纳米二氧化钛薄膜防雾防水性质及其应用

纳米二氧化钛薄膜防雾防水性质及其应用
纳米二氧化钛薄膜防雾防水性质及其应用

TiO2半导体纳米材料

材料学《第二课堂》课程论文题目:TiO2半导体纳米材料姓名: 学号:

目录 1. 课程设计的目的 (1) 2. 课程设计题目描述和要求 (1) 3. 课程设计报告内容 (1) 3.1 TiO2半导体纳米材料的特性 (1) 3.2 TiO2半导体纳米材料的制备方法 (3) 3.3 TiO2半导体纳米材料的表征手段 (3) 3.4 TiO2半导体纳米材料的发展现状与趋势 (4) 4. 结论 (5)

1.课程设计的目的 本课程论文的主要目的是论述TiO2半导体纳米材料,通过简要概述TiO2半导体纳米材料的特性、制备方法、表征手段及发展现状与趋势等相关方面的内容。通过这次课设,了解TiO2半导体纳米材料,巩固课堂上所学的有关纳米材料的有关知识,提高自己应用所学知识和技能解决实际问题的能力。 2.课程设计的题目描述及要求 课程设计的题目:TiO2半导体纳米材料 TiO2半导体纳米材料由于它具有不同于体材料的光学非线性和发光性质,在未来光开关、光存储、光快速转换和超高速处理等方面具有巨大的应用前景。本文就TiO2半导体纳米材料的主要制备方法与表征手段做一全面总结。 3.课程设计报告内容 3.1 TiO2半导体纳米材料的特性 1、光学特性 TiO2半导体纳米粒子(1~ 100 nm ) [2]由于存在着显著的量子尺寸效应, 因此它们的光物理和光化学性质迅速成为目前最活跃的研究领域之一, 其中TiO2半导体纳米粒子所具有的超快速的光学非线性响应及(室温) 光致发光等特性倍受世人瞩目。通常当半导体粒子尺寸与其激子玻尔半径相近时, 随着粒子尺寸的减小, 半导体粒子的有效带隙增加, 其相应的吸收光谱和荧光光谱发生蓝移, 从而在能带中形成一系列分立的能级[1]。 2、光电催化特性 1)TiO2半导体纳米粒子优异的光电催化活性 近年来, 对纳米TiO2半导体粒子研究表明: 纳米粒子的光催化活性均明显优于相应的体相材料。我们认为这主要由以下原因所致: ①TiO2半导体纳米粒子所具有的量子尺寸效应使其导带和价带能级变成分立的能级, 能隙变宽, 导带电位变得更负, 而价带电位变得更正。[1]这意味着TiO2半导体纳米粒子获得了更强的还原及氧化能力, 从而催化活性随尺寸量子化程度的提高而提高[5]。 ②对于TiO2半导体纳米粒子而言, 其粒径通常小于空间电荷层的厚度, 在离开粒子中心L距离处的势垒高度可以表述为[1]: 公式(1) 这里LD是半导体的Debye 长度, 在此情况下, 空间电荷层的任何影响都可忽略, 光生载流子可通过简单的扩散从粒子内部迁移到粒子表面而与电子给体或受体发生还原或氧化反应。计算表明: 在粒径为1Lm 的T iO 2 粒子中, 电子从体内扩散到表面的时间约为100n s, 而在粒径为10 nm 的微粒中只有10 p s。因此粒

Tio2薄膜的制备(DOC)

新能源综合报告 实验题目:Tio2薄膜的制备和微细加工 学院:物理与能源学院 专业:新能源科学与工程 学号:1350320 汇报人: 指导老师:王哲哲

一、预习部分(课前完成) 〔目的〕: 1、用溶胶-凝胶法制备Tio2光学薄膜。 2、学习紫外掩膜辐照光刻法制备Tio2微细图形。 3、微细图形结构及形貌分析。 〔内容〕 1、了解溶胶凝胶制备薄膜的原理。 2、了解常见的微细加工的方法。 3、充分调研文献资料,确定实验方案。 4、实验制备和数据分析。 ①、制备出感光性的Tio2薄膜凝胶,掌握制备工艺。 ②、对Tio2凝胶薄膜进行紫外掩膜辐照。 ③、制备出Tio2微细图形并进行热处理。 ④、测试Tio2微细图形的结构和形貌特征,处理并分析数据。〔仪器〕:(名称、规格或型号) 紫外点光源、马沸炉、提拉机、光学显微镜、磁力搅拌器、紫外可见光分光光度计、提供制备Tio2材料的前驱物,溶剂等。 二、实验原理 1、Tio2的基本性质 Tio2俗称太白粉,它主要有两种结晶形态:锐钛型和金红石型,其中锐钛型二氧化碳活性比金红石型二氧化钛高。

特点:它是一种n型半导体材料,晶粒尺寸介于1~100 nm,TiO2比表面积大,表面活动中心多,因而具有独特的表面效应、小尺寸效应、量子尺寸效应和宏观量子隧道效应等,呈现出许多特有的物理、化学性质。 应用:在涂料、造纸、陶瓷、化妆品、工业催化剂、抗菌剂、环境保护等行业具有广阔的应用前景,TiO2半导体光催化剂因光催化效率高、无毒、稳定性好和适用范围广等优点而成为人们研究的热点。 纳米TiO2的制备方法: 物理制备方法:主要有机械粉碎法、惰性气体冷凝法、真空蒸发法、溅射法等; 物理化学综合法:又可大致分为气相法和液相法。目前的工业化应用中,最常用的方法还是物理化学综合法。 2、溶胶-凝胶法的基本概念 溶胶:是指微小的固体颗粒悬浮分散在液相中,并且不停地进行布朗运动的体系。由于界面原子的Gibbs自由能比内部原子高,溶胶是热力学不稳定体系。 溶胶分类:根据粒子与溶剂间相互作用的强弱,通常将溶胶分为亲液型和憎液型两类。 凝胶:是指胶体颗粒或高聚物分子互相交联,形成空间网状结构,在网状结构的孔隙中充满了液体(在干凝胶中的分散介质也可以是气体)的分散体系。对于热力学不稳定的溶胶,增加体系中粒子间结合所须克服的能量可使之在动力学上稳定。

