小学奥数图形的面积

小学奥数图形的面积
小学奥数图形的面积

直线型面积计算(1)

对于三角形的面积计算,我们除了熟练运用基本的计算公式,在技巧性很强的奥数题中还要根据相应的性质和结论来解题,下面就是我们小学奥数常用的三条性质:

【例 1】 如图,长方形ABCD 的面积是56平方厘米,点E 、F 、G 分别是长方形ABCD 边上的中点,H 为AD 边上的任意一点,

求阴影部分的面积.

E B

A E B

A

【分析】 本题是等底等高的两个三角形面积相等的应用.

连接BH 、CH . ∵AE EB =, ∴S S AEH BEH =V V .

同理,S S BFH CFH =V V ,S =S CGH DGH V V ,

∴11

S S 562822

==?=阴影长方形ABCD (平方厘米).

[铺垫]你有多少种方法将任意一个三角形分成:

⑴2个面积相等的三角形; ⑵3个面积相等的三角形; ⑶4个面积相等的三角形.

[分析] ⑴如右图,D 、E 、F 分别是对应边上的中点,这样就将三角形分成了2个面积相等的三角形;

C

B

A

E

A B C

F

C

B A

①等底等高的两个三角形面积相等;

②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比;

③夹在一组平行线之间的等积变形,如BCD ACD S S ??=; 反之,如果BCD ACD S S ??=,则可知直线AB 平行于CD .

D

C B

A

⑵如右图,D 、E 是BC 的三等分点,F 、G 分别是对应线段的中点;答案不唯一;

E

D A B

C F

C B

A

D

G

D

A B

C

⑶如下图,答案不唯一,以下仅供参考.

(5)

(4)(3)(2)(1)

【例 2】 如图,三角形ABC 的面积为1,其中3AE AB =,2BD BC =,三角形BDE 的面积是多少?

E

D

C

B A

E

D

C B A

【分析】 连接CE .

∵3AE AB =,∴2BE AB =,2BCE ACB S S ??=.

又∵2BD BC =,∴244BDE BCE ABC S S S ???===.

【例 3】 如图,三角形ABC 中,2DC BD =,3CE AE =,三角形ADE 的面积是20平方厘米,三角形ABC 的面积是多少?

E

C

B

A 【分析】 ∵3CE AE =,∴4AC AE =,4ADC ADE S S ??=;

又∵2DC BD =,∴32BC DC =,3

61202

ABC ADC ADE S S S ???===(平方厘米).

[铺垫]如图,三角形ABC 被分成了甲、乙两部分,4BD DC ==,3BE =,6AE =,甲部分面积是乙部分面积的几分之几?

乙甲

E C

B

A

A

B

C

D

E

[分析] 连接AD .

∵3BE =,6AE =,

∴13BE AB =,1

3

BDE ABD S S ??=.

又∵4BD DC ==,

∴1

2ABD ABC S S ??=,

∴11

36BDE ABD ABC S S S ???==,

∴1

5

S S =乙甲.

[拓展]如图,在三角形ABC 中,8BC =厘米,6AD =厘米,E 、F 分别为AB 和AC 的中点,那么三角形EBF 的面积是多少平

方厘米?

F

E C

B

A

F

E C

B

A

[分析] ∵F 是AC 的中点,

∴1

2ABF ABC S S ??=,

同理1

2BEF ABF S S ??=,

∴111

866442

BEF ABC S S ??==???=(平方厘米).

【例 4】 如图,已知三角形ABC 面积为1,延长AB 至D ,使BD AB =;延长BC 至E ,使2CE BC =;延长CA 至F ,使3AF AC =,

求三角形DEF 的面积.

F E

D

C

B A A

B C

D

E

F

【分析】 本题是性质的反复使用(还可以用燕尾定理,但本讲不用这种方法,燕尾定理我们会放到五年级春季再讲).

连接AE 、CD .

∵S 1

S 1S 1ABC ABC DBC ==V V V ,, ∴S 1DBC =V .

同理可得其它,最后三角形DEF 的面积18=.

[拓展]如图,四边形EFGH 的面积是66平方米,EA AB =,CB BF =,DC CG =,HD DA =,求四边形ABCD 的面积.

H G

F

E

D C

B A A B C

D

E

F

G

H

[分析] 连接BD .设1DCB S S =V ,2DAB S S =V ∵CB BF =,

∴2CDF CDB CDB CB BF

S S S CB

???+==,

又∵DC CG =,

∴12CFG CDF S S S ??==,

同理22AEH S S ?=, ∴2CFG AEH ABCD S S S ??+=

连接AC ,同理2HDG BEF ABCD S S S ??+=

∴5EFGH CFG AEH HDG BEF ABCD ABCD S S S S S S S ????=++++=,

11

1355

ABCD EFGH S S ==(平方米).

[拓展]如图,已知长方形ADEF 的面积16,三角形ADB 的面积是3,三角形ACF 的面积是4,那么三角形ABC 的面积是多少?

F E D C

A F E

D C

A

[分析] 连接对角线AE .

∵ADEF 是长方形

∴1

2

ADE AEF ADEF S S S ??==X

∴38ADB ADE S DB DE S ??==, 12ACF AEF S FC EF S ??== ∴58BE DE DB DE DE -==,12

CE FE CF EF EF -== ∴1515

162822

BEC S ?=???=

∴13

2

ABC ADEF ADB ACF CBE S S S S S ????=---=X .

[拓展]如图,长方形ABCD 中,:2:3BE EC =,:1:2DF FC =,三角形DFG 的面积为2平方厘米,求长方形ABCD 的面积.

A

B

C

D E

F G

A

B

C

D E

F G

[分析] 连接AE ,FE .

因为:2:3BE EC =,:1:2DF FC =,所以3111

()53210

DEF ABCD ABCD S S S =??=V 长方形长方形.

因为12AED ABCD S S =V 长方形,11::5:1210AG GF ==,所以510AGD GDF S S ==V V ,所以12AFD S =V .因为1

6

AFD ABCD S S =V 长方形,所

以长方形ABCD 的面积是72平方厘米.

【例 5】 (第八届小数报数学竞赛决赛试题)如下图,E 、F 分别是梯形ABCD 的下底BC 和腰CD 上的点,DF FC =,并且甲、

乙、丙3个三角形面积相等.已知梯形ABCD 的面积是32平方厘米.求图中阴影部分的面积.

B

C

【分析】 因为乙、丙两个三角形面积相等,底DF FC =.所以A 到CD 的距离与E 到CD 的距离相等,即AE 与CD 平行,四边形

ADCE 是平行四边形,阴影部分的面积=平行四边形ADCE 的面积的1

2

,所以阴影部分的面积=乙的面积2?.从而阴影

部分的面积2

3212.85

=?=(平方厘米).

