁桥较大的跨越能力,加之它具有变形和缓、伸缩缝少、刚度大、行车平稳、超载能力大、养护简便等优点,所以在近代桥梁建筑中已得到越来越多的应用。 预应力混凝土连续梁桥适宜于修建跨径从30m到100多m的中等跨径和大跨径的桥梁。 2.立面布置 预应力混凝土连续梁桥的立面布置包括体系安排、桥跨布置、梁高选择等问题,可以设计成等跨或不等跨、等截面或变截面的结构形式(图1)。结构形式的选择要考虑结构受力合理性,同时还与施工方法密切相关。 a b a.不等跨不等截面连续梁 b. 等跨等截面连续梁 图1 连续梁立面布置 1.桥跨布置 根据连续梁的受力特点,大、中跨径的连续梁桥一般宜采用不等跨布置,但多于三跨的连续梁桥其中间跨一般采用等跨布置。当采用三跨或多跨的连续梁桥时,为使边跨与中跨的最大正弯矩接近相等,达到经济的目的,边跨取中跨的0.8倍为宜,当综合考虑施工和其他因素时,边跨一般取中跨的0.5~0.8倍。对于预应力混凝土连续梁桥宜取偏小值,以增加边跨刚度,减小活载弯矩的变化幅度,减少预应力筋的数量。若采用过小的边跨,会在边跨支座上产生拉力,需在桥台上设置拉力支座或压重。当受到桥址处地形、河床断面形式、通航(车)净空及地质条件等因素的限制,并且同时总长度受到制约时,可采用多孔小边跨与较大的中间跨相配合,跨径从中间向外递减,以使各跨内力峰值相差不大。 桥跨布置还与施工方法密切相关。长桥、选用顶推法施工或者简支—连续施工的桥梁,多采用等跨布置,这样做结构简单,统一模式。等跨布置的跨径大小

预应力混凝土T形梁设计(计算示例)

预应力混凝土T形梁设计计算示例 预应力混凝土T形梁设计计算示例 ----------------------------------------------------------------------------------------- 1 1 设计资料及构造布置--------------------------------------------------------------------------------------------------- 2 1.1桥梁跨径及桥宽-------------------------------------------------------------------------------------------------------- 3 1.2 设计荷载 ---------------------------------------------------------------------------------------------------------- 3 1.3 材料及施工工艺------------------------------------------------------------------------------------------------- 3 1.4 设计依据 ---------------------------------------------------------------------------------------------------------- 3 1.5 横截面布置------------------------------------------------------------------------------------------------------- 3 1.6 横截面沿跨长的变化 ------------------------------------------------------------------------------------------ 5 1.7 横隔梁的设置---------------------------------------------------------------------------------------------------- 5 2 主梁内力计算 ------------------------------------------------------------------------------------------------------------ 5 2.1 恒载计算 ---------------------------------------------------------------------------------------------------------- 5 2.2 可变作用计算------------------------------------------------------------------------------------------------ 6 2.2.1冲击系数和车道折减系数 ---------------------------------------------------------------------------- 6 2.2.2.计算主梁的荷载横向分布系数 ---------------------------------------------------------------------- 7 2.2. 3. 车道荷载取值 ----------------------------------------------------------------------------------------- 11 2.2.4.计算可变作用效应------------------------------------------------------------------------------------- 11 2.3 主梁作用效应组合 --------------------------------------------------------------------------------------------14 3 预应力钢束的估算及其布置-----------------------------------------------------------------------------------------15 3.1跨中截面钢束的估算和确定---------------------------------------------------------------------------------15 3.2预应力钢束的布置 ---------------------------------------------------------------------------------------------16 4.计算主梁截面几何特征 ---------------------------------------------------------------------------------------------17 4.1截面面积及惯矩计算 ------------------------------------------------------------------------------------------17 4.1.1净截面几何特征计算----------------------------------------------------------------------------------17 4.1.2换算截面几何特征计算 ------------------------------------------------------------------------------18 4.1.3有效分布宽度内截面几何特征计算---------------------------------------------------------------19 4.1.4截面静矩计算-------------------------------------------------------------------------------------------20 5.主梁截面承载力与应力验算 -----------------------------------------------------------------------------------------24 5.1正截面承载力验算 ---------------------------------------------------------------------------------------------24 5.1.1确定混凝土受压区高度: ---------------------------------------------------------------------------24 5.1.2验算正截面承载力:----------------------------------------------------------------------------------25 5.1.3验算最小配筋率----------------------------------------------------------------------------------------25 5.2. 斜截面承载力验算--------------------------------------------------------------------------------------------26 5.2.1斜截面抗剪承载力验算: ---------------------------------------------------------------------------26 5.2.2箍筋计算: ----------------------------------------------------------------------------------------------27 5.2.3抗剪承载力计算----------------------------------------------------------------------------------------28 5.3持久状况正常使用极限状态抗裂验算 --------------------------------------------------------------------30 5.3.1.正截面抗裂验算 -------------------------------------------------------------------------------------30 5.3.2.斜截面抗裂验算 -------------------------------------------------------------------------------------30 5.4持久状况构件的应力验算------------------------------------------------------------------------------------35 5.4.1.正截面混凝土压应力验算-------------------------------------------------------------------------35 5.4.2.预应力筋拉应力验算 -------------------------------------------------------------------------------36 5.4.3.截面混凝土主压应力验算-------------------------------------------------------------------------37

