深度学习概念及其在图像处理领域中的应用

深度学习概念及其在图像处理领域中的应用
深度学习概念及其在图像处理领域中的应用

一、概述

在当今飞速发展的信息时代,数字图像作为一种常见且有效的信息载体已渗透到社会生活的每一个角落,致使我们对图像处理的需求也日益增长。与此同时身处于大数据时代,数字图像产生的速度和规模也是非常惊人的,所以针对图像信息处理任务也相应地被要求具有高效率,高性能和智能化的特点。特征表达是图像处理的关键,传统的特征设计需要人工完成,但这种方式过程复杂并对设计者的技术有很高的要求,所以自动化特征设计成了高效图像处理的迫切需求。深度学习是新兴的机器学习研究领域,旨在研究如何从数据中自动地提取多层次特征表示,其核心思想是通过数据驱动的方式,采用一系列的非线性变换,从原始数据中提取多层次多角度特征,从而使获得的特征具有更强的泛化能力和表达能力,这恰好满足高效图像处理的需求。为满足图像处理问题的各类需求,以卷积神经网络为代表的深度学习理论不断取得突破,本文结合深度学习基本原理,对其在图像处理领域的算法,模型甚至方法的演化和创新进行重点论述。

二、深度学习

(一)深度学习的背景神经网络

在二十世纪五十年代被提出,然而碍于当时网络训练算法理论欠缺、训练样本不足和电脑的计算能力不佳,神经网络发展遇到瓶颈。随着云计算、大数据时代的到来,计算能力的大幅提高可缓解训练的低效性,训练数据的大幅增加则可降低过拟合的风险,再结合无监督逐层训练策略和早已提出的BP算法,使得训练很深层的神经网络变得可能,因此深度学习这个概念开始被人们广泛关注。典型的深度学习模型就是很深层的神经网络。多隐层堆叠,每一层都对上一层的输出进行处理,从而把最初始的输入与输出目标之间不太密切的联系,转化为更为密切的表示,使得原来仅基于最后一层输出映射难以完成的任务变为可能,这种学习模式也可理解为自动的“特征学习”。

(二)卷积神经网络架构

图像识别是深度学习最早尝试的领域,其中卷积神经网络发挥了巨大的作用。一般卷积神经网络由卷积层,池化层,全连接层这三种类型的层堆叠组成,每个层都有其独有的特点和作用:1.卷积层:提取特征,输入特征图X与K个二位滤波器进行卷积运算输出K个二维特征图。采用卷积运算有两点好处:

(1)卷积操作可以提取相邻像素之间的局部关系;(2)卷积操作对图像上的平移、旋转和尺度等变换具有一定的鲁棒性。

2.池化层:处理卷积层输出的结果,对输入的特征图进行压缩,一方面使特征图变小,简化网络计算复杂度;另一方面精简特征图,提取主要特征,降低特征表达维度的同时,也对平移和扭曲等较小形变具有鲁棒性。

3.全连接层:连接所有特征,将输出值送给分类器。

(三)基于神经网络的优化方法

随着神经网络模型层数越来越深,训练数据集越来越大,模型结构越来越复杂,网络训练往往会遇到过拟合、梯度消失或爆炸等问题。本节介绍几种优化神经网络的方法:

1.Dropout:Hinton等人提出了“Dropout”优化技术,旨在深度学习网络的训练过程中,对神经网络单元按照一定的概率将其暂时从网络中丢弃。注意是暂时,所以在使用随机梯度下降方法训练网络时,每一个小批量数据都在训练不同的网络。Dropout方法破坏了节点之间的相关性,使得网络能学到更有泛化性的特征,有效防止过拟合。

2.批量标准化:BN算法由Google在2015年提出,用来训练深层次神经网络。BN算法可以用来规范化某些层或者所有层的输入,从而固定每一层输入信号的均值与方差,有效防止梯度爆炸或消失问题。

三、深度学习在图像领域的应用

(一)图像识别

深度学习技术最先是被应用到图像识别方向,并取得了引人瞩目的效果。Alex等人[1]提出的AlexNet网络是第一个用于图像识别的深层卷积神经网络,后续一系列图像识别方面的深度学习发展都是以此为基础,相比于传统的CNN结构,AlexNet网络变得更深更宽,该网络由5个卷积层和3个全连接层依次叠加组成。AlexNet网络确立了深度学习(深度卷积网络)在图像识别的统治地位,也定义了深度学习模型在图像处理领域的一般性主体架构——前馈卷积神经网络:卷积层与池化层多样化相互堆叠作为特征提取器,随后连接多层全连接层,作为分类器,信息流方向固定而单一。接下来本文将从深度学习在图像识别方向的主体架构的局部修改和主体变化两方面论述深度学习的发展。

1.网络结构的局部修改

VGGNet网络[2]是AlexNet网络更深更宽的演变。相比于AlexNet网络,VGGNet网络局部采用更多的小型卷积核串联叠加替换一个大型的卷积核。这样做不仅取得同样的卷积效果,还添加了更多的非线性操作,使得网络能提取到更加丰富的特征,同时参数量还减少了。VGGNet网络证明了网络层次越深提取的特征越丰富图像识别效果越好。NIN网络则在卷积核上做了改变,将单一的线性卷积核换成多层感知机(MLP)。

CNN高层特征其实是低层特征通过多种运算的组合,多非线性运算的组合能使高层特征更具泛化性。由于MLP卷积核的存在,NIN网络的一次卷积操作相当于多个卷积层操作的结果,所以NIN网络能以较少的层数达到更深网络的图像识别效果。GoogleInceptionNet 网络,被称为InceptionV1网络。它借鉴NIN网络的思想改变了卷积层,新的卷积层也被称作InceptionModule。卷积层被分成了四条并行的卷积操作线路,上层的特征输入经过四条线路操作后通过一个聚合操作合并作为输出输入到下一层。

Module中大量使用1*1的卷积操作不仅可以跨通道组织信息,提高网络的表达能力,还可以对输出通道进行升维和降维,简化计算过程。InceptionV1网络在获得丰富特征信息的同时,也增强了对不同输入尺度的适应性。以上所提及的用于图像识别的深度学习模型尽管为了获得更好的特征表达能力,增加了网络深度或者复杂了卷积层的操作,但这些都是一些局部结构的改变,网络的主体架构——前馈卷积神经网络未变,特征图的流向仍是单一的,一层接着一层,这必然导致随着网络深度的增加靠近输出的深层网络难以充分获取浅层网络的特征图,图像识别准确率趋于平稳后会出现Degradation[3]现象,反向传播时浅层网络收不到深层网络传来的梯度,网络模型难以训练,这些问题都影响了更深的深度学习模型发展。

