三余弦定理的几个推论及证明

三余弦定理的几个推论及证明
三余弦定理的几个推论及证明

垂径定理推论证明

一、 ③AE=BE ①⌒AC = ⌒BC ④CD ⊥ AB ②⌒AD = ⌒BD ⑤CD 过圆心(即CD 是直径) 证明:∵⌒AC = ⌒BC ,⌒AD = ⌒BD ∴⌒CAD = ⌒CBD = 圆周 ∴ CD 过圆心(即CD 是直径) 连接OA ,OB ∵⌒AD = ⌒BD ∴∠AOD=∠BOD 在△AOE 和△BOE 中 OA=OB ∠AOE=∠BOE OE=OE ∴△AOE ≌△BOE (SAS ) ∴AE=BE ,∠AEO=∠BEO=90° ∴CD ⊥AB 二、 ②⌒AD = ⌒BD ①⌒AC = ⌒BC ④CD ⊥AB ③AE=BE ⑤CD 过圆心(即CD 是直径) 证明:连接OA ,OB 在△AOE 和△BOE 中 OA=OB AE=BE OE=OE ∴△AOE ≌△BOE (SSS ) ∴∠AOE=∠BOE ,∠AEO=∠BEO=90° ∵∠AOE=∠BOE ∴⌒AD = ⌒BD ∵⌒AC = ⌒BC ,⌒AD = ⌒BD ∴⌒CAD = ⌒CBD = 圆周 ∴ CD 过圆心(即CD 是直径) ∵∠AEO=∠BEO=90° ∴CD ⊥AB 21 21

三、①⌒AC = ⌒BC ②⌒AD = ⌒BD ④CD⊥AB ③AE=BE ⑤CD过圆心(即CD是直径)证明过程同上 四、 ②⌒AD = ⌒BD ①⌒AC = ⌒BC③AE=BE ④CD⊥AB⑤CD过圆心(即CD是直径) 证明:连接OA,OB ∵CD⊥AB ∴∠AEO=∠BEO=90° 在Rt△AOE和Rt△BOE中 OA=OB OE=OE ∴Rt△AOE≌Rt△BOE(HL) ∴∠AOE=∠BOE,AE=∠BE ∵∠AOE=∠BOE ∴⌒AD = ⌒BD ∵⌒AC = ⌒BC,⌒AD = ⌒BD ∴⌒ CAD= ⌒ CBD = 圆周 ∴CD过圆心(即CD是直径) 五、①⌒AC = ⌒BC ②⌒AD = ⌒BD③AE=BE ④CD⊥AB⑤CD过圆心(即CD是直径)证明过程同上 六、②⌒AD = ⌒BD ①⌒AC = ⌒BC③AE=BE ⑤CD过圆心(即CD是直径)④CD⊥AB 2 1

三余弦公式的巧用

三余弦公式的巧用 1AO AO AO 12 αθααθθθθθ2 如图:斜线和平面所成的角为 斜线在平面上的射影A B ,A C 为平面内异于A B 的直线, A B 与A C 的夹角为,与A C 的夹角,则有:cos =cos cos 该公式本质上反映了线面角与线线角之间的数量关系,其本质特征是由两个平面互相垂直,两个平面内的三条直线所成角的定量关系。在处理异面直线所成角、线面角的问题时效果明显。下面通过近年高考试题予以说明。 例一: (2005全国卷I 第18题) 已知四棱锥P-ABCD 的底面为直角梯形,AB CD ∥, ⊥=∠PA DAB ,90 底面ABCD , 且PA=AD=DC= 2 1 AB=1,M 是PB 的中点。 (Ⅱ)求AC 与PB 所成的角; 常规解法:过点B 作BE//CA ,且BE=CA ,则∠PBE 是AC 与PB 所成的角. 连结AE ,可知AC=CB=BE=AE=2,又AB=2,所以四边形ACBE 为正方形. 由 PA ⊥面 ABCD 得∠PEB=90°在 Rt △PEB 中 BE= 2,PB=5, .510cos == ∠∴PB BE PBE .5 10 arccos 所成的角为与PB AC ∴ 析:已知条件中有PA ⊥底面ABCD 若使用三余弦公式则:PB 在平面ABCD 上的射影AB , 210 cos 22 PBA BAC AC PB ∠= ∠= = ∴与 .5 10 arccos 所成的角为与PB AC ∴ 评:只要找到三线的夹角即可,无需作图求解。 例二(2006福建卷)如图,四面体ABCD 中, A B M D E O C

垂径定理及其推论

圆部分知识点总结 垂径定理及其推论 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。 (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。 (3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 推论2:圆的两条平行弦所夹的弧相等。垂径定理及其推论可概括为: 过圆心 垂直于弦 直径 平分弦 知二推三 平分弦所对的优弧 平分弦所对的劣弧 弧、弦、弦心距、圆心角之间的关系定理 1:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。 2:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们 所对应的其余各组量都分别相等。 圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。 推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。 推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。 推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 点和圆的位置关系 设⊙O 的半径是r,点P到圆心O 的距离为d,则有: dr; 圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。 切线的性质与判定定理 1、切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 2、性质定理:切线垂直于过切点的半径 推论1:过圆心垂直于切线的直线必过切点。 推论2:过切点垂直于切线的直线必过圆心。 以上三个定理及推论也称二推一定理: 即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。 切线长定理 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。 即:∵PA 、PB 是两条切线 ∴PA PB =;PO 平分BPA ∠