预应力混凝土连续梁桥设计 计算书

目录 第一章概述 (4) 1.1 地质条件 (4) 1.2 主要技术指标 (4) 1.3 设计规范及标准 (4) 第二章方案比选 (5) 2.1 概述 (5) 2.2 比选原则 (5) 2.3 比选方案 (5) 2.3.1 预应力混凝土连续梁桥 (5) 2.3.2 预应力混凝土连续刚桥桥 (7) 2.3.3 普通上承式拱桥 (8) 2.4 方案比较 (9) 第三章预应力混凝土连续梁桥总体布置 (12) 3.1 桥型布置 (12) 3.2 桥孔布置 (12) 3.3 桥梁上部结构尺寸拟定 (12) 3.4 桥梁下部结构尺寸拟定 (13) 3.5 本桥使用材料 (14) 3.6 毛界面几何特性计算 (14) 第四章荷载内力计算 (16) 4.1 模型简介 (16) 4.2 全桥结构单元的划分 (16) 4.2.1 划分单元原则 (16) 4.2.2 桥梁具体单元划分 (17) 4.3 全桥施工节段的划分 (17) 4.3.1 桥梁划分施工分段原则 (17) 4.3.2 施工分段划分 (17) 4.4 恒载、活载内力计算 (17) 4.4.1 恒载内力计算 (17) 4.4.2 悬臂浇筑阶段内力 (18) 4.4.3 边跨合龙阶段内力 (19)

4.4.4 中跨合龙阶段内力 (20) 4.4.5 活载内力计算 (21) 4.5 其他因素引起的内力计算 (23) 4.5.1 温度引起的内力计算 (23) 4.5.2 支座沉降引起的内力计算 (25) 4.5.3 收缩、徐变引起的内力计算 (26) 4.6 内力组合 (28) 4.6.1 正常使用极限状态的内力组合 (28) 4.6.2 承载能力极限状态的内力组合 (29) 第五章预应力钢束的估算与布置 (32) 5.1 钢束估算 (32) 5.1.1 按承载能力极限计算时满足正截面强度要求 (32) 5.1.2 按正常使用极限状态的应力要求计算 (33) 5.2 预应力钢束布置 (39) 5.3 预应力损失计算 (40) 5.3.1 预应力与管道壁间摩擦引起的应力损失 (40) 5.3.2 锚具变形、钢筋回缩和接缝压缩引起的应力损失 (41) 5.3.3 混凝土的弹性压缩引起的应力损失 (41) 5.3.4 钢筋松弛引起的应力损失 (42) 5.3.5 混凝土收缩徐变引起的应力损失 (42) 5.3.6 有效预应力计算 (44) 5.4 预应力计算 (45) 第六章强度验算 (48) 6.1 正截面承载能力验算 (48) 6.2 斜截面承载能力验算 (51) 第七章应力验算 (55) 7.1 短暂状况预应力混凝土受弯构件应力验算 (55) 7.1.1 压应力验算 (55) 7.1.2 拉应力验算 (55) 7.2 持久状况正常使用极限状态应力验算 (60) 7.2.1 持久状况(使用阶段)预应力混凝土受压区混凝土最大压应力验算 60 7.2.2 持久状况(使用阶段)混凝土的主压应力验算 (62) 7.2.3 持久状况(使用阶段)预应力钢筋拉应力验算 (65) 第八章抗裂验算 (68) 8.1 正截面抗裂验算 (68)