2.网络结构的主体变化

为了解决上一节的问题,He等人[3]提出了ResNet网络模型,借鉴了HighwayNetworks 通过门阀控制信息流的思想,改变了特征信息的流向,第L层的输出不再单一的影响L+1的输出还影响L+2层的输出,所以每两层可以组成一个残差学习块,残差块变相的改变了学习目标。整个ResNet网络由多个残差块堆叠,中间再夹杂着池化层组成,训练过程中只需学习输入和输出的差别,保护了信息完整性,简化了学习目标和难度。

ResNet网络的思想对图像识别领域的深度学习技术影响深远,具有很强的推广性。DenseNet网络[4]就是这种思想的发展与增强,类似于残差块,DenseNet网络有稠密块。每一层的输出都是之后所有层的输入,并且数据聚合采用的是拼接而非ResNet中的相加,保证每一组输入特征图维度一致,这种方法更加促进了网络中信息的交流。

DenseNet网络缓解了梯度消失问题,加强了特征传播,极大的减少了参数量。上述两种图像识别的深度学习模型都改变了特征信息流的传输方向,可跨层次传输,不再是单一的前馈卷积神经网络,使得图像识别准确率相比于前馈卷积神经网络越来越好,这也符合人类思维判定的方式,结合多方面多层次的概括信息比单方面详细信息能更好的识别一个物体。

(二)图像取证

数字图像处理教学大纲(2014新版)

数字图像处理 课程编码:3073009223 课程名称:数字图像处理 总学分: 2 总学时:32 (讲课28,实验4) 课程英文名称:Digital Image Processing 先修课程:概率论与数理统计、线性代数、C++程序设计 适用专业:自动化专业等 一、课程性质、地位和任务 数字图像处理课程是自动化专业的专业选修课。本课程着重于培养学生解决智能化检测与控制中应用问题的初步能力,为在计算机视觉、模式识别等领域从事研究与开发打下坚实的理论基础。主要任务是学习数字图像处理的基本概念、基本原理、实现方法和实用技术,并能应用这些基本方法开发数字图像处理系统,为学习图像处理新方法奠定理论基础。 二、教学目标及要求 1.了解图像处理的概念及图像处理系统组成。 2.掌握数字图像处理中的灰度变换和空间滤波的各种方法。 3.了解图像变换,主要是离散和快速傅里叶变换等的原理及性质。 4.理解图像复原与重建技术中空间域和频域滤波的各种方法。 5. 理解解彩色图像的基础概念、模型和处理方法。 6. 了解形态学图像处理技术。 7. 了解图像分割的基本概念和方法。 三、教学内容及安排 第一章:绪论(2学时) 教学目标:了解数字图像处理的基本概念,发展历史,应用领域和研究内容。通过大量的实例讲解数字图像处理的应用领域;了解数字图像处理的基本步骤;了解图像处理系统的组成。 重点难点:数字图像处理基本步骤和图像处理系统的各组成部分构成。 1.1 什么是数字图像处理 1.2 数字图像处理的起源

1.3.1 伽马射线成像 1.3.2 X射线成像 1.3.3 紫外波段成像 1.3.4 可见光及红外波段成像 1.3.5 微波波段成像 1.3.6 无线电波成像 1.3.7 使用其他成像方式的例子 1.4 数字图像处理的基本步骤 1.5 图像处理系统的组成 第二章:数字图像基础(4学时) 教学目标:了解视觉感知要素;了解几种常用的图像获取方法;掌握图像的数字化过程及其图像分辨率之间的关系;掌握像素间的联系的概念;了解数字图像处理中的常用数学工具。 重点难点:要求重点掌握图像数字化过程及图像中像素的联系。 2.1 视觉感知要素(1学时) 2.1.1 人眼的构造 2.1.2 眼镜中图像的形成 2.1.3 亮度适应和辨别 2.2 光和电磁波谱 2.3 图像感知和获取(1学时) 2.3.1 用单个传感器获取图像 2.3.2 用条带传感器获取图像 2.3.3 用传感器阵列获取图像 2.3.4 简单的图像形成模型 2.4 图像取样和量化(1学时) 2.4.1 取样和量化的基本概念 2.4.2 数字图像表示 2.4.3 空间和灰度级分辨率 2.4.4 图像内插 2.5 像素间的一些基本关系(1学时) 2.5.1 相邻像素 2.5.2 临接性、连通性、区域和边界 2.5.3 距离度量 2.6 数字图像处理中所用数学工具的介绍 2.6.1 阵列与矩阵操作

基于小波变换的图像处理.

基于小波变换的数字图像处理 摘要:本文先介绍了小波分析的基本理论,为图像处理模型的构建奠定了基础,在此基础上提出了小波分析在图像压缩,图像去噪,图像融合,图像增强等图像处理方面的应用,最后在MATLAB环境下进行仿真,验证了小波变化在图像处理方面的优势。 关键词:小波分析;图像压缩;图像去噪;图像融合;图像增强 引言 数字图像处理是利用计算机对科学研究和生产中出现的数字化可视化图像 信息进行处理,作为信息技术的一个重要领域受到了高度广泛的重视。数字化图像处理的今天,人们为图像建立数学模型并对图像特征给出各种描述,设计算子,优化处理等。迄今为止,研究数字图像处理应用中数学问题的理论越来越多,包括概率统计、调和分析、线性系统和偏微分方程等。 小波分析,作为一种新的数学分析工具,是泛函分析、傅立叶分析、样条分析、调和分析以及数值分析理论的完美结合,所以小波分析具有良好性质和实际应用背景,被广泛应用于计算机视觉、图像处理以及目标检测等领域,并在理论和方法上取得了重大进展,小波分析在图像处理及其相关领域所发挥的作用也越来越大。在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor变换,时频分析,小波变换等。但短时傅立叶分析只能在一个分辨率上进行,所以对很多应用来说不够精确,存在很大的缺陷。而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整。 本文介绍了小波变换的基本理论,并介绍了一些常用的小波函数,然后研究了小波分析在图像处理中的应用,包括图像压缩,图像去噪,图像融合,图像增强等,本文重点在图像去噪,最后用Matlab进行了仿真[1]。