垂径定理

2 1 垂径定理 一、 圆的对称性 圆是轴对称图形,对称轴是 二、 如图是一个圆形纸片把该纸片沿直径AB 折叠,其中点A 和点是一组对称点 (1)思考∵OC=OD, ∴Δ OCE ≌ΔODE, ∠OEC= ∠OED= ∴AB 与CD 的位置关系是 (2)又∵点C 和点D 是一组对称点 ∴CE= 即点E 是CD 的中点 (3)根据折叠可得,弧AC=弧AD, 弧BC=弧BD, 结论:垂径定理及其推论 1、垂直于弦的直径 弦,并且 弦所对的两段弧 2、推论:平分弦(不是直径)的直径 并且 弦所对的两条弧 三、规律总结;垂径定理及其推论与“知二得三” 对于一个圆和一条直线,若具备: (1) 过圆心(2)垂直于弦(3)平分弦(4)平分弦所对的优弧(5)平分弦所对的劣弧上述五个 条件中的任何两个条件都可以退出其他三个结论 四、 垂径定理基本图形的四变量、两关系 四变量:弦长a,圆心到弦的距离d,半径r ,弓形高h ,这四个量知道任意两个可求其他两个。 五、垂径定理及其推论的应用 (一)、选择题: 1、已知圆内一条弦与直径相交成300角,且分直径成1CM 和5CM 两部分,则这条弦的弦心距是: A 、 B 、1 C 、2 D 、25 2、AB 、CD 是⊙O 内两条互相垂直的弦,相交于圆内P 点,圆的半径为5,两条弦的长均为8,则OP 的长为: A 、3 B 、3 C 、3 D 、2 3、⊙O 是等边三角形ABC 的外接圆,⊙O 的半径为2,则等边三角形ABC 的边长为( ) A B C . D .4、如图2,⊙O 的弦AB =6,M 是AB 上任意一点,且OM 最小值为4,则⊙O 的半径为( )A .5 B .4 C .3 D .2 5、高速公路的隧道和桥梁最多.如图是一个隧道的横截面,若它的形状是以O 为圆心的圆的一部分,路面AB =10米,净高CD =7米,则此圆的半径OA =( ) A .5 B .7 C . 375 D .377 6、如图,圆弧形桥拱的跨度AB =12米,拱高CD =4米,则拱桥的半径为( ) A .6.5米 B .9米 C .13米 D .15米 7、如图,O ⊙是ABC △的外接圆,AB 是直径.若80BOC ∠=°,则A ∠等于( ) A .60° B .50° C .40° D .30°

正、余弦定理解题易错点剖析

正、余弦定理解题易错点剖析 正、余弦定理及其应用问题综合性强、解题有一定的技巧,学生在解题时,经常因为审题不仔细,忽视一些条件而导致错误.本文分类剖析了解题中常出现的错误,旨在为同学们提个醒,以达防微杜渐的目的. 一、隐含条件被忽视致错 例1 在ABC △中,若3C B =,求 c b 的取值范围. 错解:由正弦定理可知 sin3sin cos2cos sin 2sin sin c B B B B B b B B +==22cos 22cos 4cos 1B B B =+=-. 由20cos 1B ≤≤,得214cos 13B --≤≤,故13c b -≤≤. 剖析:上述解法中,忽视了B 的取值范围及a b c ,,均为正的条件而致错. 正解: 24cos 1c B b =-.(过程同错解) 又∵180A B C ++=°,2C B =, ∴045B <<°,2cos 12 B <<, ∴214cos 13B <-<∴,故13c b < <. 在解决解三角形问题时,经常因忽视三角形中的隐含条件而出现解题错误.同学们在解题时一定要“擦亮慧眼”,否则极容易产生错解. 觅错:某同学遇到这样一道问题:在ABC △中,已知222 15a b C ===,,°,则A =_________. 分析:已知两边及其夹角,先用余弦定理,算出c ,再用正弦定理算出1sin 2 A = ,便大笔一挥,写上了“30°或150°”,轻轻松松搞定,不料老师却给他判了零分.下面是这位同学的详细解题过程,同学们帮他找找错因吧! 错解:由余弦定理,得2222cos15843c a b ab =+-=-°. 又sin 1sin 2 a C A c = =,而0180A <<°°, ∴ 30A =°或150A =°. 所以空格上填“30°或150°”. 二、制约条件被忽视致错 例2 在ABC △ 中,62c =+,30C =°,求a b +的最大值. 错解:∵30C =°,∴150A B +=°,150B A =-°. 由正弦定理,得62sin sin(150)sin 30a b A A +==-°° , 2(6 2)s i n a A =+∴,

垂径定理及推论(各省市中考题)