纳米材料的发展及应用

课程名称:化工新材料概论姓名:邓元顺 学号:1208110201 专业:化学工程与工艺班级:化工122

浅析纳米材料的发展及应用 摘要:纳米材料是纳米级结构材料的简称。狭义是指纳米颗粒构成的固体材料, 其中米颗粒的尺寸最多不超过100nm。广义是指微观结构至少在一维方向上受纳米尺度(1-100nm)限制的各种固体超细材料。【2】纳米技术是当今世界最有前途的决定性技术。纳米材料在力学、磁学、电学、热学、光学和生命等方面的重要作用和应用前景。 Abstract:Nanometer material is the abbreviation of nano structured materials.The narrow sense refers to the solid material of nano particles, in which the size of the meter particles is not more than 100nm. Generalized refers to a variety of solid ultrafine materials which are limited by nano scale (1-100nm) in the one-dimensional direction at least in one dimension.. Nanotechnology is the most promising technology in the world today. Nano materials in mechanics, magnetism, electricity, heat, optics and life and so on the important role and the application prospect. 关键词:纳米材料纳米技术发展应用 前言:纳米材料和纳米结构无论在自然界还是在工程界都不是新生事物。在自然界存在大量的天然纳米结构,只不过在透射电镜的应用以前人们没有发现而已。在工程方面,纳米材料80年代初发展起来的,纳米材料其粒径范围在1—100nm之间,故纳米材料又称超微晶材料。它包括晶态、非晶态、准晶态的金属、陶瓷和复合材料等。由于极细的晶粒和大量处于晶界和晶粒缺陷中心的原子,纳米材料的物化性能与微米多晶材料有着巨大的差异,具有奇特的力学、电学、瓷学、光学、热学及化学等多方面的性能,从而使其作为一种新型材料在电子、冶金、宇航、化工、生物和医学等领域展现出广阔的应用前景。目前已受到世界各国科学家的高度重视。美国的“星球大战计划”、“信息高速公路”,欧共体的“尤里卡计划”等都将纳米材料的研究列入重点发展计划;日本在10年内将投资250亿日元发展纳米材料和纳米科学技术;英国也将发展纳米材料科学技术作为重振英国工业的突破;我国的自然科学基金“863”计划、“793”计划以及国家重点实验室都将纳米材料列为优先资助项目。【1】美国科学技术委员会把“启动纳米技术的计划看作是下一次工业革命的核心” 一、纳米材料的发展史 1965年诺贝尔物理学奖获得者、美国加利福尼亚工学院教授费曼(R.P.Feynman)曾在1959年预言:“如果有一天可以按照人的意志来安排一个个原子,将会产生怎样的奇迹?”

