通则0512高效液相色谱法

通则0512高效液相色谱法
通则0512高效液相色谱法

高效液相色谱法:

系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。

注入的供试品,由流动相带入色谱柱内,各组分在柱内被分离,并进入检测器检测,

由积分仪或数据处理系统记录和处理色谱信号。

1.对仪器的一般要求和色谱条件

高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据处理系统组成。

色谱柱内径一般为3.9~4.6mm,填充剂粒径为3~10μm。

超高液相色谱仪:是适应小粒径(约2μm)填充剂的耐超高压、小进样量、低死体积、

高灵敏度检测的高效液相色谱仪。

(1)色谱柱

反相色谱柱:

以键和非极性基团的载体为填充剂填充而成的色谱柱。常见的载体有硅胶、聚合物复合硅胶和聚合物等;常用的填充剂优十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基键合硅胶等。

正相色谱柱:

用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。常见的填充剂有硅胶、氨基键合硅胶

和氰基键合硅胶等。氨基键合硅胶和氰基键合硅胶也可用作反向色谱。

离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。有阳离子交换色谱柱和阴离子交换色谱柱。

手性分离色谱柱:用手性填充剂填充而成的色谱柱。

色谱柱的内径和长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分离物质的性质来选择合适的色谱柱。

温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。为改善分离效果可适当提高色谱柱的温度,但一般不宜超过60℃。

残余硅羟基未封闭的硅胶色谱柱,流动相的pH值一般应在2~8之间。残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚合物色谱柱可耐受更广泛pH值的流动相,适合于pH值小于2或大于8的流动相。

(2)检测器

最常用的检测器为紫外-可见分光检测器,包括二极管阵列检测器,

其他常见的检测器有荧光检测器、蒸发光散射检测器、示差折光检测器、电化学检测器和质谱检测器等。

紫外-可见分光检测器、荧光检测器、电化学检测器为选择性检测器,

其响应值不仅与被测物质的量有关,还与其结构有关;

蒸发光散射检测器和示差折光检测器为通用型检测器,

对所有物质均有响应,结构相似的物质在蒸发光散射检测器的响应值几乎仅与被测物质的量有关。

紫外-可见分光检测器、荧光检测器、电化学检测器和示差折光检测器的响应值与被测物质的量在一

定范围内呈线性关系,

但蒸发光散射检测器的响应值与被测物质的量通常呈指数关系,一般需经对数转换。

不同的检测器,对流动相的要求不同。

紫外-可见分光检测器所用流动相应符合紫外-可见分光光度法(通则0401)项下对溶剂的要求;

采用低波长检测时,还应考虑有机溶剂的截止使用波长,并选用色谱级有机溶剂。

蒸发光散射检测器和质谱检测器不得使用含不挥发性盐的流动相。

(3)流动相

反相色谱系统的流动相常用甲醇-水系统和乙腈-水系统,用紫外末端波长检测时,宜选用乙腈-水系统,流动相中应尽可能不用缓冲盐,如需用时,应尽可能使用低浓度缓冲盐。

用十八烷基硅烷键合硅胶色谱柱时,流动相中有机溶剂一般不低于5%,否则导致柱效下降、色谱系统不稳定。

正相色谱系统的流动相:常用两种或两种以上的有机溶剂,如二氯甲烷和正己烷等。

品种正文项下规定的条件除填充剂种类、流动相组分、检测器类型不得改变外,其余如色谱柱内径与长度、填充剂粒径、流动相流速、流动相组分比例、柱温、进样量、检测器灵敏度等,均可适当改变,以达到系统适应性试验的要求。

调整流动相组分比例时,当小比例组分的百分比例X小于等于33%时,允许改变范围为0.7X~1.3X;

当X大于33%时,允许改变范围为X-10%~X+10%。

若需使用小粒径(约2μm)填充剂,输液泵的性能、进样体积、检测池体积和系统的死体积等必须与之匹配;如有必要,色谱条件也应作适当的调整。当对其测定结果产生争议时,应以品种项下规定的色谱条件的测定结果为准。

当必须使用特定牌号的色谱柱方能满足分离要求时,可在该品种正文项下注明。

2.系统适用性试验

色谱系统的适用性试验:通常包括理论板数、分离度、灵敏度、拖尾因子和重复性等五个参数。

色谱系统的适用性试验定义:

按各品种正文项下要求对色谱系统进行适用性试验

即用规定的对照品溶液或系统适用性试验溶液在规定的色谱系统进行试验,

必要时,可对色谱系统进行适当调整,以符合要求。

(1)色谱柱的理论板数(n)

用于评价色谱柱的分离效能。

由于不同物质在同一色谱柱上的色谱行为不同,采用理论板数作为衡量柱效能的指标时,

应指明测定物质,一般为待测物质或内标物质的理论板数。

在规定的色谱条件下,注入供试品溶液或各品种项下规定的内标物质溶液,记录色谱图,

量出供试品主成分色谱峰或内标物质色谱峰的保留时间t R和峰宽(W)或半高峰宽(W h/2),

按下式计算色谱柱的理论板数:

n = 16(t R / W)2 或n = 5.54(t R / W h/2 )2

t R、W、W h/2 可用时间或长度计(下同),但应取相同单位。

无论是定性鉴别还是定量测定,

均要求待测物质色谱峰与内标物质色谱峰或特定的杂质对照色谱峰及其他色谱峰之间有较好的分离度。

除另有规定外,待测物质色谱峰与相邻色谱峰之间的分离度应大于1.5。

分离度的计算公式为:

式中t R2为相邻两色谱峰中后一峰的保留时间

t R1为相邻两色谱峰中前一峰的保留时间

W1、W2及W1,h/2、W2,h/2分别为此相邻两色谱峰的峰宽及半高峰宽(如图)。

当对测定结果有异议时,色谱柱的理论板数(n)和分离度(R)均以峰宽(W)的计算结果为准。(3)灵敏度

用于评价色谱系统检测微量物质的能力,通常以信噪比(S/N)来表示。

通过测定一系列不同浓度的供试品或对照品溶液来测定信噪比。

定量测定时,信噪比应不小于10;

定性测定时,信噪比应不小于3。

系统适用性试验中可以设置灵敏度实验溶液来评价色谱系统的检测能力。

(4)拖尾因子(T)

用于评价色谱峰的对称性。

拖尾因子计算公式为:

式中W0.05h为5%峰高处的峰宽;

d1为峰顶在5%峰高处横坐标平行线的投影点至峰前沿与此平行线交点的距离(如图)。

以峰高作定量参数时,除另有规定外,T值应在0.95~1.05之间。

以峰面积作定量参数时,一般的峰拖尾或前伸不会影响峰面积积分,

但严重拖尾会影响基线和色谱峰起止的判断和峰面积积分的准确性,

此时应在各品种正文项下对拖尾因子作出规定。(5)重复性

用于评价色谱系统连续进样时响应值的重复性能。

采用外标法时,通常取各品种项下的对照品溶液,连续进样5次,

除另有规定外,其峰面积测量值的相对标准偏差应不大于2.0%;