图像处理基础概念

图像处理基础概念

2.2 图像基本概念 2.2.1 像素与灰度 像素和分辨率在计算机中,有两个大家都熟悉的概念:像素(pixel)和分辨率(resolution)。我们将图像进行采样的单位称为像素,像素是是组成图像的最基本元素,是数字图像显示的基本单位。像素是一个逻辑尺寸单位,比如一台计算机,其屏幕大小为17英寸,可以用800行*1280列个像素(格子)来显示桌面的图像,也可以用768行*1024列来显示桌面图像,不过显示的图像的清晰度会有差别。在计算机编程中,由像素组成的图像也通常叫“位图”或“光栅图像”。而分辨率狭义的是指显示器所能显示的像素的多少,当用户设置桌面分辨率为1280*800时,表示的意思就是在这个屏幕大小的物理尺寸上,显示器所显示的图像由800行*1280列个像素组成;可以看出,在同样大小的物理尺寸上,分辨率越高的图像,其像素所表示的物理尺寸越小,画面也就越精细,整个图像看起来也就越清晰。广义的分辨率是指对一个物体成像数字时化时进行采样的物理尺寸的大小,比如我们嫦娥一号卫星拍摄的月亮的照片,其分辨率是个很大的数(通常称分辨率很低),如几千平方公里,意思是说,在拍摄的月球的照片上,一个像素点相当于月球上几千公里见方。 2.2.2 采样量化 将空间上连续的图像变换成离散点的操作称为采样。采样间隔和采样孔径的大小是两个很重要的参数。当对图像进行实际的抽样时,怎样选择各抽样点的间隔是个非常重要的问题。关于这一点,图像包含何种程度的细微的浓淡变化,取决于希望忠实反映图像的程度。 经采样图像被分割成空间上离散的像素,但其灰度是连续的,还不能用计算机进行处理。将像素灰度转换成离散的整数值的过程叫量化。表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。一幅数字图像中不同灰度级的个数称为灰度级数,用G表示。灰度级数就代表一幅数字图像的层次。图像数据的实际层次越多视觉效果就越好。一般来说,G=2g,g就是表示存储图像像素灰度值所需的比特位数。若一幅数字图像的量化灰度级数G=256=28级,灰度取值范围一般是0~255的整数,由于用8bit就能表示灰度图像像素的灰度值,因此常称8 bit 量化。从视觉效果来看,采用大于或等于6比特位量化的灰度图像,视觉上就能令人满意。一幅大小为M×N、灰度级数为G的图像所需的存储空间,即图像的数据量,大小为M×N×g (bit)。 图2.4 分辨率与图像清晰度图2.5 量化等级与图像清晰度

利用臭氧深度处理污水并进行尾气回收利用的技术实例

利用臭氧深度处理污水并进行尾气回收利用的技术实例 金 敦 (上海市政工程设计研究总院(集团)有限公司,上海 200092) 摘要 臭氧工艺在污水处理行业是一种先进、高效的处理方法,在市政污水处理中,可利用臭氧的强氧化性,脱色、去除COD、消毒等。受制于处理成本的因素,臭氧工艺在市政污水处理行业使用不多。如果将臭氧工艺产生的尾气予以回收利用,则可以降低臭氧工艺的处理成本,提升该工艺的竞争力。通过对即墨市污水处理厂臭氧尾气回收利用设计实例的介绍,分析了臭氧尾气回收利用技术适用情况与应用前景。 关键词 污水处理厂 臭氧 尾气回收利用 收集 增压 输送 控制  0 前言 在污水处理行业中,臭氧工艺因其处理成本较高,仅在小规模工业废水处理中有所应用,而市政污水处理应用较少。 随着城市经济发展,进入市政污水处理厂的污水组成也日趋复杂,纯粹以处理生活污水为主的污水处理厂少之又少,大部分污水处理厂还需纳入部分工业废水一并处理,如果纳入的工业废水中含有印染、医药、化工等难降解的废水,采用常规的处理手段难以处理;与此同时,国家对水域生态环境保护也日益重视,各地污水处理厂尾水水质标准日益提高,目前,排入主要流域的尾水水质基本都要求达到《城镇污水处理厂污染物排放标准》(GB 18918—2002)中的一级A标准,对尾水COD、色度、粪大肠菌群的达标排放都提出了更高的要求。在这样的背景下,臭氧工艺在市政污水处理的应用也将逐步增多。 在市政污水处理中,可利用臭氧的强氧化性,在深度处理阶段进行脱色、去除COD(尤其是可溶性不可降解COD,亦称nbsCOD)、消毒等。大多数情况下,臭氧工艺产生的尾气———氧气都白白排出,按臭氧浓度10wt%计,用于制备臭氧的90%氧气最终将浪费。运行成本是臭氧工艺在污水处理中应用的一个瓶颈,如果能对这部分尾气予以利用,将极大降低臭氧工艺的处理成本,充分发挥臭氧工艺在市政污水处理行业的作用,提升该工艺的竞争力。 本文结合青岛即墨市污水处理厂扩建升级工程的实例,介绍了污水处理厂臭氧尾气回收利用的技术。在即墨市污水处理厂扩建升级工程中,臭氧氧化后产生的尾气———氧气,予以回收利用,用于生物反应池的供氧,即发挥了臭氧氧化工艺的效用,又降低了臭氧氧化工艺的处理成本,为臭氧尾气回收利用的应用提供了参考和借鉴。 1 工程概况 即墨市污水处理厂一、二期工程处理规模为12万m3/d,采用A2/C氧化沟工艺,经生物处理、加氯消毒后排放,设计出水水质执行《城镇污水处理厂污染物排放标准》(GB 18918—2002)中的二级标准。随着当地污水量的增长及当地环保部门对流域水环境保护的要求,需对污水处理厂实施扩建升级工程。扩建规模3万m3/d,扩建后污水处理厂处理规模达到15万m3/d,出水水质执行《城镇污水处理厂污染物排放标准》(GB 18918—2002)中的一级A标准。 即墨市污水处理厂进水成分非常复杂,近50%的污水为工业废水,且印染废水的比重较大,进水色度较高(达到200~300倍),透光率低,即墨市污水处理厂一、二期工程采用二氧化氯的消毒工艺,对脱色效果不明显,感观较差,出水色度指标较高。为解决脱色问题,污水处理厂也尝试使用了多种脱色剂,但由于污水处理厂进水成分复杂,单一的脱色剂并不能有效的去除各类成分的发色基团,虽然脱色剂投加后对尾水脱色有一定效果,但是效果并不明显。因此,出水标准提高后,采用常规处理手段,色度很难稳定达标。除了色度问题以外,大量的工业废 水