国内纳米二氧化钛制备的进展

2012年第14期广东化工 第39卷总第238期https://www.360docs.net/doc/4611849217.html, · 93 · 国内纳米二氧化钛制备的研究进展 陈杰山 (湖南化工职业技术学院,湖南株洲 412004) [摘要]纳米二氧化钛由于其许多优异的性质而显示出日益广阔的应用前景,纳米二氧化钛的制备因此成为研究的热点之一。主要对我国在纳米TiO2粉体、纳米TiO2薄膜、一维纳米TiO2及其阵列的制备研究工作进行了综述,指出了当前在制备研究方面存在的不足,展望了今后的主要研究方向。 [关键词]纳米TiO2;制备方法;工艺条件;光催化活性 [中图分类号]TQ [文献标识码]A [文章编号]1007-1865(2012)14-0093-03 Home Advances in Study on Preparing Nanosized Titanium Dioxide Chen Jieshan (Hunan Professional College of Chemical Technology, Zhuzhou 412004, China) Abstract:Nano-TiO2 is showing wider and wider future for its application because of many fine qualities, so the preparation of nano-TiO2 has become one of the popularities in research. The home preparation research mainly including nano-TiO2 powder, nano-TiO2 film, one-dimensioned nano-TiO2 and their arrays is summarized, thus the present shorts in research of the preparation are pointed out, and the main orientations of future research are forecast. Keywords:nano-TiO2;preparation method;technological condition;photocatalytic activity 纳米二氧化钛因为具有一系列优良的性能(如颜色效应、光催化活性、对紫外线的屏蔽、化学稳定性等)、可以广泛应用于诸多领域(如水处理、化工、太阳能电池、颜料和涂料、化妆品、纺织、食品、环保等)而备受青睐,从一开始就成为纳米材料领域的研究热点之一。我国对纳米二氧化钛的研究虽比世界上主要科技强国晚了十来年,但发展很快。1992年,中国真空学会召开了第一届全国纳米科学与技术学术会议,标志着我国大规模研究纳米材料尤其是纳米二氧化钛的开始。从那时至今,通过无数科学工作者的努力,我国不但在实验制备与表征各种纳米二氧化钛材料、研究材料功能与特异性以及探讨有关过程的机理等方面作了大量的工作,还在其应用、产业化制备、产品标准化等方面取得了令人瞩目的成就,使我国在纳米二氧化钛的研究领域接近了世界先进水平。文章仅对我国在纳米二氧化钛制备方面的研究进展进行综述。 1 纳米二氧化钛粉体的制备 到目前为止,已经被研究过的纳米二氧化钛粉体的制备方法不下二十来种[1,2],按照反应物的相态可以将它们分为气相反应法、液相反应法和固相反应法三大类,而按照制备过程是否发生化学变化又可以将它们分为物理法和化学法两大类,也可以按照钛源的不同而对制备方法进行分类。我国在纳米TiO2粉体的制备方面所做的研究可以概括为以下三个方面。 1.1 探索与改善已有方法的工艺条件 从李晓娥[3]等采用溶胶-凝胶法成功制得锐钛矿型纳米TiO2开始,国内对纳米TiO2粉体的制备研究一直没有停止过[4-9]。由于我国对纳米TiO2的研究起步较晚,当我们开始相应的制备研究时,国外已有多种制备方法趋于成型,所以我们在制备方面所做的研究主要是认识各种制备方法、对方法的工艺条件进行改善与优化等。主要研究了各种制备方法中的反应条件、制备过程的反应机理、影响纳米TiO2质量(晶型、粒子平均直径、颗粒均匀度、团聚度、杂质含量等)的主要因素,掌握了以不同方法制备纳米TiO2粉体或浆料、制备不同晶型与形貌的纳米TiO2的技术,实现了非晶纳米TiO2向锐钛型纳米TiO2、锐钛型纳米TiO2向金红石型纳米TiO2的转化,改善与优化了制备的工艺条件。在纳米TiO2粉体制备的产业化方面,通过进行各种制备方法在小试基础上的放大和半产业化生产的试验[10],逐步确立了我国工业化生产纳米TiO2粉体的技术路线、不同生产规模下的工艺方案、主要设备的选型以及最佳工艺条件,使我国纳米TiO2粉体生产能力迅速提高,产品已经可以向国外出口。 1.2 采用不同钛源制备纳米二氧化钛 在最初的制备中,为了保证纳米TiO2的质量,多采用试剂级Ti(OR)4或TiCl4为前驱体,这就使得我国早期纳米TiO2的生产成本很高,产品在国际市场毫无竞争力可言。而我国是一个钛资源丰富的国家,有众多的钛企业,钛生产、加工过程的中间产物、副产物量非常大,如果能够将它们应用到纳米TiO2的工业生产中,不但可以降低生产成本,还可以开发上述中间产物、副产物的附加价值,更加充分合理地利用我国钛资源。因此从本世纪初开始,我国就开始研究利用除Ti(OR)4、TiCl4以外其它钛源制备纳米二氧化钛,主要的探索有[11-15]:以正钛酸为原料制备纳米TiO2,以硫酸法生产钛白的中间产物TiOSO4(或H2TiO3)为原料生产纳米TiO2,以工业钛液(含一定量TiOSO4)为原料在低温、常压下制备纳米TiO2,用硝酸处理非晶氧化钛或一些其它的钛(Ⅳ)化合物制备纳米TiO2。这些研究成果拓宽了制备纳米TiO2的钛源,降低了原料价格,还为大量钛工业中间产品、副产品的处理与利用找到了良好的出路。有的研究还降低了反应的温度和压力,降低了对生产设备的材质要求,使操作更加简便安全。还有的研究可以让原来生产钛白的小厂家在对生产设备进行简单改造后转而生产纳米TiO2,拓展了小厂家的生存空间,提高了小厂家的生存能力。 1.3 应用各种新技术制备纳米二氧化钛 进入21世纪,我国科学工作者及时跟踪国际上纳米二氧化钛制备的新技术,先后进行了在超重力场下水解反应制备纳米TiO2、通过反萃沉淀法制备纳米TiO2、将超声处理引入纳米TiO2制备、将微波加热方法引入纳米TiO2制备、采用离子液体微乳液体系制备纳米TiO2等试验研究[16-20]。这些研究,有的简化了传统的工艺流程,有的大大缩短了反应时间或降低了反应温度,有的则显著改善了产品性能,有的制得了具有特殊性能、能满足特定要求的产品。 2 纳米二氧化钛薄膜的制备 由于太阳能电池和传感器等领域的需要,以及为了解决纳米TiO2粉体作为光催化剂使用时难于均匀分散、使用后难于分离回收等问题,上世纪末,国际上开始了对纳米TiO2薄膜的研究,到目前为止已经开发出了多种制备方法[21],一些发达国家已经实现了纳米TiO2薄膜的工业化生产。我国在这一领域起步稍晚,但已有许多研究成果。 2.1 纯纳米二氧化钛薄膜的制备 从罗瑾等[22]在国内首先进行纳米TiO2薄膜制备研究开始,研究者们先后采用钛酸乙酯热分解法、反应离子溅射法、电沉积法、直流磁控溅射技术、TiCl4水解法等方法进行了制备纳米TiO2薄膜的试验[23-26]。通过研究,基本解决了薄膜制备的主要技术问题,包括通过控制反应条件来控制薄膜的晶型与形貌、选择薄膜的最佳基质(载体)、增强薄膜在基质上的附着力、通过多种方法(如多孔化及表面处理)提高薄膜的吸附能力和光催化活性、使薄膜的吸收带边红移等。不过到目前为止,未见国内有纳米TiO2薄膜的产业化生产的报道。 2.2 掺杂及复合纳米二氧化钛薄膜的制备 在向纳米TiO2薄膜中掺杂方面,国内进行了掺入锡、铯等金属的研究[26-28],结果表明:掺杂适当金属后膜的光催化活性有不同程度的提高;掺入某些金属可以导致膜的吸收带边红移,意味 [收稿日期] 2012-08-29 [作者简介] 陈杰山(1962-),男,湖南人,硕士,副教授,主要从事废水处理研究。