采用内标法时,

通常配制相当于80%、100%和120%的对照品溶液,加入规定量的内标溶液,

配成3种不同浓度的溶液,分别至少进样2次,

计算平均校正因子,其相对标准偏差应不大于2.0%。

3.测定法

(1)内标法

按各品种正文项下的规定,精密称(量)取对照品和内标物质,分别配成溶液,

各精密量取适量,混合配成校正因子测定用的对照溶液。

取一定量进样,记录色谱图。

测量对照品和内标物质的峰面积或峰高,

按下式计算校正因子:

式中A S为内标物质的峰面积或峰高;

A R为对照品的峰面积或峰高;

c S为内标物质的浓度;

c R为对照品的浓度。

再取各品种项下含有内标物质的供试品溶液,进样,记录色谱图,测量供试品中待测成分和内标物质的峰面积或峰高,

按下式计算含量:

式中A X为供试品的峰面积或峰高;

c X为供试品的浓度;

A's为内标物质的峰面积或峰高;

c'S为内标物质的浓度;

f为内标法校正因子。

高效液相色谱法简介

高效液相色谱法简介 “色谱”一词是由俄国科学家斯威特提出的。色谱法是基于补充物质在相对运动物的两相之间分布时,物理或物理化学性质的微小的差异而使混合物相互分离的一类分离或分析方法。发展与上世纪初,飞速发展于五十年代,有超过30位科学家家因为它而获得诺贝尔奖,其有自己的理论和研究方法,同时也有众多的应用领域。 色谱法常见的方法有:柱色谱法、薄层色谱法、气相色谱法、高效液相色谱法等。 柱色谱:柱色谱法是最原始的色谱方法,这种方法将固定相注入下端塞有棉花或滤纸的玻璃管中,将被样品饱和的固定相粉末摊铺在玻璃管顶端,以流动相洗脱。常见的洗脱方式有两种,一种是自上而下依靠溶剂本身的重力洗脱,一种是自下而上依靠毛细作用洗脱。收集分离后的纯净组分也有两种不同的方法,一种方法是在柱尾直接接受流出的溶液,另一种方法是烘干固定相后用机械方法分开各个色带,以合适的溶剂浸泡固定相提取组分分子。柱色谱法被广泛应用于混合物的分离,包括对有机合成产物、天然提取物以及生物大分子的分离。 薄层色谱:薄层色谱法是应用非常广泛的色谱方法,这种色谱方法将固定相图布在金属或玻璃薄板上形成薄层,用毛细管、钢笔或者其他工具将样品点染于薄板一端,之后将点样端浸入流动相中,依靠毛细作用令流动相溶剂沿薄板上行展开样品。薄层色谱法成本低廉操作简单,被用于对样品的粗测、对有机合成反应进程的检测等用途。

气相色谱:GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离。待分析样品在汽化室汽化后被惰性气体(即载气,也叫流动相)带入色谱柱,柱内含有液体或固体流动相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。但由于载气是流动的,这种平衡实际上很难建立起来。也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解吸附,结果是在载气中浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出。当组分流出色谱柱后,立即进入检测器。检测器能够将样品组分的与否转变为电信号,而电信号的大小与被测组分的量或浓度成正比。当将这些信号放大并记录下来时,就是气相色谱图了。气相色谱被广泛应用于小分子量复杂组分物质的定量分析。 高效液相色谱:高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4.9-107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。高效液相色谱(HPLC)是目前应用最多的色谱分析方法,高效液相色谱系统由流动相储液体瓶、输液泵、进样器、色谱柱、检测器和记录器组成,其整体组成类似于气相色谱,但是针对其流动相为液体的特点作出很多调整。HPLC的输液泵要求输液量恒定平稳;进样系统要求进样便利切换严密;由于液体流动相粘度远远高于气体,为了减低柱压高效

高效液相色谱法在水质检测中的应用

高效液相色谱法在水质检测中的应用 摘要:液相色谱仪已广泛应用于水环境监测中,逐步成为常规检测方法,其适用于分子量大、挥发性低、热稳定性差的有机污染物的分离和分析,具有准确、快速等特点。 关键词:液相色谱仪;水环境监测;有机污染物 1、引言 高效液相色谱法 ( high performance liquid chro-matography,简称 HPLC),具有下列主要优点:固定相颗粒细且规则均匀,传质阻抗小,组分间分离效率高;利用高压泵输送流动相,大大缩短分析时间;使用高灵敏检测器,提高了检测灵敏度,在分析速度、分离效能、检测灵敏度和操作自动化方面,达到了和气相色谱法相媲美的程度,气相色谱法仅适于分析蒸汽压低、挥发性高、沸点低、热稳定性好的样品。在全部已知的有机化合物中仅有20%的样品符合这些条件,近80%的有机化合物属于挥发性低、易受热分解或者大分子化合物,适合于高效液相色谱分析,因此,HPLC 应用前景更为广阔。 在环境监测中,高翔液相色谱法已逐步上升为常用的监测方法,如检测多环芳烃类、酚类、多氯联苯、苯胺类、阴离子和非离子表面活性剂、有机农药除草剂等。随着经济的快速发展,人们在获取大量化学物质以满足经济、生产和生活需要的同时,也将一些典型的有毒有害的有机污染物带入环境,其中部分有机污染物已经直接或间接被证明具有致癌、致畸和致突变的作用,给人类健康和自然生态环境带来了严重、持久、潜在的危害。根据发达国家的经验和我国经济发展

伴随的污染现状,有毒有机污染物也必将成为我国环境监测的重要目标。 2、实验部分 2.1主要仪器 岛津公司生产的高效液相色谱仪(LC-20A),包括: (1)CBM-20A—系统控制器; (2)CTO-20A—色谱柱柱温箱; (3)LC-20A—溶液传输单元; (4)SPD-20A—紫外可见光检测器; (5)RF-20A—荧光检测器; (6)SIL-20A—自动进样器; (7)DGU-20A3R—在线脱气机 (8)数据处理:LC-LabSolutions工作站软件。 (9)色谱柱:Shim-pack column size serial NO.VP-ODS。 2.2液相色谱原理简介 液相色谱法是在高压条件下溶质在固定相和流动相之间进行的 一种连续多次交换的过程,它借溶质在两相间分配系数、亲和力、吸附力或分子大小不同引起排阻作用的差别使不同溶质得以分离。 2.3建立实验方法 研究液相色谱测定苯系物的实验方法,结合查找的资料及实验验证,确定检测苯系物的实验方法如下: (1) 进样量:10微升;色谱柱:Shim-pack column size serial NO.VP-ODS 柱。

