傅里叶变换

傅里叶变换
傅里叶变换

1.课题综述

第一章中我们主要学习了信号、测试、测控、信号分析处理的概念、测试技术的应用情况、测试技术的发展动态及主要信号测试仪器生产厂商。信号是指那些代表一定意义的现象,比如声音、动作、旗语、标志、光线等,它们可以用来传递人们想表达的事情。从广泛意义上来说,信号是指事物运动变化的表现形式,它代表事物运动变化的特征。信号采集测量系统由传感器、中间变换装置和显示记录装置三部分组成,如今传感器技术越来越趋向于新型化和智能化。在工程领域,科学实验、产品开发、生产监督、质量控制等,都离不开测试技术。测试技术应用涉及到航天、机械、电力、石化和海洋运输等每一个工程领域。

第二章我们主要学习了信号分类方法、信号时域波形分析方法、信号时差域相关分析方法、信号频域频谱分析方法及其它信号分析方法。首先学习了信号的分类,其主要是依据信号波形特征来划分的,从信号描述上分可分为确定性信号与非确定性信号;从信号的幅值和能量上分可分为能量信号与功率信号;从分析域上分可分为时域与频域;从连续性上分可分为连续时间信号与离散时间信号;从可实现性上分可分为物理可实现信号与物理不可实现信号。

信号的时域波形分析,信号的时域波形分析是最常用的信号分析手段,用示波器、万用表等普通仪器直接显示信号波形,读取特征参数。可以求得信号的均值、均方值、方差以及概率密度函数等参数。信号的时差域相关分析,用相关函数来描述与时间有关的变量τ、x(t)和y(t),三者之间的函数关系,相关函数表征了x、y之间的关联程度。信号频域分析是采用傅立叶变换将时域信号x(t)变换为频域信号X(f),频域分析能明确揭示信号的频率组成和各频率分量大小。

第三章我们主要学习了传感器的分类、常用传感器测量原理及传感器测量电路。传感器是借助检测元件将一种形式的信息转换成另一种信息的装置。传感器由敏感器件与辅助器件组成。敏感器件的作用是感受被测物理量,并对信号进行转换输出。辅助器件则是对敏感器件输出的电信号进行放大、阻抗匹配,以便于后续仪表接入。主要有电阻式、电容式、电感式、磁电式、压电式传感器,磁敏、热敏和气敏元件传感器,以及超声波、光电及半导体敏感元件传感器,光纤传感器等。

第四章我们主要学习了自动化工程机械分类、工程机械控制器及发展趋势、

施工过程的机群智能化控制及智能化模型、采矿铲土运输机群动态管理系统、工程机械常用传感器及各种传感器的原理。

第五章我们主要学习了测试系统的概念、测试系统特性对测量结果的影响及测试系统特性的测量方法。测试系统是执行测试任务的传感器、仪器和设备的总称。测试系统的特性有静态响应特性和动态响应特性。

如果测量时,测试装置的输入、输出信号不随时间而变化,则称为静态测量。静态测量时,测试装置表现出的响应特性称为静态响应特性。静态响应特性指标有:灵敏度、非线性度、回程误差、精度、分辨力、测量范围、稳定性和可靠性。

测试系统的动态特性反映其测量动态系统的能力,其不仅取决于测试系统的结构参数,而且与输入信号有关。描述测试系统动态特性的数学模型有微分方程、传递函数、频率响应函数以及脉冲响应函数和阶跃响应函数。测试系统的动态特性在复频域可用传递函数来描述,在频域可用频率响应函数来描述,在时域可用微分方程、脉冲响应函数、阶跃响应函数等来描述。

第六章我们主要学习了信号模数转换和数模转换原理、信号采样定理、数字信号处理中信号截断、能量泄露、栅栏效应等现象及常用的数字信号处理方法。数字信号处理主要研究用数字序列来表示测试信号,并用数学公式和运算来对这些数字序列进行处理。内容包括数字波形分析、幅值分析、频谱分析和数字滤波,步骤如下:

A/D转换过程有采样、量化和编码。为保证采样后信号能真实地保留原始模拟信号信息,信号采样频率必须至少为原信号中最高频率成分的2倍。这是采样的基本法则,称为采样定理。工程实际中采样频率通常大于信号中最高频率成分的3到5倍。此外,还了解了信号的截断与能量泄漏、离散傅立叶变换和快速傅立叶变换,栅栏效应与窗函数等。

第七章我们主要学习了三大类误差的特征、性质以及减小各类误差对测量精

度影响的措施、等精度测量的数据处理方法、不等精度测量的数据处理方法。

随机误差具有抵偿性,这是它最本质的特性,算术均值和标准差是表示测量结果的两个主要统计量;系统误差则违背抵偿性,因而会影响算术均值,变化的系统误差还影响标准差;粗大误差则存在于个别的可疑数据中,也会影响算术均值和标准差。随机误差服从统计规律,是无法消除的,但通过适当增加测量次数可提高测量精度;系统误差则是有确定性规律,在掌握这个规律后,可以采取适当的措施消除或减小它;粗大误差既违背统计规律,又违背确定性规律,可用物理或统计的方法判断后剔除。为处理一组测量数据,往往先找出个别可疑数据,经统计判断确认无粗大误差后,再用适当的方法检验数据中是否含有明显的系统误差,如确认已无系统误差,最后处理随机误差,统计算术平均值、标准差及极限误差,以正确的表达方式给出测量结果。

第八章我们主要学习了滤波器原理、应用及选择。滤波器分为模拟滤波器和数字滤波器。根据系统的要求选择测试系统和数字信号处理系统,根据结构、阶数、运算量、相位、稳定性、误差、延迟等来进一步选择数字滤波器。

2.傅里叶变换

2.1 傅里叶变换的定义

x(t)是t 的函数,如果t 满足狄里赫莱条件:具有有限个间断点;具有有限个极值点;绝对可积。则有下式①成立。称为积分运算X( ω)的傅立叶变换,

②式的积分运算叫做X (ω)的傅立叶逆变换。X (ω)叫做x(t )的像函数,x(t )叫做X (ω)的像原函数。X (ω)是x(t )的像。x(t )是X (ω)原像。

dt e t x w X jwt -+∞

∞-?=

)()( ①

dw e t X t x jwt ?+∞∞-=)(21)(π ②

2.2傅里叶变换的性质

(1)线性叠加性

若 )()(),()(2211w X t x w X t x ??

则对应两个任意常数a1和a2,有

)()()()(22112211w X a w X a t x a t x a +?+

上式表明时域信号增大a 时,则其频域信号的频谱函数也增大a 倍;几时域信号合成后的频谱函数,等于各个信号频谱函数之和。

(2)对称性

若 )()(w X t x ?,则 )(2)(t x t X π?

