静电引起的火灾爆炸分析详细版

静电引起的火灾爆炸分析详细版
静电引起的火灾爆炸分析详细版

文件编号:GD/FS-1755

(解决方案范本系列)

静电引起的火灾爆炸分析

详细版

A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing.

编辑:_________________

单位:_________________

日期:_________________

静电引起的火灾爆炸分析详细版

提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。

在化工、炼油、橡胶、制药、印刷、金属粉末等行业的生产中,因静电事故所造成的损失是很大的,这不得不引起人们的重视。静电危害主要有三个方面,即静电放电引起火灾和爆炸,给人以电击和妨碍生产。其中静电放电引起火灾和爆炸是静电最严重的危害。为了掌握静电放电引起火灾和爆炸的机理,这里先分析一下静电的特点,有助于了解静电事故的成因。

一、静电特点

这里所说的静电特点是指与静电危害密切相关的特点,即静电电压的特点和静电泄漏的特点。

(一)电压特点

生产工艺过程中所产生静电的电量都很小,在局部范围内,静电电量一般都只有微库仑级到毫库仑级。但是,带电体的电容可能在很大范围内变化,有时变得很小,而电压u与电容C和电量Q之间有以下关系:

u=Q/C

在电量保持不变的情况下,电压和电容保持反比关系。电容越大,电压越低;电容越小,则电压越高。如果产生静电的两种物体是平面接触的,则其间电容相当于平板对平板的电容,其大小为:

C=εS/d

式中:S为平板面积,d为平板间距离。

假设两种物体是密接触产生静电时,其间距离d1=25×10-8cm,当两物体分离时,其间距离

d2=0.1cm,则前后电容之比为:

C1/C2=d2/d1=0.1/25*10-8

这就是说,两种物体分离后,电容减小为原来的四十万分之一,电压则增加为原来的四十万倍。因此,接触分离产生的静电高压是非常危险的。

例如:油品在输油管道内流动时,静电电压并不很高,但当注入油罐,特别是注入较大容积油罐时,由于电容逐渐逐渐减小,而电压大大升高。一旦发生静电放电,将引起燃烧或爆炸。二、静电放电引起火灾和爆炸

从国内外大量静电火灾和爆炸事故的分析中得出:发生静电放电引起火灾和爆炸,必须具备有可燃物、助燃物或是爆炸性混合物,这是着火的必要条件;其次是必须具有能击穿电介质的静电电压,引起放电,产生静电火花;第三是静电放电能量必须等于或大于物质的最小点火能量,成为物质的引火源。这

三条是静电放电引起火灾和爆炸的最基本的条件,现分述如下:

(一)可燃物或爆炸性混合物

可燃物是指凡能与空气中的氧或其它氧化剂起剧烈反应的物质。如木材、纸张、汽油、乙炔等。凡能帮助和支持燃烧的物质称为助燃物,如空气、氧、高锰酸钾等。

爆炸性混合物是指空气与可燃气体或液体蒸汽相混合,遇到火源即能爆炸的混合物。爆炸性混合物有爆炸上限和爆炸下限之分,当爆炸性混合物的浓度处于爆炸上下限范围内时,遇到着火源便能引起燃烧爆炸。

(二)静电放电能量

静电放电能量是静电场通过火花放电释放出来的

能量。静电放电能量可用下式计算。

W=1/2Cu2

式中:W为静电放电火花能量,C为物体的静电电容,u为物体的带电电位。

当一体物体产生静电后,其放电能量必须等于或大于物质的最小点火能量时,才会引起燃烧或爆炸。物质的最小点火能量是指物质能引燃的最小火源能量。饱和烃及其衍生物的最小引燃能量大多是0.2mJ 数量级的,但乙炔的最小引燃能量只有0.019mJ,二硫化碳的只有0.009mJ等。工业粉尘的最小引燃能量一般在10-100mJ之间;气体和蒸汽爆炸性混合物的最小引燃能量多在0.009-0.29mJ之间。

根据实验,甲烷的最小点火能量为0.28mJ,假如一个穿着胶鞋的工人,在充满甲烷气体的场所工作,其脱去化纤制的工作服时,人体带上约3kV的

电位,如果人体静电电容为100×10-12F,当人体的某一部分触及接地物体等,则放电的火花能量为:W=1/2Cu2=0.5*100*10-

12*30002=0.45(mJ)

这时0.45mJ的火花放电能量就会引起甲烷气体燃烧或爆炸。

从静电放电引起火灾和爆炸的三个基本条件来看,是相互依存,缺一不可的。如果有可燃物或爆炸性混合物的存在,而产生静电放电的能量相当小,达不到物质的最小点火能量,燃烧也不可能发生。相反,产生静电放电的能量相当大,则可燃物或爆炸性混合物的数量很少或浓度达不到,也是不能着火的。根据这个道理,我们可以采取一些措施,防止静电火灾的发生。例如对于具有火灾、爆炸危险性厂房,可采取局部排风或全部通风的方法,以降低易燃气体、

蒸气或粉尘在厂房空气中的浓度,这样,就可避免火灾事故的发生。

可在这里输入个人/品牌名/地点

Personal / Brand Name / Location Can Be Entered Here

下水道系统的火灾爆炸危险性分析(标准版)

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 下水道系统的火灾爆炸危险性分 析(标准版)

