蛋白质各种定量方法的优缺点的比较

蛋白质各种定量方法的优缺点的比较
蛋白质各种定量方法的优缺点的比较

1.蛋白质的常规检测方法

凯氏(Kjeldahl )定氮法

一种最经典的蛋白质检测方法。

原理:样品中含氮有机化合物与浓硫酸在催化剂作用下共热消化, 含氮有机物分解产生氨, 氨又与硫酸作用变成硫酸铵。然后加碱蒸馏放出氨, 氨用过量的硼酸溶液吸收, 再用盐酸标准溶液滴定求出总氮量换算为蛋白质含量。

优点:范围广泛、测定结果准确、重现性好

缺点:操作复杂费时、试剂消耗量大

双缩脲法

常用于需要快速但并不需要十分精确的蛋白质检测。

原理:双缩脲(NHCONHCONH是3分子的脲经180C左右加热,放出1分子氨后得到的产物。在强碱性溶液中,双缩脲与硫酸铜形成紫色络合物(肽键中的氮原子和铜离子配价结合),称为双缩脲反应。紫色络合物颜色的深浅与蛋白质浓度成正比,因此可用来测定蛋白质含量。

测定范围:1~10mg(有的文献记载为1~20mg)

优点:较快速,干扰物质少,不同蛋白质产生的颜色深浅相近

缺点:①灵敏度差;

② 三羟甲基氨基甲烷、一些氨基酸和EDTA等会干扰该反应。

Folin- 酚试剂法

原理:Folin- 酚法的原理与双缩脲法大体相同,利用蛋白质中的肽键与铜结合产生双缩脲反应。同时也由于Folin- 酚试剂中的磷钼酸- 磷钨酸试剂被蛋白质中的酪氨酸和苯丙氨酸残基还原,产生深蓝色的钼蓝和钨蓝的混合物。在一定的条件下, 蓝色深度与蛋白的量成正比,由此可测定蛋白质的含量。

测定范围:20~250ug

优点:灵敏度高,对水溶性蛋白质含量的测定很有效

缺点:①费时,要精确控制操作时间;

②Folin -酚法试剂的配制比较繁琐,且酚类和柠檬酸、硫酸铵、Tris缓冲液、甘氨

酸、糖类、甘油、还原剂(二硫代苏糖醇、巯基乙醇)、EDTA和脲素均会干扰反应。

紫外吸收法

原理:蛋白质分子中的酪氨酸、苯丙氨酸和色氨酸残基使其在280nm 处具有紫外吸收,其吸光度与蛋白质含量成正比)。此外,蛋白质溶液在280nm的吸光度值与肽键含量成正比,利用一定波长下蛋白质溶液的吸光度值与蛋白质浓度的正比关系可以测定蛋白质含量。

优点:简便、灵敏、快速,不消耗样品,测定后能回收。

缺点:①测定蛋白质含量的准确度较差,专一性差;

②干扰物质多,若样品中含有嘌呤、嘧啶及核酸等能吸收紫外光的物质,会出现较

大的干扰。

定氮法、双缩脲法、Filon- 酚试剂法和紫外吸收法为常用的 4 种古老的经典方法。

1.5 考马斯亮蓝法

原理:染料考马斯亮蓝G-250 在酸性溶液中与蛋白质中的碱性氨基酸(特别是精氨酸)及芳香族氨基酸残基相结合,使染料最大吸收峰的位置由465nm变为595nm,溶液的颜色也由棕黑色变为蓝色,在595nm下测定的吸光度值与蛋白质浓度呈正比。

优点:灵敏度高,测定快速、简便,干扰物质少,不受酚类、游离氨基酸和缓冲剂、络合剂的影响,适合大量样品的测定。

缺点:由于各种蛋白质中的精氨酸和芳香族氨基酸的含量不同有较大的偏

,因此用于不同蛋白质测定时

差。

2. 蛋白质的电化学检测方法

蛋白芯片技术

原理:将各种蛋白质有序地固定于载玻片等各种介质载体上成为检测的芯片,然后用标记特定荧光物质的抗体与芯片上的蛋白质相匹配结合,抗体上的荧光将指示对应的蛋白质及其表达数量。

优点:快速、低成本

电化学免疫传感器

原理:电化学免疫传感器是基于抗原抗体反应,可进行特异性的定量分析的自给式的集成器

件,抗原、抗体是分子识别元件,且与电化学传感元件直接接触,并通过传感元件把某种化学物质浓度信号转变为相应的电信号。

3. 蛋白质的分子生物学检测方法

邻位连接技术

原理:首先将不同的DNA 单链分别与蛋白质识别分子相结合,形成PLA 探针,经过类似酶

联免疫吸附法(ELISA)中的温育过程,2条含有不同DNA序列的PLA探针会同时结合到同一个待测蛋白质分子上。此时,2条探针的DNA尾部便在空间上紧密靠近。在过量的互补连接序列和NDA连接酶的作用下,2条探针DNA尾部的游离5 '端和3' 端与互补序列杂交并发生连接反应,形成一个环状的蛋白质-蛋白识别分子-单链DNA 复合物。该复合物量的多少,完全取决于样

品中待测蛋白质分子的量,故可用于蛋白质的定量分析。

优点:检测灵敏度高、检测特异性强、样品损耗低、操作简单、检测设常见

核酸适体

原理:直接在核酸适体上共价修饰荧光基团,利用它与靶分子结合时荧光信号的变化实现对靶分子的检测。修饰有荧光熄灭基团的核酸适体探针通过静电作用与阳离子荧光共轭聚合物结合,导致后者荧光熄灭,当加入靶蛋

白后,核酸适体探针与其特异性结合,荧光熄灭基团与阳离子荧光共轭聚合物远离,聚合物荧光信号得以恢复。

优点:检测限低,检测线性范围广

电泳法

原理:电泳法,就是指带电荷的供试品(如蛋白质、核苷酸等)在惰性支持介质(如滤纸、醋酸纤维素、琼脂糖凝胶、聚丙烯酰胺凝胶等)中,在电场的作用下,向其对应的电极方向按各自的速度进行泳动,由于各组分之间的移动速度不同,使各组分分离成狭窄的区带,并用适宜的检测方法记录其电泳区带图谱或计算其百分含量。