对称性表明,若偶函数 )(t x 的频谱函数为 )(w X ,则与 )(w X 波形相同的时域函数 )(t X 的频谱密度函数与原信号 )(t x 有相似的波形。 (3)时移特性

若 )()(w X t x ? ,则 0)()(0jwt e w X t t x -?-

时移特性表明:时域信号沿时间轴平移(延迟)时间0t ,则在频域中需乘以因子0e jwt -,即幅频特性不变,相频谱中相角的改变与频率成正比。 (4)频移特性

若 )()(w X t x ? ,则 )()(00w w X e t x t jw -?+

频移特性表明:若时域信号乘以因子 t jw 0e + ,则对应的频谱)(w X 将沿 着频率轴偏移 0w ,频谱形状无变化。

(5)时间尺度特性

若 )()(w X t x ? , 则)(1)(a

w X a at x ?

时间尺度特性表明:信号在时域中沿时间轴压缩a 倍(a >1), 在频域中频谱函数的频带加宽a 倍,而幅值压缩1/a 倍。

(6)积分和微分特性

若 )()(w X t x ? ,

则 ()w X jw dt t x d n n n )()(? (微分特性)

)(1)(t X jw dt t x t

??∞

- (积分特性) (7)卷积特性

若 )()(),()(2211w X t x w X t x ??

则 )()()(*)(2121w X w X t x t x ? (时域卷积特性) )(*)(21)()(21w X w X t x t x π

? (频域卷积特性) 时域和频域卷积特性表明:时域中两个信号卷积的频谱等于两个信号频谱的乘积;时域中两个信号乘积的频谱等于各自频谱进行卷积。

2.3傅里叶变换在工程领域中的应用

2.3.1傅里叶变换在chirp 信号时频分析中的应用

提出了一种新的基于分数阶傅里叶变换的伪维格纳分布(PWD),用于单分量或多分量chirp 信号的分析。首先通过搜索二阶分数阶傅里叶变换矩的极值点,寻找最佳变换域,然后利用旋转的短时傅里叶变换,在分数阶傅里叶变换域中实现各分量chirp 信号间的分离,以抑制交叉项及噪声项的干扰。在已知信号模型的前提下,还给出了分数阶傅里叶变换最佳旋转角度的经验计算公式,以辅助信号分析。仿真实验表明,通过对时频平面的旋转,所提出的方法能够在分数阶傅里叶变换域中,很好地抑制多分量信号间的交叉项干扰,更好地提取信号的时频信息。

2.3.2傅里叶变换域大尺度图像配准算法研究

图像配准将不同条件下得到的位于不同坐标系下同一场景的两幅或多幅图像进行对准叠加,该技术已广泛应用于计算机视觉、医学图像处理等许多领域。基于傅里叶变换域的配准方法以其运算量小、抗噪性能强、易于实现等优点得到广泛关注。传统傅里叶变换域配准算法首先计算笛卡尔网格上点的离散傅里叶变换,然后通过插值逼近对数极坐标网格点上的离散傅里叶变换,尽管该算法计算量小但却有较大插值误差。现有的改进算法,尽管可在一定程度上减少这种误差,但仍无法实现较大尺度变化图像配准。基于此,本文将利用离对数极坐标网格更近点上的离散傅里叶变换,实现图像配准,以减少插值误差。本文主要有如下两方面工作:(1)提出一种准极傅里叶变换来逼近对数极坐标傅里叶变换。构造了准极

坐标网格,所构造网格是等角度的,仅需在极径方向上插值即可实现图像配准,实

验也表明所提算法优于传统傅里叶配准算法。(2)提出一种多层伪极傅里叶变换法,结合多层坐标网格和伪极坐标网格,构建了多层伪极坐标网格,该网格低频密

集而高频疏松,理论与实验均表明这种网格比现有方法更接近对数极坐标网格。配准实验也表明,利用这种网格上的多层伪极傅里叶变换进行配准对大尺度变换图像有较好的配准效果。

2.3.3傅里叶变换与小波变换在信号去噪中的应用

对于高频信号和高频噪声干扰相混叠的信号,采用小波变换去除噪声可以避免用傅里叶变换去噪带来的信号折损。对于噪声频率固定的平稳信号,在对信号进行傅里叶变换后使用滤波器滤除噪声。对高频含噪信号则采用正交小波函数sym4对信号分解到第4层,利用极大极小值原则选择合适的阈值进行软阈值处理,最后利用处理后的小波系数进行重构。实验结果表明,对于高频含噪信号傅里叶去噪会出现严重的信号丢失现象,使用极大极小值原则选择阈值进行小波去噪可以有效地保留高频部分的有用信号。

2.3.4分数傅里叶变换在数字图像处理中的应用研究

将分数傅里叶变换(FRFT,Fractional Fourier Transform)用于数字图像处理领域中是图像技术发展的一个新方向。由于FRFT与光学成像有着内在的联系,可用它来描述光学成像衍射过程,因而它非常适合于数字图像处理。本文在分析了FRFT 的数学、光学特性和FRFT与数字图像关系基础上,提出了基于FRFT变换域的数字图像处理算法。这些算法主要集中于图像复原和数字图像信息安全两个方向,内容包括以下三个方面:首先依据FRFT与光学衍射成像系统的内在联系,利用FRFT分析和解释了光学成像过程中的散焦模糊现象,进而构建FRFT散焦成像模型。FRFT散焦成像模型完全不同于传统的点传播模型PSF,它揭示了光学成像系统中散焦图像的模糊本质是在于连续FRFT过程导致图像的幅度、相位发生改变。由此本文提出了基于FRFT散焦成像模型图像复原算法,它可以提高散焦模糊图像的清晰度、改善图像质量,解决了数字图像中散焦模糊问题。最后将FRFT散焦图像复原方法与传统PSF模型散焦复原方法进行对比实验,结果显示FRFT散焦复原法的恢复效果优于传统方法。在数字版权安全保护中,依据FRFT的光学衍射成像系统的内在联系,本文并将当前流行的CDMA扩频通信技术原理融入到水印系统

中,由此提出了基于CDMA扩频的FRFT域数字图像水印实现算法。将水印数据分解成一些片断,每个片断代表不同的CDMA用户数据,每个片断数据用不同的正交Gold码调制成CDMA扩频水印数据,而后将这些CDMA水印数据嵌入到图像的FRFT域的低频系数中。FRFT图像水印同时具有空域水印系统和频域水印系统的特性,CDMA技术能改善水印系统的鲁棒性和安全性、增加水印信息容量。在数字图像加密保护中,利用FRFT的多样性和混沌序列的复杂性、伪随机性和对初值敏感性,本文提出基于FRFT域和空域混沌序列的双重图像加密算法,它能显著提高

加密图像的抗攻击性。另外本文研究了基于非对称FRFT域的双重随机相位图像加解密实现过程。除了在图像复原与图像安全保护中应用外,FRFT也可应用于数字图像处理领域的其它方向如模式识别、图像边缘检测等。随着FRFT理论技术的发展,FRFT在数字图像处理的应用会更加深入广泛。

3.参考文献

[1] 李晓莹,张新荣等.传感器与测试技术[M].北京:高等教育出版社.2013

[2] 李靖.傅里叶变换在chirp信号时频分析中的应用[J].西安:陕西科学技术出版社2010

[3] 李振红,杨建伟.傅里叶变换域大尺度图像配准算法研究[M].机械工业出版社 2009

[4] 孙丽颖,傅里叶变换与小波变换在信号故障诊断中的应用[J].辽宁工学院2005

[5]张勇.傅里叶变换在数字图像处理中的应用[J].廊坊师范学院学报(自然科学版),2015

[6]Anca Arm??elu. New Spectral Applications of the Fourier Transforms in Medicine, Biological and Biomedical Fields[M].IntechOpen:2017