[拓展]如图,在平行四边形ABCD 中,BE EC =,2CF FD =.求阴影面积与空白面积的比.

B

[分析] 因为BE EC =,2CF FD =,所以14ABE ABCD S S =V 四边形,1

6

ADF ABCD S S =V 四边形.

因为2AD BE =,所以2AG GE =,

所以11312BGE ABE ABCD S S S ==V V 四边形,21

36

ABG ABE ABCD S S S ==V V 四边形.

同理可得,18ADH ABCD S S =V 四边形,1

24DHF ABCD S S =V 四边形.

因为12BCD ABCD S S =V 四边形,所以空白部分的面积111112

()21224683

ABCD ABCD S S =--++=四边形四边形,所以阴影部分的面积是

1

3ABCD S

四边形. 12

:1:233

=,所以阴影面积与空白面积的比是1:2.

【例 6】 如图所示,四边形ABCD 与AEGF 都是平行四边形,请你证明它们的面积相等.

G

F

E

C

B A

G

F

E

C

B A

【分析】 本题主要是让学生了解并会运用等底等高的两个平行四边形面积相等和三角形面积等于与它等底等高的平行四边形面积

的一半.

证明:连接BE .(我们通过ABE V 把这两个看似无关的平行四边形联系在一起.)

∵在平行四边形ABCD 中,1

2

ABE S AB AB =??V 边上的高,

∴1

S S 2

ABG ABCD =V W (也就是等积变换的重要依据③的特殊情况).

同理,1

S S 2

ABE AEGF =V Y ,∴平行四边形ABCD 与AEGF 面积相等.

[拓展]如图所示,正方形ABCD 的边长为8厘米,长方形EBGF 的长BG 为10厘米,那么长方形的宽为几厘米?

A B

G

C E F D

A

B

G

C

E

F D

[分析] 本题主要是让学生会运用等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形).三角形面

积等于与它等底等高的平行四边形面积的一半.

证明:连接AG .(我们通过ABG V 把这两个长方形和正方形联系在一起).

∵在正方形ABCD 中,G 1

2

AB S AB AB =??V 边上的高,

∴1

S S 2

ABG ABCD =V W (三角形面积等于与它等底等高的平行四边形面积的一半)

同理,1

S S 2

ABG EFGB =V .

∴正方形ABCD 与长方形EFGB 面积相等. 长方形的宽8810 6.4=?÷=(厘米).

【例 7】 如图,正方形ABCD 和正方形CEFG ,且正方形ABCD 边长为10厘米,求图中三角形BFD 的面积为多少平方厘米?

H

G

F

E

D C B

A

H

G F

E

D C B

A

【分析】 连接CF .

∵BD ,CF 都是正方形的对角线

∴45DBC FCE ∠=∠=?,BD ∥CF .

∴BFD ?与BCD ?同底等高,1

1010502

BFD BCD S S ??==??=(平方厘米) .

【例 8】 (03年西城某重点中学小升初分班考题)右图是由大、小两个正方形组成的,小正方形的边长是4厘米,求三角形ABC

的面积.

A

A

【分析】 这道题似乎缺少大正方形的边长这个条件,实际上本题的结果与大正方形的边长没关系.连接AD (见右上图),可以看

出,三角形ABD 与三角形ACD 的底都等于小正方形的边长,高都等于大正方形的边长,所以面积相等.因为三角形AGD 是三角形ABD 与三角形ACD 的公共部分,所以去掉这个公共部分,根据差不变性质,剩下的两个部分,即三角形ABG 与三角形GCD 面积仍然相等.根据等量代换,求三角形ABC 的面积等于求三角形BCD 的面积,等于4428?÷=.

[拓展](小学数学夏令营五年级组试题)如图,四边形ABCD 和四边形DEFG 都是正方形,已知三角形AFH 的面积为6平方厘米,

求三角形CDH 的面积.

[分析] 通常求三角形的面积,都是先求它的底和高.题目中没有一条线段的长度是已知的,所以我们只能通过创造等积的方法来

求.

直接找三角形HDC 与三角形AFH 的关系还很难,而且也没有利用“四边形ABCD 和四边形DEFG 是正方形”这一条件.我

们不妨将它们都补上梯形DEFH 这一块.寻找新得到大三角形CEF 和大直角梯形DEFA 之间的关系.经过验算,可以知道它们的面积是相等的.从而得到三角形HDC 与三角形AFH 面积相等,也是6平方厘米.

【例 9】 如右图,在平行四边形ABCD 中,直线CF 交AB 于E ,交DA 延长线于F ,若1ADE S =V ,求BEF V 的面积.

A

B C

D

E

F

A

B

C

D

E

F

[分析] 本题主要是让学生并会运用等底等高的两个三角形面积相等(或夹在一组平行线之间的三角形面积相等)和等量代换的思

想.连接AC .

∵AB ∥CD ,∴ADE ACE S S =V V . 同理AD ∥BC ,∴ACF ABF S S =V V .

又ACF ACE AEF S S S =+V V V ,ABF BEF AEF S S S =+V V V ,∴ ACE BEF S S =V V ,即 1BEF ADE S S ==V V .

【例10】 (小学数学奥林匹克决赛试题)右图中,ABCD 是74?的长方形,

DEFG 是

102?的长方形,求三角形BCO 与三角形EFO 的面积之差. 【分析】 直接求出三角形BCO 与三角形EFO 的面积之差,不太容易做到.如

果利用差不变

性质,将所求面积之差转化为另外两个图形的面积之差,而这两个图形的面积之

差容易求出,那么问题就解决了.

法1:连结BE (见右图).三角形BCO 与三角形EFO 都加上三角形BEO ,则原来的问题转

O

A B

C

D E F G O

A B

C D E F

G

法2:连结CF (见右图).三角形BCO 与三角形EFO 都加上三角形CFO ,则原来的问题转化为求三角形BCF 与三角形

ECF 的面积之差.

所求为4(107)22(107)23?-÷-?-÷=.

法3:延长BC 交GF 于H (见右图).三角形BCO 与三角形EFO 都加上梯形COFH ,则原

来的问题转化为求三角形BHF 与矩形CEFH 的面积之差. 所求为(42)(107)22(107)3+?-÷-?-=.

法4:延长AB ,FE 交于H (见右图).三角形BCO 与三角形EFO 都加上梯形BHEO ,则原

来的问题转化为求矩形BHEC 与直角三角形BHF 的面积之差.所求为

4(107)(42)(107)23?--+?-÷=.