下水道系统的火灾爆炸危险性分析(标准版)导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 1易形成可燃蒸气(或气体)与空气的爆炸性混合物 化工企业的生产废水或其他的排水,难以避免地含有易燃液体或可溶性的可燃气体。在一定条件下,这些易燃液体或气体因气化,易在下水道系统和净化设施内与空气形成爆炸性混合物。 如果生产设备系统的密闭性损坏或违反操作规程造成溢料时,泄漏的易燃、易爆的液体或气体常易混入污水而进入下水道系统。某厂由于违反生产工艺规程,污水中混入大量烃类蒸气,并排入下水道,使下水道水中溢出的烃类蒸气在厂区内聚集,遇火源发生了爆炸。 在气体吸收和解吸过程中,如果吸收有可燃气体或含易燃液体(吸改剂)的污水排入下水道,当温度升高时,这些可燃气体会解吸出来,易燃液体会汽化逸出。据报道,某氯碱厂在吸收氯化氢的过程中,由于吸收塔液体出口处的液封层厚度不够,易爆气体与盐酸一起进入酸水的下水道系统。在该系统中,解吸出的气体与空气形成易爆混合物,发生了爆炸。

静电引起的火灾爆炸分析通用版

解决方案编号:YTO-FS-PD378 静电引起的火灾爆炸分析通用版 The Problems, Defects, Requirements, Etc. That Have Been Reflected Or Can Be Expected, And A Solution Proposed T o Solve The Overall Problem Can Ensure The Rapid And Effective Implementation. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

静电引起的火灾爆炸分析通用版 使用提示:本解决方案文件可用于已经体现出的,或者可以预期的问题、不足、缺陷、需求等等,所提出的一个解决整体问题的方案(建议书、计划表),同时能够确保加以快速有效的执行。文件下载后可定制修改,请根据实际需要进行调整和使用。 在化工、炼油、橡胶、制药、印刷、金属粉末等行业的生产中,因静电事故所造成的损失是很大的,这不得不引起人们的重视。静电危害主要有三个方面,即静电放电引起火灾和爆炸,给人以电击和妨碍生产。其中静电放电引起火灾和爆炸是静电最严重的危害。为了掌握静电放电引起火灾和爆炸的机理,这里先分析一下静电的特点,有助于了解静电事故的成因。 一、静电特点 这里所说的静电特点是指与静电危害密切相关的特点,即静电电压的特点和静电泄漏的特点。 (一)电压特点 生产工艺过程中所产生静电的电量都很小,在局部范围内,静电电量一般都只有微库仑级到毫库仑级。但是,带电体的电容可能在很大范围内变化,有时变得很小,而电压u与电容C和电量Q之间有以下关系: u=Q/C 在电量保持不变的情况下,电压和电容保持反比关

天然气的火灾危险性及预防措施实用版

YF-ED-J7984 可按资料类型定义编号 天然气的火灾危险性及预防措施实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

天然气的火灾危险性及预防措施 实用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 随着城市建设和经济建设的飞速发展、人 民生活水平的普遍提高和石油化学工业的发 展。使用天然气的用户和单位越来越多,范围 越来越广。近年来随着陕北天然气的大量开发 和开采,目前西安地区管道天然气的用户和单 位已达到一定数量,天然气的普及使用,必将 成为城市主要的生活、生产燃气。城市天然气 的使用除居民用户、宾馆饭店、生产企业外, 还有压缩天然气汽车 (即ComDress Natural Gas,简称CNG汽

车)。 由于天然气的主要成份是甲烷(CH4)一般含量在95%以上,其特点是:①热值高(平均热值为8000千卡/立方米),燃烧稳定:②安全性高,天然气的燃爆浓度范围为5%~15%,而煤气为4%-35%,液化石油气为4%一24%2 ③性能优良,价格又比煤气和液化石油气低: ④方便、卫生。故天然气已深受老百姓的青睐。天然气成份决定它是一种火灾危险性较大的可燃气体,属一级可燃气体。供应过程中稍有不慎,或管道破裂漏气就会逸散到空气中,遇到火源就可能发生火灾爆炸事故,甚至造成重大伤亡。因此,必须加强对天然气供应过程中的消防安全管理工作。

火灾爆炸事故树分析(油库静电)——措施(4)

编订:__________________ 审核:__________________ 单位:__________________ 火灾爆炸事故树分析(油库静电)——措施(4)Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-2700-83 火灾爆炸事故树分析(油库静电) ——措施(4) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行 具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或 活动达到预期的水平。下载后就可自由编辑。 静电放电引起火灾爆炸必须具备以下四个条件:(1)有产生静电的来源;(2)使静电得以积聚,并具有足够大的电场强度和达到引起火花放电的静电电压;(3)静电放电的能量达到爆炸性混合物的最小引燃能量;(4)静电放电火花周围有爆炸性的混合物存在,其浓度必须处于爆炸极限内。反之,防止静电事故的措施是从控制这四个条件着手。控制前三个条件实质上是控制静电的产生和积累,是消除静电危害的直接措施。控制第四条件是消除或减少周围环境爆炸的危险,是防止静电危害的间接措施。 在油品的储运过程中,防止静电事故的安全措施主要有以下几个方面: 1 防止爆炸性气体的形成

大爆炸和火灾危险场所采用通风装置加强通风,及时排出爆炸性气体使浓度不在爆炸范围内,以防止静电火花引起爆炸。同时对应于爆炸浓度范围还与温度密切相关,把温度控制在爆炸温度范围之外也是防止静电引起爆炸的途径。对于油面空间不能采用正压通风的办法来防止爆炸性混合气体的形成,可采用惰性气体覆盖的方法(如氮气覆盖),或采用浮顶罐、内浮顶罐。浮顶罐或内浮顶罐虽可消除浮盘以下的油气空间,尤其是内浮顶罐浮顶上面含有较多可燃气体,但浮盘上部的可燃气体发生火花放电现象也应该予以重视。 2 加速静电泄漏,防止或减少静电聚积 静电的产生本身并不危险。实际的危险在于电荷的积聚,因为这样能储存足够的能量,从而产生火花将可燃性气体引燃。为了加速油品电荷的泄漏,可以接地、跨接以及增加油品的电导率。 2.1 接地和跨接 静电接地和跨接是为了导走或消除导体上的静电,