图像处理基础知识

网络域名及其管理 【教材分析】 本节课是浙江教育出版社出版的普通高中课程标准实验教科书《信息技术基础》第三章第三节的内容。教材内容分图像的几个基本概念和图像的编辑加工两部分。基本概念有:像素、分辨率、位图和矢量图、颜色、图形与图像、文件格式。其中“像素和分辨率”旨在让学生了解描述数字图像的基本概念;“位图和矢量图,图形和图像”重在要求学生分清这两组概念;“颜色”阐述了用计算机三原色描述和存储数字图像颜色的原理,学生应该学会计算一幅图像的存储空间。“文件格式和图像的编辑加工”旨在让学生了解常见的图像文件格式及简单的图像编辑加工。因此不作为教学的重点。由此可见,本节课内容重在概念原理和技术深层思想的探析,为学生今后进一步学习图像的编辑加工奠定了基础。同时,这部分知识也是对第一章“信息的编码”学习的一个承接,在内容上强化了多媒体信息的编码与二进制编码的对应关系。当然,在这些概念的学习中都体现了“由简单到复杂”这一人类认识事物的基本规律和“逐步细化”这一信息技术解决问题的基本思路,都体现了问题解决与“技术更好地为人服务”的基本思想。 【学情分析】 本节课的学习对象为高一学生。通过第一章的学习,他们已经能够掌握信息的编码及二进制的相关知识。但调查发现,对于具体的图像在计算机市如何表示的,学生还只是有一个大概的了解,知道是用二进制表示的。作为必修课的学习,学生对于信息技术不仅要“知其然”,更重要的是“知其所以然”,也即要理解相关技术原理,技术思想以及研究问题的方法。而理解的目的则是为了更好联系日常生活,更好的的应用。基于上述分析,引领他们探究数字图像的基础知识、训练解决信息技术问题的方法。 【课时安排】一课时 【教学目标】 (一)知识与技能 1.了解像素掌握图像分辨率的概念。 2.掌握数字图像颜色的表示方法及存储空间的大小。 3. 了解位图和矢量图,图像和图形的不同。 4. 了解图像文件的文件格式。 5. 在操作体验的基础上理解像素及颜色的表示。 (二)过程与方法 通过教师讲解、自主探究、讨论交流和操作实践,掌握像素、分辨率、数字图像的颜色的表示方式,进而能够运用这些知识分析、解决现实生活中碰到的实际问题。 (三)情感态度与价值观 结合ps图像的讲解训练,培养灌输学生的法制观念提高学生的网络道德水平。 【教学重点】 分辨率的定义及现实生活中的分辨率的使用;。 【教学难点】 数字图像颜色的表示及存储方法 【教学策略】

小波变换在图像处理中的应用毕业论文概述

本科生毕业设计(论文) 题目:小波变换在图像处理中的应用姓名: 学号: 系别: 专业: 年级: 指导教师: 年月日

小波变换在图像处理中的应用 独创性声明 本毕业设计(论文)是我个人在导师指导下完成的。文中引用他人研究成果的部分已在标注中说明;其他同志对本设计(论文)的启发和贡献均已在谢辞中体现;其它内容及成果为本人独立完成。特此声明。 论文作者签名:日期: 关于论文使用授权的说明 本人完全了解华侨大学厦门工学院有关保留、使用学位论文的规定,即:学院有权保留送交论文的印刷本、复印件和电子版本,允许论文被查阅和借阅;学院可以公布论文的全部或部分内容,可以采用影印、缩印、数字化或其他复制手段保存论文。保密的论文在解密后应遵守此规定。 论文作者签名:指导教师签名:日期:

华侨大学厦门工学院毕业设计(论文) 小波变换在图像处理中的应用 摘要 近年来小波变换技术已广泛地应用于图像处理中。小波分析的基本理论包括小波包分析、连续小波变换、离散小波变换。小波变换是一种新的多分辨分析的方法,具有多分辨率和时频局部化的特性,可以同时进行时域和频域分析。因此不但能对图像提供较精确的时域定位,也能提供较精确的频域定位。经过小波变换的图像具有方向选择、多分辨率分析的特点。小波变换基于这些良好特性,在数字图像处理领域中取得良好的实际效果。本文基于小波变换研究了图像压缩、图像增强、图像去噪、图像融合、图像分解、图像重构等方法,并利用MATLAB进行仿真验证,最后,用GUI实现了人机交互,简单、易操作、美观。 关键词:小波变换,图像处理,增强,压缩,融合,去噪,分解,重构

小波变换在图像处理中的应用 The Application of Wavelet Transform in Image Processing Abstract In recent years, the technique of wavelet transform has been widely used in image processing. The basic theory of wavelet analysis, wavelet packet analysis including the continuous wavelet transform, discrete wavelet transform. Wavelet transform is a multiresolution analysis is a new method, has the characteristics of multi-resolution and time-frequency localization, both in time domain and frequency domain analysis. It can not only provide accurate positioning of the image in time domain, frequency domain can provide accurate positioning. After image wavelet transform has the characteristic of direction, multi resolution analysis. Based on the good properties of wavelet transform, obtain good actual effect in the field of digital image processing. In this paper, based on the wavelet transform of the image compression, image enhancement, image denoising, image fusion, image decomposition, image reconstruction method, and simulated by MATLAB software, finally, using GUI to achieve human-computer interaction, simple, easy operation, beautiful appearance. Keywords: Wavelet Transform, Image Processing, Enhancement, Compression, Denoising, Fusion,Decompo- sition, Reconstruction

臭氧在废水处理中的应用

Cu-丝光沸石/臭氧催化—坡缕石联用工艺降解染料污水的初步研究 中国非金属矿工业导刊.2004年第5期 赵波1,尹琳1,卢保奇2,李真1,邹婷婷2,郑意春1 (1.南京大学地球科学系内生金属矿床成矿作用国家重点实验室,南京210093; 2.上海大学材料科学与工程学院,上海201800) [摘要]对于生物难降解性有机染料,利用臭氧化加催化方法进行处理的效果较好。但由于臭氧能与许多有机物或官能团发生反应,生成有机小分子酸,使后处理的水体酸度大大增强,造成二次污染。本文主要针对这一问题将粘土矿物凹凸棒石和Cu-丝光沸石固体催化剂进行矿物复配。一方面提高臭氧化效果;另一方面调节臭氧化过程中的水体pH值。 O3/BAC工艺应用于城市污水深度处理 中国给水排水2004Vol.20 蒋以元1,杨敏1,张昱1,邓荣森2,周军3,淳二4(1.中科院生态环境研究中心环境水质学国家重点实验室,北京100085;2.重庆大学城市建设与环境工程学院,重庆400045;3.北京城市排水集团有限责任公司,北京100061;4.三菱电机株式会社先端技术综合研究所,日本国) 摘要:为使再生水适合不同用途,对经过混凝沉淀和砂滤处理的再生水进行了臭氧—生物活性炭的深度处理。在臭氧消耗量和反应时间分别为5mg/L和10min,BAC空床停留时间(EBCT)为10min的条件下,臭氧—生物活性炭工艺对CODMn、DOC、UV254和色度平均去除率为32.4%、29.2%、48.6%和80.1%,出水CODMn、DOC、UV254和色度的平均值分别为3.3mg/L、4.0mg/L、0.05cm-1和2.0倍;臭氧生物活性炭工艺出水SDI<4,从而满足了反渗透系统的进水要求。