预应力混凝土连续梁桥结构设计

预应力混凝土连续梁桥结构设计 第一章绪论 第一节桥梁设计的基本原则和要求 一、使用上的要求 桥梁必须适用。要有足够的承载和泄洪能力,能保证车辆和行人的安全畅通;既满足当前的要求,又照顾今后的发展,既满足交通运输本身的需要,也要兼顾其它方面的要求;在通航河道上,应满足航运的要求;靠近城市、村镇、铁路及水利设施的桥梁还应结合有关方面的要求,考虑综合利用。建成的桥梁要保证使用年限,并便于检查和维护。 二、经济上的要求 桥梁设计应体现经济上的合理性。一切设计必须经过详细周密的技术经济比较,使桥梁的总造价和材料等的消耗为最小,在使用期间养护维修费用最省,并且经久耐用;另外桥梁设计还应满足快速施工的要求,缩短工期不仅能降低施工费用,面且尽早通车在运输上将带来很大的经济效益。 三、设计上的要求 桥梁设计必须积极采用新结构、新设备、新材料、新工艺利新的设计思想,认真研究国外的先进技术,充分利用国际最新科学技术成果,把国外的先进技术与我们自己的独创结合起来,保证整个桥梁结构及其各部分构件在制造、运输、安装和使用过程中具有足够的强度、刚度、稳定性和耐久性。 四、施工上的要求 桥梁结构应便于制造和安装,尽量采用先进的工艺技术和施工机械,以利于加快施工速度,保证工程质量和施工安全。 五、美观上的要求 在满足上述要求的前提下,尽可能使桥梁具行优美的建筑外型,并与周围的景物相协 调,在城市和游览地区,应更多地考虑桥梁的建筑艺术,但不可把美观片面地理解为豪华的细部装饰。 第二节计算荷载的确定 桥梁承受着整个结构物的自重及所传递来的各种荷载,作用在桥梁上的计算荷载有各种不同的特性,各种荷载出现的机率也不同,因此需将作用荷载进行分类,并将实际可能同时出现的荷载组合起来,确定设计时的计算荷载。 一、作用分类与计算 为了便于设计时应用,将作用在桥梁及道路构造物上的各种荷载,根据其性质分为:

桥梁专业设计技术规定07第四章 预应力混凝土连续梁桥

4 预应力混凝土连续梁桥 4.1一般规定 4.1.1 预应力混凝土连续梁桥设计应根据桥长、柱高、地基条件等因素合理分联,每联的长度应以结构合理、方便施工、有利使用为原则,在有条件的情况下应考虑景观要求和桥梁整体布局的一致性。 4.1.2主梁应尽量采用一次浇筑混凝土、两端张拉预应力钢筋的施工方式,主梁长度宜控制在120m左右,当确实需要设置长分联时,可以采用分段浇筑混凝土、使用联接器分段张拉预应力钢筋的施工方案,设计时允许在同一截面全部预应力钢筋使用联接器连接,但对主梁截面及配筋应做加强处理。 4.1.3对于匝道桥,为增大刚度、减小扭矩,有条件时尽可能采用墩梁固结或双支座形式。 4.1.4桥梁截面形式可根据桥宽、跨径、施工条件、使用要求等确定为箱形(简称箱梁)或T形(简称T梁)。箱形截面可设计为单箱单室或单箱多室。箱梁翼板长度的确定应以桥面板正、负弯矩相互协调为原则,T梁悬臂长度宜为1.0~1.5m,箱梁悬臂长度宜为1.5~2.5m。当主、引桥结构形式不同时,悬臂板长度宜取得一致。 4.1.5箱梁腹板宽度应由主梁截面抗剪、抗扭、混凝土保护层、预应力钢筋孔道净距和满足混凝土浇筑等要求确定。预应力钢筋净保护层和净距除满足规范外,应考虑纵向普通钢筋和箍筋的占位以及混凝土浇筑的孔隙等因素。箱梁腹板宽度最小值应符合下列要求:

箱梁腹板宽度最小值一览表 4.1.6 悬臂板厚度应视悬臂长度、桥上荷载及防撞护栏碰撞力验算结果而定。根部厚度宜取0.30~0.55m,悬臂板端部厚度一般不应小于0.12m(对有特殊防撞要求的结构,悬臂板端部厚度适当增加,如使用PL2型防撞护栏时悬臂板端部厚度不应小于0.2m)。当悬臂板长度较长时应适当加强悬臂板沿主梁方向钢筋的配置。 4.1.7主梁翼板和顶、底板厚度应根据梁距和箱宽计算确定。同时应满足箱梁顶板厚度不小于0.2m,底板厚度不小于0.18m;T梁顶板厚度不小于0.16m。 4.1.8中支点横梁和端横梁宽度由计算确定,但中支点横梁宽度不应小于2m,端横梁宽度不应小于1.1m,端横梁宽度还应考虑伸缩缝预留槽等构造要求。 4.1.9主梁腹板与顶、底板相接处应设1︰5加腋,箱形截面与支点横梁相接处应设渐变段加厚。箱梁截面与跨间横梁相接处应设0.15m抹角。 4.1.10箱梁底板必须设置排水孔,腹板必须设置通风孔,直径均宜取D=0.1m左右。配有体外预应力钢筋的箱梁应设置检查换索通道。 4.1.11连续梁桥必须设置端横梁及中支点横梁。直线连续箱梁桥跨径小于30m的桥孔可不设跨间横梁;跨径在30~40m之间的桥孔宜设一道跨间横梁;跨径大于40m时宜设三道跨间横梁。曲线连续箱梁桥应根据曲线半径、跨径大小确定跨间横梁个数。连续T梁桥跨径大于25m