优点:操作简便、快速、样品用量少、高自动化。

缺点:存在核酸、多糖、脂类等干扰分子,影响检测结果。

二甲酸喹啉(BCA法

原理:在碱性溶液中,蛋白质将Cu2+还原成Cu+, BCA与Cu+结合形成稳定的蓝紫色复合物,

在562nm处具有最大吸收峰,在一定条件下,此复合物的吸光度与蛋白质浓度成正比。

优点:试剂单一,终产物稳定,除对还原性糖类的干扰敏感外,对其他物质包括常用蛋白质

增溶的表面活性物质如SDS等均无影响。

缺点:反应时间长且蛋白质也会发生不可逆的变性。

4. 免疫法

免疫扩散法

原理:①环状免疫单扩散法,将一定量的抗体(一般常用单价抗血清)与含缓冲液的琼脂糖凝胶混匀铺成适当厚度的凝胶板,再把抗原滴进凝胶板的小孔中,在合适的浓度和湿度环境中,经过一定的时间,抗原由小孔向四周扩散(呈辐射状),与已沉匀在琼脂糖凝胶中的抗体相互作用。当抗原扩散到一定的距离,并见抗原抗体的浓度比例合适时,形成浓沉淀环,这一沉淀是一种抗原抗体复合物。抗体的浓度一定,

抗体向琼脂糖凝胶扩散形成的沉淀不再增大,这时沉淀环的大小(面积)与抗原浓度在一定范围内呈线性关系,这样即可定量测定抗原物质- 待测样品中蛋白质的含量。

②双向扩散法:一定浓度的琼脂糖(或琼脂)凝胶是多孔的网状结构,大分子物质可

自由通过,这种分子的扩散作用可使分别在两处的抗原和相应抗体相遇,形成抗原抗体复合物,比例合适时出现沉淀,沉淀的特征与位置取决于抗原分子量的大小、分子结构、扩散系数和浓度。

优点:操作简单缺点:精确度不高

(整理)6种方法测定蛋白质含量.

6种方法测定蛋白质含量 一、微量凯氏(kjeldahl)定氮法 样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。若以甘氨酸为例,其反应式如下: NH2CH2COOH+3H2SO4――2CO2+3SO2+4H2O+NH3(1) 2NH3+H2SO4――(NH4)2 SO4(2) (NH4)2 SO4+2NaOH――2H2O+Na2SO4+2NH3(3) 反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。 为了加速消化,可以加入CuSO4作催化剂,K2SO4以提高溶液的沸点。收集氨可用硼酸溶液,滴定则用强酸。实验和计算方法这里从略。 计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白 氮即得。如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。 二、双缩脲法(biuret法) (一)实验原理 双缩脲(NH3CONHCONH3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与CuSO4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。

紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1-10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、tris缓冲液和某些氨基酸等。 此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。 (二)试剂与器材 1.试剂: (1)标准蛋白质溶液:用标准的结晶牛血清清蛋白(bsa)或标准酪蛋白,配制成10mg/ml的标准蛋白溶液,可用bsa浓度1mg/ml的a280为0.66来校正其纯度。如有需要,标准蛋白质还可预先用微量凯氏定氮法测定蛋白氮含量,计算出其纯度,再根据其纯度,称量配制成标准蛋白质溶液。牛血清清蛋白用H2O 或0.9%NaCl配制,酪蛋白用0.05NaOH配制。 (2)双缩脲试剂:称以1.50克硫酸铜(CuSO4?5H2O)和6.0克酒石酸钾钠(KNaC4H4O6?4H2O),用500毫升水溶解,在搅拌下加入300毫升10% NaOH溶液,用水稀释到1升,贮存于塑料瓶中(或内壁涂以石蜡的瓶中)。此试剂可长期保存。若贮存瓶中有黑色沉淀出现,则需要重新配制。 2.器材: 可见光分光光度计、大试管15支、旋涡混合器等。 (三)操作方法 1.标准曲线的测定:取12支试管分两组,分别加入0,0.2,0.4,0.6,0.8,1.0毫升的标准蛋白质溶液,用水补足到1毫升,然后加入4毫升双缩脲试剂。充分摇匀后,在室温(20~25℃)下放置30分

几种测蛋白含量方法的比较

蛋白质含量测定方法的比较及肽含量的测定 (一)蛋白质测定方法的比较(原理、优缺点)蛋白质含量测定法,目前包括定氮法、双缩脲法、福林酚法(Lowry 法)和紫 外吸收法、考马斯亮蓝法。其中考马斯亮蓝和福林酚法灵敏度最高,比紫外吸收法灵敏10~20 倍,比双缩脲法灵敏100倍以上。定氮法较复杂,但准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。在选择方法时应该考虑:(1)实验测定要求的灵敏度和精确度;(2)蛋白质的性质;(3)溶液中存在的干扰物质;(4)测定花费时间。蛋白质含量测定法,目前包括定氮法、双缩脲法、福林酚法(Lowry 法)和紫外吸收法、考马斯亮蓝法。其中考马斯亮蓝和福林酚法灵敏度最高,比紫外吸收法灵敏10~20 倍,比双缩脲法灵敏100倍以上。定氮法较复杂,但准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。在选择方法时应该考虑:(1)实验测定要求的灵敏度和精确度;(2)蛋白质的性质;(3)溶液中存在的干扰物质;(4)测定花费时间。 1 微量凯氏定氮法(GB 5009.5-2010) 1.1原理样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。 1.2操作方法样品经前处理、炭化、消化、蒸馏、滴定等主要步骤 1.3特点准确度较高,适用于0.2~ I.Omg氮,误差为土2%;操作复杂费时,整个过程需要耗时8~10h,试剂消耗量大。,测得结果为总氮含量,包括蛋白氮和非蛋白氮含 量;适用范围广,几乎所有样品均可用此方法。 2双缩脲比色法