TiO2阵列薄膜

TiO2和HfTiO4薄膜在微电子中应用与表征研究 摘要:研究掺TiO2阵列基透明氧化物半导体在微电子的应用,通过低压集中热 反应磁控溅射法制备TiO 2和掺Hf的TiO 2 薄膜,沉积在(100)方向的硅基板上,沉 积后在空气中1000K进行退火处理4小时。通过X衍射(XRD),原子显微镜(AFM),X 射线光电子能谱(XPS)研究薄膜阵列的性质。XRD分析表明经热处理后将增强薄 膜的结晶,TiO 2和斜方HfTiO 2 薄膜出现形状规则的金红石相。AFM图分析表明该 纳米薄膜显示高度有序,整个样品表面上晶粒的尺寸和排列时均匀的。薄膜的化学计量比可以通过XPS检测来确定。 关键字:TiO2 薄膜 HfTiO4阵列透明氧化物半导体 Abstract:We study the possible microelectronics applications of transparent oxide semiconductors based on TiO2-doped matrix. TiO2 and Hf-doped TiO2 thin films were prepared by low pressure hot target reactive magnetron sputtering (LP HTRS) and deposited onto monocrystalline (100) silicon substrate. After deposition thin films were additionally annealed in air for 4 hours at 1000 K. Properties of the thinfilms matrixes were studied by means of X-ray diffraction(XRD), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). XRD investigations have shown that heat treatment enhances the crystallity of the thin films. Well-shaped lines of the rutile phase for TiO2 and the orthorhombic HfIiO4 have appeared. AFM images showed that the nanocrystalline thin films exhibit the high ordering grade. The dimension and arrangement of grains were homogenous on the whole sample surface. The stoichiometry of manufactured thin films was confirmed by XPS examinations. Keywords:TiO2 thin films HfTiO4 matrix transparent oxide semiconductors 1 引言 TiO2是一种重要的无机功能材料,因有氧空位存在而呈N型,二氧化钛有锐钛矿、金红石和板钛矿3 种晶型,可用于制备染料敏化太阳能电池[1]、气敏传感器[2]、光催化薄膜[3]、电介质材料、光裂解水[4]、无机涂料等,应用于水或空气的净化,水分解制氢,无机薄膜太阳能电池等能源与环境领域。1991年,Gr?tzel等[1]利用具有大比表面积TiO2纳米晶多孔薄膜作为光阳极材料制备了电池器件,获得的能量转换效率高达7.1%,这种Gr?tzel电池因其制备简单、材料易得和成本低廉等优点而备受关注。近年来,利用半导体材料降解环境中的污染物已越来越受到人们的关注。TiO2的禁带宽度仅为3.2eV,只能吸收波长小于387.5 nm 的紫外光(约占太阳光的4.5%),而可见光占太阳光的45%,严重限制了其实际应用。而且,在光催化反应中,纯相TiO2产生的光生电子和空穴易在光催化剂体相内和表面快速复合,极大地降低了其量子效率[5–6]。因此,有必要寻找有效的方法来提高其可见光活性和光生载流子的分离效率。TiO2这种半导体材料的光催化性能自上世纪70年代开始受到人们的重视,其中,TiO2是一种理想的半导体光催化剂材料,因为它拥有较宽的禁带宽度,光催化活性高,催化简单有机物彻底,良好的化学稳定性,不会引起二次污染等优势。因此,它被广泛应用于杀菌、除臭、污水处理、空气净化等方面。将TiO2与窄带半导体复合形成异质结可有效解决上面的两个问题,Sun 等[7]制备了CdS/TiO2纳米管阵列,其光电效应是TiO2 纳米管阵列的35 倍;Zhang 等[8]将CdSe 沉积到TiO2纳米管中,显著提高了其可见光下的光电流;Hou等[9]将Cu2O 与TiO2纳米管复合后有效提高了其可见光光催化活性。在可见光照射下,从这些窄带半导体上激

纳米材料及其应用前景

纳米材料及其应用前景 摘要:21世纪,纳米技术、纳米材料在科技领域将扮演重要角色。纳米技术是当今世界最有前途的决定性技术之一。本文简要地概述了纳米材料的基本特性以及其在力学、磁学、电学、热学等方面的主要应用,并简单展望了纳米材料的应用前景。 关键词:纳米材料;功能;应用; 一、纳米材料的基本特性 所谓纳米材料是指材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料。由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增 殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和 增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50 多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直 难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、 强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。 使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油 钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用 变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面 有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作 用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的 隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体 器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管 放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室 温下的单电子晶体管。随着单电子晶体管研究的深入进展,已经成功研 制出由碳纳米管组成的逻辑电路。