大跨度预应力混凝土连续梁

建筑与工程 46 科技展望 2014/12 摘 要:混凝土连续梁从主筋配置上分为钢筋混凝土连续梁和预应力混凝土连续梁。对于曲线半径过小的匝道桥,不宜设计成预应力结构;从结构上来看一般有等高度连续梁、变高度连续梁、连续刚构、连续V?构等四种,本文主要讲述变高度连续梁。变高度连续梁适用于跨度小于25m ~200m 的结构中。 关键词:结构特点?预应力体系?施工?计算 中图分类号:TU201 文献标识码:A 文章编号:1672-8289(2014)12-0046-01 大跨度预应力混凝土连续梁 钟?娟 (武汉市山海桥梁设计咨询有限公司,湖北?武汉?430000) 1结构特点1.1 桥跨 L 边/L 中一般为0.55~0.6,以不超过中跨长度的0.65倍为宜。1.2梁高 (1)曲线变高度连续梁。根部高跨比1/15~1/18;跨中高跨比1/30~1/50。 (2)梁高变化曲线。曲线变高度连续梁梁底曲线一般采用抛物线,抛物线方程指数一般取1.5~2。1.3 顶板厚 顶板厚度一般为25~32cm 。1.4 底板厚 跨度较大时,底板厚度从跨中向根部逐步变厚。根部底板厚度可取跨径的1/140~1/170,或梁高的1/10~1/12;跨中底板厚度的最小值可取预应力管道直径的2.5 倍,一般为30cm ~35cm 。厚度沿纵向变化一般为二次抛物线。1.5 腹板厚 一般为40~80cm ,板厚由跨中向支承处逐步加厚,可以将变化段设在L/4 处;腹板厚度不应小于35cm ,如有下弯束通过,还要满足构造要求。1.6 悬臂板 悬臂板长2.5~4.5m , 悬臂端部厚度一般取0.16~0.22m ,悬臂根部厚度一般为0.4~0.6m 。超过3m 设横向索。1.7 桥面横坡的形成 桥面横坡一般通过以下几种方法: (1)铺装垫层成坡:优点:设计简单;缺点:不经济;常用于窄桥中。 (2)顶板成坡:优点:铺装简单;缺点:会造成腹板高度不一致,箱梁细部设计繁琐;常用于一般变高度箱梁中。 (3)旋转成坡:优点:设计简单;缺点:施工不方便;常用于单坡箱梁中。2 预应力体系 2.1 纵向预应力体系 应配置适当的腹板下弯束,以改善箱梁腹板的主拉应力,锚固位置位于距顶面2/3位置附近。底板钢束应尽量靠近腹板布置,钢束应平弯靠近腹板锚固,锚固板下齿板不宜连成整体。2.2 竖向预应力体系 一般情况下,竖向预应力宜作为安全储备,不参与主拉应力计算。必要时,按0.5倍效应考虑。竖向预应力筋滞后2~3节段张拉。一般采用精轧螺纹钢筋,并采用二次张拉工艺,以保证其有效性。2.3 横向预应力体系 横向预应力采用扁锚体系,单端张拉。横向预应力束滞后2~3节段张拉。3 施工 3.1 支架现浇 整联现浇,施工中无体系转换。该方法桥梁整体性好,但是需要大量支架,施工周期长,施工费用较高;一般只适用于桥址地形平坦、地面土质较好、且桥梁净空较低的情况。3.2 支架逐孔现浇 该工艺分为移动模架法和移动(局部满堂)支架法。施工快速,施工费用低,但对于移动模架法来说需要一定的项目工程规模才能体现出优势;对一般项目,如果桥址能满足1 中的条件,采用移动(局部满堂)支架法能体现出一定的经济优势。3.3 悬臂施工 包含悬臂现浇和悬臂拼装法,是国内最常见的中大跨径连 续梁施工方法,具有适用性、经济性好,但施工体系转化次数多,线形较难控制的特点。4 截面验算及结果处理 直线连续箱梁一般采用平面杆系分析程序计算,主要采用桥博和MIDAS 软件。曲线半径小于300m 或一联对应圆心角大于1弧度的连续箱梁宜按照曲线桥梁进行计算。4.1 正常使用状态下正截面及斜截面抗裂 (1)按照规范《D62》第6.3.1 条验算,按全预应力构件设计。 (2)具体验算项目:短期效应组合最大拉应力、短期效应组合最大主拉应力。 (3)对于竖向预应力钢筋,应谨慎对待其力学效果,计算中尽量不计入其效应。 (4)拉应力超标处理方式:加钢束,或减钢束(上缘超标可减下缘钢束,下缘超标可减上缘钢束);主拉应力超标处理方式:加钢束,调腹板束,调整腹板厚度。4.2 应力验算 (1)持久状况下箱梁计算截面的应力,需满足《D62》第7.1.5 条、7.1.6 条的规定。内容包正截面混凝土法向压应力、受拉钢束的拉应力和斜截面混凝土主压应力。应力计算的组合采用标准值组合,汽车荷载考虑冲击系数。 (2)短暂状况下施工阶段的验算也按照应力验算的原则计算。需满足《D62》第7.2.8 条的规定。 (3)压应力和主压应力超标处理方式:减钢束;钢束应力超标处理方式:降低张拉控制应力。4.3 挠度验算和预拱度设置 (1)预应力构件的挠度计算按《D62》第6.5.3~6.5.4 条计算; (2)注意规范《D62》第6.5.5 条规定的预拱度是成桥预拱度,不能直接作为施工立模的依据。 4.4 持久状况下承载能力极限状态下正截面及斜截面强度 (1)正截面强度验算应保证最大轴力、最大弯矩、最小轴力、最小弯矩组合工况都能够满足要求。 (2)相对受压区高度应尽量满足规范要求,一般将其限至在箱梁底板或顶板范围内,若受压区侵腹板,则受压区高度将难以控制在ξb 内,而使结构破坏形态属于脆性破坏。此时,宜增大结构尺寸或提高混凝土标号。 (3)构件截面应满足最小配筋率要求。对预应力混凝土构件,截面抗力应大于开裂弯矩。 (4)按照《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)5.2.10 条进行检算,若满足该条,则不可进行抗剪计算。若不满足《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)5.2.10 条,则应按照《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)5.2.9 条进行检算,若不满足,需要改变截面尺寸,重新进行纵向计算。 参考文献: [1]中建标公路委员会.公路工程技术标准(JTG?B01-2003)[M].北京:人民交通出版社,2004. [2]中交公路规划设计院.公路桥涵设计通用规范(JTG?D60-2004)[M].北京:人民交通出版社,2004. [3]中交公路规划设计院.公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG?D62-2004)[M].北京:人民交通出版社,2004.[4]孙广华.曲线梁桥计算[M].北京:人民交通出版社,1997.