E A B C O 1. (2013 浙江省舟山市) 如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连 结EC .若AB =8,CD =2,则EC 的长为( ▲ ) (A )215 (B )8 (C )210 (D )213 答案:D 4.2 垂径定理及推论 选择题 基础知识 2013-09-29 2. (2013 浙江省温州市) 如图,在⊙O 中,OC ⊥弦AB 于点C ,AB =4,OC =1,则OB 的长是 (A ) 3 (B ) 5 (C )15 (D ) 17 答案:B 4.2 垂径定理及推论 选择题 基础知识 2013-09-24 3. (2013 湖北省宜昌市) 如图,DC 是O ⊙的直径,弦AB CD ⊥于F ,连接BC DB ,.则 下列结论错误.. 的是( ). (A )? ?AD BD = (B )AF BF = (C )OF CF = (D )90DBC ∠=°

答案:C 4.2 垂径定理及推论 选择题 基本技能 2013-09-22 4. (2013 湖北省襄阳市) 如图,水平放置的圆柱形排水管道的截面直径是1m ,其中水面的宽AB 为0.8m ,则排水管内水的深度为 m. 答案:0.2 4.2 垂径定理及推论 填空题 基本技能 2013-09-22 5. (2013 湖北省黄石市) 如右图,在Rt ABC V 中,90ACB ∠=o ,3AC =,4BC =,以点 C 为圆心,CA 为半径的圆与AB 交于点 D ,则AD 的长为 A. 95 B. 245 C. 185 D. 52 C A D B

戴维南定理典型例子_戴维南定理解题方法

戴维南定理典型例子_戴维南定理解题方法 什么是戴维南定理戴维南定理(又译为戴维宁定理)又称等效电压源定律,是由法国科学家L·C·戴维南于1883年提出的一个电学定理。由于早在1853年,亥姆霍兹也提出过本定理,所以又称亥姆霍兹-戴维南定理。其内容是:一个含有独立电压源、独立电流源及电阻的线性网络的两端,就其外部型态而言,在电性上可以用一个独立电压源V和一个松弛二端网络的串联电阻组合来等效。在单频交流系统中,此定理不仅只适用于电阻,也适用于广义的阻抗。戴维南定理在多电源多回路的复杂直流电路分析中有重要应用。 戴维南定理(Thevenin‘stheorem):含独立电源的线性电阻单口网络N,就端口特性而言,可以等效为一个电压源和电阻串联的单口网络。电压源的电压等于单口网络在负载开路时的电压uoc;电阻R0是单口网络内全部独立电源为零值时所得单口网络N0的等效电阻。戴维南定理典型例子戴维南定理指出,等效二端网络的电动势E等于二端网络开路时的电压,它的串联内阻抗等于网络内部各独立源和电容电压、电感电流都为零时,从这二端看向网络的阻抗Zi。设二端网络N中含有独立电源和线性时不变二端元件(电阻器、电感器、电容器),这些元件之间可以有耦合,即可以有受控源及互感耦合;网络N的两端ɑ、b接有负载阻抗Z(s),但负载与网络N内部诸元件之间没有耦合,U(s)=I(s)/Z(s)。当网络N中所有独立电源都不工作(例如将独立电压源用短路代替,独立电流源用开路代替),所有电容电压和电感电流的初始值都为零的时候,可把这二端网络记作N0。这样,负载阻抗Z(s)中的电流I(s)一般就可以按下式1计算(图2)式中E(s)是图1二端网络N的开路电压,亦即Z(s)是无穷大时的电压U(s);Zi(s)是二端网络N0呈现的阻抗;s是由单边拉普拉斯变换引进的复变量。 和戴维南定理类似,有诺顿定理或亥姆霍兹-诺顿定理。按照这一定理,任何含源线性时不变二端网络均可等效为二端电流源,它的电流J等于在网络二端短路线中流过的电流,并联内阻抗同样等于看向网络的阻抗。这样,图1中的电流I(s)一般可按下式2计算(图

电工基础 戴维宁定理

第三章复杂直流电路 ------戴维宁定理 一.填空 1.任何具有两个引出端的电路都称为网络,其中若包含电源的,称为网络。 2.运用戴维宁定理就能将任一个线性含源的简化为电源。这个电源的电 动势E O 等于,电源的内阻R O 等于。 3.任何具有的电路都可称为二端网络。若在这部分电路中含有,就可以称为有源二端网络。 4.戴维南定理指出:任何有源二端网络都可以用一个等效电压源来代替,电源的电动势等于二端网络的,其内阻等于有源两端网络内 二.选择 1.若某电源开路电压为120V,短路电流为2A,则负载从该电源获得的最大功率是() A.240 W B.60 W C.600 W 2.一有源二端网络,测得其开路电压为100V,短路电流为10A,当外接10Ω负载时,负载电流为()A。 A.5 B.10 C.20 3.用戴维南定理分析电路“输入电阻”时,应将内部的电动势()处理。 A.作开路 B.作短路 C.不进行 D.以上答案都不正确 三.是非判断 1.利用戴维南定理解题时有源二端网络必须是线性的,待求支路可以是非线性的。 四.求下列二端网络的开路电压E O 及等效电阻R O (求出电源的E O 和R O 并画出电源) 1. 2. 3.