乳制品中三聚氰胺的高效液相色谱检测法

乳制品中三聚氰胺的高效液相色谱检测法 三聚氰胺(Melamine)是一种重要的三嗪类含氮杂环有机化工原料,主要用于生产三 聚氰胺-甲醛树脂,广泛用于木材加工、塑料、涂料、造纸、纺织、皮革等行业,为白色晶体。三鹿奶粉事件引发了对三聚氰胺检测的广泛关注,国家质量监督检验检疫总局和国家标 准化管理委员会相继发布了《原料乳与乳制品中三聚氰胺检测方法》(GB/T22388-2008)和《原料乳中三聚氰胺快速检测液相色谱法》(GB/T22400-2008)的国家标准。本文参考了 以上标准并进行配制条件优化,建立了液相色谱检测法,前处理简单,检测限、精密度、重 现性以及回收率均符合国家标准。 1 实验部分 1.1 仪器与试剂 LC1620高效液相色谱仪(含UV1620紫外-可见检测器1台,P1620高压恒流泵1台,上海 舜宇恒平科学仪器有限公司);AT-330色谱柱温箱(天津奥特赛恩斯仪器有限公司);FA2004 分析天平(上海舜宇恒平科学仪器有限公司);TGL-16G-A离心机(上海安亭科学仪器厂); 三聚氰胺标准品(>99%,上海安谱);辛烷磺酸钠(色谱纯,北京百灵威);磷酸(分析纯)、乙 腈(色谱纯,美国Tedia)、纯净水(杭州娃哈哈)。 1.2 标准品溶液配制 精密称取三聚氰胺标准品,溶于50%的甲醇水溶液,配制称1.422mg/ml的标准储备液,于4℃避光保存。根据实验需要,用流动相逐级稀释成适当浓度的标准工作液。 1.3 样品前处理 称取2g酸奶样品与50ml具塞离心管中,加入乙腈:水=50:50混合溶液15ml,充分混匀 后超声提取15min。取提取液250ul,加入0.1mol/l盐酸750ul,混匀,以12000r/min离心 5min,取上清液,0.22um滤膜过滤,作为HPLC测定溶液。 1.4 色谱条件: 色谱柱:Globalsil C18 5μm(ID4.6mm×250mm) 流动相:乙腈/缓冲盐=15/85(缓冲盐:10mM辛烷磺酸钠水溶液,含0.1%磷酸) 流速:1.0ml/min 波长:240nm 温度:40℃ 进样量:20μl 2 实验结果 2.1 精密度实验 取浓度为0.569μg/ml三聚氰胺标准工作液,按上述色谱条件,连续进样5次,以各成分峰 面积计算RSD(%),所得结果如表1所示:保留时间相对标准偏差(RSD)为0.23%,峰面 积RSD为0.57%。 表1 精密度实验 time(min)Peak High Peak Area NO. Retention 1 11.933 289 4216.8 2 11.990 290 4264.2 3 11.928 287 4246.0 4 11.927 287 4242.8 5 11.923 284 4218.6 RSD(%) 0.23 0.82 0.57

高效液相色谱方法的验证

高效液相色谱方法的验证 ?方法验证的目的 ?方法验证的内容 ?方法验证的项目及测定方法

方法验证的目的 目的:证明采用的方法适合相应检测的要求。 方法验证是实验室针对特定方法的研究过程,通过设计方案,有步骤、系统地收集、处理实验数据,最终形成文件,以证明所用试验方法准确、灵敏、专属并重现。同一分析方法用于不同的检测项目会有不同的验证要求。

方法验证的内容 ?准确度 ?精密度 ?专属性 ?检测限 ?定量限 ?线性和范围 ?耐用性

准确度 定义:方法测定结果与真实值或参考值的接近程度。一般用回收率%表示。 1. 主成分含量测定 原料药:对照品或方法比对 2. 制剂、中药:标准加样回收 杂质定量 测定:加样回收(n 3 9) 杂质对照品 方法比对 回收率 C-A %=′ B 100% 杂质与主成分的相对含量 A:试验供试品中被测成分的量 (通常为含量测定量的50%) B: 试验供试品中加入的对照品的量 (通常为±20%) C:试验测定值

精密度 定义:在规定测试条件下,同一个均匀供试品,经多次取样测定所得结果之间的接近程度。一般用偏差,相对偏差和相对标准偏差 1. 重复性(n 9) 3 2. 中间精密度 3. 重复性 测定:HPLC方法的精密度测试,应从样品制备开始,设计3个浓度, 分别平行制备3份,以测定含量计算相对标准偏差;或同一样品平行制备6份供试品,分别进样,以峰面积计算相对标准偏差。 同一份供试品连续进样6次,计算得到的相对标准偏差只能表征进样精密度,不能作为方法精密度。

专属性 定义:在其它成分可能存在下,方法能正确测定出被测物的特性。 1. 鉴别反应 2. 含量测定 杂质测定 测定: 限量检查 空白制剂,模拟复方 加速破坏试样测试 DAD峰纯度检查

通则0512高效液相色谱法

高效液相色谱法: 系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。 注入的供试品,由流动相带入色谱柱内,各组分在柱内被分离,并进入检测器检测, 由积分仪或数据处理系统记录和处理色谱信号。 1.对仪器的一般要求和色谱条件 高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据处理系统组成。 色谱柱内径一般为3.9~4.6mm,填充剂粒径为3~10μm。 超高液相色谱仪:是适应小粒径(约2μm)填充剂的耐超高压、小进样量、低死体积、 高灵敏度检测的高效液相色谱仪。 (1)色谱柱 反相色谱柱: 以键和非极性基团的载体为填充剂填充而成的色谱柱。常见的载体有硅胶、聚合物复合硅胶和聚合物等;常用的填充剂优十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基键合硅胶等。 正相色谱柱: 用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。常见的填充剂有硅胶、氨基键合硅胶 和氰基键合硅胶等。氨基键合硅胶和氰基键合硅胶也可用作反向色谱。 离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。有阳离子交换色谱柱和阴离子交换色谱柱。 手性分离色谱柱:用手性填充剂填充而成的色谱柱。