预应力混凝土连续梁桥设计毕业设计

预应力混凝土连续梁桥设计毕业设计 目录 第1章绪论 (1) 1.1毕业设计的目的与意义 (1) 1.2国外研究现状 (1) 1.3本设计研究容 (1) 第2章设计主体 (2) 2.1主要技术指标 (2) 2.2材料规格 (2) 2.3截面尺寸 (2) 2.3.1主梁截面高度 (2) 2.3.2顶板和底板厚度 (3) 2.3.3腹板厚度 (3) 2.4 荷载力计算 (3) 2.4.1恒载力计算 (4) 2.4.2一期恒载力计算 (4) 2.4.3二期恒载力计算 (7) 2.4.4活载力计算 (9) 2.4.5效应组合 (12) 第3章钢束的估算与布置 (13) 3.1截面特性 (13) 3.2估算方法 (14) 3.2.1按承载能力极限状态计算 (14) 3.2.2钢束计算 (15) 3.2.3预应力钢筋性质 (17) 3.3 预应力钢束的布置 (17)

3.3.1预应力钢束的布置数 (18) 第4章预应力损失及有效预应力值计算 (18) 4.1预应力损失值的计算 (18) 4.1.2钢筋预应力损失的估算 (19) 4.2钢筋的有效预应力计算 (19) 第5章截面应力验算 (21) 5.1强度验算原理 (21) 5.1.1施工阶段正截面法向应力 (21) 5.1.2受拉区钢筋的拉应力验算 (23) 5.1.3使用阶段的抗裂验算 (24) 5.1.5使用阶段压应力验算 (27) 5.1.5预应力钢筋量估算 (29) 5.1.6使用阶段正截面的抗弯验算 (30) 5.1.7使用阶段斜截面的抗剪验算 (33) 第 6 章结论与展望 (37) 6.1 结论 (37) 6.2展望 (37) 参考文献....................................................................... .. (38) 致谢....................................................................... . (39) 附录....................................................................... . (40)