ZnO薄膜的主要性质

书山有路勤为径,学海无涯苦作舟 ZnO 薄膜的主要性质 于激子带边发射,绿光发射则与ZnO 表层中以O 空位为主的深能级有关。ZnO 在可见光波段的吸收和发射光谱可参见文献。 电学性质未掺杂ZnO 薄膜室温载流子浓度主要取决于充当浅施主的间隙Zn 原子浓度。ZnO 薄膜的p 型掺杂是个备受关注的课题。Y.R.Ryu 等人用PLD 法 在GaAs 衬底上掺杂As 制得p-ZnO,受主浓度为1017~1021cm-3,紧束缚带边发射峰分别在3.32 eV 和3.36 eV[17]。M. Joseph 等人在400℃下用PLD 法进行Ga、N 共掺杂实现p 型转变,以ZnO(ω(Ga2O3)=5%)为靶材,N2O 为N 源, 进行电子回旋共振活化,p-ZnO 室温电阻率为0.5 Ω-cm,受主浓度为4 乘以1019 cm-3。T.Aoki 用准分子激光掺杂技术获得p-ZnO。 ZnO 薄膜的电学特性与制备方法及后续工艺条件有直接的依赖关系。电子束 蒸发制备的Al 掺杂ZnO 薄膜的电子浓度在1019~1021cm-3,室温电阻率为10-4 Ω-cm。溅射法制备AZO 薄膜的电学特性与溅射功率有很大关系。溅射 功率越大,薄膜的质量越好,这主要是因为溅射功率的提高有助于薄膜缺陷的减少, 增大晶粒尺寸,晶界的散射作用减轻,增大了载流子的平均自由程,从而使迁移率增大,薄膜的薄层电阻降低。反应溅射过程中,氧分压太低,薄膜的缺陷密度较高;氧 分压太高,薄膜的电阻率上升很快,通常在1~2mPa 比较合适。同样掺杂情况 下,ZnO 的施主浓度和受主浓度低于GaN,并且ZnO 的杂质、点缺陷以及位错的 浓度也低于GaN。ZnO 主要有导带底以下30meV、60meV 和340meV 三个施主能级。间隙Zn 原子是主要的浅施主,Vo 是深能级施主。总之,在点缺陷和位错浓 度低的情况下,ZnO 薄膜有较好的电学性质。

纳米二氧化钛的应用

纳米二氧化钛的应用 纳米二氧化钛作为一种高效、无毒的光催化剂,在环保领域的应用越来越 受到人们的广泛关注和重视。抗菌材料纳米TiO2以其优异的抗菌性能成为开发研 究的热点之一,以期应用于水处理装置、医疗设备、食品包装、建材(如抗菌地砖、抗菌陶瓷卫生设施、抗菌砂浆、抗菌涂料等)、化妆品、纺织品、日用品以及家用电器等各个领域。1、气体净化环境有害气体可分为室内有害气体和大气污染气体。室内有害气体主要有装饰材料等放出的甲醛及生活环境中产生的甲硫醇、硫化氢及氨气等。TiO2通过光催化作用可将吸附于其表面的这些物质分解氧化,从而使空气中这些物质的浓度降低,减轻或消除环境不适感。大气污染气体,主要是由汽车尾气与工业废气等带来的氮氧化物和硫氧化合物。利用纳米TiO2的催化作用将这些气体氧化成蒸汽压低的硫酸和硝酸,在降雨过程中除去,从而达到降低大气污染的目的。在居室、办公室窗玻璃、陶瓷等建材表面涂敷TiO2光催化薄膜或在房间内安放TiO2光催化设备,均可有效地降解污染物,净化室内空气。利用纳米TiO2开发出来的一种抗剥离光催化薄板,可利用太阳光有效去除空气中的NOx气体,而且薄板表面生成的HN03可由雨水冲洗掉,保证了催化剂活性的稳定。2、抗菌除臭抗菌是指纳米TiO2在光照下对环境中微生物的抑制或杀灭作用。TiO2光催化剂对绿脓杆菌、大肠杆菌、金黄色葡萄球菌等具有很强的杀能力。当细菌吸附于由纳米二氧化钛涂敷的光催化陶瓷表面时,2被紫外光激发后产生的活性超氧离子自由基(·O2-)和羟基自由基(·OH)能穿透细菌的细胞壁,破坏细胞膜质,进入菌体,阻止成膜物质的传输,阻断其呼吸系统和电子传输系统,从而有效地杀灭细菌,并抑制细菌分解有机物产生臭味物质(如H2S、SO2、硫醇等)。因此,纳米TiO2能净化空气,具有除臭功能。3、处理有机污水工业污水和生活污水中含有大量的有机污染物,尤其是工业污水中含有大量的有毒、有害的有机物质,这些污染物用生物处理技术很难消除。许多学者对水中有机污染物光催化分解进行了系统的研究,结果表明以TiO2为光催化剂,在光照的条件下,可使水中的烃类、卤代物、羧酸等发生氧化还原反应,并逐步降解,最终完全氧化为环境友好的CO2和H2O等无害物质。4、处理无机污水除有机物外,许多无机物在TiO2表面也具有光学活性,例如无机污水中的Cr6+接触到TiO2催化剂表面时,能够捕获表面的光生电子而发生还原反应,使高价有毒的Cr6+降解为毒性较低或无毒的Cr3+,从而起到净化污水的作用;一些重金属离子如Pt4+,Hg2+,Au3+等,在催化剂表面也能够捕获电子而发生还原沉淀反应,可回收污水的无机重金属离子。5、防雾、自清洁功能TiO2薄膜在光照下具有超亲水性和超永久性,因此其具有防雾功能。如在汽车后视镜上涂覆一层氧化钛薄膜,即使空气中的水分或者水蒸气凝结,冷凝水也不会形成单个水滴,而是形成水膜均匀地铺展在表面,所以表面不会发生光散射的雾。当有雨水冲过,在表面附着的雨水也会迅速扩散成为均匀的水膜,这样就不会形成分散视线的水滴,使得后视镜表面保持原有的光亮,提高行车的安全性。阅读会员限时特惠 7大会员特权立即尝鲜 如果把高层建筑的窗玻璃、陶瓷等这些建材表面涂覆一层氧化钛薄膜,利用氧化钛的光催化反应就可以把吸附在氧化钛表面的有机污染物分解为CO2和O2,同剩余的无机物一起可被雨水冲刷干净,从而实现自清洁功能。 6、抗菌塑料 在日常生活中人们是离不开塑料制品的,如卫生间设施、桌面、垃圾箱、厨房用具、家用电器的塑料外壳、食品包装袋等等,由于温度、湿度合适,非常容易滋生感染细菌。因此!,对此类材料进行抗菌处理是极其必要的。 徐瑞芬等【2】 利用纳米TiO2作为无机抗菌剂,研制抗菌广谱长效的功能塑料。结果表明:采用锐钛矿