蛋白质定量检测方法

Bradford法蛋白定量(Bradford Protein Assay ) Bradford Assay is a rapid and accurate method commonly used to determine the total protein concentration of a sample. The assay is based on the observation that the absorbance maximum for an acidic solution of Coomassie Brilliant Blue G-250 shifts from 465 nm to 595 nm when binding to protein occurs. Both hydrophobic and ionic interactions stabilize the anionic form of the dye, causing a visible color change. Within the linear range of the assay (~5-25 mcg/mL), the more protein present, the more Coomassie binds. Reference Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. (1976) 72, 248-254. 考马斯亮蓝染色法(Bradford法)测定蛋白质含量 原理 1976年Bradford建立了用考马斯亮蓝G250与蛋白质结合的原理,迅速、敏感的定量测定蛋白质的方法。染料与蛋白质结合后引起染料最大吸收的改变,从465nm变为595nm,光吸收增加。蛋白质-染料复合物具有高的消光系数,因此大大提高了蛋白质测定的灵敏度,最低检出量为1μg蛋白。染料与蛋白质的结合是很迅速的过程,大约需2min,结合物的颜色在1h内是稳定的。一些阳离子,如K+,Na+,Mg2+,(NH4)2SO4,乙醇等物质不干扰测定,而大量的去污剂如TritonX100,SDS等严重干扰测定,少量的去污剂可通过用适当的对照而消除。由于染色法简单迅速,干扰物质少,灵敏度高,现已广泛应用于蛋白质含量的测定。 操作 一、标准方法 取含10~100μg蛋白质溶液于小试管中,用双蒸水或缓冲液调体积到0.1mL,然后加入5mL蛋白试剂,充分振荡混合,2min后于595nm测定光吸收值。以0.1mL 双蒸水或缓冲液及5mL蛋白试剂作为空白对照。 二、微量蛋白分析法 取含1~10μg蛋白质溶液,用双蒸水调体积到0.8mL,加0.2mL蛋白试剂,充分振荡混合,2min后于595nm测定光吸收值,以0.8mL双蒸水及0.2mL蛋白试剂作为空白对照。用不同浓度的蛋白质溶液作标准曲线,以蛋白质浓度为横坐

测量蛋白质三种方法测定原理

测定蛋白质含量的三种方法原理 院系:xxx 专业:xxx 姓名:xxx 学号:xxx

测量蛋白质三种方法测定原理 【摘要】了解测量蛋白质三种测定方法的基本原理和优缺点。三种方法为考马斯亮蓝法(Bradford法),Folin-酚试剂法(Lowry法)和紫外吸收法。 【关键词】蛋白质含量测定考马斯亮蓝法 Folin-酚试剂法紫外吸收法 蛋白质含量测定法,是生物化学研究中最常用、最基本的分析方法之一目前常用的有两种古老的经典方法,即Folin-酚试剂法(Lowry法)和紫外吸收法。另外还有一种近十年才普遍使用起来的新的测定法,即考马斯亮蓝法(Bradford 法)。其中Bradford法和Lowry法灵敏度最高,比紫外吸收法灵敏10~20倍。。每种测定法都不是完美无缺的,都有其优缺点。在选择方法时应考虑:①实验对测定所要求的灵敏度和精确度;②蛋白质的性质;③溶液中存在的干扰物质;④测定所要花费的时间。简单列表为: 考马斯亮蓝法 双缩脲法(Biuret法)和Folin—酚试剂法(Lowry法)的明显缺点和许多限制,促使科学家们去寻找更好的蛋白质溶液测定的方法。 1976年由Bradford建立的考马斯亮兰法(Bradford法),是根据蛋白质与染料相结合的原理设计的。这种蛋白质测定法具有超过其他几种方法的突出优点,因而正在得到广泛的应用。这一方法是目前灵敏度最高的蛋白质测定法。它是一种蛋白定量法 (一)实验原理 考马斯亮蓝G-250(Coomassie G-250)是一种甲基取代的三苯基甲烷,分子中磺酸基的蓝色染料,在465nm处有最大吸收值。考马斯亮蓝G-250能与蛋白质通过范得华相互作用形成蛋白质—考马斯亮蓝复合物蓝色溶液,引起该染料的最大吸收λmax的位置发生红移,在595nm处有最大吸收值。由于蛋白质—考马斯亮蓝复合物在595nm处的光吸收远高于考马斯亮蓝在465nm处的光吸收,因此,可大大地提高蛋白质的测定灵敏度。蛋白质—考马斯亮蓝复合物溶液颜色的深浅与蛋白质的浓度成正比。利用溶液颜色的差异进行比色测定,适合于蛋白质类的定量分析,尤其适合于稀有蛋白质的微量分析。 (二)Bradford法的突出优点是: (1)灵敏度高,据估计比Lowry法约高四倍,其最低蛋白质检测量可达1mg。这

蛋白质定量的五种方法

蛋白质定量的五种方法 令狐采学 方法一双缩脲法测定蛋白质浓度 [目的]掌握双缩脲法测定蛋白质浓度的原理和标准曲线的绘制。 [原理] 双缩脲(NH2CONHCONH2)在碱性溶液中与硫酸铜反应生成紫红色化合物,称为双缩脲反应,蛋白质分子中含有许多肽键(-CONH-)在碱性溶液中也能与Cu2+反应产生紫红色化合物。在一定范围内,其颜色的深浅与蛋白质浓度成正比。因此,可以利用比色法测定蛋白质浓度。 双缩脲法是测定蛋白质浓度的常用方法之一。操作简便、迅速、受蛋白质种类性质的影响较小,但灵敏度较差,而且特异性不高。除-CONH-有此反应外,-CONH2、-CH2NH2、-CS-NH2等基团也有此反应。 [操作] 取中试管7支,按下表操作。

各管混匀、放置37℃水浴中保温20分钟。用540nm比色,以空白管调零点,读取各管光密度值。 [计算] (一)在座标纸上以光密度为纵座标,以蛋白质浓度为横座标绘制标准曲线。 (二)从标准曲线中查出待测血清样本的蛋白质浓度(g/L),并求出人血清样本的蛋白质 浓度。 (三)再从标准管中选择一管与测定管光密度相接近者,求出人血清样本的蛋白质浓度(g/L)。 [器材] 中试管7支,l毫升刻度吸管3支,10毫升刻度吸管1支,水浴箱,721型分光光度计、坐标纸。 [试剂] (—)6N NaOH:称取240g氢氧化钠溶于1000ml水中。 (二)双缩脲试剂:称取CuS04·5H2O 3.0克,酒石酸钾9.0 克和碘化钾5.0克,分别溶解后混匀,加6N NaOH l00ml,最后加