关于预应力混凝土连续梁桥中的若干问题88962

一、跨径比 一般情况下,为使边跨正弯矩和中支点负弯矩大致接近的原则,以使布束更趋合理,构造简单,故L1/L2=0.539~0.692是常见的边、主跨的跨径比范围,当L1 /L2≤0.419时,边跨则需压重,应属于非常规的特殊处理;大都L1/L2=0.54~0. 58则较合理,这将有可能在边跨悬臂端用导梁支承于端墩上合拢边跨,取消落地支架。 二、梁高 主跨箱梁跨中截面的高跨比h0≈(1/46.2~1/86)L2,通常为(1/54~1/60)L2,在箱梁根部的高跨比h1≈(1/15~1/20.6)L2,大部分为(1/18)L2左右。 目前在国际上有减少主梁高跨比的趋势,已建成的挪威stolma桥和Raftsundet 桥,在跨中区段采用了轻质砼,减轻了自重,减小了主梁高跨比,其跨中h0≈1 /86·L2和1/85.1·L2,根部高度分别为h1=1/20.1·L2和1/20.6·L2。 一般情况下,可采用2次抛物线的梁底变高曲线,但往往会在1/4·L2和1/8·L 2处的底板砼应力紧张,且在该截面附近的主拉应力也较紧张,因而,可将2次抛物线变更为1.5~1.8次方的抛物线更合理。 在江苏平原通航河道上,为了满足通航净空的要求,在设计时甚至采用大于2 次抛物线的幂级数设置底板曲线,这是值得十分注意的问题,事实证明,跨中挠度一般较大,极易发生正弯矩裂缝和斜裂缝。 三、顶板厚度 以往通常采用28cm,近年来已趋向于减小为25cm,这显然和箱宽和施工技术有关。 四、底板厚度 以往通常采用32cm(跨中),逐渐向根部变厚,少数桥梁已开始采用28-25cm者,其厚跨比通常为(1/140~1/160)L2,也有用到1/200·L2者。 挪威stolma桥和Raftsundet桥最大底板厚度为105cm和120cm,合跨径的 1/286.7和1/248.3,这将取得了明显的经济效益。 五、腹板 一般为40~50cm,但应特别注意主拉应力的控制,近年来在腹板上出现较多斜裂缝的病害甚多,应予谨慎。 增加箱梁的挖空率,减轻截面的结构自重,采用高标号砼,采用较大吨位的预应力钢束,采用三向预应力体系等,无疑都是提高设计水平,获得良好经济效益的重要措施,但同时又必须合理地掌握好“度”,必须确保结构的安全度和耐久性。 六、连续通长束不宜过长 根据连续结构的受力特点,截面上既有正弯矩也有负弯矩,个别设计中将连续通长束顺应弯矩包络图仅作简单布置是欠合理的,尤其对于较小跨径的矮箱梁,其摩擦损失单项即可达40~60%σk之多。建议此时可采用两根交叉束布置,也可改用接长器接长,分成多次张拉等。但在具体设计时接长器也不宜集中在某一个断面上,以使截面的削弱过于集中,同时也会造成施工上困难。 七、普通钢筋是预应力砼结构中必须配置的材料 当混凝土立方体试块受压破坏时,可以清楚地看到混凝土立方体试块侧向受拉破坏的形态。也即预应力仅在某一个方向上施加了预压应力,而在其正交方向却会产生相应的侧向拉应力,这是预加应力的最基本概念,必须牢固掌握,灵活使用。因而,在预应力混凝土结构中必须配置一定数量的非预应力钢筋,以保证预压应

m预应力混凝土简支T形梁桥设计

《桥梁工程》课程设计20m预应力混凝土简支T梁桥设计 姓名:盛先升 学号: 1442264132 专业班级: 14土木道桥(1)班 院系:土木与环境工程学院 指导老师: 胡鹏 设计时间: 2017.5.29~2017.6. 9 教务处制

目录 前言 (1) 第一章桥梁设计总说明 (2) 1.1设计标准及设计规范 (2) 1.2技术指标 (2) 5.1持久状况承载能力极限状态承载力验算 (15) 第六章横隔梁的计算 (18) 6.1横隔梁上的可变作用计算(G-M法) (18) 6.2横梁截面配筋与验算 (20) 第七章行车道板的计算 (22)

7.1行车道板截面设计、配筋与承载力验算 (22) 第八章结论 (24) 参考文献 (25)

前言 随着我国公路事业的迅速发展,我国的桥梁建设亦突飞猛进。在理论研究、设计施工技术及材料研究应用等方面都取得了快速的发展和提高,桥梁结构形式也在不断地被赋予新的内容和活力。而简支梁式桥是工程上运用最为广泛的桥梁,其结构传力途径十分明确,设计计算理论已趋于完善。 10 [简 ] 由于设计者水平有限,设计中难免会有一些缺点和错误,欢迎给予批评指正。 盛先升 2017年5月

第一章 桥梁设计总说明 1.1 设计标准及设计规范 1、设计标准 (1)设计汽车荷载 主梁间距通常应随梁高与跨径的增大而加宽为经济,同时加宽翼板对提高主梁截面效率指标ρ很有效,放在许可条件下应适当加宽T 梁翼板。本设计主梁翼板宽度为2500mm ,由于宽度较大,为保证桥梁的整体受力性能,桥面板采用现浇混凝土刚性接头,因此主梁的工作截面有两种:预施应力、运输、吊装阶段的小截面(mm 1800=i b )和运营阶段的大截面(mm 2500=i b )。净—10m 的桥宽采用五片主梁。 2.2 主梁跨中截面主要尺寸拟定