五.计算 1.图示电路中,已知:U S =4V,I S =3A,R 1 =R 2 =1,R 3 =3,用戴维宁定理求电流I。 2.图示电路中,已知:U S =24V,I S =4A,R 1 =6,R 2 =3,R 3 =4,R 4 =2,用戴维宁定理求电流 I 3.用戴维南定理计算图中的支路电流I 3 4.用戴维南定理求下图所示电路中的电流I 5.电路如图 2-52所示,已知电源电动势E 1 =12V,E 2 =2V,电源内阻不计,电阻R 1 =R 2 =R 6 =5Ω,R 3 =1Ω,R 4 =10Ω,R 5 =5Ω。试用戴维宁定理求通过电阻R3的电流。

巧用三余弦定理解题教程文件

巧用三余弦定理解题

A O P α l B A O 1θ2 θθ P Q α 巧用“三余弦定理”解题 “三余弦定理”的内容:如图1,直线AO 是平面α 的斜线,AQ 是AO 在平面内的射影,直线AP 在平面α内.设 21,,θθθ=∠=∠=∠QAP OAQ OAP ,有以下结 论:21cos cos cos θθθ ?=.我们可以形象地把这个结论称为“三余弦定理”, 应用“三余弦定理”可以使我们的很多立体几何问题的解决变得简单. 图1 应用“三余弦定理”解题的步骤如下: 1. 明确三线:平面内的直线(以下简称“内线”),平面的斜线和斜线在平面内的射影. 2. 明确三角:斜线与“内线”所成为θ,斜线与射影所成的角为1θ,射影与“内线”所成的角为2θ. 3. 定理运算. 例1.如图2,已知AO 是平面α的一条斜线,OB ⊥α,B 是垂足,AP 是α内一直线,∠OAP=60o ,∠BAP=45o ,求斜线AO 与平面α所成的角. 分析:AP 是“内线”,AO 是斜线,AB 是射影,所以21,,θθθ=∠=∠=∠BAP OAB OAP ,直接利用“三余弦定理”求解.解题过程略.

略解: 点评:斜线与平面所成的角即斜线与射影所成的角,明确了“三线”与“三角”,直接代定理求解. 图2 变式1:已知∠OAB=45o ,∠BAP=45o ,求直线AO 与AP 所成的角; 分析:同例1. 变式2:已知∠OAB=45o ,∠BAP=45o , l //AP, 求直线AO 与l 所成的角; 分析:因为l //AP ,直线AO 与AP 所成的角同AO 与l 所成的角相等.我们在解题时,只需要明确“三线”,这时l 是“内线”,AO 是斜线,AB 是射影,然后斜线 AO 与“内线”l 所成为θ,斜线AO 与射影AB 所成的角为1θ,射影AB 与“内线”l 所成的角为2θ, 问题迎刃而解. 例2.如图3,在棱长为1正方体ABCD- A 1B 1C 1D 1中,E 、F 分别是B 1C 1和CC 1的中点,求异面直线A 1B 与EF 所成角的余弦值. 分析:直线BA 1是平面BCC 1B 1的斜线,BB 1是射影,EF 为“内线”,这样就明确是三线 , 再明确三角,然后定理计算即可. 解:由题意可知,直线BA 1是平面BCC1B1的斜线, BB1是BA 1在平面内的射影,EF 为平面内的直线, 所以BA 1与EF 所成的角为θ,111θ=∠BC A ,EF 与BB 1所成的角为2θ 图3 C 1 A B C D A 1 B 1 D 1 F E

垂径定理及推论教学设计

24.1.2垂径定理及其推论教学设计 【教材分析】 本节是《圆》这一章的重要容,也是本章的基础。它揭示了垂直于弦的直径和这条弦及这条弦所对的弧之间的在关系,是圆的轴对称性的具体化;也是今后证明线段相等、角相等、弧相等、垂直关系的重要依据;同时也为进行圆的有关计算和作图提供了方法和依据;由垂径定理的得出,使学生的认识从感性到理性,从具体到抽象,有助于培养学生思维的严谨性。同时,通过本节课的教学,对学生渗透类比、转化、数形结合、方程、建模等数学思想和方法,培养学生实验、观察、猜想、抽象、概括、推理等逻辑思维能力和识图能力。所以它在教材中处于非常重要的位置。 【教学目标】 根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。因此,我把本节课的教学目标确定为以下三个方面: 知识目标: 使学生理解圆的轴对称性;掌握垂径定理;学会运用垂径定理解决有关的证明、计算和作图问题。培养学生观察能力、分析能力及联想能力。 方法与过程目标: 经历探索发现圆的对称性,证明垂径定理及推论的过程,锻炼学生的思维品质,学习证明的方法。 情感态度与价值观目标: 在学生通过观察、操作、变换和研究的过程中进一步培养学生的思维能力,创新意识和良好的运用数学的习惯和意识。 【重点与难点】 重点:垂径定理及其推论的发现、记忆与证明。 难点:对垂径定理及其推论的探索和证明,并能应用垂径定理及推论进行简单计算或证明。 【学生分析】 九年级学生已了解圆的有关概念;但根据皮亚杰的认知发展理论:这个阶段的学生思维正处于具体思维向抽象思维发展、逻辑思维向形式思维发展、部心理上逐步朝着自我反省的思维发展。虽然他们具有一定的数学活动经验、生活经验和操作技能,会进行简单的说理,但他们的逻辑思维能力和抽象思维能力还比较薄弱。对如何从实际问题中抽象出数学问题,建立数学模型的能力较差。 【教学方法】 鉴于教材特点及九年级学生的知识基础,根据教学目标和学生的认知水平,让学生在课堂上多活动、多观察、多合作、多交流,主动参与到整个教学活动中来,组织学生参与“实验---观察---猜想---证明”的活动,最后得出定理,这符合新课程理念下的“要把学生学习知识当作认识事物的过程来进行教学”的观点,也符合教师的主导作用与学生的主体地位相统一的原则。同时,在教学中,我充分利用教具和课件,提高教学效果,在实验、演示、操作、观察、练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力,这符合新课程理念下的直观性与可接受性原则。