【例11】 如右图所示,在长方形内画出一些直线,已知边上有三块面积分

别是13,35,

49.那么图中阴影部分的面积是多少?

B

E

【分析】 三角形ABC 的面积+三角形CDE 的面积(133549)+++=长方形面积+阴影部分面积;又因为三角形ABC 的面积=三角形

CDE 的面积1

2

=长方形面积,所以可得:

阴影部分面积13354997=++=.

1. 如图,在长方形ABCD 中,Y 是BD 的中点,Z 是DY 的中点,如果24AB =厘米,8BC =厘米,求三角形ZCY 的面积.

A

B

C D

Z Y

【分析】 ∵Y 是BD 的中点,Z 是DY 的中点,∴1122ZY DB =??,1

4

ZCY DCB S S =V V ,

又∵ABCD 是长方形,∴111

24442

ZCY DCB ABCD S S S ==?=V V Y (平方厘米).

2. 如图,三角形ABC 中,AB 是AD 的5倍,AC 是AE 的3倍,如果三角形ADE 的面积等于1,那么三角形ABC 的面积是

多少?

A B

C

D E

A B

C

D

E

【分析】 连接BE .∵13AE EC = ∴1

3ABE ABC S S ??=.

又∵15AD AB =∴11

515

ADE ABE ABC S S S ???==,∴1515ABC ADE S S ??==.

3. 两个正方形组成右图所示的组合图形.已知组合图形的周长是52厘米,4DG =厘米,求阴影部分的面积.

A

【分析】 组合图形的周长并不等于两个正方形的周长之和,因为CG 部分重合了.用组合图形的周长减去DG ,就得到大、小正方

形边长之和的三倍,所以两个正方形的边长之和等于(524)316-÷=(厘米).又由两个正方形的边长之差是4厘米,可求出大正方形边长(164)210=+÷=(厘米),小正方形边长(164)26=-÷=(厘米).阴影部分面积410266238BDG BFG S S =+=?÷+?÷=V V (平方厘米).

H

O A B

C

D E F

G

H O

A B C

D E F

G

4. 在右图中,平行四边形ABCD 的边BC 长10厘米,直角三角形ECB 的直角边EC 长8厘米.已知阴影部分的总面积比三角

形EFG 的面积大10平方厘米,求平行四边形ABCD 的面积.

[分析] 因为阴影部分比三角形EFG 的面积大10平方厘米,都加上梯形FGCB 后,根据差不变性质,所得的两个新图形的面积差

不变,即平行四边行ABCD 比直角三角形ECB 的面积大10平方厘米,所以平行四边形ABCD 的面积等于10821050?÷+=平方厘米.

5. 右图中,4CA AB ==厘米,三角形ABE 比三角形CDE 的面积大2平方厘米,求CD 的长.

A

B

C

D E 【分析】 连结CB .三角形DCB 的面积为44226?÷-=平方厘米,6243CD =?÷=厘米.

直线型面积计算(2)

在小学的学习中几何是一个很重要的部分,每一个几何图形都非常美妙,几何图形的美妙不仅来源于它的外形,更重要的是在几何模型上出现的那些美妙的规律,下面我们就一起来看看几个美妙的几何模型:

模型一:任意四边形中的比例关系(“蝴蝶定理”):

S 4

S 3

S 2

S 1O D

C

B

A

①1243::S S S S =或者1324S S S S ?=? ②()()1243::AO OC S S S S =++

蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.

模型二:梯形中比例关系(“梯形蝴蝶定理”):

A B

C

D

O

b

a S 3

S 2S 1S 4

①2213::S S a b =

②221324::::::S S S S a b ab ab =;

③S 的对应份数为()2

a b +.

梯形蝴蝶定理给我们提供了解决梯形面积与上、下底之间关系互相转换的渠道,通过构造模型,直接应用结论,往往在题目中有事半功倍的效果.

模型三:相似三角形性质:

G

F E A

B

C

D

A

B C

D

E

F G

AD AE DE AF

AB AC BC AG

===

; ②22:ADE ABC S S AF AG =△△:.

所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:

⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方;

⑶连接三角形两边中点的线段叫做三角形的中位线.

三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半.

相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具. 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形

【例 9】 如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形BGC 的面积;⑵:AG GC =?

B

【分析】 ⑴根据蝴蝶定理,123BGC S ?=?V ,那么6BGC S =V ;

⑵根据蝴蝶定理,()():12:361:3AG GC =++=.

【例 10】 (2006年南京智力数学冬令营)如下图,梯形ABCD 的AB ∥CD ,对角线AC ,BD 交于O ,已知AOB V 与BOC V 的

面积分别为25 平方厘米与35平方厘米,那么梯形ABCD 的面积是________平方厘米.

35

25O

A

B

C

D 【分析】 根据梯形蝴蝶定理,2::25:35AOB BOC S S a ab ==V V ,可得:5:7a b =,再根据梯形蝴蝶定理,

2222::5:725:49AOB DOC S S a b ===V V ,所以49DOC S =V (平方厘米).那么梯形ABCD 的面积为25353549144+++=(平方

厘米).

[铺垫]梯形ABCD 的对角线AC 与BD 交于点O ,已知梯形上底为2,且三角形ABO 的面积等于三角形BOC 面积的

2

3

,求三角形AOD 与三角形BOC 的面积之比.

O

A B C

D

[分析] 根据梯形蝴蝶定理,2::2:3AOB BOC S S ab b ==V V ,可以求出:2:3a b =,

再根据梯形蝴蝶定理,2222::2:34:9AOD BOC S S a b ===V V .

通过利用已有几何模型,我们轻松解决了这个问题,而没有像以前一样,为了某个条件的缺乏而千辛万苦进行构造假设,所以,请同学们一定要牢记几何模型的结论.

【例 11】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示).如果三角形ABD 的面积等于三角形BCD 的面积的

1

3

,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍.

A

B

C D

O

H G

A B C D O

【分析】 在本题中,四边形ABCD 为任意四边形,对于这种“不良四边形”,无外乎两种处理方法:⑴利用已知条件,向已有模型

靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形.看到题目中给出条件:1:3ABD BCD S S =V V ,这可以向模型一蝴蝶定理靠拢,于是得出一种解法.又观察题目中给出的已知条件是面积的关系,转化为边的关系,可以得到第二种解法,但是第二种解法需要一个中介来改造这个“不良四边形”,于是可以作AH 垂直BD 于H ,CG 垂直BD 于G ,面积比转化为高之比.再应用结论:三角形高相同,则面积之比等于底边之比,得出结果.请老师注意比较两种解法,使学生体会到蝴蝶定理的优势,从而主观上愿意掌握并使用蝴蝶定理解决问题. 解法一:∵::1:3ABD BDC AO OC S S ??==, ∴236OC =?=, ∴:6:32:1OC OD ==.