臭氧氧化法深度处理城市污水研究

臭氧氧化法深度处理城市污水研究 【摘要】臭氧属于一种强氧化剂,其有较强的氧化能力,仅次于天然元素氟的氧化能力。我们利用臭氧进行污水处理,不仅可以除掉水的臭味和脱色的效果,还可以杀菌进行消毒并降酚和降解COD、BOD等有机物的功效。运用以臭氧氧化法进行城市污水的深度处理的试验,主要是通过调整不同的反应时间进行调控臭氧投加量。实验的结果表明了臭氧氧化法对去除城市污水中的各类细菌数量、总大肠菌的群数、TOC、UV254和色度等可以达到预期的处理效果。 【关键词】臭氧氧化法;深度处理;城市污水 就世界的水资源状况来说,我国是水资源短缺比较严重的国家,因此进行城市污水的回收利用可以适度的缓解水资源短缺所带来的困境。但是现实问题是我国的多数城市污水处理厂所处理的水还不能直接发挥作用,还需要进一步的做深度处理。臭氧在杀菌、消毒、除臭、脱色、氧化难降解有机物等方面的作用较为显著,在各种水处理中运用越来越广泛。采用臭氧氧化法深度处理城市污水是一种较好的污水处理措施,能达到回收和利用水的水质标准的要求。 1 城市污水处理现状及常用方法 1.1 污水处理现状 从上世纪70年代开始我国就开始对城市污水的净化问题进行研究。这可以说是污水处理的第一阶段,主要重视引进国外的先进技术和设备,并与国外进行各项的技术交流,开始探索适合我国国情工程和技术,这为以后的全面的发展城市污水处理奠定了一定基础。从上世纪80年代开始,我国的城市排水设施技术发展较快,多数城市对污水的处理达到了较高的层次。到1995年前后,我国城市排水系统的建设已经达到了较完备的层次,按实际的发挥的作用的面积计算,城市排水管网的建设普及率已经达到70%以上。到2000年以后,全国大面积的投入污水处理设施,加强了城市污水处理工程的建设,就2000年投资额达到了150亿元。现阶段的城市污水处理的处理设施多数已经废旧。但更新设备和更新技术方面需要的运行资金严重缺乏,污水处理的工艺技术开始有所改进,由过去仅仅注重去除有机物,到有效的除掉磷和脱氮功能。 1.2 常用的污水处理方法 常用的污水处理方法有活性污泥法、生物膜法和氧化法。城市生活污水的处理多数情况下运用活性污泥法,目前它是世界各国常用的的一种生物处理流程,不仅能够达到较好的水质的优点;而且有较强的处理能力。另外就是出水生物膜法,其在污水生物处理的发展和应用中过程中也占有一定的地位。生物膜法多是用于从废水中去除溶解性有机污染物,其主要的特点是微生物附着在介质“滤料”表面,形成生物膜,污水同生物膜接触后,溶解的有机污染物被微生物吸附转化为H2O、CO2、NH3和微生物细胞物质,最后达到净化污水的效果。 2 臭氧氧化法污水深度处理 2.1 臭氧氧化法污水深度处理特点 臭氧在水溶液中的强烈氧化作用,主要是由臭氧在水中分解的中间产物OH 基及HO2基引起的。很多有机物都容易与臭氧发生反应。臭氧对水溶性染料、蛋白质、氨基酸、有机氨及不饱和化合物、酚和芳香族衍生物以及杂环化合物、木质素、腐殖质等有机物有强烈的氧化降解作用;还有强烈的杀菌、消毒作用。 2.2 臭氧氧化法深度处理污水实验

小波分析在图像处理中的作用

任务书 1本课题研究目的 (1)了解图像变换的意义和手段 (2) 熟悉离散余弦变换的基本性质 (3)热练掌握FFT的方法反应用 (4)通过本实验掌握利用MATLAB编程实现数字图像的离散余弦变换。通过本次课程设计,掌握如何学习一门语言,如何进行资料查阅搜集,如何自己解决问题等方法,养成良好的学习习惯。扩展理论知识,培养综合设计能力。 2本课题完成任务(重点、难点) (1)熟悉并掌握离散余弦变换 (2)了解离散余弦在图像处理中的作用 (3)通过实验了解小波分析在图像处理中的应用 (4)用MATLAB实现离散余弦变换仿真 3本课题实施要求

摘要 基于离散余弦变换的图像压缩算法,其基本思想是在频域对信号进行分解,去除信号点之间的相关性,并找出重要系数,滤掉次要系数,以达到压缩的效果,但该方法在处理过程中并不能提供时域的信息,在比较关心时域特性的时候显得无能为力。 但是这种应用的需求是很广泛的,比如遥感测控图像,要求在整幅图像有很高压缩比的同时,对热点部分的图像要有较高的分辨率,单纯的频域分析的方法显然不能达到这个要求,虽然可以通过对图像进行分块分解,然后对每块作用不同的阀值或掩码来达到这个要求,但分块大小相对固定,有失灵活性。 在这个方面,小波分析就优越的多,由于小波分析固有的时频特性,可以在时频两个方向对系数进行处理,这样就可以对感兴趣的部分提供不同的压缩精度。

第一章:课题意义 小波变换是对人们熟知的傅里叶变换与短时(窗口)傅里叶变换的一个重大突破,为信号分析、图像处理、量子物理及其它非线性科学的研究领域带来革命性的影响,是20世纪公认的最辉煌的科学成就之一。图像处理的目的,就是对数字化后的图像信息进行某些运算或处理,以提高图像的质量或达到人们所要求的预期结果。图像处理的任务是对未加工的图像进行一定处理而成为所需的图像。小波在图像处理上的应用思路主要采用将空间或者时间域上的图像信号(数据)变换到小波域上,成为多层次的小波系数,根据小波基的特性,分析小波系数特点,针对不同需求,结合常规的图像处理方法(算法)或提出更符合小波分析的新方法(算法)来处理小波系数,再对处理后的小波系数进行反变换(逆变换),将得到所需的目标图像。