余弦定理知识点总结与复习

余弦定理 教师:lihao (1)语言叙述 三角形中任何一边的平方等于其他两边的平方和减去这两边与它们夹角的余弦的积的两倍 . (2)公式表达 2a = 2b = 2c = c2= 思路点拨:由题目可获取以下主要信息:①已知三边比例; ②求三角形的三内角. 解答本题可应用余弦定理求出三个角 [题后感悟] 此题为“已知三边,求三角形的三个角”类型问题,基本解法是先利用余弦定理的推论求一个角的余弦,再判定此角的取值,求得第一个角,再用正弦定理求出另一个角,最后用三角形内角和定理,求出第三个角(一般地,先求最小角,再求最大角) 已知△ABC 中,a ∶b ∶c =2∶6∶(3+1),求△ABC 各角的度数. [解题过程] ∵a ∶b ∶c =2∶6∶(3+1), ∴令a =2k ,b =6k ,c =(3+1)k . 由余弦定理,有 cos A =b 2+c 2-a 22bc =6+(3+1)2-426×(3+1)=22, ∴A =45°. cos B =a 2+c 2-b 22ac =4+(3+1)2-62×2×(3+1) =12, ∴B =60°.∴C =180°-A -B =180°-45°-60°=75°.

1.在△ABC 中,已知a =26,b =6+23,c =43,求角A ,B ,C . 解析: 在△ABC 中,由余弦定理得, cos C =a 2+b 2-c 22ab =(26)2-(6+23)2-(43)2 2×26×(6+23) =24(3+1)242(3+1) =22. ∴C =45°,sin C =22. 由正弦定理得:sin A =a sin C c =26×2243 =12. ∵a

垂径定理及其推论

圆部分知识点总结 令狐采学 垂径定理及其推论 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。 (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 推论2:圆的两条平行弦所夹的弧相等。垂径定理及其推论可概括为: 过圆心 垂直于弦 直径平分弦知二推三 平分弦所对的优弧 平分弦所对的劣弧 弧、弦、弦心距、圆心角之间的关系定理 1:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。 2:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。 推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。 推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 点和圆的位置关系 设⊙O的半径是r,点P到圆心O的距离为d,则有:d

P在⊙O内; d=r?点P在⊙O上; d>r?点P在⊙O外。 过三点的圆 1、不在同一直线上的三个点确定一个圆。 2、经过三角形的三个顶点的圆叫做三角形的外接圆。 3、三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。 直线与圆的位置关系 直线和圆有三种位置关系,具体如下: (1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点; (2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线, (3)相离:直线和圆没有公共点时,叫做直线和圆相离。 如果⊙O的半径为r,圆心O到直线L的距离为d,那么:直线L 与⊙O相交?dr; 圆的内接四边形定理:圆的内接四边形的对角互补,外角等于 它的内对角。 切线的性质与判定定理 径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 2、性质定理:切线垂直于过切点的半径 推论1:过圆心垂直于切线的直线必过切点。 推论2:过切点垂直于切线的直线必过圆心。