解法二:作AH BD ⊥于H ,CG BD ⊥于G .

∵1

3ABD BCD S S ??=,

∴1

3AH CG =,

∴1

3AOD DOC S S ??=,

∴1

3AO CO =,

∴236OC =?=, ∴:6:32:1OC OD ==.

【例 12】 在边长为1的正方形ABCD 中,2BE EC =,2DF FC =.求四边形ABGD 的面积.

A

B

C

D

E F

G

A

B

C

D

E F

G

【分析】 题目要求四边形ABGD 的面积,可以发现这个四边形是个“不良四边形”,需要对它进行改造.通常在一个四边形中画辅

助线,会想到画对角线,又注意到E 、F 都是三等分点,如果连接EF ,因为EF ∥BD ,则可以构造一个梯形,从而应用梯形蝴蝶定理快速求解.

因为2BE EC =,2DF FC =,所以:3:1BD EF =.

根据梯形蝴蝶定理可以知道,等腰梯形BDFE 四部分面积比为1:3:3:9;

而等腰梯形BDFE 的面积为:11114

1122339??-??=,

所以91

13394

BDG BDFE S S =?=+++V ,

得113

11244

ABGD ADB BDG S S S =+=??+=V V .

【例 13】

如图,正方形ABCD 面积为1,M 是AD 边上的中点.求图中阴影部分的面积.

【分析】 因为M 是AD 边上的中点,所以12

AM =

,可得3

4AMCB S =梯形,

由于:1:2AM BC =,根据梯形蝴蝶定理可以知道

22:::1:12:12:21:2:2:4AMG ABG MCG BCG S S S S =??=V V V V ()(),

所以阴影部分面积占梯形面积的

22412249+=+++,所以341

493

S =?=阴影.

【例 14】

如图,在长方形ABCD 中,6AB =,2AD =,AE EF FB ==,求阴影部分的面积.

D

D

【分析】 如图,连接DE ,DE 将阴影部分的面积分为两个部分,其中三角形AED 的面积为26322?÷÷=.

由于:1:3EF DC =,根据梯形蝴蝶定理,:3:1DEO EFO S S =V V ,所以3

4

DEO DEF S S =V V ,而2DEF ADE S S ==V V ,所以

3

2 1.54

DEO S =?=V ,阴影部分的面积为2 1.5 3.5+=.

相似三角形性质

【例 7】 在图中的正方形中,A ,B ,C 分别是所在边的中点,CDO V 的面积是ABO V 面积的几倍?

A

B

C

D

O E

F

A

B

C

O

【分析】 连接BC ,易知OA ∥EF ,根据相似三角形性质,可知::OB OD AE AD =,且::1:2OA BE DA DE ==,所以CDO V 的面

积等于CBO V 的面积;由11

24

OA BE AC ==可得3CO OA =,所以3CDO CBO ABO S S S ==V V V ,即CDO V 的面积是ABO V 面积的

3倍.

【例 8】 如图,线段AB 与BC 垂直,已知4AD EC ==,6BD BE ==,那么图中阴影部分面积是多少?

A B

C

D

A B

D

A B

D

【分析】 解法一:这个图是个对称图形,且各边长度已经给出,不妨连接这个图形的对称轴看看.

作辅助线BO ,则图形关于BO 对称,有ADO CEO S S =V V ,DBO EBO S S =V V ,且:4:62:3ADO DBO S S ==V V . 设ADO V 的面积为2份,则DBO V 的面积为3份,直角三角形ABE 的面积为8份.

因为610230ABE S =?÷=V ,而阴影部分的面积为4份,所以阴影部分的面积为308415÷?=.

解法二:连接DE 、AC .由于4AD EC ==,6BD BE ==,所以DE ∥AC ,根据相似三角形性质,可知

::6:103:5DE AC BD BA ===,

()()22:::3:35:35:59:15:15:25

DOE DOA COE COA S S S S =??=V V V V ,所以

()():1515:915152515:32ADEC S S =++++=阴影梯形,即15

32ADEC

S S

=

阴影梯形; 又11101066=3222ADEC S =??-??梯形,所以15

1532

ADEC S S ==阴影梯形.

【例 9】 右图中正方形的面积为1, E 、F 分别为AB 、BD 的中点,1

3

GC FC =.求阴影部分的面积.

A

B E

A

B

E

【分析】 题中条件给出的都是比例关系,由此可以初步推断阴影部分的面积要通过比例求解,而图中出现最多的就是三角形,那么

首先想到的就是利用相似三角形的性质.

阴影部分为三角形,已知底边为正方形边长的一半,只要求出高,便可求出面积. 可以作FH 垂直BC 于H ,GI 垂直BC 于I .

根据相似三角形性质,::1:3CI CH CG CF ==,又因为CH HB =,所以:1:6CI CB =,即():61:65:6BI BC =-=,所以

1155

22624

BGE S =??=V .

【例10】 如图,长方形ABCD 中,E 为AD 的中点,AF 与BE 、BD 分别交于G 、H ,

OE 垂直AD 于E ,交AF 于O ,已知5AH cm =,3HF cm =,求AG .

A

B

C D

E

F

G

H

O

【分析】 由于AB ∥DF ,利用相似三角形性质可以得到::5:3AB DF AH HF ==,

又因为E 为AD 中点,那么有:1:2OE FD =, 所以3

:5:10:32

AB OE ==,利用相似三角形性质可以得到::10:3AG GO AB OE ==, 而()()1153422AO AF cm =

=?+=,所以()1040

41313

AG cm =?=.

【例11】 ABCD 是平行四边形,面积为72平方厘米,E 、F 分别为AB 、BC 的中点,则图中阴影部分的面积为____平方厘

米.

B

B

【分析】 注意引导学生利用三角形的中位线定理以及平行线的相关性质.

设G 、H 分别为AD 、DC 的中点,连接GH 、EF 、BD .

可得1

=4

AED ABCD S S V 平行四边形,

对角线BD 被EF 、AC 、GH 平均分成四段,又OM ∥EF ,所以23

::2:344

DO ED BD BD ==,()()::32:31:3OE ED ED OD ED =-=-=,

所以 1111

7263434AEO ABCD S S =?=??=V 平行四边形(平方厘米),212ADO AEO S S =?=V V (平方厘米).

同理可得6CFM S =V 平方厘米,12CDM S =V 平方厘米. 所以 366624ABC AEO CFM S S S --=--=V V V (平方厘米), 于是,阴影部分的面积为24121248++=(平方厘米).