纳米二氧化钛的研究进展

纳米二氧化钛的研究进展 摘要】纳米科技是20世纪末逐步发展起来的新兴学科,为21世纪最具有科研 前途的领域。纳米技术的应用,有可能使各国在世界经济中的地位发生重新排列,成为世界大国争夺的战略制高点。首先研究和发展纳米技术的国家将成为未来科 技引领者。 【关键词】纳米技术纳米二氧化钛 【中图分类号】R2 【文献标号】A 【文章编号】2095-7165(2015)10-0196-01 纳米二氧化钛又叫超微细二氧化钛,它是一种新型无机化工材料具有:很大 的比表面积、表面原子数、表面能和表面张力等特点,随着其粒径的下降而急剧 增加;其表面效应、小尺寸效应、宏观量子隧道效应及量子尺寸效应等导致了纳 米微粒的磁、热、光、敏感特性以及表面稳定性等较常规粒子有很大的区别[1.2。3]。 1 纳米二氧化钛的抗菌性研究 二氧化钛的光催化杀菌机理和光催化降解有机物污染物很类似。二氧化钛在 受到大于它带隙能的光照射时,电子就能价带激发到导带,产生电子-空穴对,这 些电子-空穴对与它表面上吸附的H2O或者OH-反应后,生成具有强氧化性的羟 基自由基(·OH)和超氧负离子(O2-)。而这些基团能够穿透细菌的细胞壁,破坏细 菌的细胞膜结构,阻止细菌体内成膜物质的传输,阻断细菌内呼吸系统和电子传 输系统,从而能够有效地杀灭细菌。而且羟基自由基还可以降解细菌所产生的毒素,防止内毒素所引起二次感染。Kikuchi等[4]经过实验发现在紫外灯照射下TiO2 纳米管阵列光催化剂具有非常好的杀灭病毒、大肠杆菌以和癌细胞等,对人的身 体及生活有害物体。Kang等[5]使用CdS和Pt来修饰TiO2纳米管结构,从中得到 纳米材料的三元复合体系,其在光照下对大肠杆菌具有高效的杀菌作用。 2 二氧化钛光在骨科的研究进展 人工关节置换术以后的假体周围感染的治疗很棘手,由于感染组织周围缺乏 血管和关节屏障等等因素,为了骨关节处达到一定的药物浓度,往往需要使用较 高剂量和较长时间的全身性抗生素。随之而来的将会出现抗生素对全身各个器官 的毒副作用。处于这种考虑,抗生素的局部应用作为全身使用的补充和辅助已被 广为接受。而传统的骨水泥混合抗生素的使用就是最常用的手段[6.7.8]。 虽然选择抗生素骨水泥是目前公认针对人工关节假体周围感染预防和治疗的 标准方法[9],但是抗生素骨水泥的使用有着如不稳定的动力学表现、导致局部的 毒性反应、导致细菌耐药性的出现及加重细菌感染等许多缺陷[10.11.12]。某些学 者甚至认为在解决人工关节术后感染这个难题中,术前使用抗生素、加强手术室 抗菌能级、手术技术的提高、假体形态的更好的设计等等不能起到太大的作用[13.14]。随着内植物的抗菌素修饰实验的不断完善和优化,目前认为解决内植物 感染的最终解决方案是从植入物材料的源头来预防治疗感染[15]。 3 二氧化钛光在肿瘤治疗中的研究进展 人类从20 世纪90 年代就开始了纳米二氧化钛应用于抗肿瘤治疗研究。光照 条件下,纳米二氧化钛粒子具有较高的氧化还原能力,具有分解组成微生物的蛋 白质能力,从而能够杀死微生物。利用二氧化钛的这一特性,将其用于癌细胞治 疗的试验便开始了[16],结果表明在紫外光照射10min后,纳米二氧化钛颗粒能 够杀死全部的癌细胞。

纳米TiO2粉体制备方法

1. 纳米TiO 2粉体制备方法 物理法 气相冷凝法: 预先处理为气相的样品在液氮的气氛下冷凝成核制得纳米TiO2 粉体,但该法不适于制备沸点较高的半导体氧化物 高能球磨法: 工艺简单,但制得的粉体形状不规则,颗粒尺寸分布宽,均匀性差 化学法 固相法: 依靠固体颗粒之间的混合来促进反应,不适合制备微粒 液相法: 就是将钛的氯化物或醇盐先水解生成氢氧化钛(或羟基氧钛) ,再经煅烧得到TiO2. 研究最广泛。 以四氯化钛为原料,其反应为 TiCl4 + 4H2O → Ti (OH) 4 + 4HCl , Ti (OH) 4 → TiO2 + 2H2O. 以醇盐为原料,其反应为 Ti (OR) 4 + 4 H2O → Ti (OH) 4 + 4 ROH , Ti (OH) 4 ???→煅烧TiO2 + 2 H2O. 主要包括硫酸法、水解法、溶胶-凝胶(Sol2gel) 法、超声雾化、热解法等。 溶胶- 凝胶法就是将钛醇盐制备成二氧化钛溶胶. 为了得到多孔催化剂,通常采用煅烧等方法将凝胶进行干燥,去除溶剂,制得干凝胶. Dagan 等[25 ]采用超临界干燥法所制得的TiO2气凝胶孔隙率为85 % ,比表面积高达600 m2·g - 1 ,晶粒尺寸为5. 0 nm ;对水杨酸的光催化氧化表明该催化剂具有比Degussa P - 25 TiO2粉末更高的催化活性.