色谱柱的内径和长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分离物质的性质来选择合适的色谱柱。 温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。为改善分离效果可适当提高色谱柱的温度,但一般不宜超过60℃。 残余硅羟基未封闭的硅胶色谱柱,流动相的pH值一般应在2~8之间。残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚合物色谱柱可耐受更广泛pH值的流动相,适合于pH值小于2或大于8的流动相。 (2)检测器 最常用的检测器为紫外-可见分光检测器,包括二极管阵列检测器, 其他常见的检测器有荧光检测器、蒸发光散射检测器、示差折光检测器、电化学检测器和质谱检测器等。 紫外-可见分光检测器、荧光检测器、电化学检测器为选择性检测器, 其响应值不仅与被测物质的量有关,还与其结构有关; 蒸发光散射检测器和示差折光检测器为通用型检测器, 对所有物质均有响应,结构相似的物质在蒸发光散射检测器的响应值几乎仅与被测物质的量有关。 紫外-可见分光检测器、荧光检测器、电化学检测器和示差折光检测器的响应值与被测物质的量在一 定范围内呈线性关系, 但蒸发光散射检测器的响应值与被测物质的量通常呈指数关系,一般需经对数转换。 不同的检测器,对流动相的要求不同。 紫外-可见分光检测器所用流动相应符合紫外-可见分光光度法(通则0401)项下对溶剂的要求; 采用低波长检测时,还应考虑有机溶剂的截止使用波长,并选用色谱级有机溶剂。 蒸发光散射检测器和质谱检测器不得使用含不挥发性盐的流动相。 (3)流动相

高效液相色谱法测定含量示例的方法再确证

高效液相色谱法测定含量示例的方法再确证作者:张建芝冯顺 来源:《维吾尔医药》2013年第07期 摘要:目的:确证用反相高效液相色谱法测定头孢氨苄含量的方法有效性和准确性。方法:以Diamonsil CLC-ODS(150mm x 6mm,10 lm)为色谱柱,水-甲醇- 3.89% 醋酸钠溶液- 4% 醋酸溶液(700:300:15:3)为流动相,检测波长为254 nm,外标法定量。结果:头孢氨苄浓度线性范围为0.02~0.20mg / ml,相关系数r= 0.9991,方法重复性试验 RSD为 1.42%。结论:该方法可简单高效地完成,结果准确性好、稳定可靠,确证高效液相色谱依然为头孢氨苄制剂的质量控制中有效可靠的方法。 关键词:头孢氨苄高效液相色谱法 头孢氨芐(Cefalexin,又译先锋霉素Ⅳ、头孢力新等)是一种半合成的第一代口服头孢霉素类类抗生素药物,化学名(6R,7R)-3-甲基-7-[(R)-2-氨基-2-苯乙酰氨基]-8-氧代-5-硫杂-1-氮杂双环[4.2.0]辛-2-烯-2-甲酸,化学式C16H17N3O4S,在临床上广为使用。其含量测定在旧版的中国药典( 1995年版)采用碘量法○1。但此法不仅操作步骤繁多,费工费时,干扰因素多;然后人们发明采用高效液相色谱法内标法测定的方法,但内标物保留时间过长,依然存在问题。最后人们又发现采用高效液相色谱法,用外标法测定其含量,方法操作简单方便、数据准确可靠,灵敏度较高,重复性好,最终获得了较为满意的结果○2。现在本文对这个方法进行确证,以确定该方法的有效性和准确性。 1.仪器与试药 分析天平(precisa instrument ltd switzer land xs 225a precisa ),高效液相色谱柱(diamonsic C18 250 * 46mm),检测器(UVD 170v),泵(P680 HPLC pump),头孢氨苄胶囊(广州白云山制药总厂批号:2110102) 2. 色谱条件 用十八烷基硅烷键和硅胶为填充剂:水-甲醇- 3.89% 醋酸钠溶液 - 4% 醋酸溶液(700:300:15:3)为流动相;检测波长为254nm;理论塔板数按头孢氨苄峰计算不低于1500。 3. 实验试剂制备 3.1 对照品储备液的制备:对照品储备液的制备:取头孢氨苄对照品约10mg,精密称定,置10ml量瓶中,加流动相稀释至刻度,摇匀,为对照品储备液。 3.2 供试品溶液的制备:去装量差异项下的内容物,混合均匀,精密量取适量(约相当于头孢氨苄0.1g),置于 100ml 容量瓶里,加流动相适量,充分振摇使溶解,再加流动相稀释至

高效液相色谱

高效液相色谱 高效液相色谱仪 高效液相色谱法(High Performance Liquid Chromatography \ HPLC)又称“高压液相色谱”、“高速液相色谱”、“高分离度液相色谱”、“近代柱色谱”等。高效液相色谱是色谱法的一个重要分支,以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析。该方法已成为化学、医学、工业、农学、商检和法检等学科领域中重要的分离分析技术。 目录 化学信息 基本信息 性状描述 物理说明 药理作用 危险说明 历史 特点 主要类型 结构组成 综述 高压输液泵 色谱柱 进样器 检测器 馏分收集器 数据获取和处理系统 分离原理 液—固色谱法 离子交换色谱法 离子对色谱法

离子色谱法 空间排阻色谱法 流程 使用方法 综述 色谱柱的理论板数分离度 拖尾因子 测定方法 综述 面积归一化法 主成分自身对照法内标法 外标法 设备选型 综述 相对分子质量 溶解度 化学结构 仪器设备 综述 高压泵 梯度洗提 进样装置 色谱柱 检测器 应用实例 化学信息 基本信息 性状描述 物理说明 药理作用 危险说明 历史 特点 主要类型 结构组成 综述 高压输液泵 色谱柱 进样器 检测器 馏分收集器 数据获取和处理系统

分离原理 液—固色谱法 离子交换色谱法 离子对色谱法 离子色谱法 空间排阻色谱法 流程 使用方法 综述 色谱柱的理论板数 分离度 拖尾因子 测定方法 综述 面积归一化法 主成分自身对照法 内标法 外标法 设备选型 综述 相对分子质量 溶解度 化学结构 仪器设备 综述 高压泵 梯度洗提 进样装置 色谱柱 检测器 应用实例 展开 化学信息 基本信息 中文名称:葛根素(HPLC),98% 中文别名:葛根黄酮,8-beta-D-葡萄吡喃糖-4',7-二羟基异黄酮 英文名称:Puerarin 英文别名:8-(β-D-Glucopyranosyl-7-hydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one 纯度:98% CAS号:3681-99-0 分子式:C21H20O9 分子量:416.38