傅里叶(Fourier)级数的指数形式与傅里叶变换

傅里叶(Fourier )级数的指数形式与傅里叶变换 专题摘要:根据欧拉(Euler )公式,将傅里叶级数三角表示转化为指数表示,进而得到傅里叶积分定理,在此基础上给出傅里叶变换的定义和数学表达式。 在通信与信息系统、交通信息与控制工程、信号与信息处理等学科中,都需要对各种信号与系统进行分析。通过对描述实际对象数学模型的数学分析、求解,对所得结果给以物理解释、赋予其物理意义,是解决实际问题的关键。这种数学分析方法主要针对确定性信号的时域和频域分析,线性时不变系统的描述以及信号通过线性时不变系统的时域分析与变换域分析。所有这些分析方法都离不开傅里叶变换、拉普拉斯变换和离散时间系统的z 变换。而傅里叶变换的理论基础是傅里叶积分定理。傅里叶积分定理的数学表达式就是傅里叶级数的指数形式。 不但傅里叶变换依赖于傅里叶级数,就是纯数学分支的调和分析也来源于函数的傅里叶级数。因此,傅里叶级数无论在理论研究还是在实际应用中都占有非常重要的地位。我们承认满足狄里克莱(Dirichlet )条件下傅里叶级数的收敛性结果,不去讨论和深究傅里叶展式的唯一性问题。 傅里叶级数的指数形式 一个以T 为周期的函数)(t f ,在]2 ,2[T T 上满足狄里克莱条件:1o

)(t f 连续或只有有限个第一类间断点;2o 只有有限个极值点。那么)(t f 在]2 ,2[T T - 上就可以展成傅里叶级数。在连续点处 ∑∞ =++=1 )sin cos (2)(n n n t n b t n a a t f ωω, (1) 其中 T πω2= , ),2,1,0(,cos )(2 22Λ==?-n dt t n t f T a T T n ω, (2) ),3,2,1(,sin )(2 22 Λ==?-n dt t n t f T b T T n ω, (3) 根据欧拉(Euler )公式:θθθsin cos j e j +=,(1)式化为 ∑∞=--?? ????-+++=10222)(n t jn t jn n t jn t jn n j e e b e e a a t f ωωωω ∑∞=-?? ? ???++-+=10222n t jn n n t jn n n e jb a e jb a a ωω, (4) 若令 dt t f T c T T ?-=22 0)(1 Λ,3,2,1,)(1 ]sin )[cos (1 sin )(1cos )(1222 2222 22==-=-=-=????-----n dt e t f T dt t n j t n t f T dt t n t f T j dt t n t f T jb a c T T t jn T T T T T T n n n ωωωωω Λ,3,2,1,)(1 22 ==?--n dt e t f T c T T t jn n ω 综合n n c c c -,,0,可合并成一个式子 Λ,2,1,0,)(1 22 ±±==?--n dt e t f T c T T t jn n ω, (5)

傅里叶变换光学系统

傅里叶变换光学系统 组号 4 09光信 王宏磊 (合作人: 刘浩明 杨纯川) 一、实验目的和内容 1、了解透镜对入射波前的相位调制原理。 2、加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。 3、观察透镜的傅氏变换(FT )图像,观察4f 系统的反傅氏变换(IFT )图像,并进行比较。 4、在4f 系统的变换平面(T )插入各种空间滤波器,观察各种试件相应的频谱处理图像。 二、实验原理 1、透镜的FT 性质及常用函数与图形的关学频谱分析 力。图1 在该点的厚度。设原复振幅分布为(,)L U x y 其复振幅分布受到透镜的位相调制,附加了一个位相因(,)x y ?后变为(,)L U x y ': 图1 (,)(,)exp[(,)]L L U x y U x y j x y ?'= (1) 若对于任意一点(x ,y )透镜的厚度为(,)D x y ,透镜的中心厚度为0D 。光线由该点通过透镜时在透镜中的距离为(,)D x y ,空气空的距离为0D -(,)D x y ,透镜折射率为n ,则该点的总的位相差为: 00(,)[(,)](,)(1)(,)x y k D D x y knD x y kD k n D x y ?=-+=+- (2) (2)中的k =2π/λ,为入射光波波数。 用位相延迟因子(,)t x y 来表示即为: 0(,)exp()exp[(1)(,)]t x y jkD jk n D x y =- (3) 由此可见只要知道透镜的厚度函数(,)D x y 就可得出其相位调制。在球面镜傍轴区域,用抛物面近似球面,可以得到球面透镜的厚度函数为:

22012 111(,)()()2D x y D x y R R =-+- (4) 其中1R 、2R 是构成透镜的两个球面的曲率半径。公式(4)对双凹、双凸、或凹凸透镜都成立。引入焦距f ,其定义为: 12 111(1)()n f R R =-- (5) 代入(3)得: 220(,)exp()exp[()]2k t x y jknD j x y f =-+ (6) 式(6)即是透镜位相调制的表达式,它表明复振幅(,)L U x y 通过透镜时,透镜各点都发生位相延迟。 从式(6)容易看出第一项位相因子0exp()jknD 仅表示入射光波的常量位相延迟,不影响位相的空间分布,即波面形状,所以在运算过程中可以略去。第二项22exp[()]2k j x y f -+是具有调制作用的因子,它表明光波通过透镜的位相延迟与该点到透镜中心的距离的平方成正比。而且与透镜的焦距有关。当考虑透镜孔径后,有: 22(,)exp[()](,)2k t x y j x y p x y f =-+ (7) 其中的(,)p x y 为透镜的光瞳函数,表达式为: 1(,)0p x y ?=?? 孔径内 其 它 (8) 2、透镜的傅里叶变换性质 在单色平面波垂直照射下,夫琅和斐衍射光场的复振幅分布正比于衍射屏透射系数的傅里叶变换。衍射图像的强度分布正比于衍射屏的功率谱分布。一般情况下,我们是将夫朗和斐衍射图像成像到透镜的像方焦平面出,这就是说,作为成像元件的透镜,就相当于傅里叶变换器。 如图2所示,设单位振幅的单色平面光垂直照射一透射系数为(,)t x y 的衍射屏,与衍射屏相距Z 处放置一焦距为f 的薄透镜L ,先观察其像方平面L 的光场分布。为了讨论方便,这里我们忽略透镜材料的吸收、散射、透镜表面的反射以及透镜孔径大小等因素的影响。