静电引发火灾事故的条件及对策措施(正式)

静电引发火灾事故的条件及 对策措施(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 静电有其特殊性,加强防范时,应正确认 识静电的“脾气”。静电引起火灾或爆炸有四个 条件: 一、空间有爆炸混合物存在; 二、有产生静电的工艺条件和操作过程; 三、静电积聚达到或超过相当程度,致使 介质间的局部电场被击穿; 四、静电放电火花能量达到爆炸混合物的

最小点能量。 引发火灾和爆炸,这四个条件缺一不可。因此要做到: 一、消除周围环境的爆炸危险。通常采用改善通风条件,以降低爆炸混合物的浓度,或者充填不活泼气体,以降低含氧量。同时应采用防爆措施,用不可燃介质代替可燃介质。这是间接性防范措施。 二、可适当选择材料,改革制造工艺设备和降低生产工具摩擦速度或相对运动的速度,消除杂质和附加静电等,遏制静电产生。这是防止静电引发火灾事故的直接措施。 三、通过泄漏和中和的方法限制静电积累。如接地、增湿、应用抗静电措施,采用静电消除器等。

为防止静电成灾,做到万无一失,除采取上述防范措施外,还必须建立严格的工艺流程规章制度,同步采用静电测量、监控等技术,真正对生产环境和生活场所静电致灾的危险性做到心中有数,达到防患于未然。 请在这里输入公司或组织的名字 Please enter the name of the company or organization here

LNG储罐火灾、爆炸事故树分析

LNG储罐火灾与爆炸事故分析 根据顶时间确定原则,取“LNG储罐火灾、爆炸”作为顶事件。顶事件确定后,分析引起顶事件发生的最直接的、充分和必要的原因。引起LNG储罐火灾、爆炸有两种原因; 一是化学爆炸模式,即罐内LNG泄漏,遇空气、火源发生火灾、爆炸; 二是物理模式,即罐内压力急剧升高,罐体泄压系统失灵,压力超过罐体所能承受的压力,发生爆炸事故。 然后把引起顶时间发生的各种可能原因又分别看做顶事件,采用类似的方法继续推理往下分析,建立以逻辑门符号表示的LNG储罐火灾、爆炸事故树,如图2所示。 该事故树共考虑了25个不同的基本事件,各符号所代表的事件如下表所示。 事件类型表 符号事件类型符号事件类型 T 储罐火灾爆炸X5误操作LNG泄漏 P 爆炸极限X6使用未带阻火器的汽车

F1由火源引起爆炸X7罐区内吸烟 F2储罐超压爆炸X8罐区内违章动火 F3天然气气源存在X9使用电子通信工具 F4火源X10未使用防爆电气 F5安全阀失效X11防爆电气损坏 F6LNG泄漏X12雷击 F7明火X13未安装避雷设施 F8电火花X14接地电阻超标 F9雷击火花X15引下线损坏 F10撞击火花X16接地端损坏 F11静电火花X17使用铁质工具工作 F12避雷器失效X18穿带铁钉的鞋 F13储罐静电X19罐体静电聚集 F14人体静电X20未设静电接地装置 F15避雷器故障X21作业中与导体接触 F16接地失效X22未穿防静电服工作 X1罐区通风不良X23储罐压力超过限 X2阀门密封失效X24安全阀弹簧损坏 X3法兰密封失效X25安全阀选型不当 X4罐体损坏 LNG储罐火灾、爆炸事故树分析 3.1定性分析 定性分析是从事故树结构出发,分析各底时间的发生对顶时间发生所产生的影响程度。定性分析目的是找出事故树的所有最小割集,发现系统故障或导致顶时间发生的全部可能原因,并定性地识别系统的薄弱环节。最小割集时导致顶事件发生的必要且充分的基本事件的集合。得到事故树的所有最小割集如下: X1X2X6,X1X2X7,X1X2X9,,X1X2X10,,X1X2X11,X1X2X17,X1X2X18,X1X2X21,X1X2X22,,X1X3X6,X1X3X7,X1X3X8,X1X3X9,X1X3X10,X1X3X11,X1X3X17,X1X3X18,X1X3X21,X1X3X22,X1X4X6,X1X4X7,X1X4X8,X1X4X9,X1X4X10,X1X4X11,X1X4X17,,X1X4X18,X1X4X21,X1X4X22,X1X5X6,X1X5X7,X1X5X8,X1X5X9,X1X5X10,X1X5X11,X1X5X17,X1X5X18,X1X5X21,X1X5X22,X1X2X12X13,X1X2X12X14,X1X2X12X15,X1X2X12X16,X1X3X14X19,X1X3X12X15,X1X2X12X16,