练习

5. (第十届华杯赛)如下图,四边形ABCD 中,对角线AC 和BD 交于O 点,已知1AO =,并且

3

5

ABD CBD =三角形的面积三角形的面积,那

么OC 的长是多少?

A

B

C

D

O

【分析】 根据蝴蝶定理,ABD AO CBD CO =三角形的面积三角形的面积,所以35AO CO =,又1AO =,所以5

3

CO =.

6. 如图,梯形ABCD 中,AOB ?、COD ?的面积分别为1.2和2.7,求梯形ABCD 的面积.

O

D

C B

A 【分析】 根据梯形蝴蝶定理,22::4:9AO

B ACOD S S a b ==V V ,所以:2:3a b =,

2:::3:2AOD AOB S S ab a b a ===V V ,3

1.2 1.82

AOD COB S S ==?=V V ,

1.2 1.8 1.8

2.77.5ABCD S =+++=梯形.

7. 已知三角形ABC 的面积为a ,:2:1AF FC =,E 是BD 的中点,且EF ∥BC ,交CD 于G ,求阴影部分的面积.

【分析】 已知:2:1AF FC =,且EF ∥BC ,利用相似三角形性质可知::2:3EF BC AF AC ==,所以2

3

EF BC =

,且:4:9AEF ABC S S =V V .

又因为E 是BD 的中点,所以EG 是三角形DBC 的中位线,那么12EG BC =,12

::3:423

EG EF ==,所以:1:4GF EF =,可得:1:8CFG AFE S S =V V ,所以:1:18CFG ABC S S =V V ,那么18

CFG a S =

V .

8. 在下图的正方形ABCD 中,E 是BC 边的中点,AE 与BD 相交于F 点,

三角形BEF 的面积为1平方厘米,那么正方形ABCD 面积是 平方厘米.

A B

C

D

E

F

【分析】 根据相似三角形性质可知::1:2EF AF BE AD ==,所以33ABE BEF S S ==V V (平方厘米),那么412ABCD ABE S S ==W V (平方厘

米).

最新小学奥数面积计算(综合题型)

第十八周面积计算(一) 专题简析: 计算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不到任何联系,会使你感到无从下手。这时,如果我们能认真观察图形,分析、研究已知条件,并加以深化,再运用我们已有的基本几何知识,适当添加辅助线,搭一座连通已知条件与所求问题的小“桥”,就会使你顺利达到目的。有些平面图形的面积计算必须借助于图形本身的特征,添加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再经过分析推导,方能寻求出解题的途径。 图形面积) 简单的面积计算是小学数学的一项重要内容.要会计算面积,首先要能识别一些特别的图形:正方形、三角形、平行四边形、梯形等等,然后会计算这些图形的面积.如果我们把这些图形画在方格纸上,不但容易识别,而且容易计算. 上面左图是边长为4的正方形,它的面积是4×4=16(格);右图是3×5的长方形,它的面积是3×5=15(格). 上面左图是一个锐角三角形,它的底是5,高是4,面积是5×4÷2=10(格);右图是一个钝角三角形,底是4,高也是4,它的面积是4×4÷2=8(格).这里特别说明,这两个三角形的高线一样长,钝角三角形的高线有可能在三角形的外面. 上面左图是一个平行四边形,底是5,高是3,它的面积是5×3=15(格);右图是一个梯形,上底是4,下底是7,高是4,它的面积是 (4+7)×4÷2=22(格). 上面面积计算的单位用“格”,一格就是一个小正方形.如果小正方形边长是1厘米,1格就是1平方厘米;如果小正方形边长是1米,1格就是1平方米.也就是说我们设定一个方格的边长是1个长度单位,1格就是一个面积单位.在这一讲中,我们直接用数表示长度或面积,省略了相应的长度单位和面积单位. 一、三角形的面积 用直线组成的图形,都可以划分成若干个三角形来计算面积.三角形面积的计算公式是:三角形面积= 底×高÷2. 这个公式是许多面积计算的基础.因此我们不仅要掌握这一公式,而且要会灵活运用. 例1 右图中BD长是4,DC长是2,那么三角形ABD的面积是三角形ADC面积的多少倍呢?

小学奥数---图形的面积

图形的面积 1、如图,AD=DB ,AE=EF=FC ,已知阴影部分面积为5平方厘米,△ABC 的面积是多少平方厘米? 考点:三角形面积与底的正比关系.专题:平面图形的认识与计算.分析:连接BF ,因为F 、E 是三等分点,根据三角形的高一定时,三角形的面积与底的成正比例的性质可得,三 角形ABF 的面积=32 三角形ABC 的面积=三角形ADF 的面积×2=三角形EDF 的面积×4,因为三角形EDF 的面积是5平方厘米,由此代入即可解决问题. 解答:解:连接BF ,因为F 、E 是三等分点,根据三角形的高一定时,三角形的面积与底 的成正比例的性质可得,三角形ABF 的面积=32 三角形ABC 的面积=三角形ADF 的面积×2=三角形EDF 的面积×4, 则三角形ABC 的面积是:5×4÷32 =30(平方厘米); 答:△ABC 的面积是30平方厘米. 2、如图,阴影部分的面积和空白部分的面积比是5:7,正方形的边长是8厘米,DE 的长是多少厘米? 如图,在△ABC 中,BD=AD ,EF=3,FC=2,△ADH 与△AGC 的面积和等于四边形EFGH 的面积,那么BE 的长是多少? .点评:此题考查了高一定时,三角形的面积与底成正比例的性质的灵活应用. 3、如图,在△ABC 中,BD=AD ,EF=3,FC=2,△ADH 与△AGC 的面积和等于四边形EFGH 的面积,那么BE 的长是多少.

考点:燕尾定理. 专题:平面图形的认识与计算.分析:因为BD=AD ,根据燕尾定理可得,S △ADC=21 S △ABC ,又因为△ADH 与△AGC 的面积和等于四边形EFGH 的面积,S △AHG 是公共部分, 所以S △AEF=S △ADC=21S △ABC ,那么S △ABE+S △AFC=1-S △ABC=21 S △ABC ,又因为S △ABE+S △AFC 的和与S △AEF 等高,所以BE+FC=EF ,又EF=3,FC=2,所以BE+2=3,则BE=1,问题得解.解答:解:因为BD=AD ,根据燕尾定理可得, S △ADC=21 S △ABC , S △ADH+S △AGC=S 四边形EFGH , 所以S △ADH+S △AGC+S △AHG=S 四边形EFGH+S △AHG ,即:S △AEF=S △ADC=21 S △ABC , S △ABE+S △AFC=1-S △ABC=21 S △ABC , 又因为S △ABE+S △AFC 的和与S △AEF 等高, 所以BE+FC=EF , 又因为∵EF=3,FC=2, BE+2=3, BE=1; 故答案为:1.点评:本题关键是利用S △AHG 是S △AEF 和S △ADC 的公共部分,得出S △AEF=S △ADC=21 4、如图,AD=DE=EC ,F 是BC 中点,G 是FC 中点,如果三角形ABC 的面积是24平方厘米,则阴影部分是多少平方厘米?