高效液相色谱法测定手册

高效液相色谱法测定手册 一目的:制定高效液相色谱法,规范高效液相色谱法的测定操作。 二适用范围:适用于高效液相色谱法的测定。 三责任者:品控部。 四正文 1 简述 高效液相色谱法是一种现代液体色谱法,其基本方法是将具一定极性的单一溶剂或不同比例的混合溶液,作为流动相,用泵将流动相注入装有填充剂的色谱柱,注入的供试品被流动相带入柱内进行分离后,各成分先后进入检测器,用记录仪或数据处理装置记录色谱图或进行数据处理,得到测定结果。由于应用了各种特性的微粒填料和加压的液体流动相,本法具有分离性能高,分析速度快的特点。 高效液相色谱法适用于能在特定填充剂的色谱柱上进行分离的药品的分析测定,特别是多组分药品的测定、杂质检查和大分子物质的测定。有的药品需在色谱分离前或后经过衍生化反应方能进行分离或检测。常用的色谱柱填充剂有:硅胶,用于正相色谱;化学键合固定相,根据键合的基团不同可用于反相或正相色谱,其中最常用的是十八烷基硅烷(又称ODS)键合硅胶,可用于反相色谱或离子对色谱;离子交换填料,用于离子交换色谱;具一定孔径的大孔填料,用于排阻色谱。 高效液相色谱仪基本由泵,进样器,色谱柱,检测器和色谱数据处理系统组成。检测器最常用的为可变波长紫外可见光检测器,其他检测器有如示差折光检测器和蒸发光散射检测器等。色谱信息的收集和处理常用积分仪或数据工作站进行。梯度洗脱,可用两台泵或单台泵加比例阀进行程控实现。 2 高效液相色谱仪的使用要求 2.1 按国家技术监督局国家计量检定规程汇编中“实验室液相色谱仪检定规程(JJG705—90)”的规定作定期检定,应符合规定。 2.2 仪器各部件应能正常工作,管路为无死体积连结,流路中无堵塞或漏液,在设定的检测器灵敏度条件下,色谱基线噪音和漂移应能满足分析要求。 2.3 具体仪器在使用前应详细参阅各操作说明书。

高效液相色谱法测定有机化合物的含量

实验四高效液相色谱法测定有机化合物的含量 [目的要求] 1、了解仪器各部分的构造及功能。 2、掌握样品、流动相的处理,仪器维护等基本知识。 3、学会简单样品的分析操作过程。 [基本原理] 高效液相色谱仪液体作为流动相,并采用颗粒极细的高效固定相的主色谱分离技术,在基本理论方面与气相色谱没有显著不同,它们之间的重大差别在于作为流动相的液体与气体之间的性质差别。与气相色谱相比,高效液相色谱对样品的适用性强,不受分析对象挥发性和热稳定性的限制,可以弥补气相色谱法的不足。 液相色谱根据固定向的性质可分为吸附色谱、键合相色谱、离子交换色谱和大小排阻色谱。其中反相键合相色谱应用最广,键合相色谱法是将类似于气相色谱中固定液的液体通过化学反应键合到硅胶表面,从而形成固定相。若采用极性键合相、非极性流动相,则称为正相色谱;采用非极性键合相,极性流动相,则称为反相色谱。这种分离的保留值大小,主要决定于组分分子与键合固定液分子间作用力的大小。 反相键合相色谱采用醇-水或腈-水体系作为流动相,纯水廉价易得,紫外吸收小,在纯水中添加各种物质可改变流动相选择性。使用最广泛的反相键合相是十八烷基键合相,即让十八烷基(C18H37―)键合到硅胶表面,这也就是我们通常所说的碳十八柱。 [仪器试剂] 高效液相色谱仪(包括储液器、高压泵、自动进样器、色谱柱、柱温箱、检测器、工作站)、过滤装置 待测样品(浓度约100 ppm)、甲醇、二次水 [实验步骤] 1、仪器使用前的准备工作 (1)样品与流动相的处理 配好的溶液需要用0.45 μm的一次性过滤膜过滤。纯有机相或含一定比便例有机相的就要用有机系的滤膜,水相或缓冲盐的就要用水系滤膜。 水、甲醇等过滤后即可使用;水放置一天以上需重新过滤或换新鲜的水。含稳定剂的流动相需经过特殊处理,或使用色谱纯的流动相。 (2)更换泵头里清洗瓶中的清洗液 流动相不同,清洗液也不同,如果流动相为甲醇-水体系,可以用50%的甲醇;如果流动相含有电解质,通常用95%去离子水甚至高纯水。 如果仪器经常使用建议每周更换两次,如果仪器很少使用则每次使用前必须更换。(3)更换托盘里洗针瓶中的洗液 洗液一般为:50%的甲醇。

高效液相色谱法测定饮料中的咖啡因(含问题分析)

实验二 高效液相色谱法测定饮料中的咖啡因 一、目的要求 1、学习高效液相色谱仪的操作。 2、了解高效液相色谱法测定咖啡因的基本原理。 3、掌握高效液相色谱法进行定性及定量分析的基本方法。 二、基本原理 咖啡因又称咖啡碱,是由茶叶或咖啡中提取而得的一种生物碱,它属黄嘌呤衍生物,化学名称为1,3,7-三甲基黄嘌呤。咖啡因能兴奋大脑皮层,使人精神兴奋。咖啡中含咖啡因约为1.2~1.8%,茶叶中约含2.0~4.7%。可乐饮料、APC 药片等中均含咖啡因。其分子式为C 8H 10O 2N 4,结构式为: N N CH 3 H 3C O O N N CH 3 定量测定咖啡因的传统分析方法是采用萃取分光光度法。用反相高效液相色谱法将饮料中的咖啡因与其它组分(如:单宁酸、咖啡酸、蔗糖等)分离后,将已配制的浓度不同的咖啡因标准溶液进入色谱系统。如流动相流速和泵的压力在整个实验过程中是恒定的,测定它们在色谱图上的保留时间t R 和峰面积A 后,可直接用t R 定性,用峰面积A 作为定量测定的参数,采用工作曲线法(即外标法)测定饮料中的咖啡因含量。 三、仪器和试剂 1、Agilent 1100高效液相色谱仪。 2、色谱柱:Kromasil C18,5μ 150×4.6mm 。 3、流动相:30%甲醇(色谱纯)+70%高纯水;流动相进入色谱系统前,用超声波发生器脱气10min 。 4、 咖啡因标准贮备溶液:将咖啡因在110℃下烘干1h 。准确称取0.1000g 咖啡因,用二次蒸馏水溶解,定量转移至100mL 容量瓶中,并稀释至刻度。标样浓度1000μg·mL -1。 5、测饮料试液:可乐,茶叶,速溶咖啡。