燃气锅炉火灾爆炸危险性分析

燃气锅炉火灾爆炸危险性分析及其预防措施 随着社会经济的高速发展,锅炉作为生产热能和动力的工艺设备,在现代工业、电力及人民生活中普遍使用,而燃气锅炉以它优质、环保、清洁的特点满足了人们对环境、安全、自动化的要求,所以很多工程已经采用了燃气锅炉作为其加热设备。但由于各种原因,燃气锅炉爆炸事故的频频发生,它不仅在经济方面造成大量损失,严重的使人们在身心甚至生命都受到威胁。所以研究燃气锅炉爆炸危险性及其预防措施是十分必要的。 一、燃气锅炉及其应用 1.1燃气锅炉结构简介 燃气锅炉包括燃气燃烧设备和锅炉本体两个系统。燃气燃烧设备主要指炉膛和燃烧器,也包括其他与燃烧过程有关的设备,它的主要作用是将一定数量的可燃气体和空气通入燃烧设备中,通过可燃气体的燃烧将化学能转变为热能,给锅炉本体提供持续的热能。锅炉本体就是借助燃烧设备提供的热能将水转化为水蒸汽,使其成为一定数量和质量(压力和湿度)的蒸汽。整个锅炉生产过程就是将一定数量的可燃气体和相应数量的空气送入炉内燃烧,燃烧所发出的热量传递给水,使水在定压下汽化而形成一定压力和温度的水蒸汽。 1.2燃气锅炉的应用 燃气锅炉作为一种产生热能和动力的工艺设备,广泛地应用于电力、机械、化工、纺织造纸等工业部门及宾馆、居民区采暖供热等方面。我国北方城市由于需要采暖供热,在用锅炉数量更大。燃气锅炉已经逐步进入人们生活的周围。 2.燃气锅炉爆炸事故类型及其危害 燃气锅炉运行中出现的事故大致可分为三类: (1)特大事故:锅炉中的主要受压部件——锅筒、管板等发生破裂爆炸的事故,这种事故常导致设备、厂房破坏和人身伤亡,造成重大损失。 (2)重大事故:燃气锅炉无法维持正常运行而被迫停炉的事故,如缺水事故、炉膛爆炸事故等。这类事故虽不象特大事故严重,但也常常造成设备、厂房损坏和人身伤亡,并使燃气锅炉被迫停运,导致用汽部门局部或全部停工停产,造成严重经济损失。 (3)一般事故:在运行中可以排除的事故或经过短暂停炉即可排除的事故,其影响和损失较小。 燃气锅炉事故属于工业热灾害三种主要事故类型中造成损失最大的爆炸事故。主要可分为两种爆炸原因,一是炉膛爆炸,另一种是炉体爆炸。燃气锅炉发生爆炸事故频率较高。 3.燃气锅炉的火灾危险性分析 3.1燃气的危险特性 燃气锅炉的燃料是可燃气体,主要是天然气或煤气。天然气和煤气的主要成分都是甲烷,还搀杂一些简单的烷烃,这些组分都是高度易燃易爆的气体,天然气的爆炸下限为4%,煤气的爆炸下限为6.2%,极易发生爆炸事故。 3.2炉膛爆炸火灾危险性 炉膛爆炸是由于可燃气体漏入并与空气混合形成爆炸性混合物,这种混合物处在爆炸极限范围时一接触到适当的点火源就会发生爆炸事故。伴随着化学变化,炉

火灾爆炸事故树分析

火灾爆炸事故树分析(油库静电) ——引言(1) 当液相与固相之间,液相与气相之间,液相与另一不相容的液相之间以及固相和气相之间,由于流动、搅拌、沉降、过滤、冲刷、喷射、灌注、飞溅、剧烈晃动以及发泡等接触、分离的相对运动,都会在介质中产生静电。许多石油化工产品都属于高绝缘物质,这类非导电性液体在生产和储运过程中,产生和积聚大量的静电荷,静电聚积到一定程度就可发生火花放电。如果在放电空间还同时存在爆炸性气体,便可能引起着火和爆炸。油库静电引起火灾爆炸是一种恶性事故,因而对于油库中防静电危害具有非常重要的意义。因此,如何安全有效地管理和维修油库,提高油库的安全可靠性,已是当前油库安全管理工作所面临的一个重大课题。故障树分析法(FTA法)是分析复杂、大型系统安全可靠性的有效工具。通过油库静电故障树分析,可找出系统存在的薄弱环节,然后进行相应的整改,从而提高油库系统的安全性。 火灾爆炸事故树分析(油库静电)——事故树(2) 1 故障树分析法方法 故障树分析方法(FTA)是一种图形演绎法,是从结果到原因描绘事故发生的有向逻辑树分析方法。这种树是一种逻辑分析过程,遵从逻辑学演绎分析原则(即从结果到原因的分析原则)。把系统不希望出现的事件作为故障树的顶事件,用逻辑“与”或“或”门自上而下地分析导致顶事件发生的所有可能的直接原因及相互间的逻辑关系,并由此逐步深入,直到找出事故的基本原因,即为故障树的基本事件。 2 故障树分析的基本程序 FTA法的基本程序:熟悉系统—调查事故—确定顶事件—确定目标—调查原因事件—编制故障树—定性分析—定量分析—安全评价。故障树分析过程大致可分为9个步骤。第1~5步是分析的准备阶段,也是分析的基础,属于传统安全管理;第6步作图是分析正确与否的关键;第7步定性分析,是分析的核心;第8步定量分析,是分析的方向,即用数据表示安全与否;第9步安全性评价,是目的。 3 油库静电火灾爆炸故障树的建立