气相法: 其核心技术是反应气体如何成核的问题. 通过四氯化钛与氧气反应或在氢氧焰中气相水解获得纳米级TiO2 ,目前德国Degussa 公司P-25 粉末光催化剂是通过该法生产的 常用的化学制备方法有溶胶-凝胶法、沉淀法、水解法、喷雾热解法、水热法和氧化- 还原法等。 2. 纳米TiO2薄膜制备方法: 除了与粉体制备相同的制备方法如溶胶-凝胶法、热解法外,还有液相沉积法、化学气相沉积法、磁控溅射法等。 溶胶-凝胶法(Sol-Gel): 制备的薄膜纯度高,且制备工艺简单,易批量生产; 水热合成法: 通过水解钛的醇盐或氯化物前驱体得到无定形沉淀,然后在酸性或碱性溶液中胶溶得到溶胶物质,将溶胶在高压釜中进行水热Ostwald熟化。熟化后的溶胶涂覆在导电玻璃基片上,经高温(500℃左右)煅烧,即得到纳米晶TiO2薄膜。也可以使用TiO2的醇溶液与商业Ti02(P25,3Onm)混合以后得到的糨糊来代替上面提到的溶胶。反应中为了防止颗粒团聚,通常采用化学表面改性的方法,如加有机螫合剂、表面活性剂、乳化剂等,以降低粉末表面能,增加胶粒问静电排斥,或产生空问位阻作用而使胶体稳定。这些有机添加剂在高温煅烧阶段会受热分解除去. 是溶胶-凝胶法的改进方法,主要在于加入了一个水热熟化过程,由此控制产物的结晶和长大,继而控制半导体氧化物的颗粒尺寸和分布,以及薄膜的孔隙率.得到的Ti02颗粒是锐钛矿型还是锐钛矿型与金红石型的混合物由反应条件(如煅烧温度)决定。水热处理的温度对颗粒尺寸有决定性的影响。一般来说,将溶胶在高压釜中(150Xl05~330×105Pa)于200~250℃处理12h,可得到平均粒径15~20nm的Ti02颗粒。如果用丝网印刷术(也可用刮涂的方法)将TiO2溶胶涂覆在导电玻璃上,则得到

纳米二氧化钛(TiO2)光触媒杀菌净化技术介绍

納米二氧化钛光催化技术介绍 纳米光催化采用二氧化钛(TiO2)半导体の效应,激活材料表面吸附氧和水分,产生活性氢氧自由基(OH.)和超氧阴离子自由基(O2-),从而转化为一种具有安全化学能の活性物质,起到矿化降解环境污染物和抑菌杀菌の作用。 纳米二氧化钛(TiO2)光催化利用自然光即可催化分解细菌和污染物,具有高催化活性、良好の化学稳定性、无二次污染、无刺激性、安全无毒等特点,且能长期有益于生态自然环境,是最具有开发前景の绿色环保催化剂之一。 无毒害の纳米TiO2催化材料,充分发挥抗菌、降解有机污染物、除臭、自净化の功能,这类环保型功能材料实施方便、应用性强,能实用到生活空间の多种场合,发挥其多功能效应,成为我们生活环境中起长期净化作用の环保材料。 光催化原理 - 什么是光催化 光催化[Photocatalyst]是光 [Photo=Light] +催化剂 [catalyst]の合成词。主要成分是二氧化钛(TiO2),二氧 化钛本身无毒无害,已广泛用于食品,医药,化妆品等各种 领域。光催化在光の照射下会产生类似光合作用の光催化反应(氧化-还原反应,产生出氧化能力极强の自由氢氧基和活性氧,这些产物可杀灭细菌和分解有机污染物。并且把有机污染物分解成无污染の水(H2O)和二氧化碳(CO2),同时它具有杀菌、除臭、防污、亲水、防紫外线等功能。光催化在微弱の光线下也能做反应,若在紫外线の照射下,光催化の活性会加强。近来, 光催化被誉为未来产业之一の纳米技术产品。 - 光催化反应原理

TiO2当吸收光能量之后,价带中の电子就会被激发到导带,形成带负电の高活性电子e-,同时在价带上产生带正电の空穴h+。在电场の作用下,电子与空穴发生分离,迁移到粒子表面の不同位置。热力学理论表明,分布在表面のh+可以将吸附在TiO2表面OH-和H2O分子氧化成(OH.)自由基,而OH.自由基の氧化能力是水体中存在の氧化剂中最强の,能氧化并分解各种有机污染物(甲醛、苯、TVOC等)和细菌及部分无机污染物(氨、NOX等),并将最终降解为CO2、H2O等无害物质。由于OH.自由基对反应物几乎无选择性,因而在光催化中起着决定性の作用。此外,许多有机物の氧化电位较TiO2の价带电位更负一些,能直接为h+所氧化。而TiO2表面高活性のe-侧具有很强の还原能力,可以还原去除水体中金属离子。应用以上原理光催化广泛应用于杀菌、除臭、空气净化、污水处理等领域。 光催化优势 光催化の空气净化技术优点 1、光催化の优点 -高效杀菌(杀菌率达到99.99%) -除臭功能 -防污/自洁、防霉功能 2、彻底の净化 -是分解而不是吸附污染物; -发生の是质变而不是量变; -对污染物具有不可逆の彻底分解; 3、广泛の净化 -能对室内几乎所有の细菌、病毒和有机污染物起到强效分解作用; -特别是对人们不易感知の细菌和病毒进行彻底分解; 4、实用の净化

二氧化钛薄膜的研究进展(2-24)