臭氧在自来水厂深度处理工程中的应用

臭氧在自来水厂深度处理工程中的应用(图) 信息来源:本站搜集更新时间:2006-12-12 16:49:14 (一)自来水厂深度处理工程介绍 水厂供水水源为大运河支流,全长约10km,河宽41m,最大水深2.72m,平均流速达0.025m/s,近年来受有机污染的程度逐年加大,水中的氨氮、色度、亚硝酸盐、耗氧量及铁、锰的含量偏高,原水浊度25~272.6NTU,色度6~40,铁0.23~2.80mg/L,氨氮0.5~5.0,CODMn3.28~8.90。按地面水环境质量标准(GB3838--2002)评价属Ⅳ~Ⅴ类,为微污染原水。 为了降低出厂水色度、氨氮及有机污染物的含量,水厂投入了大量资金及人力进行技改,增加生产及管理的技术含量,克服种种不利因素,基本保证了供水水质综合合格率达标,但随着在常规处理工艺中氯的大量投加,增加了出厂水中三氯甲烷等卤化烃和致癌变物质等的含量。水中的异味严重,色、嗅、味不能满足要求。 随着人们生活水平的提高,市民对饮用水质量的要求相应提高。国家已颁布新的《生活饮用水卫生规范》,因此针对日益恶化的原水水质,采用新颖的预处理工艺、臭氧活性炭深度处理工艺,是改善出厂水水质的必要手段。 水厂深度处理工程设计规模为15×104m3/d,结合原有8万吨常规处理,二期扩建7万吨包括常规处理,处理对象为微污染原水,主要水质指标是色度、耗氧量、氨氮及锰。 水厂目前设计供水能力8万立方米/日,远期规模达到15万立方米/日。水厂有常规处理2.5万立方米网格反应平流沉淀池两座,5万立方米四阀滤池1座,3万立方米网格反应平流沉淀池、四阀滤池各1座。深度处理工程,即在原有常规处理工艺基础上,增加预处理和臭氧活性炭深度处理工艺。现将该工程设计和建设特点介绍如下: 1 设计介绍 水厂深度处理工程建设规模为15万立方米/日,分两期建设。一期工程8万立方米/日,2002年7月正式动工,2003年5月投入运行。二期工程7万立方米深度处理包括常规处理,将在2003年8月正式动工。 通过技术经济比较,生物接触氧化工艺比较适合源水的水质特点,生物接触氧化池容易与水厂现有构筑物连接,且投资和运行费用较省。该工艺具有去除氨氮和有机物效果好、容积负荷高、耐冲击负荷、出水水质好且稳定、动力消耗相对较低等优点。同时此工艺在应用实践中,对停留时间曝气方式、填料品种、排泥和操作技术等工艺要素已有了大量的试验研究和较多的工程实例,取得了比较成熟的经验。因此,本工程采用生物接触氧化法作为预处理工艺。 原水经过生物预处理和常规处理后,水中有机污染物有了明显的去除。但由于水源水质较差,源水有机污染物含量较高,此时出水中有机物浓度还比符合《生活饮用水卫生规范》的要求,需后续补充深度处理工艺才能较大幅度去除。 饮用水深度处理的方法有高级氧化、活性炭吸附和膜法水处理工艺等,综合考虑经济和技术因素,在水厂中生产性运用较多的是臭氧--活性炭联用技术。本工程采用臭氧-活性炭法作为深度处理工艺。 臭氧-活性炭工艺主要涉及到臭氧的制造生产、投加及活性炭过滤等。臭氧的生产原料分为空气、纯氧和液氧三种,对三种臭

臭氧氧化设备深度处理技术及工艺效果

臭氧氧化设备深度处理技术及工艺效果 近年来,由于我国原油劣质化和原油资源全球化步伐加快,石化企业加工重质、劣质原油所占比例不断加大,从而导致企业高浓度有机废水的排放量不断增加:再加上为了提高市场竞争力,企业纷纷进行扩能改造,使废水产量不断加大:此外,国家即将提高外排废水的水质指标,这些都使废水处理装置的压力不断加大。虽然有少数企业对高浓度废水采用如臭氧氧化法等预处理工艺处理后再进人生化系统。 但生化处理后的炼油企业外排废水,出水水质不稳定,外排废水未达标的情况依然存在。这些不达标废水由于经过前期的生化处理,可生化性很差,所以处理起来比较困难。因为这些废水再采用生化法深度处理已无能为力,而臭氧氧化设备采活性炭吸附等深度处理技术成本又过高。膜分离技术由于投资昂贵和膜污染等实际问题,在应用上也存在一定难度。目前。多数企业只能通过混掺清水或其他中水来满足排放要求,造成水资源的巨大浪费。 臭氧氧化设备广泛用于去除水中的难生物降解有机物,能提高废水的BOD5和COD的比值,使其进一步生化处理成为可能。目前的高级氧化技术主要包括化学氧化法、电化学氧化法、湿式氧化法、超临界水氧化法和光催化氧化法等。 本研究探索采用臭氧氧化法处理可生化性很差的炼油废水的生化处理出水,考察了氧化反应的影响因素及氧化方法提高废水可生化性的能力。最后估算出氧化工艺的运行成本,为该类不达标炼油废水的进一步处理提供可以借鉴的思路。 (1)采用臭氧氧化法处理废水。在偏碱性的条件下降低废水COD的效果较好,同时废水COD的去除效果随臭氧浓度的增大而提高。 (2)采用臭氧氧化法处理废水,臭氧氧化设备能显著提高废水的可生化性。在碱性和臭氧浓度较高的条件下,对废水BOD 与COD的比值的提高效果较好。 (3) 过臭氧氧化设备后的废水。其中的难降解的芳烃类的含量也大大降低,废水中芳烃类物质的含量越少,废水的BOD 与COD的比值越高,可生化性越好。 (4)随着废水处理效果的提高,臭氧氧化设备的成本也随之增加,单纯采用臭氧氧化法来降低废水的COD从经济上并不合理,而通过臭氧氧化法适度处理,提高废水的可生化性后,再通过生化的方法降低废水的COD,经济上会更合理。