傅里叶变换性质证明

傅里叶变换性质证明 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

傅里叶变换的性质 2.6.1线性 若信号和的傅里叶变换分别为和, 则对于任意的常数a和b,有 将其推广,若,则 其中为常数,n为正整数。

由傅里叶变换的定义式很容易证明线性性质. 显然傅里叶变换也是一种线性运算,在第一章我们已经知道了,线性有两个含义:均匀性和叠加性。均匀性表明,若信号乘以常数a,则信号的傅里叶变换也乘以相同的常数a,即 叠加性表明,几个信号之和的傅里叶变换等于各个信号的傅里叶变换之和 ? 2.6.2 反褶与共轭性 设f(t)的傅里叶变换为,下面我们来讨论信号反褶、共轭以及既反褶又共轭后,新信号的傅里叶变换。

(1)反褶 f(-t)是f(t)的反褶,其傅里叶变换为 (2)共轭 (3)既反褶又共轭 本性质还可利用前两条性质来证明: 设g(t)=f(-t),h(t)=g*(t),则 在上面三条性质的证明中,并没有特别指明f(t)是实函数还是复函数,因此,无论f(t)为实信号还是复信号,其傅里叶变换都满足下面三条性质2.6.3 奇偶虚实性 已知f(t)的傅里叶变换为。在一般情况下,是复函数,因此可以把它表示成模与相位或者实部与虚部两部分,即 ? 根据定义,上式还可以写成 下面根据f(t)的虚实性来讨论F()的虚实性。 (1) f(t)为实函数对比式(2-33)与(2-34),由FT的唯一性可得 ()f(t)是实的偶函数,即f(t)=f(-t)

X()的积分项是奇函数,而奇函数在对称区间内的积分为零,故 这时X()=0,于是 可见,若f(t)是实偶函数,则F()也是实偶函数,即 左边反褶,右边共轭 ()f(t)是实的奇函数,即-f(t)=f(-t) R()的积分项是奇函数,而奇函数在对称区间内的积分为零,故 这时R()=0,于是 可见,若f(t)是实奇函数,则F()是虚奇函数,即 左边反褶,右边共轭 有了上面这两条性质,下面我们来看看一般实信号(即可能既不是偶信号,又不是奇信号,反正不清楚,或者说是没有必要关心信号的奇偶特性)的FT频谱特点。 2.6.4对称性

傅里叶变换定律-傅里叶变换定义定律

第2章信号分析 本章提要 信号分类 周期信号分析--傅里叶级数 非周期信号分析--傅里叶变换 脉冲函数及其性质 信号:反映研究对象状态和运动特征的物理量信号分析:从信号中提取有用信息的方法 和手段 §2-1 信号的分类 两大类:确定性信号,非确定性信号 确定性信号:给定条件下取值是确定的。 进一步分为:周期信号, 非周期信号。

质量M 弹簧 刚度K t x (t ) o x 0 质量-弹簧系统的力学模型 x (t ) ? ?? ? ??+=0cos )(?t m k A t x 非确定性信号(随机信号):给定条件下取值是不确定的 按取值情况分类:模拟信号,离散信号 数字信号:属于离散信号,幅值离散,并用二进制表示。 信号描述方法 时域描述 如简谐信号

频域描述 以信号的频率结构来描述信号的方法:将信号看成许多谐波(简谐信号)之和,每一个谐波称作该信号的一个频率成分,考察信号含有那些频率的谐波,以及各谐波的幅值和相角。

§2-2 周期信号与离散频谱 一、 周期信号傅里叶级数的三角函数形式 周期信号时域表达式 ) 21() ()2()()( ,,±±=+==+=+=n nT t x T t x T t x t x T :周期。注意n 的取值:周期信号“无始无终” # 傅里叶级数的三角函数展开式 ) sin cos ()(01 00t n b t n a a t x n n n ωω∑∞ =++= (n =1, 2, 3,…) 傅立叶系数:

?- = 2 2 0)(1T T dt t x T a ?- = 2 2 0cos )(2T T n tdt n t x T a ω ? - = 2 2 0sin )(2T T n tdt n t x T b ω 式中 T--周期;0--基频, 0=2 /T 。 三角函数展开式的另一种形式: ) cos()(1 00∑∞ =++=n n n t n A a t x ?ωN 次谐波 N 次谐波的相角 N 次谐波的频率 N 次谐波的幅值 信号的均值,直流分量

傅里叶变换性质证明

傅里叶变换的性质 2.6.1线性 若信号和的傅里叶变换分别为和, 则对于任意的常数a和b,有 将其推广,若,则 其中为常数,n为正整数。 由傅里叶变换的定义式很容易证明线性性质. 显然傅里叶变换也是一种线性运算,在第一章我们已经知道了,线性有两个含义:均匀性和叠加性。均匀性表明,若信号乘以常数a,则信号的傅里叶变换也乘以相同的常数a,即

叠加性表明,几个信号之和的傅里叶变换等于各个信号的傅里叶变换之和 2.6.2 反褶与共轭性 设f(t)的傅里叶变换为,下面我们来讨论信号反褶、共轭以及既反褶又共轭后,新信号的傅里叶变换。 (1)反褶 f(-t)是f(t)的反褶,其傅里叶变换为 (2)共轭 (3)既反褶又共轭

本性质还可利用前两条性质来证明: 设g(t)=f(-t),h(t)=g*(t),则 在上面三条性质的证明中,并没有特别指明f(t)是实函数还是复函数,因此,无论f(t)为实信号还是复信号,其傅里叶变换都满足下面三条性质 2.6.3 奇偶虚实性 已知f(t)的傅里叶变换为。在一般情况下,是复函数,因此可以把它表示成模与相位或者实部与虚部两部分,即 根据定义,上式还可以写成 下面根据f(t)的虚实性来讨论F()的虚实性。

(1) f(t)为实函数 对比式(2-33)与(2-34),由FT的唯一性可得 ()f(t)是实的偶函数,即f(t)=f(-t) X()的积分项是奇函数,而奇函数在对称区间内的积分为零,故 这时X()=0,于是 可见,若f(t)是实偶函数,则F()也是实偶函数,即 左边反褶,右边共轭 ()f(t)是实的奇函数,即-f(t)=f(-t) R()的积分项是奇函数,而奇函数在对称区间内的积分为零,故 这时R()=0,于是 可见,若f(t)是实奇函数,则F()是虚奇函数,即 左边反褶,右边共轭 有了上面这两条性质,下面我们来看看一般实信号(即可能既不是偶信号,又不是奇信号,反正不清楚,或者说是没有必要关心信号的奇偶特性)的FT频谱特点。 2.6.4对称性 傅里叶变换与傅里叶反变换之间存在着对称关系,称为傅里叶变换的对称性质。若已知