二氧化钛薄膜的研究进展 引言 TiO2是一种性能稳定的半导体材料,具有氧化活性高,对人体无毒害、成本低和无污染等特点,在许多领域有广泛的用途。TiO2薄膜具有良好的化学稳定性、电学性能、优良的光催化特性和亲水性,使其在污水处理、空气净化、电子材料、光学材料、生物材料和金属表面防护等方面呈现出巨大应用潜力。目前,TiO2薄膜的制备方法有很多,大体可以分为两大类:物理法和化学法。物理法主要是利用高温产生的物质蒸发或电子、离子、光子等高能粒子的能量所造成的靶物质溅射等方法,在衬底上形成所需要的薄膜;化学法是利用化学反应在基片上形成薄膜的方法。[1] 制备方法 1 溶胶-凝胶法 溶胶-凝胶法就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。溶胶-凝胶法制备TiO2薄膜一般以钛醇盐及其相应的溶剂为原料,加入少量水和络合剂,经搅拌和陈化后形成溶胶,然后利用浸渍-提拉法、旋转涂层或喷涂等方法涂在基片表面,经过焙烧后形成薄膜。常用的钛醇盐主要有:钛酸乙酯、钛酸四异丙酯、钛酸丁酯、钛酸四丁酯、四氯化钛和三氯化钛等等。 姚敬华等[2]人以钛白粉厂价格低廉的偏钛酸为原料,采用溶胶-凝胶法,结合微乳化技术和共沸蒸馏的工艺路线,制备了纳米锐钛矿型TiO2粉体。用电镜(TEM)及X射线衍射(XRD)技术进行了表征。结果表明:TiO2结晶良好,分布均匀,无团聚现象。将一定量偏钛酸和NaOH按一定量比混合,再按一定固液比用水稀释,搅拌均匀后转入蒸馏瓶中,在沸腾状态下回流2 h后转入烧杯.在搅拌条件下,缓慢加入一定体积的浓硝酸至沉淀溶解,得到浅白色半透明状溶液。在此溶液中加入一定体积的8%DBS溶液和二甲苯,搅拌30 min静置,液体分为3层(3相),取中间相进行蒸馏,至馏出液中不分层为止,过滤,将滤渣在80℃烘 4 h后,放入茂福炉,在650℃下灼烧3 h后得纳米TiO2微粒。

纳米材料的应用和发展前景概要

一、文献调研部分(获取综述的参考文献—精读全文)1.利用中文(期刊、学位论文、会议论文)数据库,检出中文切题题录(批量),选择记录文摘格式10篇(其中学位论文要求不少于2篇、期刊论文6篇); [1]叶灵. 纳米材料的应用与发展前景[J]. 科技资讯. 2011(20) 摘要: 很多人都听说过"纳米"这个词,但什么是纳米,什么是纳米技术,可能很多人并不一定清楚。着名的诺贝尔奖获得者Feyneman在20世纪60年代曾经预言:如果我们对物体微小规模上的排列加以某种控制的话,我们就能使物体得到大量的异乎寻常的特性,就会看到材料的性能产生丰富的变化。他所说的材料就是现在的纳米材料。 [2]赵雪石. 纳米技术及其应用前景[J]. 适用技术市场. 2000(12) 摘要: 纳米技术在精细陶瓷、微电子学、生物工程、化工、医学等领域的成功应用及其广阔的前景,使得纳米技术成为目前科学研究的热点之一,被认为是21世纪的又一次产业革命。 [3]何燕,高月,封文江. 纳米科技的发展与应用[J]. 沈阳师范大学学报(自然科学版). 2010(02) 摘要:纳米科技是21世纪的主导产业,世界各国把纳米科技的研究和应用作为战略重点。在第五次科学技术革命中,新材料家族被推上新一轮科技革命的顶峰。在新材料和新技术中,纳米材料和纳米技术无疑将成为核心材料和核心技术。纳米技术的最终目标是直接操纵单个原子和分子,制造新功能器件,从而开拓人类崭新的生活模式。文章概述了纳米科技的发展过程及纳米材料的性质与制备,介绍了纳米技术在部分领域的应用,并简述了纳米技术对未来社会的巨大影响及潜在的、令人鼓舞的发展前景。 [4]何彦达. 纳米材料的应用及展望[J]. 科技风. 2010(01) 摘要:纳米材料(尺寸在1-100纳米范围内)又称超细微粒、超细粉末,是处在原子簇和宏观物体交界过渡区域的一种典型系统,其结构既不同于体块材料,也不同于单个的原子。其特殊的结构层次使它拥有一系列新颖的物理和化学特性,在众多领域特别是在光、电、磁、催化等方面具有非常重大的应用价值。 [5]樊东黎. 纳米技术和纳米材料的发展和应用[J]. 金属热处理. 2011(02) 摘要:<正>2005年12月在克利夫兰召开了由美国金属学会和克利夫兰纳摩网主办的美国纳米技术应用峰会。许多实体企业,如波音、福特、通用、洛克希德、蒂姆肯等公司高管出席会议和发言。会议的特点是着重于纳米。 [6]张桂芳. 纳米材料应用与发展前景概述[J]. 黑龙江科技信息. 2009(16) 摘要:由于独特的微结构和奇异性能,纳米材料引起了科学界的极大关注,成为世界范围内的研究热点,以下概述了纳米材料的应用与发展前景。 [7]杨萍. 多功能复合纳米材料的制备及其光分析应用研究[D]. 中国科学技术大学 2012 摘要:纳米材料具有独特的化学、物理和生物性能,引起了人们的极大关注。多功能复合结构纳米材料能够将不同功能的纳米材料整合到一个纳米器件中,从而为现代工业、生物医学

相关文档
最新文档