五年级奥数举一反三-第18讲 --组合图形面积(一)

组合图形面积(一) 知识要点 组合图形是由两个或两个以上的简单的几何图形组合而成的。组合的形式分为两种:一是拼合组合,二是重叠组合。由于组合图形具有条件相等的特点,往往使得问题的解决无从下手。要正确解答组合图形的面积,应该注意以下几点: 1.切实掌握有关简单图形的概念、公式,牢固建立空间观念; 2.仔细观察,认真思考,看清所求图形是由哪几个基本图形组合而成的; 3.适当采用增加辅助线等方法帮助解题; 4,采用割、补、分解、代换等方法,可将复杂问题变得简单。 【例题1】 一个等腰直角三角形,最长的边是12厘米,这个三角形 的面积是多少平方厘米? 练习1:1.求四边形ABCD的面积。(单位:厘米)

2.已知正方形ABCD的边长是7厘米,求正方形EFGH的面积。 3.有一个梯形,它的上底是5厘米,下底7厘米。如果只把上底增加3厘米,那么面积就增加 4.5平方厘米。求原来梯形的面积。 【例题2】 正图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。求中间长方形的面积。

练习2: 1.(如下图)已知大正方形的边长是12厘米,求中间最小正方形的面积。 2.正图长方形ABCD的面积是16平方厘米,E、F都是所在边的中点,求三角形AEF的面积。 3.求下图(上右图)长方形ABCD的面积(单位:厘米)。

例3:图中的甲和乙都是正方形,求阴影部分的面积。(单位:厘米) 练习3: 1、 计算下面图形的面积(单位:厘米) 2、 求图中阴影部分的面积。 3、如图,已知四条线段的长分别是:AB=2厘米,CE=6厘米,CD=5厘米,AF=4厘米,并且有两个直角。求四边形ABCD的面积。

六年级奥数组合图形面积计算教案设计

六年级奥数组合图形面积计算教案设计 在进行组合图形的面积计算时,要仔细观察,认真思考,看清组合图形是由几个基本单位组成的,还要找出图中的隐蔽条件与已知条件和要求的问题间的关系。 【例题1】求图中阴影部分的面积。 【思路导航】如图所示的特点,阴影部分的面积可以拼成圆的面积。 62 X浜 答:阴影部分的面积是平方厘米。 练习1: 1.求下面各个图形中阴影部分的面积。 2.求下面各个图形中阴影部分的面积。 3.求下面各个图形中阴影部分的面积。 【例题2】求图中阴影部分的面积。 【思路导航】阴影部分通过翻折移动位置后,构成了一个新的图形。从图中可以看出阴影部分的面积等于大扇形的面积减去大三角形面积的一半。 X—4X 4—2—2 答:阴影部分的面积是平方厘米。 练习2: 1.计算下面图形中阴影部分的面积。2.计算下面图形中阴影部分的面积。 3.计算下面图形中阴影部分的面积。 【例题3】如图19-10 所示,两圆半径都是1厘米,且图中两个阴影部分的面积相等。求长方形AB010的面积。

【思路导航】因为两圆的半径相等,所以两个扇形中的空白部分相等。又因为图中两个阴影部分的面积相等,所以扇形的面积等于长方形面积的一半。所以X12X兴答:长方形长方形ABO1O的面积是平方厘米。 练习3: 1. 如图所示,圆的周长为厘米,AC两点把圆分成相等的两段弧,阴影部分的面积与阴影部分的面积相等,求平行四边形 ABCD的面积。 2 .如图所示,直径BC= 8厘米,AB= AC, D为AC的中点,求阴影部分的面积。 3. 如图所示,AB= BC= 8厘米,求阴影部分的面积。 【例题4】如图19-14 所示,求阴影部分的面积。 【思路导航】我们可以把三角形ABC看成是长方形的一部分,把它还原成长方形后。 I和II的面积相等。 因为原大三角形的面积与后加上的三角形面积相等,并且空白部分的两组三角形面积分别相等,所以 6X4 24 答:阴影部分的面积是24 平方厘米。 练习4: 1. 如图所示,求四边形ABCD的面积。 2. 如图所示,BE长5厘米,长方形AEFD面积是38平方厘米。求CD的长度。 3.图是两个完全一样的直角三角形重叠在一起,按照图中的已知条件求阴影部分的面积。 【例题5】如图所示,图中圆的直径AB是4厘米,平行四边形ABCD的面积是7平方厘米,/ ABC= 30度,求阴影部分的面积。

小学六年级奥数系列讲座:简单平面图形面积计算(含答案解析)

简单平面图形面积计算 一、知识要点 计算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不 到任何联系,会使你感到无从下手。这时,如果我们能认真观察图形,分析、研 究已知条件,并加以深化,再运用我们已有的基本几何知识,适当添加辅助线, 搭一座连通已知条件与所求问题的小“桥”,就会使你顺利达到目的。有些平面 图形的面积计算必须借助于图形本身的特征,添加一些辅助线,运用平移旋转、 剪拼组合等方法,对图形进行恰当合理的变形,再经过分析推导,方能寻求出解题的途径。 二、精讲精练 【例题1】已知如图,三角形ABC的面积为8平方厘米,AE=ED,BD=2/3BC,求阴影部分的面积。 【思路导航】阴影部分为两个三角形,但三角 形AEF的面积无法直接计算。由于AE=ED,连接DF, 可知S△AEF=S△EDF(等底等高),采用移补的方法, 将所求阴影部分转化为求三角形BDF的面积。因为 BD=2/3BC,所以S△BDF=2S△DCF。又因为AE=ED,所以S△ABF=S△BDF=2S △DCF。 因此,S△ABC=5 S△DCF。由于S△ABC=8平方厘米,所以S△DCF=8÷5=1.6(平方厘米),则阴影部分的面积为 1.6×2=3.2(平方厘米)。 练习1: 1.如图,AE=ED,BC=3BD,S△ABC=30平方厘米。求阴影部分的面积。 2.如图所示,AE=ED,DC=1/3BD,S△ABC=21平方厘米。求阴影部分的面积。