预应力混凝土连续梁设计计算书

预应力混凝土连续梁设计计算书 第1章绪论 1.1预应力混凝土连续梁桥概述 预应力混凝土连续梁桥以结构受力性能好、变形小、伸缩缝少、行车平顺舒适、造型简洁美观、养护工程量小、抗震能力强等而成为最富有竞争力的主要桥型之一。本章简介其发展: 由于普通钢筋混凝土结构存在不少缺点:如过早地出现裂缝,使其不能有效地采用高强度材料,结构自重必然大,从而使其跨越能力差,并且使得材料利用率低。 为了解决这些问题,预应力混凝土结构应运而生,所谓预应力混凝土结构,就是在结构承担荷载之前,预先对混凝土施加压力。这样就可以抵消外荷载作用下混凝土产生的拉应力。自从预应力结构产生之后,很多普通钢筋混凝土结构被预应力结构所代替。 预应力混凝土桥梁是在二战前后发展起来的,当时西欧很多国家在战后缺钢的情况下,为节省钢材,各国开始竞相采用预应力结构代替部分的钢结构以尽快修复战争带来的创伤。50年代,预应力混凝土桥梁跨径开始突破了100米,到80年代则达到440米。虽然跨径太大时并不总是用预应力结构比其它结构好,但是,在实际工程中,跨径小于400米时,预应力混凝土桥梁常常为优胜方案。 我国的预应力混凝土结构起步晚,但近年来得到了飞速发展。现在,我国已经有了简支梁、带铰或带挂梁的T构、连续梁、桁架拱、桁架梁和斜拉桥等预应力混凝土结构体系。 虽然预应力混凝土桥梁的发展还不到80年。但是,在桥梁结构中,随着预应力理论的不断成熟和实践的不断发展,预应力混凝土桥梁结构的运用必将越来越广泛。 连续梁和悬臂梁作比较:在恒载作用下,连续梁在支点处有负弯矩,由于负弯矩的卸载作用,跨中正弯矩显著减小,其弯矩与同跨悬臂梁相差不大;但是,在活载作用下,因主梁连续产生支点负弯矩对跨中正弯矩仍有卸载作用,其弯矩分布优于悬臂梁。虽然连续梁有很多优点,但是刚开始它并不是预应力结构体系中的佼佼者,因为限于当时施工主要采用满堂支架法,采用连续梁费工费时。到后来,由于悬臂施工方法的应用,连续梁在预应力混凝土结构中有了飞速的发展。60年代初期在中等跨预

预应力混凝土连续弯箱梁桥设计

预应力混凝土连续弯箱梁桥设计 摘要:老龙沟二号桥为山西运(城)-三(门峡)高速公路上的一座跨深谷桥梁,为预应力混凝土单箱单室等截面连续弯箱梁。文中以该桥施工图设计为根据,对其设计特点及施工顺序进行了简单介绍。 关键词:预应力混凝土弯箱梁斜腹板设计 一、概述运平至三门峡高速公路是国道主干线209(二连浩特至河口)公路山西境内的一部分,是山西省quot;大quot;字型公路主骨架的重要组成部分,是晋煤外运主要通道之一。老龙沟二号桥位于209国道运城至平陆段内的山岭重丘区,跨越老龙沟,为双幅分离式高速公路大桥,桥梁全宽20.5m。两幅桥之间的分离带为50cm。设计行车速度为60km /h。桥梁中心桩号为K17+930,起点中心桩号为K17+825,终点桩号为K18+035。该桥位于平曲线为圆曲线内,路线中心线半径为25lm,左幅桥中心线半径为256.25m,右幅桥中心线半径为245.75m。桥梁纵断面部分位于半径为R=13000m的竖曲线内。竖曲线两边纵坡分别为3.8%和3%,竖曲线半径为R=13000m,T=117m,E=0.526m。横桥向设有5%的超高。桥梁结构体系为单箱单室等截面预应力混凝土连续弯梁桥。 二、技术及工程用材(表1)设计荷载:汽车-超20级挂车-120。地震基本烈度:Ⅶ度。温度:极端最高温度43℃,最低温度-13.2℃,常年