发生器(乙炔)火灾爆炸事故树分析

发生器(乙炔)火灾爆炸事故树分析 唐俊岩王海瑜 一、前言 乙炔发生器是一种有火灾爆炸危险的设备。采用事故树分析法对电石入水式低压乙炔发生器火灾、爆炸事件进行分析,进而提出了相应的对策措施,为企业消除事故及安全生产提供可靠保障。 乙炔是一种无色的气体,俗称电石气,是最简单的炔烃。乙炔的用途很广,常见的溶解乙炔用于焊接或切割金属材料。目前国内溶解乙炔的生产主要采用电石法。电石法生产乙炔又可分为排水式、联合式、电石入水式和沉浮式等几种。乙炔发生器是利用电石和水相互作用制取乙炔的设备,是乙炔生产的关键设备。由于乙炔的危险性,乙炔发生器有燃烧爆炸危险。本文采用事故树分析法对电石入水式低压乙炔发生器火灾、爆炸事件进行分析,并提出相应的安全对策措施,为企业消除事故及安全生产提供可靠保障。 二、方法简介 事故树(Fault Tree Analysis, FTA),也称故障树,是一种描述事故因果关系的有方向的“树”,是安全系统工程中重要的分析方法之一。它能对各种系统的危险性进行识别评价,既适用于定性分析,又能进行定量分析。 事故树分析是对既定的生产系统或作业中可能出现的事故条件及可能导致的灾害后果,按工艺流程、先后次序和因果关系绘成程序方框图,表示导致灾害、伤害事故(不希望事件)的各种因素之间的逻辑关系,它由输入符号或关系符号组成,用以分析系统的安全问题或系统的运行功能问题,并为判断灾害、伤害的发生途径及与灾害、伤害之间的关系,提供一种最形象、最简洁的表达形式。 三、分析步骤 事故树分析步骤见图1。 图1 FTA步骤

四、重点解决的技术问题 1 绘制事故树 我在广泛收集、整理有关事故资料,认真消化了相关安全规程、操作规程和众多事故案例的基础上作出乙炔发生器发生爆炸事故树。 绘制事故树时,重点注意了以下问题: (1)尽可能全面收集有关的事故案例及规程、标准。 (2)系统、全面地发掘事故的发生原因及事件相互间的逻辑关系。作图过程中充分尊重生产、工艺、操作、安全等方面富有经验的同志的意见。 2 求最小割集 由于事故树较为复杂,计算最小割集时如全部具体到基本事件,则割集十分庞大,既不便于表达,也不便企业采取控制措施。因此,实际处理时本文视情况对事故树取到某一便于采取措施的中间事件作为基本分析单元。 3 结构重要度分析 结构重要度分析,是从事故树结构上分析各基本事件(这里指基本分析单元)的重要程度。即在不考虑各基本事件的发生概率,或者说假定各基本事件的发生概率都相等的情况下,分析各基本事件的发生对顶上事件发生所产生的影响程度。 4 控制措施 从理论上讲,每一组最小割集是反映事故树中可能引起顶上事件发生的一个基本事件组合,据此可有的放矢地制定预防控制措施,但因FTA推出的割集往往数目繁多,实际无法根据它们将应采取的所有措施一一列出。因此,根据目前所掌握的情况,考虑安全生产管理的实际状况及实施的验易程度,针对一些较为重大的问题提出了控制措施。 五、事故树分析 1事故树 乙炔发生器发生爆炸事故树见图2。

火灾爆炸危险性与防护标准范本

解决方案编号:LX-FS-A45492 火灾爆炸危险性与防护标准范本 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

火灾爆炸危险性与防护标准范本 使用说明:本解决方案资料适用于日常工作环境中对未来要做的重要工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 国家安全生产监督管理总局在安监总管一字[2008]7号文件《关于印发陆上石油天然气建设项目安全设施设计专篇编写指导书的通知》中,明确规定了天然气处理厂建设项目初步设计《安全设施设计专篇》的编写内容。其中,包括危险有害因素分析、初步设计中采取的主要防护技术措施、安全设施设计后的风险状况分析等。 天然气及其处理过程产品都是易燃、易爆物质,故主要危险有害因素是火灾、爆炸事故,同时也存在毒性、噪声、高温或低温、机械伤害和高空坠落等职业危害。本节仅重点介绍生产过程火灾、爆炸和噪声

静电引起的火灾爆炸分析

静电引起的火灾爆炸分析 在化工、炼油、橡胶、制药、印刷、金属粉末等行业的生产中,因静电事故所造成的损失是很大的,这不得不引起人们的重视。静电危害主要有三个方面,即静电放电引起火灾和爆炸,给人以电击和妨碍生产。其中静电放电引起火灾和爆炸是静电最严重的危害。为了掌握静电放电引起火灾和爆炸的机理,这里先分析一下静电的特点,有助于了解静电事故的成因。 一、静电特点 这里所说的静电特点是指与静电危害密切相关的特点,即静电电压的特点和静电泄漏的特点。 (一)电压特点 生产工艺过程中所产生静电的电量都很小,在局部范围内,静电电量一般都只有微库仑级到毫库仑级。但是,带电体的电容可能在很大范围内变化,有时变得很小,而电压u与电容C和电量Q之间有以下关系: u =Q/ C 在电量保持不变的情况下,电压和电容保持反比关系。电容越大,电压越低;电容越小,则电压越高。如果产生静电的两种物体是平面接触的,则其间电容相当于平板对平板的电容,其大小为: C=8 / d 式中:S为平板面积,d为平板间距离 假设两种物体是密接触产生静电时,其间距离d1=25X 10-8cmli两物体