傅里叶变换推导

2.3 快速傅立叶变换问题 1) 问题背景 在数值电路的传输中,为了避免信号干扰,需要把一个连续信号 x(t)先通过取样离散化为一列数值脉冲信号x(0), x(1), …… ,然后再通过编码送到传输电路中。如果取样间隔很小,而连续信号的时间段又很长,则所得到的数值脉冲序列将非常庞大。因此,传输这个编码信号就需要长时间的占用传输电路,相应地也需要付出昂贵的电路费用。 那么能否经过适当处理是使上述的数值脉冲序列变短,而同时又不会丧失有用的信息?的经过研究,人们发现,如果对上述数值脉冲序列作如下的变换处理: ∑-=--=-==1 0/21 ,1,...,1,0,)()(N k N nki i N n e k x n X π (1) 则所得到的新序列X(0), X(1) , ……将非常有序,其值比较大的点往往集中在某一很狭窄的序列段内,这将非常有利于编码和存储,从而达到压缩信息的目的。 公式(1)就是所谓的离散傅立叶变换,简称DFT 。现在我们来分析一下计算DFT 所需要的工作量。如果我们不考虑公式(7.1)中指数项的运算,那么计算其每一个点X (n) 需要N 次复数乘法和N-1次的复数加法。显然当N 很大时,这个工作量也非常巨大。正是由于这个原因,使得DFT 的应用范围在过去很长的时间里受到了严格的限制。注意到公式(1)是非常有规律性的,那么能否利用这种规律性来降低DFT 的计算时间? 1965年,凯莱和塔柯的提出了一种用于计算DFT 的数学方法,大大减少了DFT 的计算时间,同时又特别适用于硬件处理,这就是所谓的快速傅里叶变换,简称FFT 。鉴于DFT 的数据结构可以通过傅立叶变换的离散化获得,亦可通过三角插值得到,而本质上又同连续傅里叶分析有着极为密切的关系。下面我们从傅立叶级数级数和傅立叶积分入手,导出DFT 结构的来源和FFT 的工作原理。 2) 傅立叶变换 如果x(t)是定义在整个实轴上的实值或复值函数,则其傅立叶变换可由下式给出: ?∞ ∞ ---==1 ,)()(/2i dt e t x f X T nift (2)

用傅里叶变换计算衍射的光强分布

龙岩学院学年论文(设计) 论文题目用傅里叶变换计算衍射的光强分布 学院物理与机电工程学院 专业物理学(光电子技术方向) 年级 2011级 姓名徐武童 学号 2011042526 指导教师兑自强 二0一三年四月十二日

用傅里叶变换计算衍射的光强分布 物理与机电工程学院 11物本 2011042526徐武童指导老师:兑自强 【摘要】:利用傅里叶变换式计算光的单缝和圆孔衍射的光强分布,根据计算结果利用MATLAB软件仿真模拟单缝和圆孔衍射及光强分布,分析计算和模拟结果得知衍射图样取决于缝宽或孔径的大小 【关键词】:傅里叶变换;单缝;圆孔;衍射;光强分布

目录 前言1 1.傅里叶变换式 1 1.1一维变换式 2 1.2二维变换式 3 1.3三维傅里叶变换式 3 2. 用傅里叶变换计算衍射的光强分布 4 2.1计算圆孔衍射的光强分布 6 2.2计算单缝衍射的光强分布 7 3.光强分布曲线 8 3.1单缝衍射的光强分布曲线 8 3.2圆孔衍射的光强分布曲线 9 4.讨论10 4.1单缝衍射 10 4.2圆孔衍射 10 总结11 致谢11

0 前言 衍射现象是波动光学中的重要知识,光的衍射的定义从广义上说是光在传播过程中,遇到障碍物时产生的偏离几何光学规律从而引起光强重新分布的现象,也称为绕射。该定义指出光的衍射是一种区别于几何光学规律的光的传播现象。当所选光学元件的尺度与波长相当时,光的传播现象明显不同于几何光学所描述的。它也明确给出了产生衍射现象的条件“光波遇到障碍物”,对于任何一束光都会因在空间传播过程中遇到障碍物而使自由波面受损,从而改变波前后振幅,使光表现出衍射行为。 而傅里叶变换是一种特殊的积分变换,它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。在数学领域,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的。从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。 在现代光学发展的今天,如何运用傅里叶方法解决干涉、衍射和成像等问题成了至关重要的部分。

傅里叶变换的对称性证明

一. 序列的傅里叶变换(DTFT )的对称性 已知: [()]()j DTFT x n X e ω= **[()]()j DTFT x n X e ω-= **[()]()j DTFT x n X e ω-=(由Z 变换的性质可推出) 共轭对称序列:()()*e e x n x n =-实部是偶对称序列,虚部是奇对称序列 共轭反对称序列: ()()*o o x n x n =--实部是奇对称序列,虚部是偶对称序列 任一序列总可以表示成共轭对称序列和共轭反对称序列之和: ()()()()()()()()() **12 12e e o o x n x n x n x n x n x n x n x n x n ???=+-????=+? ???=--? ??? ()()()()()()()()()**1212j j j e j j j e o j j j o X e X e X e X e X e X e X e X e X e ω ωωωωωωωω--???=+?? ??=+? ???=-? ??? 求证: [Re(())]() [Im(())]()j e j o DTFT x n X e DTFT j x n X e ωω ?=?=? or [()]Re(()) [()]Im(())j e j o IDTFT X e x n IDTFT X e j x n ωω ?=?=? [()]Re(()) [()]Im(())j e j o DTFT x n X e DTFT x n j X e ωω ?=?=? or [Re(())]() [Im(())]()j e j o IDTFT X e x n IDTFT j X e x n ωω ?=?=? 证明: ()()()[][] ** 1 21()()21 2Re(())2 Re(())j j j e X e X e X e DTFT x n x n DTFT x n DTFT x n ωωω-?? = +? ???= +??== ()()( )[][]* * 121()()2 1 2I m (())2 I m (())j j j o X e X e X e D T F T x n x n D T F T j x n D T F T j x n ωω ω- ??= -? ? ??= -??==

傅里叶变换光学

中山大学光信息专业实验报告:傅里叶光学变换系统 一、实验目的和内容 1、了解透镜对入射波前的相位调制原理。 2、加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。 3、观察透镜的傅氏变换(FT )图像,观察4f 系统的反傅氏变换(IFT )图像,并进行比较。 4、在4f 系统的变换平面(T )插入各种空间滤波器,观察各种试件相应的频谱处理图像。 二、实验原理 1、透镜的FT 性质及常用函数与图形的关学频谱分析 透镜由于本身厚度的不同,使得入射光在通过透镜时, 图1 点的厚度。设原复振幅分布为(,)L U x y 的光通过透镜后,幅分布受到透镜的位相调制,附加了一个位相因子(,)x y ?为(,)L U x y ': 图1 (,)(,)exp[(,)]L L U x y U x y j x y ?'= (1) 若对于任意一点(x ,y )透镜的厚度为(,)D x y ,透镜的中心厚度为0D 。光线由该点通过透镜时在透镜中的距离为(,)D x y ,空气空的距离为0D -(,)D x y ,透镜折射率为n ,则该点的总的位相差为: 00(,)[(,)](,)(1)(,)x y k D D x y knD x y kD k n D x y ?=-+=+- (2) (2)中的k =2π/λ,为入射光波波数。 用位相延迟因子(,)t x y 来表示即为: 0(,)exp()exp[(1)(,)]t x y jkD jk n D x y =- (3) 由此可见只要知道透镜的厚度函数(,)D x y 就可得出其相位调制。在球面镜傍轴区域,用抛物面近似球面,可以得到球面透镜的厚度函数为:

常用傅立叶变换表

时域信号 弧频率表示的 傅里叶变换 注释 1 线性 2 时域平移 3 频域平移, 变换2的频域对应4 如果值较大,则会收缩 到原点附近,而会扩 散并变得扁平. 当 | a | 趋向 无穷时,成为 Delta函数。 5 傅里叶变换的二元性性质。通过 交换时域变量和频域变量 得到. 6 傅里叶变换的微分性质 7 变换6的频域对应 8 表示和的卷积—这

9 矩形脉冲和归一化的sinc 函数 10 变换10的频域对应。矩形函数是理想的低通滤波器,sinc 函数是这类滤波器对反因果冲击的响应。 11 tri 是三角形函数 12 变换12的频域对应 13 高斯函数 exp( ? αt 2) 的傅里叶变换是他本身. 只有当 Re(α) > 0时,这是可积的。 14 15 16 a>0 17 变换本身就是一个公式

18 δ(ω) 代表狄拉克δ函数分布. 这 个变换展示了狄拉克δ函数的重要 性:该函数是常函数的傅立叶变换 19 变换23的频域对应 20 由变换3和24得到. 21 由变换1和25得到,应用了欧拉公 式: cos(at) = (e iat + e?iat) / 2. 22 由变换1和25得到 23 这里, n是一个自然数. δ(n)(ω) 是狄拉克δ函数分布的n阶微分。这 个变换是根据变换7和24得到的。 将此变换与1结合使用,我们可以变 换所有多项式。 24 此处sgn(ω)为符号函数;注意此变 换与变换7和24是一致的. 25 变换29的推广. 26 变换29的频域对应. 27 此处u(t)是单位阶跃函数; 此变换 根据变换1和31得到.

傅里叶变换性质证明

2.6 傅里叶变换的性质 2.6.1线性 若信号和的傅里叶变换分别为和, 则对于任意的常数a和b,有 将其推广,若,则 其中为常数,n为正整数。 由傅里叶变换的定义式很容易证明线性性质. 显然傅里叶变换也是一种线性运算,在第一章我们已经知道了,线性有两个含义:均匀性和叠加性。均匀性表明,若信号乘以常数a,则信号的傅里叶变换也乘以相同的常数a,即 叠加性表明,几个信号之和的傅里叶变换等于各个信号的傅里叶变换之和 2.6.2 反褶与共轭性 设f(t)的傅里叶变换为,下面我们来讨论信号反褶、共轭以及既反褶又共轭后,新信号的傅里叶变换。 (1)反褶

f(-t)是f(t)的反褶,其傅里叶变换为 (2)共轭 (3)既反褶又共轭 本性质还可利用前两条性质来证明: 设g(t)=f(-t),h(t)=g*(t),则 在上面三条性质的证明中,并没有特别指明f(t)是实函数还是复函数,因此,无论f(t)为实信号还是复信号,其傅里叶变换都满足下面三条性质

2.6.3 奇偶虚实性 已知f(t)的傅里叶变换为。在一般情况下,是复函数,因此可以把它表示成模与相位或者实部与虚部两部分,即 根据定义,上式还可以写成 下面根据f(t)的虚实性来讨论F()的虚实性。 (1) f(t)为实函数 对比式(2-33)与(2-34),由FT的唯一性可得 (1.1)f(t)是实的偶函数,即f(t)=f(-t) X()的积分项是奇函数,而奇函数在对称区间内的积分为零,故这时X()=0,于是 可见,若f(t)是实偶函数,则F()也是实偶函数,即 左边反褶,右边共轭 ( 1.2)f(t)是实的奇函数,即-f(t)=f(-t) R()的积分项是奇函数,而奇函数在对称区间内的积分为零,故这时R()=0,于是

傅里叶变换公式

第2 章信号分析 本章提要 ?信号分类 ?周期信号分析--傅里叶级数 ?非周期信号分析--傅里叶变换 ?脉冲函数及其性质信号:反映研究对象状态和运动特征的物理量信号分析:从信号中提取有用信息的方法和手段 §2 -1 信号的分类 ?两大类:确定性信号,非确定性信号确定性信号:给定条件下取值是确定的。 进一步分为:周期信号,非周期信号。

质量-弹簧系 统的力学模型x(t) = A cos k t +0 非确定性信号(随机信号:给定条件下取值是不确定的 ?按取值情况分类:模拟信号,离散信号数字信号:属于离散信号,幅值离散,并用二进制表示。 ?信号描述方法 时域描述如简谐信号

简谐信号及其三个要素 频域描述 以信号的频率结构来描述信号的方法: 将信号看成许多谐波(简谐信号)之和,每一个谐波称作该信号的一个频率成分,考察信号含有那些频率的谐波,以及各谐波的幅值和相角。 §2-2 周期信号与离散频谱 一、周期信号傅里叶级数的三角函数形式?周期信号时域表达式 x(t) = x(t +T) = x(t + 2T) = = x(t + nT) (n = 1, 2 ,)

T :周期。注意n 的取值:周期信号“无始无 终” # ? 傅里叶级数的三角函数展开式 x (t ) = a + (a cos n t + b sin n t ) n =1 (n =1, 2, 3 ,…) 傅立叶系数: T a 0 = 1 x (t )dt - 2 T x (t )cos n tdt 2 T 2 x (t ) sin n tdt 2 式中 T--周 期;0--基频, 0=2/T 。 ? 三角函数展开式的另一种形式: 2 a n = b n =2

离散傅里叶变换性质证明

1. [][]()()j j ax n by n aX e bX e ωω+?+ Proof: ([][])[][]()() j n j n j n j j ax n by n e a x n e b y n e aX e bX e ωωωωω∞ --∞ ∞∞ ---∞-∞ +=+=+∑∑∑ 2. (1)[]()d j n j d x n n X e e ωω--? Proof: ()[][].()d d j n d n j n n j n d n j n j x n n e x n n e e X e e ωωωωω∞-=-∞∞---=-∞--=-=∑ ∑ (2) 00()[]()j n j e x n X e ωωω-? Proof: 000()()[][]()j n j n j n j n n e x n e x n e X e ωωωωωω∞∞ ----=-∞=-∞==∑ ∑ 3. []()j x n X e ω--? Proof: ()[][]()j n j n j n n x n e x n e X e ωωω∞∞ ---=-∞=-∞-=-=∑ ∑ if []x n is real ()j X e ω-=*()j X e ω 4. ()[]j dX e nx n j d ωω? Proof: ()[]() ()[]()[]j j n n j j n n j j n n X e x n e dX e jn x n e d dX e j nx n e d ωωωωωωωω∞-=-∞∞-=-∞∞-=-∞=?=-?=∑∑∑