平均温度14.6℃。支座沉降:0.015m。 三、桥址区自然概况1.地形、地貌老龙沟二号桥位于山岭重丘区,跨越老龙沟,沟谷呈quot;Vquot;字型,地形起伏很大,山岭陡峭,沟谷幽深,属中条山脉西南段的低山重丘区,地层上部为坡积物,下伏为太古界二长花岗片麻岩,高差达80m。2.气象桥址区属温带大陆性季风气候,一年四季分明,夏季干热多雨,冬季寒冷干燥,春秋季风较温和。年平均气温14.6℃,最冷一月平均气温-1℃,极端最低气温-13.2℃,最热平均气温27.6℃,极端最高气温43℃。最大冻深33cm,最大积雪厚14cm,平均风速3.5m/s,最大风速18m/s,主导风向为东风。3.水文桥梁跨越老龙沟为V字型沟,两边基岩裸露,灌木荆棘丛生,沟壁陡峭,沟底平常只有一股细流流淌,水量受季节控制,雨季洪水时,流量增大,最深水位达1~1.5m,枯水期流量减少,水位只有1.5~0.8m左右。洪水主要由两边区域的山坡降雨汇流而成。4.工程地质桥址区分布的主要是太古界涑水群的变粒岩和后期燕山期泥合花岗岩以及由于热液变质作用形成的花岗片麻岩。其中夹有多层片麻岩。该区处于构造发育区,且中条山前大断裂至今仍在活动。使得岩石风化变质严重、节理、裂隙发育,岩石破碎。 四、主要材料1.混凝土上部结构主桥箱梁采用50号混凝土;防撞护栏采用30号混凝土。下部结构桥墩采用40号混凝土;基础采用25号混凝土;桥头搭板、桥台耳墙、背墙均采用25号混凝土。2.钢材钢筋:直径12mm者,均采用Ⅱ级(20MnSi)热扎螺纹钢筋;直径<12mm者,采用Ⅰ级(A3)光圆钢筋。钢板:应符合GB700-65规定的A3钢材。3.其

预应力混凝土连续梁桥及例子

4.1一般规定 4.1.1 预应力混凝土连续梁桥设计应根据桥长、柱高、地基条件等因素合理分联,每联的长度应以结构合理、方便施工、有利使用为原则,在有条件的情况下应考虑景观要求和桥梁整体布局的一致性。4.1.2主梁应尽量采用一次浇筑混凝土、两端张拉预应力钢筋的施工方式,主梁长度宜控制在120m左右,当确实需要设置长分联时,可以采用分段浇筑混凝土、使用联接器分段张拉预应力钢筋的施工方案,设计时允许在同一截面全部预应力钢筋使用联接器连接,但对主梁截面及配筋应做加强处理。 4.1.4桥梁截面形式可根据桥宽、跨径、施工条件、使用要求等确定为箱形(简称箱梁)或T形(简称T梁)。箱形截面可设计为单箱单室或单箱多室。箱梁翼板长度的确定应以桥面板正、负弯矩相互协调为原则,T梁悬臂长度宜为1.0~1.5m,箱梁悬臂长度宜为1.5~2.5m。当主、引桥结构形式不同时,悬臂板长度宜取得一致。 4.1.5箱梁腹板宽度应由主梁截面抗剪、抗扭、混凝土保护层、预应力钢筋孔道净距和满足混凝土浇筑等要求确定。预应力钢筋净保护层和净距除满足规范外,应考虑纵向普通钢筋和箍筋的占位以及混凝土浇筑的孔隙等因素。箱梁腹板宽度最小值应符合下列要求:

条件腹板宽度Bmin(cm) 腹板内无纵向或竖向后张预应力钢筋时20 腹板内有纵向或竖向后张预应力钢筋之一时30 腹板同时有纵向和竖向后张预应力钢筋时38 4.1.6 悬臂板厚度应视悬臂长度、桥上荷载及防撞护栏碰撞力验算结果而定。根部厚度宜取0.30~0.55m,悬臂板端部厚度一般不应小于0.12m(对有特殊防撞要求的结构,悬臂板端部厚度适当增加,如使用PL2型防撞护栏时悬臂板端部厚度不应小于0.2m)。当悬臂板长度较长时应适当加强悬臂板沿主梁方向钢筋的配置。 4.1.7主梁翼板和顶、底板厚度应根据梁距和箱宽计算确定。同时应满足箱梁顶板厚度不小于0.2m,底板厚度不小于0.18m;T梁顶板厚度不小于0.16m。 1m,端横梁宽度还应考虑伸缩缝预留槽等构造要求。 4.1.9主梁腹板与顶、底板相接处应设1︰5加腋,箱形截面与支点横梁相接处应设渐变段加厚。箱梁截面与跨间横梁相接处应设0.15m 抹角。 4.1.10箱梁底板必须设置排水孔,腹板必须设置通风孔,直径均宜取D=0.1m左右。配有体外预应力钢筋的箱梁应设置检查换索通道。 4.1.11连续梁桥必须设置端横梁及中支点横梁。直线连续箱梁桥跨径小于30m的桥孔可不设跨间横梁;跨径在30~40m之间的桥孔宜设一道跨间横梁;跨径大于40m时宜设三道跨间横梁。曲线连续箱梁桥应根据曲线半径、跨径大小确定跨间横梁个数。连续T梁桥跨径大于

相关文档
最新文档