分离时,其间距离d2=0.1cm则前后电容之比为: C1/ C2=d^ di = 0.1/25*10-8 这就是说,两种物体分离后,电容减小为原来的四十万分之一,电压则增加为原来的四十万倍。因此,接触分离产生的静电高压是非常危险的。 例如:油品在输油管道内流动时,静电电压并不很高,但当注入油罐,特别是注入较大容积油罐时,由于电容逐渐逐渐减小,而电压大大升高。 一旦发生静电放电,将引起燃烧或爆炸。 二、静电放电引起火灾和爆炸 从国内外大量静电火灾和爆炸事故的分析中得出:发生静电放电引起火灾和爆炸,必须具备有可燃物、助燃物或是爆炸性混合物,这是着 火的必要条件;其次是必须具有能击穿电介质的静电电压,引起放电, 产生静电火花;第三是静电放电能量必须等于或大于物质的最小点火能量,成为物质的引火源。这三条是静电放电引起火灾和爆炸的最基本的条件,现分述如下:(一)可燃物或爆炸性混合物 可燃物是指凡能与空气中的氧或其它氧化剂起剧烈反应的物质。如木 材、纸张、汽油、乙焕等。凡能帮助和支持燃烧的物质称为助燃物,

天然气的火灾危险性及预防措施(一)

天然气的火灾危险性及预防措施(一) 随着城市建设和经济建设的飞速发展、人民生活水平的普遍提高和石油化学工业的发展。使用天然气的用户和单位越来越多,范围越来越广。近年来随着陕北天然气的大量开发和开采,目前西安地区管道天然气的用户和单位已达到一定数量,天然气的普及使用,必将成为城市主要的生活、生产燃气。城市天然气的使用除居民用户、宾馆饭店、生产企业外,还有压缩天然气汽车(即ComDressNaturalGas,简称CNG 汽车)。 由于天然气的主要成份是甲烷(CH4)一般含量在95%以上,其特点是:①热值高(平均热值为8000千卡/立方米),燃烧稳定:②安全性高,天然气的燃爆浓度范围为5%~15%,而煤气为4%-35%,液化石油气为4%一24%2③性能优良,价格又比煤气和液化石油气低:④方便、卫生。故天然气已深受老百姓的青睐。天然气成份决定它是一种火灾危险性较大的可燃气体,属一级可燃气体。供应过程中稍有不慎,或管道破裂漏气就会逸散到空气中,遇到火源就可能发生火灾爆炸事故,甚至造成重大伤亡。因此,必须加强对天然气供应过程中的消防安全管理工作。 l、天然气的火灾危险性 天然气是通过气井从地下开采出来的烃类和少量非烃类混合气体的总

称。它在不同的地质条件下生成、运移,在一定的温度、压力下储集在地下构造层中。天然气的主要成份是甲烷(约95%以上),并含有乙烷、丙烷、丁烷、戊烷以上的烃类,还含有少量的二氧化碳、氢气、硫化氢等非烃组分。同时随着CNG汽车的逐步推广使用,其不安全事故也不断发生。①如1995年8月12日,绵阳地方天然气公司CNG充装站,在给钢瓶充气时因脱水处理不净,而发生爆炸并起火成灾。 ②1995年9月29日,自贡富顺华油公司CNG充气站因钢瓶泄漏燃烧发生爆炸,造成重大经济损失和人员伤亡事故:③1995年10月7日,遂宁CNG充装站因钢瓶质量问题发生喷射燃烧,火焰柱高达20余米,造成直接经济损失18万余元。CNG场所及其钢瓶易发生燃烧爆炸的主要原因:一是CH4介质本身属一级可燃气体,甲类火灾危险性,爆炸浓度极限为5%-15%,最小点火能量仅为0.28毫焦耳,对空气的比重为0.55,扩散系数为0.196。说明极易燃烧、爆炸并且扩散能力强,火势蔓延快。二是气体处于高压状态,CNG技术要求充装站的压缩机必须加压至25MPa以上,才能将CH4压缩到钢瓶内,这是目前国内可燃气本的最高压力贮存容器。若钢瓶质量或加压设备不能满足基本的技术要求,稍有疏忽,便可发生爆炸或火灾事故。三是操作人员和使用者违章作业,违反操作规程。 天然气和煤气都是管道输送到用户,发生事故也有共同特点,管道天然气、煤气发生事故的原因多由于泄漏造成的,如①1994年3月30日,安徽省马鞍山市因自卸车碰断了一架空过马路的煤气管道,煤气

火灾爆炸事故树分析正式样本

文件编号:TP-AR-L2741 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 火灾爆炸事故树分析正 式样本

火灾爆炸事故树分析正式样本 使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 引言 当液相与固相之间,液相与气相之间,液相与另 一不相容的液相之间以及固相和气相之间,由于流 动、搅拌、沉降、过滤、冲刷、喷射、灌注、飞溅、 剧烈晃动以及发泡等接触、分离的相对运动,都会在 介质中产生静电。许多石油化工产品都属于高绝缘物 质,这类非导电性液体在生产和储运过程中,产生和 积聚大量的静电荷,静电聚积到一定程度就可发生火 花放电。如果在放电空间还同时存在爆炸性气体,便 可能引起着火和爆炸。油库静电引起火灾爆炸是一种 恶性事故,因而对于油库中防静电危害具有非常重要

的意义。因此,如何安全有效地管理和维修油库,提高油库的安全可靠性,已是当前油库安全管理工作所面临的一个重大课题。故障树分析法(FTA法)是分析复杂、大型系统安全可靠性的有效工具。通过油库静电故障树分析,可找出系统存在的薄弱环节,然后进行相应的整改,从而提高油库系统的安全性。 事故树 1 故障树分析法方法 故障树分析方法(FTA)是一种图形演绎法,是从结果到原因描绘事故发生的有向逻辑树分析方法。这种树是一种逻辑分析过程,遵从逻辑学演绎分析原则(即从结果到原因的分析原则)。把系统不希望出现的事件作为故障树的顶事件,用逻辑“与”或“或”门自上而下地分析导致顶事件发生的所有可能