5. (1)22 1|[]||()|2j n x n X e d πωπωπ∞ =-∞-=∑ ? Proof: 2*2221 |()|21 ()()21 [][]21 |[]|21 |[]| 2|[]|j j j j n j n n n n n n X e d X e X e d x n e x n e d x n d x n d x n πωππωωππωωπππππωπ ωπ ωπ ωπ ωπ---∞∞-=-∞=-∞-∞=-∞ -∞=-∞ -∞=-∞ =====??∑∑?∑?∑ ?∑ (2) **1[][]()()2j j n x n y n X e Y e d π ωωπωπ∞=-∞-=∑ ? Proof: *****1 ()()21 ()()21 [][]21[][]21 [][] 2[][] j j j j j n j n n n n n n n X e Y e d X e Y e d x n e y n e d x n y n d x n y n d x n y n πωωππωωππωωπππππωπ ωπ ωπ ωπ ωπ---∞∞-=-∞=-∞-∞ =-∞-∞ ∞=-∞ =-∞-∞=-∞====??∑∑?∑?∑ ∑?∑ 6. []*[]()()j j x n y n X e Y e ωω? Proof:

傅里叶变换光学

中山大学光信息专业实验报告:傅里叶光学变换系统 一、实验目的和内容 1、了解透镜对入射波前的相位调制原理。 2、加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。 3、观察透镜的傅氏变换(FT )图像,观察4f 系统的反傅氏变换(IFT )图像,并进行比较。 4、在4f 系统的变换平面(T )插入各种空间滤波器,观察各种试件相应的频谱处理图像。 二、实验原理 1、透镜的FT 性质及常用函数与图形的关学频谱分析 力。图1 在该点的厚度。设原复振幅分布为(,)L U x y 其复振幅分布受到透镜的位相调制,附加了一个位相因(,)x y ?后变为(,)L U x y ': 图1 (,)(,)exp[(,)]L L U x y U x y j x y ?'= (1) 若对于任意一点(x ,y )透镜的厚度为(,)D x y ,透镜的中心厚度为0D 。光线由该点通过透镜时在透镜中的距离为(,)D x y ,空气空的距离为0D -(,)D x y ,透镜折射率为n ,则该点的总的位相差为: 00(,)[(,)](,)(1)(,)x y k D D x y knD x y kD k n D x y ?=-+=+- (2) (2)中的k =2π/λ,为入射光波波数。 用位相延迟因子(,)t x y 来表示即为: 0(,)exp()exp[(1)(,)]t x y jkD jk n D x y =- (3) 由此可见只要知道透镜的厚度函数(,)D x y 就可得出其相位调制。在球面镜傍轴区域,用抛物面近似球面,可以得到球面透镜的厚度函数为:

22012 111(,)()()2D x y D x y R R =-+- (4) 其中1R 、2R 是构成透镜的两个球面的曲率半径。公式(4)对双凹、双凸、或凹凸透镜都成立。引入焦距f ,其定义为: 12 111(1)()n f R R =-- (5) 代入(3)得: 220(,)exp()exp[()]2k t x y jknD j x y f =-+ (6) 式(6)即是透镜位相调制的表达式,它表明复振幅(,)L U x y 通过透镜时,透镜各点都发生位相延迟。 从式(6)容易看出第一项位相因子0exp()jknD 仅表示入射光波的常量位相延迟,不影响位相的空间分布,即波面形状,所以在运算过程中可以略去。第二项22exp[()]2k j x y f -+是具有调制作用的因子,它表明光波通过透镜的位相延迟与该点到透镜中心的距离的平方成正比。而且与透镜的焦距有关。当考虑透镜孔径后,有: 22(,)exp[()](,)2k t x y j x y p x y f =-+ (7) 其中的(,)p x y 为透镜的光瞳函数,表达式为: 1(,)0p x y ?=?? 孔径内 其 它 (8) 2、透镜的傅里叶变换性质 在单色平面波垂直照射下,夫琅和斐衍射光场的复振幅分布正比于衍射屏透射系数的傅里叶变换。衍射图像的强度分布正比于衍射屏的功率谱分布。一般情况下,我们是将夫朗和斐衍射图像成像到透镜的像方焦平面出,这就是说,作为成像元件的透镜,就相当于傅里叶变换器。 如图2所示,设单位振幅的单色平面光垂直照射一透射系数为(,)t x y 的衍射屏,与衍射屏相距Z 处放置一焦距为f 的薄透镜L ,先观察其像方平面L 的光场分布。为了讨论方便,这里我们忽略透镜材料的吸收、散射、透镜表面的反射以及透镜孔径大小等因素的影响。

傅里叶变换公式

连续时间周期信号傅里叶级数:?= T dt t x T a )(1 ??--= = T t T jk T t jk k dt e t x T dt e t x T a π ω2)(1 )(1 离散时间周期信号傅里叶级数:[][]()∑∑= - =-= = N n n N jk N n n jkw k e n x N e n x N a /21 1 0π 连续时间非周期信号的傅里叶变换:()? ∞∞ --=dt e t x jw X jwt )( 连续时间非周期信号的傅里叶反变换:()dw e jw X t x jwt ? ∞ ∞ -=π 21 )( 连续时间周期信号傅里叶变换:∑+∞ -∞ =??? ? ? ? -=k k k w a jw X T 22)(πδπ 连续时间周期信号傅里叶反变换:()dw e w w t x jwt ? ∞ ∞ --=0221 )( πδπ 离散时间非周期信号傅里叶变换:∑∞ -∞ =-= n n j e n x e X ωω j ][)( 离散时间非周期信号傅里叶反变换:? = π 2d e )(e π 21][ωωωn j j X n x 离散时间周期信号傅里叶变换:∑+∞ -∞ =-= k k k a X )(π2)e (0 j ωωδω 离散时间周期信号傅里叶反变换:[]ωω ωδωd e n n j ?--=π 20 πl)2(π2π 21][x 拉普拉斯变换:()dt e t s X st -∞ ∞ -? =)(x 拉普拉斯反变换:()()s j 21 t x j j d e s X st ?∞ +∞ -= σσ π Z 变换:∑∞ -∞ =-=n n z n x X ][)z ( Z 反变换: ??-== z z z X r z X n x n n d )(πj 21d )e ()(π21][1j π2ωω

傅里叶变换性质证明

2。6 傅里叶变换得性质 2。6.1线性 若信号与得傅里叶变换分别为与,??? 则对于任意得常数a与b,有? ? 将其推广,若,则??? 其中为常数,n为正整数。? 由傅里叶变换得定义式很容易证明线性性质、 ?显然傅里叶变换也就是一种线性运算,在第一章我们已经知道了,线性有两个含义:均匀性与叠加性。均匀性表明,若信号乘以常数a,则信号得傅里叶变换也乘以相同得常数a,即 ???叠加性表明,几个信号之与得傅里叶变换等于各个信号得傅里叶变换之与?? 2.6.2 反褶与共轭性 设f(t)得傅里叶变换为,下面我们来讨论信号反褶、共轭以及既反褶又共轭后,新信号得傅里叶变换。 (1)反褶 f(-t)就是f(t)得反褶,其傅里叶变换为 (2)共轭 (3)既反褶又共轭 本性质还可利用前两条性质来证明: 设g(t)=f(-t),h(t)=g*(t),则 在上面三条性质得证明中,并没有特别指明f(t)就是实函数还就是复函数,因此,无论f(t)为实信号还就是复信号,其傅里叶变换都满足下面三条性质