水至1000ml,贮于棕色瓶中,避光,可长期保存。如有暗红色沉淀出现,即不能使用。 (三)0.9%NaCl。 (四)蛋白质标准液(10mg/m1),称取干燥的牛血清蛋白100.0mg,以少量生理盐水溶解后倒入l0ml容量瓶中,淋洗称量瓶数次,一并倒入容量瓶中,最后加生理盐水至刻度线,或用凯氏定氮法测定血清蛋白质含量,然后稀释成l0mg/m1作为蛋白质标准液。 (五)待测血清样本:将人血清或动物血清用生理盐水稀释10倍后再测定。 方案二Folin-酚试剂法(Lowry法)测定蛋白质浓度 [目的]掌握Lowry法测定蛋白质浓度的原理。 [原理] 蛋白质在碱性溶液中其肽键与Cu2+螯合,形成蛋白质一铜复合物,此复合物使酚试剂的磷钼酸还原,产生蓝色化合物,在一定条件下,利用蓝色深浅与蛋白质浓度的线性关系作标准曲线并测定样品中蛋白质的浓度。 [操作] 取试管7支、编号、按下表操作:

蛋白质的测定方法比较

蛋白质的测定方法比较 一、分光光度法 1、测定原理: 食品中的蛋白质在催化加热条件下被分解,分解产生的氨与硫酸结合生成硫酸铵,在pH 4.8 的乙酸钠-乙酸缓冲溶液中与乙酰丙酮和甲醛反应生成黄色的3,5-二乙酰-2,6-二甲基-1,4-二氢化吡啶化合物。在波长400 nm 下测定吸光度值,与标准系列比较定量,结果乘以换算系数,即为蛋白质含量。 2、测定步骤: ①试样消解:称取经粉碎混匀过40目筛的固体试样0.1g~0.5g(精确0.001g)、半固体试样0.2g~1g(精确至0.001g)或液体试样1g~5g(精确0.001g),移入干燥的100 mL 或250 mL 定氮瓶中,加入0.1 g硫酸铜、1 g 硫酸钾及5 mL 硫酸,摇匀后于瓶口放一小漏斗,将定氮瓶以45°角斜支于有小孔的石棉网上。缓慢加热,待内容物全部炭化,泡沫完全停止后,加强火力,并保持瓶内液体微沸,至液体呈蓝绿色澄清透明后,再继续加热半小时。取下放冷,慢慢加入20 mL 水,放冷后移入50 mL 或100 mL容量瓶中,并用少量水洗定氮瓶,洗液并入容量瓶中,再加水至刻度,混匀备用。按同一方法做试剂空白试验。 ②试样溶液的制备:吸取2.00 mL~5.00 mL 试样或试剂空白消化液于50 mL 或100 mL 容量瓶内,加1 滴~2 滴对硝基苯酚指示剂溶液,摇匀后滴加氢氧化钠溶液中和至黄色,再滴加乙酸溶液至溶液无色,用水稀释至刻度,混匀。 ③标准曲线的绘制:吸取0.00 mL、0.05 mL、0.10 mL、0.20 mL、0.40 mL、0.60 mL、0.80 mL 和1.00 mL 氨氮标准使用溶液(相当于0.00μg、5.00μg、10.0μg 、20.0μg、40.0μg、60.0μg、80.0μg 和100.0μg 氮),分别置于10 mL 比色管中。加4.0 mL 乙酸钠-乙酸缓冲溶液及4.0 mL 显色剂,加水稀释至刻度,混匀。置于100 ℃水浴中加热15 min。取出用水冷却至室温后,移入1 cm 比色杯内,以零管为参比,于波长400 nm 处测量吸光度值,根据标准各点吸光度值绘制标准曲线或计算线性回归方程。 ④试样测定:吸取0.50 mL~2.00 mL(约相当于氮<100μg)试样溶液和同量的试剂空白溶液,分别于10 mL 比色管中。以下按上述中“加4 mL 乙酸钠-乙酸

常见蛋白质测定方法的总结与比较

分析化学 结课作业 常见蛋白质测定方法的总结与比较 材料科学与技术学院 林化13-1班 刘旺衢 130534106

常见蛋白质测定方法的总结与比较 刘旺衢 (北京林业大学材料科学与技术学院林化13-1班 130534106,10083) 蛋白质是构成生物体细胞组织的重要成分。食物中的蛋白质是人体中氮的唯一来源。具有糖类和脂肪不可替代的作用。蛋白质与营养代谢、细胞结构、酶、激素、病毒、免疫、物质运转、遗传等密切相关,是对人类最重要的物质之一。准确精密的测定蛋白质,关乎人类的生产、生活、生存。目前测定蛋白质含量的方法有多种,如凯氏定氮法、紫外吸收法、双缩脲法、考马斯亮蓝染色法、酚试剂法等几种方法,下面本文将总结比较这五种蛋白质的测定方法。 一、凯氏定氮法 凯氏定氮法是测定化合物或混合物中总氮量的一种方法。即在有催化剂的条件下,用浓硫酸消化样品将有机氮都转变成无机铵盐,然后在碱性条件下将铵盐转化为氨,随水蒸气馏出并为过量的酸液吸收,再以标准酸滴定,就可计算出样品中的氮量。由于蛋白质含氮量比较恒定,可由其氮量计算蛋白质含量,故此法是经典的蛋白质定量方法。蛋白质是含氮的有机化合物。蛋白质与硫酸和催化剂一同加热消化,使蛋白质分解,分解的氨与硫酸结合生成硫酸铵。然后碱化蒸馏使氨游离,用硼酸吸收后再以硫酸或盐酸标准溶液滴定,根据酸的消耗量乘以换算系数计算蛋白质含量,即含氮量*6.25=蛋白含量。 凯氏定氮法具有灵敏度高, 样品用量少,最低可检出0.05mg氮;精密度、准确度高,平行误差一般小于0.5%;应用范围广,适用于一切形态的食品与生物样品;仪器装置简单,试剂廉价的优点。 但也存在操作比较繁琐费时,特别是蒸馏定氮过程的效率低,不利于大批样品的测定;定氮的结果既包括有机氮,也包括无机氮,有机氮中除蛋白氮外,还包括非蛋白氮,测定的结果只能是粗蛋白质的含量;在蛋白质氨基酸构成有差异的