巧用三余弦定理解题

A O P α l B A O 1 θ2 θθ P Q α 巧用“三余弦定理”解题 “三余弦定理”的内容:如图1,直线AO 是平面α 的斜线,AQ 是AO 在平面内的射影,直线AP 在平面α内.设21,,θθθ=∠=∠=∠QAP OAQ OAP ,有以下结论: 21cos cos cos θθθ?=.我们可以形象地把这个结 论称为“三余弦定理”,应用“三余弦定理”可以使我们 的很多立体几何问题的解决变得简单. 图1 应用“三余弦定理”解题的步骤如下: 1. 明确三线:平面内的直线(以下简称“内线”),平面的斜线和斜线在平面内的射影. 2. 明确三角:斜线与“内线”所成为θ,斜线与射影所成的角为1θ,射影与“内线”所成的角为2θ. 3. 定理运算. 例 1.如图2,已知AO 是平面α的一条斜线,OB ⊥α,B 是垂足,AP 是α内一直线,∠OAP=60o ,∠BAP=45o ,求斜线AO 与平面α所成的角. 分析:AP 是“内线”,AO 是斜线,AB 是射影,所以21,,θθθ=∠=∠=∠BAP OAB OAP ,直接利用“三 余弦定理”求解.解题过程略. 略解: 点评:斜线与平面所成的角即斜线与射影所成的角,明确了“三线”与“三角”,直接代定理求解. 图2 变式1:已知∠OAB=45o ,∠BAP=45o ,求直线AO 与AP 所成的角; 分析:同例1. 变式2:已知∠OAB=45o ,∠BAP=45o , l //AP , 求直线AO 与l 所成的角; 分析:因为l //AP ,直线AO 与AP 所成的角同AO 与l 所成的角相等.我们在解题时,只需要明确“三线”,这时l 是“内线”,AO 是斜线,AB 是射影,然后斜线 AO 与“内线”l 所成 为θ,斜线AO 与射影AB 所成的角为1θ,射影AB 与“内线”l 所成的角为2θ, 问题迎刃而解. 例2.如图3,在棱长为1正方体ABCD- A 1B 1C 1D 1中,E 、F 分别是B 1C 1和CC 1的中点,求异面直线A 1B 与EF 所成角的余弦值. C 1 A B C D A 1 B 1 D 1 F E

1.《戴维宁定理》教学设计

《戴维宁定理》 一、教材分析 “戴维宁定理”是《电工基础》中“直流电路分析”一章的重点内容之一,它是简化复杂电路的重要方法,特别适用于求解复杂网络内部某一支路中电流或电压,而且也是直流电路分析中的一个普遍实用的重要定理和方法。对学生来讲,它是本章的重点之一,也是难点之一。因此,本节课的内容是至关重要的,它对直流电路分析起到了变难为易的作用。 二、教学目标 1.知识目标: 理解戴维宁定理的内容;掌握用戴维宁定理求解某一条支路的步骤,并能熟练应用到实际电路中。 2.能力目标: 通过戴维宁定理的教学,培养学生观察、猜想、归纳问题的能力,分析电路的能力,调动学生探求新知的积极性。 3.情感目标: 通过戴维宁定理的学习,使学生学会处理复杂问题时所采用的一种化繁为简(变难为易)的思想.培养学生从实践、实验出发勇于探索的科学精神。 三、教学重点和难点 教学重点: 1、戴维宁定理的内容及应用。 2、应用戴维宁定理如何将复杂的含源二端网络等效化简为一个电压源和一个电阻相串联。 教学难点: 应用戴维宁定理解题时如何具体计算含源二端网络的开路电压。 四、教学方法 为了实现本节课的教学目标,在教法上我采取: 1、启发式教学、形象直观式教学 为了充分调动学生学习此内容的积极性,使学生变被动为主动的愉快的学习,我正确处理好主导与主体的关系,启发式教学始终贯穿于始终,通过师生间的一系列互动活动,如提问与回答,讲授与思考,口述与板书等,从复习旧课,到提出问题,由旧到新,由浅入深,循序渐进,将学生的学习积极性充分调动起来,充分发挥学生的主体作用,让他们在愉快的氛围中接受知识和技能。 2、采用演示实验,提高教学效率和教学质量。 五、学习方法 1、让学生利用图形直观启迪思维,并通过典型例题的演示分析指导,来完成从感性认识到理性思维的质的飞跃。 2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。 六、教学程序 (一)创设情景,揭示课题 问;复杂直流电路的分析方法有哪些各自的适用范围 答:支路电流法:适用于线性和非线性电路中求解各支路电流; 电压源与电流源的等效变换:适用于求解某一条支路的电流; 叠加定理:适用于线性电路中计算各支路电流和电压,不能用于计算功率。

垂径定理及其推论

垂径定理及其推论 一、 复习旧知 复习前面学习的圆的基本元素,重点复习圆心角、弧、弦之间的关系;强调圆是旋转对称图形、轴对称图形和中心对称图形。 二、 情境导入(出示赵州桥图片) 问题:你知道赵州桥吗? 它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37.4m, 拱高(弧的中点到弦的距离)为7.2m ,你能求出赵州桥主桥拱的半径吗?现在同学们不会求,但是学了这节课你们就能把主桥拱的半径求出来了。 三、 出示学习目标 1、 利用圆的轴对称性探究垂径定理 2、 理清垂径定理及其推论的题设和结论。 3、 运用垂径定理及其推论进行有关的计算和证明。 4、 学会与垂径定理有关的添加辅助线的方法 四、 自学探究 1、如图,在纸上画⊙O ,AB 是⊙O 的一条弦, 作直径CD ⊥AB, 垂足为E.沿CD 折叠,你能发现图中有那些相等的线段和弧? 你能发现什么结论? 线段: AE=BE 弧: AC=BC, AD=BD 2、得出猜想 垂直于弦的直径平分弦,并且平分弦所对的两条弧 D