下水道系统的火灾爆炸危险性分析标准范本

安全管理编号:LX-FS-A58123 下水道系统的火灾爆炸危险性分析 标准范本 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

下水道系统的火灾爆炸危险性分析 标准范本 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 1 易形成可燃蒸气(或气体)与空气的爆炸性混合物 化工企业的生产废水或其他的排水,难以避免地含有易燃液体或可溶性的可燃气体。在一定条件下,这些易燃液体或气体因气化,易在下水道系统和净化设施内与空气形成爆炸性混合物。 如果生产设备系统的密闭性损坏或违反操作规程造成溢料时,泄漏的易燃、易爆的液体或气体常易混入污水而进入下水道系统。某厂由于违反生产工艺规程,污水中混入大量烃类蒸气,并排入下水道,使下

静电引起的火灾爆炸分析详细版

文件编号:GD/FS-1755 (解决方案范本系列) 静电引起的火灾爆炸分析 详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

静电引起的火灾爆炸分析详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 在化工、炼油、橡胶、制药、印刷、金属粉末等行业的生产中,因静电事故所造成的损失是很大的,这不得不引起人们的重视。静电危害主要有三个方面,即静电放电引起火灾和爆炸,给人以电击和妨碍生产。其中静电放电引起火灾和爆炸是静电最严重的危害。为了掌握静电放电引起火灾和爆炸的机理,这里先分析一下静电的特点,有助于了解静电事故的成因。 一、静电特点 这里所说的静电特点是指与静电危害密切相关的特点,即静电电压的特点和静电泄漏的特点。 (一)电压特点

生产工艺过程中所产生静电的电量都很小,在局部范围内,静电电量一般都只有微库仑级到毫库仑级。但是,带电体的电容可能在很大范围内变化,有时变得很小,而电压u与电容C和电量Q之间有以下关系: u=Q/C 在电量保持不变的情况下,电压和电容保持反比关系。电容越大,电压越低;电容越小,则电压越高。如果产生静电的两种物体是平面接触的,则其间电容相当于平板对平板的电容,其大小为: C=εS/d 式中:S为平板面积,d为平板间距离。 假设两种物体是密接触产生静电时,其间距离d1=25×10-8cm,当两物体分离时,其间距离 d2=0.1cm,则前后电容之比为:

45.启动燃气锅炉火灾爆炸危险因素分析及预防措施

周口燃机维护项目部锅炉专业 启动燃气锅炉火灾爆炸危险性分析及其预防措施 启动燃气锅炉的燃料是可燃气体,主要是天然气或煤气.天然气和煤气的主要成分都是甲烷,还搀杂一些简单的烷烃,这些组分都是高度易燃易爆的气体,天然气的爆炸下限为4%,煤气的爆炸下限为6.2%,极易发生爆炸事故. 1.炉膛爆炸火灾危险性 炉膛爆炸是由于可燃气体漏入并与空气混合形成爆炸性混合物,这种混合物处在爆炸极限范围时一接触到适当的点火源就会发生爆炸事故.伴随着化学变化,炉内气体压力瞬时剧增,所产生的爆炸力超过结构强度而造成向外爆炸,由于在极短时间内大量能量在有限体积内积聚,造成锅炉炉膛处于非寻常的高压或高温状态,使周围介质发生震动或邻近的物质遭到破坏.炉膛爆炸主要由以下因素造成. 2.点火不当 在点火时,如启动操作不当,出现熄火而又未及时切断气源、配气管进行可燃气体吹扫,或吹扫不彻底、打开阀门时喷嘴也点不着火或者被吹灭,或其他可能使炉膛中存积大量高浓度可燃气体并处于爆炸极限范围内的情况,则再次点火时引燃这些可燃气体,引起爆炸. 3.火焰不稳定而熄灭 如果煤气燃烧器出力过大,火焰就会脱开燃烧器,发生脱火现象;相反出力过小,火焰就会缩回燃烧器内,发生回火现象,使锅炉运行中火焰不稳定而熄灭,由于炉膛呈炽热状态,达到或超过可燃气体与空气混合物的着火温度,且继续进可燃气体时,就有可能立即发生爆炸. 4.设备不完善 因为阀门漏气,设备不完善,没有点火灭火保护装置和火焰检测装置,可燃气体充

满炉内点火发生爆炸. 5输气管道泄漏 由于燃气锅炉输气管道庞大,可燃气体消耗量大,有些管道已经存在老化、腐蚀的情况,如不注意管道的维护和检修,在输气过程中容易发生可燃气体泄露,而造成爆炸事故. 6.操作失误 在锅炉运行时,有些事故是可以避免的,但事故依然发生了,主要原因是操作人员在锅炉运行时操作不合理,不按照规章制度操作,工作人员安全意识不足,工作不负责任,值班、检修不按规定进行,最终导致事故的发生. 7.炉体爆炸的火灾危险性 燃气锅炉炉体爆炸是由于锅炉设备材料质量问题,受压元件强度不够或者严重缺水,持续加热等因素造成的爆炸事故. 8.燃气锅炉设计制造方面 设计不合理造成燃气锅炉结构上的缺陷;材料不符合要求;焊接质量粗糙;受压元件强度不够等,这些因素也是引起燃气锅炉爆炸的重要因素. 9.锅炉内水被烧空造成爆炸 在锅炉运行时,其中的水会被加热慢慢减少,当锅炉内的水过少甚至烧空时,可燃气体燃烧所释放的热能直接加热锅炉设备本身,造成炉体过热,发生爆炸事故. 由以上可看出燃气锅炉的爆炸火灾危险性大,因素多种多样. 10利用预先分析法评价燃气锅炉火灾危险性为了更清晰说明燃气锅炉的火灾危险性,下面用预先分析法进行分析讨论:

液化天然气(LNG)储罐火灾和爆炸事故树分析

1.1液化天然气(LNG)储罐火灾和爆炸事故树分析 在整个LNG产业链中,LNG储罐是处于重要的地位,它是连接上游LNG 产业和下游LNG产业的重要中转站。因此,LNG储罐的安全性和可靠性对于LNG的产业链来说是十分重要的。而储罐的事故模型多而繁杂,其中火灾和爆炸是最重要、最一般、最常见、后果影响最严重的事故模型。通过对引起LNG储罐发生火灾、爆炸的因素进行系统分析,建立了以LNG储罐火灾、爆炸为顶事件的事故树,并进行事故树分析,得到了影响顶事件的各阶最小割集。并通过计算底事件的结构重要度,确定了影响储罐事故的主要因素,并提出了相应的改进措施,以提高LNG储罐的安全性和运行可靠性。 因此,预防LNG储罐的事故发生,特别是LNG储罐的火灾、爆炸等恶性事故的发生,提高其储罐系统本质安全并延长使用寿命,对于安全生产和国民经济的稳定发展具有十分重要的意义。事故树分析法作为工程系统可靠性分析与评价的有效方法,为分析LNG储罐火灾、爆炸事故提供了有效手段。通过对LNG储罐火灾、爆炸的分析,可以逐步分析LNG储罐火灾、爆炸事故的发生机理和原因,进而采取相应的安全措施,提高LNG储罐的可靠性和安全使用寿命。 1.1.1事故树的分析程序 事故树的分析程序,常因分析对象、分析目的、粗细程度的不同而不同,但主要的内容包括:熟悉系统、事故调查、确定顶上事故、原因时间调查、建造事故树、修改和简化事故树、定性\定量分析、制定安全措施。如图5-1所示。

图5-1 事故树分析程序 1.1.2 LNG储罐火灾与爆炸事故树分析 根据顶事件确定原则,取“LNG储罐火灾、爆炸”作为顶事件。顶事件确定后,分析引起顶事件件发生的最直接的、充分和必要的原因。引起LNG 储罐火灾、爆炸有两种原因:一是化学爆炸模式,即罐内LNG泄漏,遇空气、火源发生火灾、爆炸;二是物理模式,即罐内压力急剧升高,罐体泄压系统失灵,压力超过罐体所能承受的压力,发生爆炸事故。然后把引起顶事件发生的各种可能原因又分别看作顶事件,采用类似的方法继续往下深入分析,建立以逻辑门符号表示的LNG储罐火灾、爆炸事故树,如图5-2所示,本事故树共考虑了24不同的底事件,图中各符号所代表的事件如表5-5所示。

火灾爆炸危险性分析与评价——乙烯装置通用版

安全管理编号:YTO-FS-PD537 火灾爆炸危险性分析与评价——乙烯 装置通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

火灾爆炸危险性分析与评价——乙 烯装置通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 乙烯是石油化工生产的重要基本原料之一,广泛应用于合成纤维、合成橡胶、塑料的生产,乙烯的产量代表着一个国家石油化工发展的水平。我国已建成了一批大型乙烯生产企业,还有大量生产乙烯的中小型企业遍布全国各地。乙烯的发展不仅推动了石油化学工业的发展,在整个国民经济中也起着日益重要的作用。然而,乙烯生产具有较大火灾、爆炸危险性,生产操作在高温压力条件下进行,并且还有深冷操作,生产过程中物料多是气态,装置复杂,连续性强。因此,做好防火防爆工作极为重要。 1 设备、管线、阀门泄漏是致灾的重要原因 乙烯厂内常备有大量液化气原料,裂解气也多以液态储存。储槽有一定压力,如槽体有不严密处,物料将会泄漏散发出来,遇明火而爆炸燃烧。 设备或阀门破裂造成高温原料和裂解气的泄漏是致灾的重要因素。例如某化学公司的裂解装置曾因泄漏而喷出乙烯形成的云雾,仅30秒后即发生爆炸,2~3分钟后又引

静电引起的火灾爆炸分析实用版

YF-ED-J4515 可按资料类型定义编号 静电引起的火灾爆炸分析 实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

静电引起的火灾爆炸分析实用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 在化工、炼油、橡胶、制药、印刷、金属粉末等行业的生产中,因静电事故所造成的损失是很大的,这不得不引起人们的重视。静电危害主要有三个方面,即静电放电引起火灾和爆炸,给人以电击和妨碍生产。其中静电放电引起火灾和爆炸是静电最严重的危害。为了掌握静电放电引起火灾和爆炸的机理,这里先分析一下静电的特点,有助于了解静电事故的成因。 一、静电特点 这里所说的静电特点是指与静电危害密切

相关的特点,即静电电压的特点和静电泄漏的特点。 (一)电压特点 生产工艺过程中所产生静电的电量都很小,在局部范围内,静电电量一般都只有微库仑级到毫库仑级。但是,带电体的电容可能在很大范围内变化,有时变得很小,而电压u与电容C和电量Q之间有以下关系: u=Q/C 在电量保持不变的情况下,电压和电容保持反比关系。电容越大,电压越低;电容越小,则电压越高。如果产生静电的两种物体是平面接触的,则其间电容相当于平板对平板的电容,其大小为: C=εS/d

相关文档
最新文档