三种定量蛋白质组方法比较

A comparative study on the three quantitative methods frequently used in proteomics, 2D DIGE (difference gel electrophoresis), cICAT (cleavable isotope-coded affinity tags) and iTRAQ (isobaric tags for relative and absolute quantification), was carried out. DIGE and cICAT are familiar techniques used in gel- and LC-based quantitative proteomics, respectively. iTRAQ is a new LC-based technique which is gradually gaining in popularity. A systematic comparison among these quantitative methods has not been reported. In this study, we conducted well-designed comparisons using a six-protein mixture, a reconstituted protein mixture (BSA spiked into human plasma devoid of(缺乏)six abundant proteins), and complex HCT-116 cell lysates as the samples. All three techniques yielded quantitative results with reasonable accuracy when the six-protein or the reconstituted protein mixture was used. In DIGE, accurate quantification was sometimes compromised due to comigration or partial comigration of proteins. The iTRAQ method is more susceptible to errors in precursor ion isolation, which could be manifested with increasing sample complexity. The quantification sensitivity of each method was estimated by the number of peptides detected for each protein. In this regard, the global-tagging iTRAQ technique was more sensitive than the cysteine-specific cICAT method, which in turn was as sensitive as, if not more sensitive than, the DIGE technique. Protein profiling on HCT-116 and HCT-116 p53 ?/? cell lysates displayed limited overlapping among proteins identified by the three methods, suggesting the complementary nature of these methods. Keywords: protein quantification ? DIGE ? cICAT ? iTRAQ ? 2D gel ? LC-MALDI TOF/TOF DIGE:荧光差异凝胶电泳 CICAT:同位素亲和标记 iTRAQ:同位素标记相对和绝对定量

蛋白质含量测定方法比较

蛋白质含量测定主要有五种方法,分别是凯式定氮法、双缩脲法、紫外吸收法、酚试剂法和考马斯亮蓝法。这五种方法各有特点,优缺点明确。 凯氏定氮法 蛋白质是含氮的化合物。食品与浓硫酸和催化剂共同加热消化,使蛋白质分解,产生的氨与硫酸结合生成硫酸铵,留在消化液中,然后加碱蒸馏使氨游离,用硼酸吸收后,再用盐酸标准溶液滴定,根据酸的消耗量来乘以蛋白质换算系数,即得蛋白质含量。因为食品中除蛋白质外,还含有其它含氮物质,所以此蛋白质称为粗蛋白。 优点:重现性好,是目前分析有机化合物含氮量常用的方法,是一种蛋白质测定的经典方法, ,测试结果准确。 缺点:操作比较繁复,费时,试剂消耗量大。且此法测定的蛋白质含量实际上包括了核酸,生物碱,含氮类脂,卟啉,含氮色素等非蛋白质含氮化合物。双缩脲定氮法 双缩脲(NH3CONHCONH3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与CuSO4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1~10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、Tris缓冲液和某些氨基酸等。 优点:较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋

白质测定。 缺点:不太灵敏;不同蛋白质显色相似。 紫外吸收定氮法 双缩脲法是传统的分光光度法测定蛋白质的方法,当含有两个或者两个以上肽键的物质和碱性的硫酸铜反应时,形成紫色的络合物,这个颜色产物是肽键中的氮原子和铜离子配价结合的结果。蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质。形成颜色产物的量取决于蛋白质的浓度。实际测定时,必须预先用标准蛋白质溶液制作一个标准校正曲线,通常用牛血清白蛋白水溶液做蛋白质标准溶液。不同浓度的标准蛋白质溶液加入双缩脲试剂后,反应生成的颜色产物用紫外-可见分光光度计在540nm 波长下测定吸光度,以双缩脲试剂加缓冲或水作空白对照。然后将测得的值分别对蛋白浓度(mg/ ml) 作图,得标准曲线。未知蛋白样品用双缩脲试剂做同样处理,根据测得吸光度值在标准曲线上直接查得未知蛋白质样品中得蛋白质浓度。 优点:对各种蛋白质呈色基本相同;特异性和准确度好,精密度好;呈色稳定性好,试剂单一,方法简便。快速,不消耗样品,测定后仍能回收使用。 缺点:准确度较差,干扰物质多,在用标准曲线法测定蛋白质含量时,对那些与标准蛋白质中酪氨酸和色氨酸含量差异大的蛋白质,有一定的误差。故该法适于用测定与标准蛋白质氨基酸组成相似的蛋白质。若样品中含有嘌呤、嘧啶及核酸等吸收紫外光的物质,会出现较大的干扰。核酸的干扰可以通过查校正表,再进行计算的方法,加以适当的校正。但是因为不同的蛋白质和核酸的紫外吸收是不相同的,虽然经过校正,测定的结果还是存在一定的误差。此外,进行紫外

蛋白质各种定量方法的优缺点的比较

1.蛋白质的常规检测方法 凯氏(Kjeldahl )定氮法 一种最经典的蛋白质检测方法。 原理:样品中含氮有机化合物与浓硫酸在催化剂作用下共热消化, 含氮有机物分解产生氨, 氨又与硫酸作用变成硫酸铵。然后加碱蒸馏放出氨, 氨用过量的硼酸溶液吸收, 再用盐酸标准溶液滴定求出总氮量换算为蛋白质含量。 优点:范围广泛、测定结果准确、重现性好 缺点:操作复杂费时、试剂消耗量大 双缩脲法 常用于需要快速但并不需要十分精确的蛋白质检测。 原理:双缩脲(NHCONHCONH是3分子的脲经180C左右加热,放出1分子氨后得到的产物。在强碱性溶液中,双缩脲与硫酸铜形成紫色络合物(肽键中的氮原子和铜离子配价结合),称为双缩脲反应。紫色络合物颜色的深浅与蛋白质浓度成正比,因此可用来测定蛋白质含量。 测定范围:1~10mg(有的文献记载为1~20mg) 优点:较快速,干扰物质少,不同蛋白质产生的颜色深浅相近 缺点:①灵敏度差; ② 三羟甲基氨基甲烷、一些氨基酸和EDTA等会干扰该反应。 Folin- 酚试剂法 原理:Folin- 酚法的原理与双缩脲法大体相同,利用蛋白质中的肽键与铜结合产生双缩脲反应。同时也由于Folin- 酚试剂中的磷钼酸- 磷钨酸试剂被蛋白质中的酪氨酸和苯丙氨酸残基还原,产生深蓝色的钼蓝和钨蓝的混合物。在一定的条件下, 蓝色深度与蛋白的量成正比,由此可测定蛋白质的含量。