(完整word版)高效液相色谱仪常用的检测器及其性能

高效液相色谱仪常用的检测器及其性能 (1)紫外吸收(UV)检测器 UV检测器是目前HPLC应用最广泛的检测器。它是依据光吸收原理,以适当的光路和电路,输出一个与试样组分浓度成正比的紫外一可见光吸收信号,其结构与一般光度计相似。其流通池是组分流过的光学通道,池体积一般为8μl,内径小于lmm,长度10mm左右。这种检测器灵敏度高,线性范围宽,对流速和温度变化不敏感,可用于梯度洗脱分离。紫外吸收检测要求被检测样品组分有紫外一可见光吸收,而使用的流动相无吸收,或在被测组分吸收波长处无吸收。一般选择在欲分析物有最大吸收的波长处进行检测,以获得最大灵敏度和抗干扰能力。在没有最大吸收时,可采用末端吸收。检测波长的选择除取决于待测物质的成分和分子结构外,还必须考虑流动相组成、共存组分干扰等因素。特别是各种溶剂都有一定的透过波长下限值,超过这个波长,溶剂的吸收会变得很强,以至于不能很好地测出待测物质的吸收强度。表1列出了HPLC中一些常用的溶剂透过波长的下限。 (2)光电二极管阵列(IJDA)检测器 PDA检测器又称为二极管阵列检测器(diode array UV detector,DAD),这种检测器以光电二极管阵列作为检测元件,可进行多通道并行检测,在一次色谱测量中,可同时获得时间、波长、吸光度三者的关系,通过计算机处理,在荧光屏上显示出三维图谱,也可作出任意波长的吸光度一时问曲线和任意时间的吸光度一波长曲线。DAD的光路与紫外检测器不同,光源发出的光聚焦后先通过检测池,通过检测池的透射光由全息光栅色散成多色光,不同波长的色散光按波长顺序聚焦在阵列元件上,每个元件对应一定的纳米数。当光照射到光电二极管时,光电二极管产生讯号。由于色散过程及透射光的检测是全波长范围的,可在瞬间检测流经检测池的全吸收光谱,得到三维色谱一光谱图。计算机化的数据处理,还可进行色谱峰光谱相似性比较、峰纯度检测及利用谱图库对掣定样品进行检索等,为定性、定量分析提供更丰富的信息。 ①多通道多波长检测可以同时得到多个波长的色谱图,每个成分均可在最佳波长下检测定量。 ②光谱相似性比较在HPLC中,两个物质出峰时间一致并不能完全说明为同一物质,通过色谱峰紫外光谱一致性比较,可提高测定的可靠性。 ③峰纯度检测对色谱峰峰顶、上、下3个点的光谱进行比较,完全吻合意味这是1个单组分峰,不吻合则表示为未分离峰。并可计算出纯度系数PI,PI值在0~1之问,越接近1,表示峰纯度越好,PI可由计算机自动计算。 ④光谱检索与比较二极管阵列检测器得到的光谱图可分类存储到光谱库中,当测定类似成分时,可调出相关谱图,进行检索和比较,也可通过比较光谱相似系数比较相似性。

高效液相色谱测定法标准操作规程

标准操作规程 1目的:建立高效液相色谱测定法操作规程,以使检验操作规化。 2适用围:适用于高效液相色谱测定法检验操作全过程。 3责任:QC人员对本SOP实施负责。 4容 高效液相色谱法系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。注入的供试品,由流动相带入色谱柱,各组分在柱被分离,并进入检测器检测,由积分仪或数据处理系统记录和处理色谱信号。 4.1.对仪器的一般要求和色谱条件 高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据处理系统组成。色谱柱径一般为3.9~4.6mm,填充剂粒径为3~10μm。超高效液相色谱仪是适应小粒径(约2μm)填充剂的耐超高压、小进样量、低死体积、高灵敏度检测的高效液相色谱仪。 4.1.1.色谱柱 反相色谱柱:以键合非极性基团的载体为填充剂填充而成的色谱柱。常见的载体有硅胶、聚合物复合硅胶和聚合物等;常用的填充剂有十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基键合硅胶等。 正相色谱柱:用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。常用的填充剂有硅胶、氨基键合硅胶和氰基键合硅胶等。氨基键合硅胶和氰基键合硅胶也可用作反相色谱。离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。有阳离子交换色谱柱和阴离子交换色谱柱。 手性分离色谱柱:用手性填充剂填充而成的色谱柱。 色谱柱的径与长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分

离物质的性质来选择合适的色谱柱。 温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。为改善分离效果可适当提高色谱柱的温度,但一般不宜超过60℃。 残余硅羟基未封闭的硅胶色谱柱,流动相pH值一般应在 2?8之间。残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚合物色谱柱可耐受更广泛pH值的流动相,适合于pH 值小于2或大于8 的流动相。 4.1.2.检测器 最常用的检测器为紫外-可见分光检测器,包括二极管阵列检测器,其他常见的检测器有荧光检测器、蒸发光散射检测器、示差折光检测器、电化学检测器和质谱检测器等。 紫外-可见分光检测器、荧光检测器、电化学检测器为选择性检测器,其响应值不仅与被测物质的量有关,还与其结构有关;蒸发光散射检测器和示差折光检测器为通用检测器,对所有物质均有响应。结构相似的物质在蒸发光散射检测器的响应值几乎仅与被测物质的量有关。 紫外-可见分光检测器、荧光检测器、电化学检测器和示差折光检测器的响应值与被测物质的量在一定围呈线性关系,但蒸发光散射检测器的响应值与被测物质的量通常呈指数关系,一般需经对数转换。 不同的检测器,对流动相的要求不同。紫外-可见分光检测器所用流动相应符合紫外-可见分光光度法(通则0401)项下对溶剂的要求;采用低波长检测时,还应考虑有机溶剂的截止使用波长,并选用色谱级有机溶剂。蒸发光散射检测器和质谱检测器不得使用含不挥发性盐的流动相。 4.1.3.流动相 反相色谱系统的流动相常用甲醇-水系统和乙腈-水系统,用紫外末端波长检测时,宜选用乙腈-水系统。流动相中应尽可能不用缓冲盐,如需用时,应尽可能使用低浓度缓冲盐。用十八烷基硅烷键合硅胶色谱柱时,流动相中有机溶剂一般不低于5%,否则易导致柱效下降、色谱系统不稳定。 正相色谱系统的流动相常用两种或两种以上的有机溶剂,如二氯甲烷和正己烷等。 品种正文项下规定的条件除填充剂种类、流动相组分、检测器类型不得改变外,其余如色谱柱径与长度、填充剂粒径、流动相流速、流动相组分比例、柱温、进样量、检测器灵敏度等,均可适当改变,以达到系统适用性试验的要求。调整流动相组分比例时,当小比例组分的百分比例X小于等于33%时,允许改变围为0.7X?1.3X;当X大于33%时,允许改变围为X—10%?X+10% 。