图像处理技术的一些基本概念期末考试

什么是图像:“图”是物体透射或反射光的分布,是客观存在的。 “像”是人的视觉系统对图在大脑中形成的印象或认识,是人的感 觉。图像(image)是图和像的有机结合,既反映物体的客观存 在,又体现人的心理因素;是客观对象的一种可视表示,它包含 了被描述对象的有关信息。 图像分类:根据图像空间坐标和幅度(亮度或色彩)的连续性可分为模拟(连续)图像和数字图像。 模拟图像是空间坐标和幅度都连续变化的图像,而数字图像是空间坐标和幅度均用离散的数字(一般是整数)表示的图像。 图像处理(image processing)就是对图像信息进行加工处理和分析,以满足人的视觉心理需要和实际应用或某种目的(如压缩编码或机器识别)的要求。图像处理可分为以下3类:▓模拟图像处理(analogue image processing); ▓数字图像处理(digital image processing); ▓光电结合处理(optoelectronic processing)。 模拟图像处理:也称光学图像处理,它是利用光学透镜或光学照相方法对模拟图像进行的处理,其实时性强、速度快、处理信息量法对模拟图像进行的处理,其实时性强、速度快、处理信息量大、分辨率高,但是处理精度低,灵活度差,难有判断功能。 数字图像处理:即利用计算机对数字图像进行处理,它具有精度高、处理内容丰富、方法易变、灵活度高等优点。但是它的处理速度受到计算机和数字器件的限制,一般也是串行处理,因此处理速度较慢。 光电结合处理:用光学方法完成运算量巨大的处理(如频谱变换等),而用计算机对光学处理结果(如频谱)进行分析判断等处理。该方法是前两种方法的有机结合,它集结了二者的优点。光电结合处理是今后图像处理的发展方向,也是一个值得关注的研究方向。 图像的数学表示:一幅图像所包含的信息首先表现为光的强度(intensity ),即一幅图像可看成是空间各个坐标点上的光强度I 的集合,其普遍数学表达式为:I = f (x ,y,z,λ,t) 式中(x,y,z )是空间坐标,λ是波长,t 是时间,I是光点( x,y,z ) 的强度(幅度)。上式表示一幅运动的(t)、彩色/多光谱的(λ) 、立体的( x,y,z )图像。 图像的特点: (1)空间有界:人的视野有限,一幅图像的大小也有限。 (2)幅度(强度)有限:即对于所有的x,y都有0≤f(x,y) ≤Bm 其中B m 为有限值。 数字图像处理的基本步骤 ▓图像信息的获取:采用图像扫描仪等将图像数字化。 ▓图像信息的存储:对获取的数字图像、处理过程中的图像 信息以及处理结果存储在计算机等数字系统中。 ▓图像信息的处理:即数字图像处理,它是指用数字计算机 或数字系统对数字图像进行的各种处理。 ▓图像信息的传输:要解决的主要问题是传输信道和数据量 的矛盾问题,一方面要改善传输信道,提高传输速率,另外要 对传输的图像信息进行压缩编码,以减少描述图像信息的数据 量。 ▓图像信息的输出和显示:用可视的方法进行输出和显示。

本科毕业设计__基于matlab的小波分析在图像处理中的应用

基于Matlab 的小波分析在图像处理中的应用 摘要:本文先介绍了小波分析得基本理论,包括连续小波变换、离散小波变换和小波包分析。小波变换具有时频局部化的特点,因此不但能对图像提供较精确的时域定位,也能提供较精确的频域定位。经过小波变换的图像具有频谱划、方向选择、多分辨率分析和天然塔式数据结构特点。基于小波变换这些特性,讨论了MATLAB 语言环境下图像压缩,图像去噪,图像融合,图像分解,图像增强的基本方法。 关键词:小波分析;图像压缩;图像去噪;图像融合;图像分解;图像增强 1 引言 小波分析诞生于20世纪80年代, 被认为是调和分析即现代Fourier 分析发展的一个崭新阶段。众多高新技术以数学为基础,而小波分析被誉为“数学显微镜”,这就决定了它在高科技研究领域重要的地位。目前, 它在模式识别、图像处理、语音处理、故障诊断、地球物理勘探、分形理论、空气动力学与流体力学上的应用都得到了广泛深入的研究,甚至在金融、证券、股票等社会科学方面都有小波分析的应用研究。 在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,这对于某些应用来说是很恰当的,因为信号的频率的信息对其是非常重要的。但其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor 变换,时频分析,小波变换等。其中短时傅立叶变换是在傅立叶分析基础上引入时域信息的最初尝试,其基本假定在于在一定的时间窗内信号是平稳的,那么通过分割时间窗,在每个时间窗内把信号展开到频域就可以获得局部的频域信息,但是它的时域区分度只能依赖于大小不变的时间窗,对某些瞬态信号来说还是粒度太大。换言之,短时傅立叶分析只能在一个分辨率上进行。所以对很多应用来说不够精确,存在很大的缺陷。 而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,具有多分辨率分析的特点,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整,在一般情况下,在低频部分(信号较平稳)可以采用较低的时间分辨率,而提高频率的分辨率,在高频情况下(频率变化不大)可以用较低的频率分辨率来换取精确的时间定位。 本文介绍了小波变换的基本理论,并介绍了一些常用的小波函数,它们的主要性质包括紧支集长度、滤波器长度、对称性、消失矩等,都做了简要的说明。然后研究了小波分析在图像处理中的应用,包括图像压缩,图像去噪,图像融合,图像分解,图像增强等。 2 小波分析的基本理论 2.1 连续小波变换 定义:设)()(2R L t ∈ψ,其傅立叶变换为)(?ωψ ,当)(?ωψ满足允许条件(完全重构条件或恒等分辨条件) ?=R d C ωωωψ ψ2 )(?< ∞ (1)