3.如图所示,DE=1/2AE,BD=2DC,S△EBD=5平方厘米。求三角形ABC 的面积。 【例题2】两条对角线把梯形ABCD分割成四个三角形,如图所示,已知两个三角形的面积,求另两个三角形的面积各是多 少? 【思路导航】已知S△BOC是S△DOC的2 倍,且高相等,可知:BO=2DO;从S△ABD与S△ACD相等(等底等高)可知:S △ABO等于6,而△ABO与△AOD的高相等,底是△AOD的2倍。所以△AOD的面积为6÷2=3。 因为S△ABD与S△ACD等底等高所以S△ABO=6 因为S△BOC是S△DOC的2倍所以△ABO是△AOD的2倍 所以△AOD=6÷2=3。 答:△AOD的面积是3。 练习2: 1.两条对角线把梯形ABCD分割成四个三角形,(如图所示),已知两个三角形的面积,求另两个三角形的面积是多少? 2.已知AO=1/3OC,求梯形ABCD的面积(如 图所示)。

五年级奥数题:图形与面积含详细解答

五年级奥数题:图形与面积 一、填空题(共10小题,每小题3分,满分30分) 1.(3分)如图是由16个同样大小的正方形组成的,如果这个图形的面积是400平方厘米,那么它的周长是 _________厘米. 2.(3分)第一届保良局亚洲区城市小学数学邀请赛在7月21日开幕,下面的图形中,每一小方格的面积是1.那么7,2,1三个数字所占的面积之和是_________. 3.(3分)如图中每一小方格的面积都是1平方厘米,那么用粗线围成的图形面积是_________平方厘米. 4.(3分)(2014?长沙模拟)如图的两个正方形,边长分别为8厘米和4厘米,那么阴影部分的面积是_________平方厘米. 5.(3分)在△ABC中,BD=2DC,AE=BE,已知△ABC的面积是18平方厘米,则四边形AEDC的面积等于_________平方厘米. 6.(3分)如图是边长为4厘米的正方形,AE=5厘米、OB是_________厘米.

7.(3分)如图正方形ABCD的边长是4厘米,CG是3厘米,长方形DEFG的长DG是5厘米,那么它的宽DE 是_________厘米. 8.(3分)如图,一个矩形被分成10个小矩形,其中有6个小矩形的面积如图所示,那么这个大矩形的面积是 _________. 9.(3分)如图,正方形ABCD的边长为12,P是边AB上的任意一点,M、N、I、H分别是边BC、AD上的三等分点,E、F、G是边CD上的四等分点,图中阴影部分的面积是_________. 10.(3分)图中的长方形的长和宽分别是6厘米和4厘米,阴影部分的总面积是10平方厘米,四边形ABCD的面积是_________平方厘米. 二、解答题(共4小题,满分0分) 11.图中正六边形ABCDEF的面积是54.AP=2PF,CQ=2BQ,求阴影四边形CEPQ的面 积.

六年级奥数组合图形面积计算

面积计算(一) 一, 求阴影部分的面积 1.如下图,已知6=AB 厘米,10=AD 厘米,三角形ABE 和三角形ADF 的面积各占长方形ABCD 的3 1 ,三角形AEF 的面积是多少平方厘米 2.如下图,两个正方形的边长分别是6厘米和2厘米,阴影部分的面积是多少平方厘米 3.在四边形ABCD 中,BD AC 和互相垂直并相交于O 点,四个小三角形的面积如下图所示,求阴影部分三角形BCO 的面积。

4.三角形E D ABC ,.中(如下图),是中点,S 甲比S 乙多5平方厘米,三 角形ABC 的面积是多少平方厘米 5.图中扇形的半径6==OB OA 厘米,AOB ∠等于?45,AC 垂直于点C ,那么图中阴影部分的面积是多少平方厘米() 取(14.3π 6.下图的正方形是由大家熟悉的七巧板拼成的,边长是10厘米,那么阴影部分的面积是多少平方厘米

7.如下图,斜边长为30厘米的等腰直角三角形内有一个内接的正方形,那么阴影部分的面积是多少平方厘米 二,解答题。 1.由三角形面积分别为2,3,5,7的四个三角形拼成一个大三角形, 如下图所示。即已知:S AED ?=2, S AEC ? =5, S BDF ? =7, S BCF ? =3,那么S BEF ? 是多少 2.如下图,BD=4厘米,DE=8厘米,EC=4厘米,F是AE的中点,ABC ?在BC边上的高为8厘米,DFE ?的面积是多少平方厘米

3运动会入场式要求运动员排成一个9行9列的正方形方阵,如果去掉3行3列,要减少多少名运动员 3.如图所示是由正方形和半圆组成的图形,其中P点为半圆的中点, Q点为正方形一边的中点,那么阴影部分的面积是多少

六年级奥数图形问题精选

圆和组合图形(1) 一、填空题 1.算出圆内正方形的面积为 . 2.右图是一个直角等腰三角形,直角边长2厘米,图中阴影部分面积是 平方厘米. 120,以扇形的半径为边长画一个正方形,这个正方形的面积是120平方厘米.这个扇形面积是 . 4.如图所示,以B 、C 为圆心的两个半圆的直径都是2厘米,则阴影部分的周长是 厘米.(保留两位小数) 5.三角形ABC 是直角三角形,阴影部分①的面积比阴影部分②的面积小28长 厘米.

6.如右图,阴影部分的面积为2平方厘米,等腰直角三角形的面积 7.扇形的面积是31.4平方厘米,它所在圆的面积是157平方厘米,这个扇形的圆心角是 度. 8.图中扇形的半径OA =OB =6厘米.45=∠AOB , AC 垂直OB 于C ,那么图中阴影部分的面积是 平方厘米.)14.3(=π 9.右图中正方形周长是20厘米.图形的总面积是 平方厘米. 10.在右图中(单位:厘米),两个阴影部分面积的和是 平方厘米. 45

二、解答题 11. ABC 是等腰直角三角形. D 是半圆周的中点, BC 是半圆的直径,已知: AB =BC =10,那么阴影部分的面积是多少?(圆周率14.3=π) 12.如图,半圆S 1的面积是14.13平方厘米,圆S 2的面积是19.625平方厘米.那么长方形(阴影部分的面积)是多少平方厘米? 13.如图,已知圆心是O ,半径r =9厘米,1521=∠=∠,那么阴影部分的面积是多少平方厘米?)14.3(≈π 14.右图中4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心.如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?