高效液相色谱法(HPLC)的概述

此帖与GC版的对应,是为了让大家更好的学习和了解LC 主要内容包括: 1.高效液相色谱法(HPLC)的概述 2. 高效液相色谱基础知识介绍(1——13楼) 3. 高压液相色谱HPLC发展概况、特点与分类 4. 液相色谱的适用性 5.应用 高效液相色谱法(HPLC)的概述 以高压液体为流动相的液相色谱分析法称高效液相色谱法(HPLC)。其基本方法是用高压泵将具有一定极性的单一溶剂或不同比例的混合溶剂泵入装有填充剂的色谱柱,经进样阀注入的样品被流动相带入色谱柱内进行分离后依次进入检测器,由记录仪、积分仪或数据处理系统记录色信号或进行数据处理而得到分析结果。 由于高效液相色谱法具有分离效能高、选择性好、灵敏度高、分析速度快、适用范围广(样品不需气化,只需制成溶液即可)、色谱柱可反复使用的特点,在《中国药典》中有5 0种中成药的定量分析采用该法,已成为中药制剂含量测定最常用的分析方法。 高效液相色谱法按固定相不同可分为液-液色谱法和液-固色谱法;按色谱原理不同可分为分配色谱法(液-液色谱)和吸附色谱法(液-固色谱)等。 目前,化学键合相色谱应用最为广泛,它是在液-液色谱法的基础上发展起来的。将固定液的官能团键合在载体上,形成的固定相称为化学键合相,不易流失是其特点,一般认为有分配与吸附两种功能,常以分配作用为主。C18(ODS)为最常使用的化学键合相。 根据固定相与流动相极性的不同,液-液色谱法又可分为正相色谱法和反相色谱法,当流动相的极性小于固定相的极性时称正相色谱法,主要用于极性物质的分离分析;当流动相

的极性大于固定相的极性时称反相色谱法,主要用于非极性物质或中等极性物质的分离分析。 在中药制剂分析中,大多采用反相键合相色谱法。 系统组成: (一)高压输液系统 由贮液罐、脱气装置、高压输液泵、过滤器、梯度洗脱装置等组成。 1.贮液罐 由玻璃、不锈钢或氟塑料等耐腐蚀材料制成。贮液罐的放置位置要高于泵体,以保持输液静压差,使用过程应密闭,以防止因蒸发引起流动相组成改变,还可防止气体进入。2.流动相 流动相常用甲醇-水或乙腈-水为底剂的溶剂系统。 流动相在使用前必须脱气,否则很易在系统的低压部分逸出气泡,气泡的出现不仅影响柱分离效率,还会影响检测器的灵敏度甚至不能正常工作。脱气的方法有加热回流法、抽真空脱气法、超声脱气法和在线真空脱气法等。 3.高压输液泵 是高效液相色谱仪的关键部件之一,用以完成流动相的输送任务。对泵的要求是:耐腐蚀、耐高压、无脉冲、输出流量范围宽、流速恒定,且泵体易于清洗和维修。高压输液泵可分为恒压泵和恒流泵两类,常使用恒流泵(其压力随系统阻力改变而流量不变)。 (二)进样系统 常用六通阀进样器进样,进样量由定量环确定。操作时先将进样器手柄置于采样位置(L OAD),此时进样口只与定量环接通,处于常压状态,用微量注射器(体积应大于定量环体积)注入样品溶液,样品停留在定量环中。然后转动手柄至进样位置(INJECT),使定量环接入输液管路,样品由高压流动相带入色谱柱中。 (三)色谱柱 由柱管和填充剂组成。柱管多用不锈钢制成。柱内填充剂有硅胶和化学键合固定相。在化学键合固定相中有十八烷基硅烷键合硅胶(又称ODS柱或C18柱)、辛烷基硅烷键合硅

游离色氨酸的测定(高效液相色谱测定方法)

八.饮料中游离色氨酸的测定(高效液相色谱测定方法) 本方法适合饮料中游离色氨酸的测定 本方法检测限:饮料中游离色氨酸为30μg/100ml。 (一)方法提要 试样的游离色氨酸经处理后,在高效反相色谱C18柱上分离,紫外检测器或二极管阵列检测器检测,外标法定量游离色氨酸的含量。 (二)仪器 1. 高效液相色谱仪带紫外检测器或二极管阵列检测器。 2. 超声清洗仪(溶剂脱气用)。 3. 天平(精确到0.0001g)。 4. 微孔滤膜(HF 0.45 μm)。 (三)试剂 1. 1.0mol/L氢氧化钠溶液:称取4.0g氢氧化钠(分析纯),加适量去离子水并稀释到100ml。 2. 甲醇(色谱纯)。 3. 0.1%(m/V)磷酸溶液:1.0g磷酸(分析纯)加水至1000mL,溶解混匀,过微孔滤膜0.45μm,待用。 4. 色氨酸对照品,Fluka公司(纯度≥99.5%)。 5. 色氨酸标准溶液:精密称取色氨酸对照品约0.0300g,移入100ml容量瓶中,加入少许水,再加入50μL1.0mol/L氢氧化钠溶液,超声溶解并用水定容到100mL,成浓度为300μg/mL的标准储备液。取标准储备液5.0mL用去离子水定容到50mL,成为浓度为30μg/mL的标准溶液。 (四)测定步骤 1. 样品处理: ①汽水、可乐型饮料:取均匀试样置于小烧杯中,微温除去二氧化碳(或超声脱气10min),经0.45μm微孔滤膜过滤后供进样用。 ②果汁类:取均匀试样置于离心管中,5000rpm/min离心20min,上清液经0.45μm微孔滤膜过滤后供进样用。 2. 标准工作曲线制作。精密吸取色氨酸标准溶液1.0,5.0,10.0ml,分别置于100mL容量瓶中,用水定容到100mL,摇匀。分别取10μL标准工作系列溶液进样

高效液相色谱法常见故障排除

高效液相色谱法常见故障排除 所长办公室文毅 日前,本人参加了高效液相色谱维修、维护及常见故障排除的培训班,现将培训内容总结如下,希望对大家的实际工作有所帮助! 一、检测器常见故障排除 1、基线噪声 ·检测池窗口污染:用强溶剂冲洗检测池;卸下检测池,拆开清洗或更换池窗石英片。 ·样品池中有气泡:突然加大流量赶出气泡;在检测池出口端加一反压(0.2-0.3MPa)连一个0.3mm×1~2m的不锈钢管,以增大池内压(增加压力不要过大,防止检测池石英片碎裂)。 ·检测器或数据采集系统接地不良:拆去原来的接地线,重新连接。 ·检测器光源故障:检查氘灯或钨灯设定状态;检查灯使用时间、灯能量、开启次数;更换氘灯或钨灯。 ·液体泄露:拧紧或更换连接件。 ·很小的气泡通过检测池:流动相要仔细脱气;加大检测池的背压;系统检漏;有微粒通过检测池,清洗检测池;检查色谱柱出口筛板。 2、基线漂移 ·检测池窗口污染:同基线噪声描述。 ·色谱柱污染或固定相流失:更换色谱柱或使用保护柱。 ·检测器温度变化:系统恒温。 ·光源故障:更换氘灯或钨灯。 ·原先的流动相没有完全除去。 ·溶剂储液瓶污染:清洗溶剂瓶,用新流动相平衡系统。 ·强吸附组分从色谱柱中洗脱:在下一次分离之前用强洗脱能力的溶剂冲洗色谱柱;使用溶剂梯度。 3、工作站上出现大的尖峰 ·检测池内有气泡通过:溶剂脱气并彻底冲洗系统;检查连接系统是否漏液。 ·记录仪或检测器接地不良:消除噪声来源;确保良好接地。 ·样品溶解不彻底。 4、负峰 ·检测器输出信号的极性相反。