测定范围:20~250ug 优点:灵敏度高,对水溶性蛋白质含量的测定很有效 缺点:①费时,要精确控制操作时间; ②Folin -酚法试剂的配制比较繁琐,且酚类和柠檬酸、硫酸铵、Tris缓冲液、甘氨 酸、糖类、甘油、还原剂(二硫代苏糖醇、巯基乙醇)、EDTA和脲素均会干扰反应。 紫外吸收法 原理:蛋白质分子中的酪氨酸、苯丙氨酸和色氨酸残基使其在280nm 处具有紫外吸收,其吸光度与蛋白质含量成正比)。此外,蛋白质溶液在280nm的吸光度值与肽键含量成正比,利用一定波长下蛋白质溶液的吸光度值与蛋白质浓度的正比关系可以测定蛋白质含量。 优点:简便、灵敏、快速,不消耗样品,测定后能回收。 缺点:①测定蛋白质含量的准确度较差,专一性差; ②干扰物质多,若样品中含有嘌呤、嘧啶及核酸等能吸收紫外光的物质,会出现较 大的干扰。 定氮法、双缩脲法、Filon- 酚试剂法和紫外吸收法为常用的 4 种古老的经典方法。 1.5 考马斯亮蓝法 原理:染料考马斯亮蓝G-250 在酸性溶液中与蛋白质中的碱性氨基酸(特别是精氨酸)及芳香族氨基酸残基相结合,使染料最大吸收峰的位置由465nm变为595nm,溶液的颜色也由棕黑色变为蓝色,在595nm下测定的吸光度值与蛋白质浓度呈正比。 优点:灵敏度高,测定快速、简便,干扰物质少,不受酚类、游离氨基酸和缓冲剂、络合剂的影响,适合大量样品的测定。 缺点:由于各种蛋白质中的精氨酸和芳香族氨基酸的含量不同有较大的偏 ,因此用于不同蛋白质测定时 差。

蛋白质含量测定方法汇总

实验七蛋白质含量测定 测定蛋白质的定量方法有很多,目前常用的有染料法,双缩脲(Biuret)法,酚试剂法(Lowry)法及紫外吸收法。 [目的要求] 1.掌握测定蛋白质的含量基本方法。 2.了解染料法、双缩脲法、Lowry法和紫外吸收法测定原理。 一、染料法 [实验原理] 在酸性溶液中染料考马斯亮蓝G-250与蛋白质结合,此时考马斯亮蓝G-250颜色从红色变为蓝色,吸收高峰从460nm移至595nm。利用这个原理可以测定蛋白质含量。 该法近年在某些方面有取代经典的Lowry法趋势,因为它操作简单,反应时间短,染料-蛋白质颜色稳定,抗干扰性强。本法的缺点是:对于那些与标准蛋白氨基酸组成有较大差异的蛋白质,有一定误差,因为不同的蛋白质与染料的结合是不同的,故该法适合测定与标准蛋白质氨基酸组成相近的蛋白质。 [器材] 吸量管;试管;721型分光光度计 [试剂] 1.标准牛血清白蛋白溶液:配成0.1mg/ml的溶液。 2.待测蛋白质溶液。 3.染料溶液:称取考马斯亮蓝G-250 0.1g溶于95%的酒精50ml,再加入85%的浓磷酸100ml,用水稀释至1000ml,混匀备用。 [操作步骤] 按上表分别向各支试管内加入各种试剂,充分混匀,5min后在595nm波长处以0号管调零,测定各管吸光度值(A)。以吸光度值为纵坐标,蛋白质浓度为横坐标绘制标准曲线。 2.样品测定:

取1ml样品溶液(约含25~250微克蛋白质),加入染料溶液5ml混匀,5min后测定其595nm吸光度值,对照标准曲线求得蛋白质浓度。 二、双缩脲(Biuret)法测定蛋白质含量 [实验原理] 在碱性溶液中,双缩脲(H2N-CO-NH-CO-NH2)与二价铜离子作用形成紫红色的络合物,这一反应称双缩脲反应。凡分子中含二个或二个以上酰胺基(—CO-NH2),或与此相似的基团[如—CH2-NH2,—CS-NH2,—C(NH)NH2]的任何化合物,无论这类基团直接相连还是通过一个碳或氮原子间接相连,均可发生上述反应。蛋白质分子含有众多肽键(—CO-NH—),可发生双缩脲反应,且呈色强度在一定浓度范围内与肽键数量即与蛋白质含量成正比,可用比色法测定蛋白含量。测定范围为1~10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、Tris缓冲液和某些氨基酸等。 此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于快速,但并不需要十分精确的蛋白质测定。 [试剂] 1.双缩脲试剂:取CuSO4·5H20(c.P.)1.5g和酒石酸钾钠(c.P.)6.0g以少量蒸馏水溶解,再加2.5mol/L NaOH溶液300ml,KI 1.0g,然后加水至1000ml。棕色瓶中避光保存。长期放置后若有暗红色沉淀出现,即不能使用。 2.标准蛋白质溶液:用标准的结晶牛血清清蛋白(BSA)或标准酪蛋白,配制成10g/L的标准蛋白溶液,可用BSA浓度1g/L的A280为0.66来校正其纯度。如有需要,标准蛋白质还可预先用微量凯氏定氮法测定蛋白氮含量,计算出其纯度,再根据其纯度,称量配制成标准蛋白质溶液。牛血清清蛋白用H2O 或0.9%NaCl配制,酪蛋白用0.05mol/L NaOH配制。 [器材] 1.试管:15×150mm 试管7只; 2.1ml,5ml移液管; 3.坐标纸; 4.721分光光度计。 [操作步骤]