即如果CD⊥AB,那么AE=BE,弧AC=弧BC,弧AD=弧BD 3、请根据猜想写出命题的已知、求证,并写出证明过程 4、得出结论经过证明,以上命题是真命题。即垂直于弦的直径平分弦,并且平分弦所对的两条弧是成立的,我们把这个真命题叫做垂径定理 四、检测 1、(出示图形)检查下列图形是否具备应用垂径定理的条件? 五、例题讲解 已知:如图在⊙O中,弦AB的长是8cm,圆心O到AB的距离为3cm,求⊙半径 技巧总结:从例题看出圆的半径OA,弦心距OE及半弦长AE构成Rt△AOE.把垂径定理和勾股定理结合起来,解决问题。 六、练习 如图,OE⊥AB于E,若⊙O的半径为10cm,OE=6cm,则AB= cm。 七、思考 将垂径定理的题设和结论调换,命题还成立吗? 1、如果圆的一条直径平分弦(不是直径),那么它垂直于弦,并且平分弦所对的 两条弧 写出此命题的已知求证,并进行证明。 2、经验证,命题是正确的,由此得出垂径定理的推论1:平分弦(不是直径)的 直径垂直于弦,并且平分弦所对的两条弧。

戴维宁定理七种例题

戴维宁定理例题 例1 运用戴维宁定理求下图所示电路中的电压U0 图1 剖析:断开待求电压地址的支路(即3Ω电阻地址支路),将剩下一端口网络化为戴维宁等效电路,需恳求开路电压U oc和等效电阻R eq。 (1)求开路电压U oc,电路如下图所示 由电路联接联络得到,U oc=6I+3I,求解得到,I=9/9=1A,所以U oc=9V (2)求等效电阻R eq。上图电路中含受控源,需求用第二(外加电源法(加电压求电流或加电流求电压))或第三种(开路电压,短路电流法)办法求解,此刻独立源应置零。 法一:加压求流,电路如下图所示, 依据电路联接联络,得到U=6I+3I=9I(KVL),I=I0′6/(6+3)=(2/3)I0(并联分流),所以U=9′(2/3)I0=6I0,R eq=U/I0=6Ω 法二:开路电压、短路电流。开路电压前面已求出,U oc=9V,下面需恳求短路电流I sc。在求解短路电流的进程中,独立源要保存。电路如下图所示。

依据电路联接联络,得到6I1+3I=9(KVL),6I+3I=0(KVL),故I=0,得到I sc=I1=9/6=1.5A(KCL),所以R eq=U oc/I sc=6Ω 终究,等效电路如下图所示 依据电路联接,得到 留心: 核算含受控源电路的等效电阻是用外加电源法仍是开路、短路法,要详细疑问详细剖析,以核算简练为好。戴维南定理典型例子 戴维南定理指出,等效二端网络的电动势E等于二端网络开路时的电压,它的串联内阻抗等于网络内部各独立源和电容电压、电感电流都为零时,从这二端看向网络的阻抗Zi。设二端网络N中含有独立电源和线性时不变二端元件(电阻器、电感器、电容器),这些元件之间可以有耦合,即可以有受控源及互感耦合;网络N的两端ɑ、b接有负载阻抗Z(s),但负载与网络N内部诸元件之间没有耦合,U(s)=I(s)/Z(s)。当网络N中所有独立电源都不工作(例如将独立电压源用短路代替,独立电流源用开路代替),所有电容电压和电感电流的初始值都为零的时候,可把这二端网络记作N0。这样,负载阻抗Z(s)中的电流I(s)一般就可以按下式1计算(图2)式中E(s)是图1二端网络N的开路电压,亦即Z(s)是无穷大时的电压U(s);Zi(s)是二端网络N0呈现的阻抗;s是由单边拉普拉斯变换引进的复变量。

《电路分析》戴维南定理的解析与练习

《戴维南定理》习题练习 一、知识点 1、二端(一端口) 网络的概念: 二端网络:具有向外引出一对端子的电路或网络。 无源二端网络:二端网络中没有独立电源。 有源二端网络:二端网络中含有独立电源。 2、戴维宁(戴维南)定理 任何一个线性有源二端网络都可以用一个电压为U OC的理想电压源和一个电阻R0串联的等效电路来代替。如图所示: 等效电路的电压U OC是有源二端网络的开路电压,即将负载R L断开后 a 、b两端之间的电压。 等效电路的电阻R0是有源二端网络中所有独立电源均置零(理想电压源用短路代替,理想电流源用开路代替)后, 所得到的无源二端网络 a 、b两端之间的等效电阻。

二、例题:应用戴维南定理解题 戴维南定理的解题步骤: 1.把电路划分为待求支路和有源二端网络两部分,如图1中的虚线。 2.断开待求支路,形成有源二端网络(要画图),求有源二端网络的开路电压UOC 。 3.将有源二端网络内的电源置零,保留其内阻(要画图),求网络的入端等效电阻Rab 。 4.画出有源二端网络的等效电压源,其电压源电压US=UOC (此时要注意电源的极性),内阻R0=Rab 。 5.将待求支路接到等效电压源上,利用欧姆定律求电流。 【例1】电路如图,已知U 1=40V ,U 2=20V ,R 1=R 2=4Ω,R 3=13 Ω,试用戴维宁定理求电流I 3。 解:(1) 断开待求支路求开路电压 U OC U OC = U 2 + I R 2 = 20 +2.5 ? 4 = 30V 或: U OC = U 1 – I R 1 = 40 –2.5 ? 4 = 30V U OC 也可用叠加原理等其它方法求。 (2) 求等效电阻R 0 将所有独立电源置零(理想电压源 用短路代替,理想电流源用开路代替) (3) 画出等效电路求电流I 3 A 5.24420402121 =+-=+-=R R U U I Ω=+?=22 1210R R R R R A 213 23030OC 3=+=+=R R U I