第二章 数字图像处理的基本概念

第二章数字图像处理的基本概念 1.什么是图像对比度?人眼感受的亮度与哪些因素有关? 图像对比度是图像中最大亮度B max与最小亮度B min之比。即C1=B max/B min 2.图像数字化包括哪两个过程?它们对数字化图像质量有何影响? 采样和量化。 采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时出现像素呈块状的国际棋盘效应;采样间隔越小,所得图像像素越多,空间分辨率高,质量好,但数据量大。 量化等级越多,所得图像层次越丰富,灰度分辨率越高,质量越好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,质量变差,会出现假轮廓现象,但数据量小。 3.数字化图像的数据量与哪些因素有关? 采样间隔越大,量化等级越小,数据量越小;采样间隔越小,量化等级越多,数据量越大。 4.连续图像f(x,y)与数字图像I(r.c)中各量的含义是什么?它们有何联系和区别? 5.图像处理按功能分有哪几种形式? 按图像处理的输出形式,图像处理的基本功能可分为三种形式。 (1)单幅图像→单幅图像; (2)多福图像→单幅图像; (3)单(或多)幅图像→单幅图像。 6.什么是点处理?你所学算法中有哪些属于点处理?试举3种不同作用的点运算。 在局部处理中,当输出值JP(i,j)值仅与IP(i,j)像素灰度有关的处理称为点处理。 图像对比度增强、图像二值化、灰度的线性变换、线性拉伸等属于点处理。 7.什么是局部处理?你所学算法中有哪些属于局部处理?试举3种不同作用的局部运算。 在对输入图像进行处理时,计算某一像素的小邻域N[IP(i,j)]中的像素值确定,这种处理称为局部处理。 图像的移动平均平滑法、空间域锐化属于局部处理。 8.图像特性包括哪些类型? 自然特征:亮度、对比度; 人工特征:直方图、频率。 9.什么是窗口处理和模板处理?二者有何区别与联系? 对图像中选定矩形区域内的像素进行处理叫做窗口处理; 预先准备一个和输入图像IP相同大小的二维数组,存储该区域的信息,然后参照二维数组对输入图像处理,叫做模板处理。 模板处理中若模板为矩形区域,则与窗口处理具有相同的效果,但窗口处理与模板处

臭氧在污水处理中的应用

臭氧在污水处理中的应用 一、臭氧在污水处理中的应用背景和现状 近年来,随着工业的发展,在水处理及水污染的治理方面出现了新的问题。由于工业废水中出现了一些生物难降解的或有毒的有机污染物(如农药,合成洗涤剂和某些染料等);同时,为了保护环境和水资源以及能够处理过的污染水得到回用,环境保护和相关部门制订了严格的标准和法律。在许多情况下,工业废水必需经过三级深度处理才能满足水污染治理和废水回用的要求。 臭氧作为有效的废水深度处理手段之一,具有氧化能力强,反应速度快,使用方便(包括臭氧的制造,输出和投配等),不产生二次污染等一系列优点而受到人们的重视。 污水处理包括城市生活污水、工业污水与医疗污水的处理,主要目的为杀菌消毒、去除污染物质并脱色除味以达到排放标准。近几年由于水资源匮乏,行业主管部门制定了工业、生活污水回用的法规,提高了处理标准。美国在本世纪七十年代初开始利用臭氧处理生活污水,其主要目的为消毒并降低生物耗氧量(BOD)和化学耗氧量(COD),去除亚硝酸盐、悬浮固体及脱色,已达到全面生产应用的水平。日本则在缺水地区进行污水臭氧处理后,作为非食用水(即中水)循环使用,北京、上海、山东等大城市也正在推广使用当中。工业污水臭氧用来对电镀含氰污水氧化、纺织印染污水脱色、精炼污水去除酚、烷类物质等。 二、臭氧应用的机理 臭氧是强烈的氧化剂,它能氧化多种有机物和无机物,清除对臭氧的高度氧化活性很敏感的毒物,如酚类、苯环类、氰化物、硫化物、亚硝酸盐、铁、锰、有机氮化合物等;由于对各种有机物的作用范围较广,可以去除其他方法不易去除的COD和TOC,属于“最有效武器”。有很强的氧化漂白作用,可以明显降低水的色度;在应用实例中,臭氧既可以杀灭水中的藻类,又起阻垢和缓蚀作用;属“环保剂处理后”绝不使的水产生臭和味,不增加可溶性固体,不产生二次污染。 三、臭氧消毒方法的优越性 1.臭氧是优良的氧化剂,可以杀灭抗氯性强的病毒和芽孢; 2.臭氧消毒受污水 PH 值及温度影响较小; 3.臭氧去除污水中的色、嗅、味和酚氯等污染物,增加水中的溶解氧,改善水质; 4.臭氧可以分解难生物降解的有机物和三致物质,提高污水的可生化性; 5.臭氧在水中易分解,不会因残留造成二次污染。 四、臭氧在污水处理过程中的具体应用 1.工业有机废水和含氰废水--臭氧是强氧化剂,可将有毒污染物转变为无毒物。它处理废水氧化能力强,可分解一般氧化剂难于破坏的有机物,而且反应安全,时间短。剩余的臭氧,可转化为氧,不但无害,而且有益。可用于消毒、除臭除味、除色、除铁锰、除酚、除氰、除洗涤剂、除油等方面。 2.对于重油裂解废水,当PH≈11.4时,去氰效率达79.3%;对于电镀废水,含氰浓度为32.5%mg/L,时,去氰率达98.9%;对于腈纶废水,含丙烯腈102mg/1时,采用臭氧处理可完全去除丙烯腈。 3.臭氧能分解烃、醛、氰、酚、磷、硫、氮氧化物、硝酸盐等有机物,能去除铁、锰、镁等金属离子。

小波变换在图像处理中的应用

小波变换是一种快速发展和比较流行的信号分析方法。经典的傅里叶变换能满足大多数信号处理的需求,但对于非平稳信号的分析却不能依靠傅里叶变换,因为它不能提供局部时间段上的频率信息。后来提出的加窗傅里叶变换解决了这一问题,但是它也具有很大的局限性,即当基本窗函数取定时,窗口的时间宽度和频率宽度就固定了,不会随着时域和频域的位移而变换。为了克服这个缺点,学者们经过努力探索,提出了小波变换的理论。近年来,小波变换作为一种变换域信号处理方法,得到了迅速发展,在信号分析、图像处理、地震勘探和非线性科学等诸多领域得到了广泛应用。小波变换在图像处理中的应用主要体现在以下几个方面:图像的压缩、去噪、融合、增强、分解与重构、边缘检测、检索以及人脸、指纹、虹膜的识别等。 本文介绍了小波变换的基本理论及特征,包括连续小波变换、离散小波变换。基于小波变换的这些理论和特性,总结了其在图像处理方向的应用,最后对小波变换在图像处理方向的应用进行了总结和展望。 关键字小波变换图像处理

1 研究背景和意义 (1) 2 小波变换理论及性质 (2) 2.1 连续小波变换 (2) 2.2 离散小波变换 (3) 2.3 小波变换的性质 (4) 3 小波变换在图像处理中的应用 (6) 3.1 图像压缩 (6) 3.2 图像去噪 (7) 3.3 图像融合 (9) 3.4 图像增强 (10) 3.5 图像分解与重构 (11) 3.6 图像边缘检测 (13) 3.7 图像检索 (14) 4 小波变换进行指纹识别 (15) 5 小波变换进行人脸识别 (16) 6 小波变换进行虹膜识别 (17) 7 总结和展望 (18) 参考文献 (19)

相关文档
最新文档