蛋白质检测方法汇总

蛋白质检测方法汇总 2010-04-26 12:00:38| 分类:蛋白电泳| 标签:|字号大中小订阅 本文引用自啸月天狼《蛋白质检测方法汇总》 更多相关资料请查看https://www.360docs.net/doc/4418951035.html, 蛋白质检测方法汇总 本实验的目的是学会各种蛋白质含量的测定方法。 了解各种测定方法的基本原理和优缺点。 蛋白质含量测定法,是生物化学研究中最常用、最基本的分析方法之一。目前常用的有四种古老的经典方法,即定氮法,双缩尿法(Biuret法)、Folin-酚试剂法(Lowry法)和紫外吸收法。另外还有一种近十年才普遍使用起来的新的测定法,即考马斯亮蓝法(Bradford 法)。其中Bradford法和Lowry法灵敏度最高,比紫外吸收法灵敏10~20倍,比Biuret法灵敏100倍以上。定氮法虽然比较复杂,但较准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。 值得注意的是,这后四种方法并不能在任何条件下适用于任何形式的蛋白质,因为一种蛋白质溶液用这四种方法测定,有可能得出四种不同的结果。每种测定法都不是完美无缺的,都有其优缺点。 在选择方法时应考虑: ①实验对测定所要求的灵敏度和精确度; ②蛋白质的性质; ③溶液中存在的干扰物质; ④测定所要花费的时间。 考马斯亮蓝法(Bradford法),由于其突出的优点,正得到越来越广泛的应用。 一、微量凯氏(Kjeldahl)定氮法 样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。若以甘氨酸为例,其反应式如下: CH2COOH | + 3H2SO4--------- 2CO2 + 3SO2 +4H2O +NH3 (1) NH2 2NH3 + H2SO4 -------- ---(NH4)2SO4 (2) (NH4)2SO4 + 2NaOH ----------- 2H2O +Na2SO4 + 2NH3 (3) 反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。 为了加速消化,可以加入CuSO4作催化剂,K2SO4以提高溶液的沸点。收集氨可用硼酸溶液,滴定则用强酸。实验和计算方法这里从略。计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白氮即得。如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。 五种蛋白质测定方法比较如下: 方法灵敏度时间原理干扰物质说明 凯氏定氮法(Kjedahl法)灵敏度低,适用于0.2~ 1.0mg氮,误差为±2%费时8~10小时将蛋白氮转化为氨,用酸吸收后滴定非蛋白氮(可用三氯乙酸沉淀蛋白质而分离)用于标准蛋白质含量的准确测定;干扰少;费时太长 双缩脲法(Biuret法)灵敏度低1~20mg 中速20~30分钟多肽键+碱性Cu2+?紫色络合物硫酸铵;Tris缓冲液;某些氨基酸用于快速测定,但不太灵敏;不

定量蛋白质组学的方法有哪些 (2).doc

定量蛋白质组学的方法有哪些? 1背景和意义 从生命活动的直接执行者——蛋白质的角度研究生命现象和规律(特别是疾病防治和病 理研究)已成为研究生命科学的主要手段。而这些研究往往离不开对细胞、组织或器官中含有蛋白质种类和表达量的研究。对处不同时期、不同条件下蛋白质表达水平变化的研究,识别功能模块和路径,监控疾病的生物标志物,这些研究都需要对蛋白质进行鉴定和定量。生物质谱技术的出现和不断成熟为蛋白质差异表达分析提供了更可靠、动态范围更广的研究手段。基于质谱技术,科学家们不断开发出新的定量蛋白质组学方法,来了解细胞、组织或生物体的整体蛋白质动力学。 2方法学介绍 目前较主流的定量蛋白质组学方法有 5 种,分别是Label-free 、 iTRAQ 、 SILAC 、 MRM(MRM HR) 、和 SWATH 。简述如下: 2.1Label-free Label-free 定量,即非标记的定量蛋白质组学,不需要对比较样本做特定标记处理,只 需要比较特定肽段 /蛋白在不同样品间的色谱质谱响应信号便可得到样品间蛋白表达量的变 化,通常用于分析大规模蛋白鉴定和定量时所产生的质谱数据。 Label-free 操作简单,可以做任意样本的总蛋白质差异定量,但对实验操作的稳定性、 重复性要求较高,准确性也较标记定量差。因此,Label-free 技术适合于大样本量的定量比较,以及对无法用标记定量实现的实验设计。 2.2 iTRAQ iTRAQ 定量是目前定量蛋白质组学应用很广泛的技术,该技术的核心原理是多肽标记 和定量,将多肽的含量转化为 114、115、116 和 117 同位素的含量 (或 113、114、115、116、117、118、119 和121 的 8 标记 ),从而简化了定量的复杂性,最终通过多肽定量值回归到蛋 白的定量值,从而最终测定出不同样本之间蛋白质的差异。 iTRAQ定量不依赖样本,可检测出较低丰度蛋白,胞浆蛋白、膜蛋白、核蛋白、胞外 蛋白等,且定量准确,可同时对8 个样本进行分析,并可同时得出鉴定和定量的结果,特别 适用于采用多种处理方式或来自多个处理时间的样本的差异蛋白分析。金开瑞质谱平台应用 iTRAQ 定量技术,可鉴定多达 6000 种蛋白(以人 HepG2 为例),重复样品间的蛋白表达量 相关性可达到0.95 以上。 2.3SILAC SILAC 定量的基本原理是分别用天然同位素(轻型 )或稳定同位素(中性或重型 )标记的必 需氨基酸取代细胞培养基中相应氨基酸,细胞经 5-6 个倍增周期后,稳定同位素标记的氨基 酸完全掺入到细胞新合成的蛋白质中替代了原有氨基酸。不同标记细胞的裂解蛋白按细胞数或蛋 白量等比例混合,经分离、纯化后进行质谱鉴定,根据一级质谱图中两个同位素型肽段的面积 比较进行相对定量,属于体内代谢标记法。 SILAC 属于体内标记技术,更接近样品真实状态,标记效率高达100% ,且标记效果稳 1