·样品的吸收小于流动相,流动相不纯。 ·样品溶剂干扰。 ·示差折光检测器中样品的折射率较低。 ·进样中带入气泡。 5、鬼峰或假峰 ·进样阀或注射器污染 ·样品溶剂与流动相不同 ·样品中有空气 ·流动相中杂质引起 ·在线过滤器或过滤沉子污染 ·溶剂储液瓶污染 6、工作站不回零 ⑴记录仪或工作站信号阶梯式上升 ·检测器的输出范围设定不当:重新设定检测器的输出范围。 ·记录仪或检测器接地不良:确保良好接地。 ·吸收过大,平头峰 ⑵记录仪、积分仪或色谱工作站在零点不平衡 ·工作站故障。 ·样品池中有空气:增大流量冲洗色谱系统除去气泡;在检测器出口处加一个背压;流动相脱气。 ·从样品池出来的光能量严重减弱:检查光路,清除堵塞物;清洗检测池或更换池窗。 ·光源故障:更换氘灯或钨灯。 ·检测器与色谱工作站之间的电路接触不良。 ·色谱柱固定相流失严重:更换色谱柱。 ·原先的流动相污染:彻底冲洗系统流动相 ·吸收太强:改变检测波长。 7、随泵运动出现噪声 ⑴基线随着泵的往复出现噪音:仪器处于强空气中或流动相脉动改变 仪器放置位置:放在合适的环境中。 ·用一调节阀或阻尼器以减少泵的脉动。 ⑵随着泵的往复出现尖刺 ·检测池中有气泡。 ·卸下检测池的入口管与色谱柱的接头,用注射器将甲醇从出口管端推进,

高效液相色谱法的计算方法

高效液相色谱法的计算方法 高效液相色谱法是用高压输液泵将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,经进样阀注入供试品,由流动相带入柱内,在柱内各成分被分离后,依次进入检测器,色谱信号由记录仪或积分仪记录。 1、对仪器的一般要求 所用的仪器为高效液相色谱仪。色谱柱的填料和流动相的组分应按各品种项下的规定。常用的色谱柱填料有硅胶和化学键合硅胶。后者以十八烷基硅烷键合硅胶最为常用,辛基键合硅胶次之,氰基或氨基键合硅胶也有使用;离子交换填料,用于离子交换色谱;凝胶或玻璃微球等,用于分子排阻色谱等。注样量一般为数微升。除另有规定外,柱温为室温,检测器为紫外吸收检测器。 在用紫外吸收检测器时,所用流动相应符合紫外分光光度法(附录ⅣA)项下对溶剂的要求。 正文中各品种项下规定的条件除固定相种类、流动相组分、检测器类型不得任意改变外,其余如色谱柱内径、长度、固定相牌号、载体粒度、流动相流速、混合流动相各组分的比例、柱温、进样量、检测器的灵敏度等,均可适当改变,以适应具体品种并达到系统适用性试验的要求。一般色谱图约于20分钟内记录完毕。 2、系统适用性试验 按各品种项下要求对仪器进行适用性试验,即用规定的对照品对仪器进行试验和调整,应达到规定的要求;或规定分析状态下色谱柱的最小理论板数、分离度和拖尾因子。 (1)色谱柱的理论板数(N,用于定量表示色谱柱的分离效率,简称柱效)。 在选定的条件下,注入供试品溶液或各品种项下规定的内标物质溶液,记录色谱图,量出供试品主成分或内标物质峰的保留时间tR(以分钟或长度计,下同,但应取相同单位)和半高峰宽(W h/2),按n=5.54(t R/Wh/2)2计算色谱柱的理论板数,如果测得理论板数低于各品种项下规定的最小理论板数,应改变色谱柱的某些条件(如柱长、载体性能、色谱柱充填的优劣等),使理论板数达到要求。 (2) 分离度(R)

2021年高效液相色谱仪常用检测器的种类及分析

高效液相色谱仪常用检测器的种类及分析 欧阳光明(2021.03.07) 检测器的作用是将柱流出物中样品组成和含量的变化转化为可供检测的信号,常用检测器有紫外吸收、荧光、示差折光、化学发光等。 1.紫外可见吸收检测器(ultraviolet-visibledetector,UVD) 紫外可见吸收检测器(UVD)是HPLC中应用最广泛的检测器之一,几乎所有的液相色谱仪都配有这种检测器。其特点是灵敏度较高,线性范围宽,噪声低,适用于梯度洗脱,对强吸收物质检测限可达1ng,检测后不破坏样品,可用于制备,并能与任何检测器串联使用。紫外可见检测器的工作原理与结构同一般分光光度计相似,实际上就是装有流动地的紫外可见光度计。 (1)紫外吸收检测器 紫外吸收检测器常用氘灯作光源,氘灯则发射出紫外-可见区范围的连续波长,并安装一个光栅型单色器,其波长选择范围宽(190nm~800nm)。它有两个流通池,一个作参比,一个作测量用,光源发出的紫外光照射到流通池上,若两流通池都通过纯的均匀溶剂,则它

们在紫外波长下几乎无吸收,光电管上接受到的辐射强度相等,无信号输出。当组分进入测量池时,吸收一定的紫外光,使两光电管接受到的辐射强度不等,这时有信号输出,输出信号大小与组分浓度有关。 局限:流动相的选择受到一定限制,即具有一定紫外吸收的溶剂不能做流动相,每种溶剂都有截止波长,当小于该截止波长的紫外光通过溶剂时,溶剂的透光率降至10%以下,因此,紫外吸收检测器的工作波长不能小于溶剂的截止波长。 (2)光电二极管阵列检测器(photodiodearraydetector,PDAD) 也称快速扫描紫外可见分光检测器,是一种新型的光吸收式检测器。它采用光电二极管阵列作为检测元件,构成多通道并行工作,同时检测由光栅分光,再入射到阵列式接收器上的全部波长的光信号,然后对二极管阵列快速扫描采集数据,得到吸收值(A)是保留时间(tR)和波长(l)函数的三维色谱光谱图。由此可及时观察与每一组分的色谱图相应的光谱数据,从而迅速决定具有最佳选择性和灵敏度的波长。 单光束二极管阵列检测器,光源发出的光先通过检测池,透射光由全息光栅色散成多色光,射到阵列元件上,使所有波长的光在接收器上同时被检测。阵列式接收器上的光信号学的方法快速扫描提取出来,每幅图象仅需要10ms,远远超过色谱流出峰的速度,因此可随峰扫描。

相关文档
最新文档