垂径定理—知识讲解(提高).docx

垂径定理一知识讲解(提高) 【学习目标】 1. 理解圆的对称性; 2 .掌握垂径定理及其推论; 3 ?学会运用垂径定理及其推论解决有关的计算、证明和作图问题. 【要点梳理】知识点一、垂径定理 1. 垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧? 2. 推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 要点诠释: (1) 垂径定理是由两个条件推岀两个结论,即 直径1 J平分弦 垂直于弦j n j平分弦所对的弧 (2) 这里的直径也可以是半径,也可以是过圆心的直线或线段. 知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论: (1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 (4)圆的两条平行弦所夹的弧相等? 要点诠释: 在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论?(注意:“过圆心、平分弦”作为题设时,平分 的弦不能是直径) 【典型例题】 类型一、应用垂径定理进行计算与证明 的半径是______________________ O=如图,。O的两条弦AB、CD互相垂直,垂足为 E,且AB=CD ,已知CE=1,ED=3 ,则Θ O

【答案】 【解析】 【点评】 举一反三: .5. 作OM 丄AB 于M 、ON 丄CD 于N ,连结 OA , T AB=CD , CE=1 , ED=3, ??? OM=EN=I , AM=2 , ? OA= . 22+12=,5. Y B 对于垂径定理的使用,一般多用于解决有关半径、弦长、弦心距之间的运算 题? (配合勾股定理)问 【变式1】如图所示,Θ O 两弦AB CD 垂直相交于 H AH= 4, BH= 6, 【答案】如图所示,过点 MO=HN O 分别作OML AB 于M ONL CD 于 N,则四边形 1 =CN -CH CD -CH 2 1 1 (CH DH ) -CH (3 8) -3 = 2.5 , 2 2 1 1 1 BM AB (BH AH ) (4 6) =5 , 2 2 2 在 Rt △ BOM 中 OB =? BM 2 OM 2 = 55 . 2 【高清ID 号: 356965 关联的位置名称(播放点名称) 【变式2】如图,AB 为Θ O 的弦,M 是AB 上一点, C :例2-例3】 OM= 10Cm 求Θ O 的半径.

垂径定理及其推论练习题

垂径定理及其推论练习题 1.下面四个命题中正确的一个是() A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必过这条弦所在圆的圆心 D.在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心 2.下列命题中,正确的是(). A.过弦的中点的直线平分弦所对的弧B.过弦的中点的直线必过圆心C.弦所对的两条弧的中点连线垂直平分弦,且过圆心D.弦的垂线平分弦所对的弧3、⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长 的取值范围是()(A)5 OM 3≤ ≤(B)5 OM 4≤ ≤ (C)5 OM 3< <(D)5 OM 4< < 4、已知:如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=8m,OC=5m, 则DC的长为()A、3cm B、2.5cm C、2cm D、1cm 5过⊙O内一点P的最长弦为10cm,最短的弦为6cm,则OP的长为 . 6、如图,在⊙O中,直径AB丄弦CD于点M,AM=18,BM=8,则CD的长为__________ . 7、如图,∠PAC=30°,在射线AC上顺次截取AD=3cm,DB=10cm,以DB为直径作⊙O交射线AP于E、F两点,则线段EF的长是_________ cm. 8、如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A、B重合),过点O 作OC⊥AP于点C,OD⊥PB于点D,则CD的长为_____________ . 9、如图,AB为⊙O的直径,CD为⊙O的一条弦,CD⊥AB,垂足为E,已知CD=6,AE=1,则⊙0的半径为____________. 10、如图所示,若⊙O 的半径为13cm,点P是弦AB上一动点,且到圆心的最短距离5cm,则弦AB的长为______________ . 11、已知圆的半径为5cm,一弦长为8cm,则弦的中点到弦所对弧的中点的距离为__ _____。 12、在弓形ABC中,弦AB=24,弓形高CD=6,则弓形所在圆的半径等于。 13、在半径为5cm的⊙O中,有一点P满足OP=3 cm,则过P的整数弦有条。 14、如图,⊙O中弦AB⊥CD于E,AE=2,EB=6,ED=3,则⊙O的半径为。 15.如图,在直角坐标系中,以点P为圆心的圆弧与轴交于A、B两点,已知P(4,2) 和A(2,0),则点B的坐标是 16.如图,AB是⊙O的直径,OD⊥AC于点D,BC=6cm,则OD= cm 17.如图,矩形ABCD与圆心在AB上的圆O交于点G、B、F、E,GB=10,EF=8,那? E O D C B A

相关文档
最新文档