几种蛋白质含量测定方法的比较

几种蛋白质含量测定方法的比较 【摘要】:蛋白质含量测定方法,是生物化学研究中最常用、最基本的分析之一。目前常 用的方法有凯氏定氮法、双缩脲法(Biuret)、紫外吸收法、考马斯亮蓝法(Bradford),Folin —酚试剂法(Lowry)杜马斯燃烧法。其中Bradford 法灵敏度颇高,比紫外吸收法灵敏10~20 倍,比Biuret法灵敏100 倍以上。凯氏定氮法虽然比较复杂,但较准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。过去Folin—酚试剂法法是应用最广泛的一种方法,由于其试剂乙的配制较为困难(现在已可以在本公司订购),近年来逐渐被考马斯亮兰法所取代。测定农产品中全氮的凯氏定氮法在许多国家已被杜马斯然烧定氮法所代替,杜马斯燃烧法是基于在高温下(大约 900 ℃),通过控制进氧量、氧化消解样品的原理而进行氮测定的。这6种方法并不能在任何条件下适用于任何形式的蛋白质,每种方法都有其优缺点,在选择方法时应考虑:⑴实验对测定所要求的灵敏度和精确度;⑵蛋白质的性质;⑶溶液中存在的干扰物质;⑷测定所要花费的时间 【关键词】:凯氏定氮法双缩脲法紫外吸收法考马斯亮蓝法 Folin—酚试剂法杜马斯燃烧法 一、凯氏定氮法 1.1原理 凯氏定氮法测定蛋白质分为样品消化、蒸馏、吸收和滴定4 个过程。其原理是样品中含氮有机化合物与浓硫酸在催化剂作用下共热消化,含氮有机物分解产生氨,氨又与硫酸作用,变成硫酸铵。然后加碱蒸馏放出氨, 氨用过量的硼酸溶液吸收,再用盐酸标准溶液滴定求出总氮量换算为蛋白质含量。 1.2特点 凯氏定氮法是目前分析有机化合物含氮量常用的方法,是测定试样中总有机氮最准确和最简单的方法之一,被国际国内作为法定的标准检验方法。凯氏定氮法样品的最佳消化条件为硫酸铜2.50 g, 硫酸钾0.10 g,浓硫酸4.00 mL;硫酸铜的用量为影响消化时间的主要因素,硫酸钾和浓硫酸用量为第二和第三主要因素;用此最佳条件做实验, 消化时间仅为12 min;与其他硫酸铜、硫酸钾、浓硫酸用量方法对比,该法所需消化时间最短,试剂用量减少,可降低实验成本,也降低了对环境的污染。 凯氏定氮法适用范围广泛,测定结果准确,重现性好,但操作复杂费时,试剂消耗量大。若采用模块式消化炉代替传统的消化装置, 可同时测定几份样品,节省时间,提高了工作效率,适用于批量蛋白质的测定,具有准确、快速、简便、低耗、稳定的优点。 二、双缩脲法(Biuret ) 2.1原理 双缩脲(NH3CONHCONH3)是两个分子脲经180 ℃左右加热,放出1 个分子氨后得到的产物。在强碱性溶液中,双缩脲与CuSO4 形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能够以1 个中间碳原子相连的肽键,这类化合物都有双缩脲反应。紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。

蛋白质含量的测定

蛋白质含量测定法 蛋白质含量测定法,是生物化学研究中最常用、最基本的分析方法之一。目前常用的有四种古老的经典方法,即定氮法,双缩尿法(Biuret法)、Folin-酚试剂法(Lowry 法)和紫外吸收法。另外还有一种近十年才普遍使用起来的新的测定法,即考马斯亮蓝法(Bradford法)。其中Bradford法和Lowry法灵敏度最高,比紫外吸收法灵敏10~20倍,比Biuret法灵敏100倍以上。定氮法虽然比较复杂,但较准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。 值得注意的是,这后四种方法并不能在任何条件下适用于任何形式的蛋白质,因为一种蛋白质溶液用这四种方法测定,有可能得出四种不同的结果。每种测定法都不是完美无缺的,都有其优缺点。在选择方法时应考虑:①实验对测定所要求的灵敏度和精确度;②蛋白质的性质;③溶液中存在的干扰物质;④测定所要花费的时间。 考马斯亮蓝法(Bradford法),由于其突出的优点,正得到越来越广泛的应用。 一、微量凯氏(Kjeldahl)定氮法 样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。若以甘氨酸为例,其反应式如下: CH2COOH |+ 3H2SO4 →2CO2 + 3SO2 +4H2O +NH3 (1) NH2 170

2NH3 + H2SO4→(NH4)2SO4(2) (NH4)2SO4 + 2NaOH →2H2O +Na2SO4 + 2NH3(3) 反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。 为了加速消化,可以加入CuSO4作催化剂,K2SO4以提高溶液的沸点。收集氨可用硼酸溶液,滴定则用强酸。实验和计算方法这里从略。 计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白氮即得。如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。 五种蛋白质测定方法比较如下: 171

粗蛋白测定方法

粗蛋白测定方法—凯式定氮法 粗蛋白crude protein;crude matter(DM)食品、饲料中一种蛋白质含量的度量。不仅包括蛋白质这一物质,它涵盖的范围更广,包括含氮的全部物质,及真蛋白质和含氮物(氮化物)。换句话说,粗蛋白是食品、饲料中含氮化合物的总称,食物中以大豆的粗蛋白含量最高,肉类次之。所以说,粗蛋白是一种既包括真蛋白又包括非蛋白的含氮化合物,后者又可能包括游离氨基酸、尿素、硝酸盐和氨等。然而,不同蛋白质的氨基酸组成不同,其氮含量不同,总氮量换算成蛋白质的系数也不同。总之,粗蛋白是食品、饲料中一种蛋白质含量的度量。我们可以通过粗蛋白测定仪即凯氏定氮仪来测量粗蛋白的含量,测量步骤如:蛋白质含氮量约为16%(这已通过多次试验得出),再用凯氏法测出总氮量,再乘以 6.25就可求得粗蛋白的含量。 一、实验原理 蛋白质是由碳、氢、氧、氮及少量硫元素组成。这些元素在蛋白质中含量都有一定比例关系,其中含碳50~55%、氢6~8%、氧20~23%、氮15~17%和硫0.3~2.5%。此外在某些蛋白质中还含有微量的磷、铁、锌、铜和钼等元素。 由于氮元素是蛋白质区别于糖和脂肪的特征,而且绝大多数蛋白质的氮元素含量相当接近,一般恒定在15~17%,平均值为16%左右,因此在蛋白质的定量分析中,每测得1克氮就相当于6.25克蛋白质。所以只要测定出生物样品中的含氮量,再乘以6.25,就可以计算出样品中的蛋白质含量。含氮有机物与浓硫酸共热,被氧化成二氧化碳和水,而氮则转变成氨,氮进一步与硫酸作用生成硫酸铵。由大分子分解成小分子的过程通常称为”消化”。为了加速消化,通常需要加入硫酸钾或硫酸钠以提高消化液的沸点(290℃→400℃),加入硫酸铜作为催化剂,过氧化氢作为氧化剂,以促进反应的进行。反应(1)(2)在凯氏烧瓶内完成,反应(3)在凯氏蒸馏装置中进行,其特点是将蒸汽发生器、蒸馏器及冷凝器三个部分融为一体。由于蒸汽发生器体积小,节省能源,本仪器使用方便,效果良好。硫酸铵与浓碱作用可游离出氨,借水蒸气将产生的氨蒸馏到一定浓度的硼酸溶液中,硼酸吸收氨后使溶液中的H+浓度降低,然后用标准无机酸滴定,直至恢复溶液中原来H+浓度为止,最后根据所用标准酸的量计算出待测物中总氮量。 二、仪器和试剂

相关文档
最新文档