2。6.3 奇偶虚实性 已知f(t)得傅里叶变换为。在一般情况下,就是复函数,因此可以把它表示成模与相位或者实部与虚部两部分,即 根据定义,上式还可以写成 下面根据f(t)得虚实性来讨论F()得虚实性、 (1) f(t)为实函数?对比式(2-33)与(2—34),由FT得唯一性可得 (1、1)f(t)就是实得偶函数,即f(t)=f(—t) X()得积分项就是奇函数,而奇函数在对称区间内得积分为零,故 这时X()=0,于就是??可见,若f(t)就是实偶函数,则F()也就是实偶函数,即 左边反褶,右边共轭 (1、2)f(t)就是实得奇函数,即-f(t)=f(-t)?R()得积分项就是奇函数,而奇函数在对称区间内得积分为零,故 这时R()=0,于就是 可见,若f(t)就是实奇函数,则F()就是虚奇函数,即 左边反褶,右边共轭 有了上面这两条性质,下面我们来瞧瞧一般实信号(即可能既不就是偶信号,又不就是奇信号,反正不清楚,或者说就是没有必要关心信号得奇偶特性)得FT频谱特点、

快速傅里叶变换(FFT)的原理及公式

快速傅里叶变换(FFT)的原理及公式 原理及公式 非周期性连续时间信号x(t)的傅里叶变换可以表示为 式中计算出来的是信号x(t)的连续频谱。但是,在实际的控制系统中能够得到的是连续信号x(t)的离散采样值x(nT)。因此需要利用离散信号x(nT)来计算信号x(t)的频谱。 有限长离散信号x(n),n=0,1,…,N-1的DFT定义为: 可以看出,DFT需要计算大约N2次乘法和N2次加法。当N较大时,这个计算量是很大的。利用WN的对称性和周期性,将N点DFT分解为两个N/2点 的DFT,这样两个N/2点DFT总的计算量只是原来的一半,即(N/2)2+(N/2)2=N2/2,这样可以继续分解下去,将N/2再分解为N/4点DFT等。对于N=2m点的DFT都可以分解为2点的DFT,这样其计算量可以减少为(N/2)log2N 次乘法和Nlog2N次加法。图1为FFT与DFT-所需运算量与计算点数的关系曲线。由图可以明显看出FFT算法的优越性。 将x(n)分解为偶数与奇数的两个序列之和,即

x1(n)和x2(n)的长度都是N/2,x1(n)是偶数序列,x2(n)是奇数序列,则 其中X1(k)和X2(k)分别为x1(n)和x2(n)的N/2点DFT。由于X1(k)和X2(k)均以N/2为周期,且WN k+N/2=-WN k,所以X(k)又可表示为: 上式的运算可以用图2表示,根据其形状称之为蝶形运算。依此类推,经过m-1次分解,最后将N点DFT分解为N/2个两点DFT。图3为8点FFT的分解流程。 FFT算法的原理是通过许多小的更加容易进行的变换去实现大规模的变换,降低了运算要求,提高了与运算速度。FFT不是DFT的近似运算,它们完全是等效的。 关于FFT精度的说明: 因为这个变换采用了浮点运算,因此需要足够的精度,以使在出现舍入误差时,结果中的每个组成部分的准确整数值仍是可辨认的。为了FFT的舍入误差,应该允许增加几倍log2(log2N)位的二进制。以256为基数、长度为N字节的数

傅里叶变换光学系统-实验报告

实验10 傅里叶变换光学系统 实验时间:2014年3月20日 星期四 一、 实验目的 1. 了解透镜对入射波前的相位调制原理。 2. 加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。 3. 观察透镜的傅氏变换力图像,观察4f 系统的反傅氏变换的图像,并进行比较。 4. 在4f 系统的变换平面插入各种空间滤波器,观察各种试件相应的频谱处理图像。 二、 实验原理 1. 透镜的FT 性质及常用函数与图形的关学频谱分析 透镜由于本身厚度的不同,使得入射光在通过透镜时,各处走过的光程差不同,即所受时间延迟不同,因而具有相位调制能力。假设任意点入射光线在透镜中的传播距离等于改点沿光轴方向透镜的厚度,并忽略光强损失,即通过透镜的光波振幅分布不变,仅产生位相的变化,且其大小正比于透镜在该点的厚度。设原复振幅分布为(,)L U x y 的光通过透镜后,其复振幅分布受到透镜的位相调制后变为(,)L U x y ': (,)(,)exp[(,)]L L U x y U x y j x y ?'= (1) 若对于任意一点(x ,y )透镜的厚度为(,)D x y ,透镜的中心厚度为0D 。光线由该点通过透镜时在透镜中的距离为(,)D x y ,空气空的距离为0(,)D D x y -,透镜折射率为n ,则该点的位相延迟因子(,)t x y 为: 0(,)exp()exp[(1)(,)]t x y jkD jk n D x y =- (2) 由此可见只要知道透镜的厚度函数(,)D x y 就可得出其相位调制。在球面镜傍轴区域,用抛物面近似球面,并引入焦距f ,有: 22012 111(,)()()2D x y D x y R R =-+- (3) 12 111(1)()n f R R =-- (4) 220(,)exp()exp[()]2k t x y jknD j x y f =-+ (5) 第一项位相因子0exp()jknD 仅表示入射光波的常量位相延迟,不影响位相的空间分布,即波面形状,所以在运算过程中可以略去。当考虑透镜孔径后,有: 22(,)exp[()](,)2k t x y j x y p x y f =-+ (6)

傅里叶变换光学系统

傅里叶变换光学系统 组号4 09 光信王宏磊09327004 (合作人:刘浩明杨纯川)、实验目的和内容 1、了解透镜对入射波前的相位调制原理。 2、加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。 3、观察透镜的傅氏变换(FT)图像,观察4f系统的反傅氏变换(IFT )图像,并进行比较。 4、在4f系统的变换平面(T)插入各种空间滤波器,观察各种试件相应的频谱处理图像。 二、实验原理 1、透镜的FT性质及常用函数与图形的关学频谱分析透镜由于本身厚度的不同,使得入射光在通过透镜时,各处走过的光程差不同,即所受时间延迟不同,因而具有相位调制能力。图1为简化分析,假设任意点入射光线在透镜中的传播距离等于改点沿光轴方向透镜的厚度,并忽略光强损失,即通过透镜的光波振幅分布不变,仅产生位相的变化,且其大小正比于透镜在该点的厚度。设原复振幅分布为 U L(x, y)的光通过透镜后, 其复振幅分布受到透镜的位相调制,附加了一个位相因子 (x, y)后变为U L (x, y): U L(X, y) U L(X, y)exp[j (x,y)] 若对于任意一点(x, y)透镜的厚度为D(x,y),透镜的中心厚度为D0。光线由该点 通过透镜时在透镜中的距离为D(x, y),空气空的距离为D0—D(x, y),透镜折射率为n, 则该点的总的位相差为: (x, y) k[D°D(x, y)] knD (x, y) kD°k(n 1)D(x, y) (2) (2)中的k = 2 n /入,为入射光波波数。 用位相延迟因子t(x, y)来表示即为: D(x,y) Q i i 1 Q2 D o

相关文档
最新文档