小学奥数组合图形面积

第六讲:组合图形面积 组合图形是由两个以上的简单的几何图形组合而成的。组合的形式分为两种, 一是拼合组合,二是重叠组合,由于组合图形具有相“等”的特点,往往使得 问题无从下手。要正确解答组合图形的面积问题,应该注意以下几点: 1, 切实掌握有关简单图形的概念、公式,牢固建立空间概念; 2, 仔细观察,认真思考,看清所求图形是由哪几个基本图形组合而成的; 3, 适当采用增加辅助线等方法帮助解题; 4, 采用隔、补、分解、代换等方法,将复杂问题简单化。 例题 1:一个等腰直角三角形,最长的边 12 厘米,这个三角形的面积是多少 平方厘米? 思路导航: 我们可以假设有 4 个这样的三角形,如图合成一个边长为 12 厘米 的正方形,显然所求三角的面积是正方形面积的 5 厘米,下底是 7 厘米,如果只把上底增加 3 厘米,那么 面积就增加 4.5 平方厘米。求原来梯形的面积。 例题 2:右下图所示的正方形中套着一个长方形,正方形的边长是 12 厘米,长方形四个角 的顶点把正方形的四条边各分成两段, 其中长的一段是短的一段的 2 倍。求中间长方形的面 积。 思路导航: 图中的两个小三角形平移后可拼得一个小正方形, 两个大三角形平移后可拼得一 个大正方形。这两个正方形的边长分别是 12÷( 1+2) =4(厘米)和 4×2=8(厘米)。中间 长方形的面积只要用总面积减去这两个拼起来的正方形的面积就可以得到。 练习 1:求四边形 ABCD 的面积。 单位:厘米) 练习 2:有一个梯形,它的上底是

练习1:下图长方形ABCD 的面积是16平方厘米,E、F 都是所在边的中点。求三角形AEF 的面积。 练习2:求下图长方形ABCD 的面积。(单位:厘米) 例题3:图中的甲和乙都是正方形,求阴影部分的面积。(单位:厘米) 思路导航:题中没有给出阴影三角形的底和高,所以无法直接用公式计算出它的面积。但是,如果把阴影部分分割成△ ABD 、△ ACD 和△ BDC 这三块,先分别求出这三个小三角形的面积,再把它们加起来就是阴影部分的面积。 练习1:计算下面图形的面积。(单位:厘米)

组合图形的面积小学奥数专题

组合图形的面积(一) 例1一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米 练习一 1、求四边形ABCD的面积。(单位:厘米) 2、已知正方形ABCD的边长是7厘米,求正方形EFGH的面积。 3、有一个梯形,它的上底是5厘米,下底7厘米。如果只把上底增加3厘米,那么面积就增加4.5平方厘米。求原来梯形的面积。 例2正图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。求中间长方形的面积。 练习二 1、已知大正方形的边长是12厘米,求中间最小正方形的面积。 2、如下图长方形ABCD的面积是16平方厘米,E、F都是所在边的中点,求三角形AEF的面积。 3、求下图长方形ABCD的面积(单位:厘米)。 例3四边形ABCD和四边形DEFG都是正方形,已知三角形AFH的面积是7平方厘米。三角形CDH的面积是多少平方厘米

1、图中两个正方形的边长分别是6厘米和4厘米,求阴影部分面积。 2、下图中两个完全一样的三角形重叠在一起,求阴影部分的面积。 3、下图中,甲三角形的面积比乙三角形的面积大多少平方厘米 例4下图中正方形的边长为8厘米,CE为20厘米,梯形BCDF的面积是多少平方厘米 练习四 1、如下图,正方形ABCD中,AB=4厘米,EC=10厘米,求阴影部分的面积。 2、在一个直角三角形铁皮上剪下一块正方形,并使正方形面积尽可能大,正方形的面积是多少(单位:厘米) 3、图中BC=10厘米,EC=8厘米,且阴影部分面积比三角形EFG的面积大10平方厘米。求平行四边形的面积。 例5图中ABCD是长方形,三角形EFD的面积比三角形ABF的面积大6平方厘米,求ED的长。 练习五 1、如图,平行四边形BCEF中,BC=8厘米,直角三角形中,AC=10厘米,阴影部分面积比三角形ADH的面积大8平方厘米。求AH长多少厘米 2,图中三个正方形的边长分别是1厘米、2厘米和3厘米,求图中阴影部分

五年级奥数组合图形面积一

第18周组合图形面积(一) 例1 一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米? 1,求四边形ABCD的面积。(单位:厘米) 2,已知正方形ABCD的边长是7厘米,求正方形EFGH的面积。3,有一个梯形,它的上底是5厘米,下底7厘米。如果只把上底增加3厘米,那么面积就增加4.5平方厘米。求原来梯形的面积。 例2 正图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。求中 间长方形的面积。 1,(如下图)已知大正方形的边长是12厘米,求中间最小正方形的面积。

2,如下图长方形ABCD的面积是16平方厘米,E、F都是所在边的中点,求三角形AEF的面积。 3,求下图长方形ABCD的面积(单位:厘米)。 例3 四边形ABCD和四边形DEFG都是正方形,已知三角形AFH的面积是7平方厘米。三角形CDH的面积是多少平方厘米? 1,图中两个正方形的边长分别是6厘米和4厘米,求阴影部分的面积。 2,下图中两个完全一样的三角形重叠在一起,求阴影部分的面积。(单位:厘米) 3,下图中,甲三角形的面积比乙三角形的面积大多少平方厘米? 例4 下图中正方形的边长为8厘米,CE为20厘米,梯形BCDF的面积是多 少平方厘米?

1,如下图,正方形ABCD中,AB=4厘米,EC=10厘米,求阴影部分的面积。 2,在一个直角三角形铁皮上剪下一块正方形,并使正方形面积尽可能大,正方形的面积是多少?(单位:厘米)3,图中BC=10厘米,EC=8厘米,且阴影部分面积比三角形EFG的面积大10平方厘米。求平行四边形的面积。 例5 图中ABCD是长方形,三角形EFD的面积比三角形ABF的面积大6平方厘米,求ED的长。 练习五 1,如图,平行四边形BCEF中,BC=8厘米,直角三角形中,AC=10厘米,阴影部分面积比三角形ADH的面积大8平方厘米。求AH 长多少厘米?

奥数题关于图形面积

第三份卷 多边形的面积(一) 四、例题: 1、大、小两个正方形组成下图所示的组合图形。已知组合图形的周长是52厘米,DG=4厘米,求阴影部分的面积。 A B C D 2、如图所示,四边形ABCD 与DEFG 都是平行四边形,证明它们的面积相等。 A B C D E F G 3、如图所示,一个腰长是20等腰三角形的面积是140平方厘米,在底边上任意取一点,这个点到两腰的线段的长分别是a 厘米和b 厘米,求a+b 的长。 A B C a b 20 20 4、如图所示,三角形ABC 的面积是10厘米2将AB 、BC 、CA 分别延长1倍到D 、E 、F ,两两连接D 、E 、F ,得到一个新的三角形DEF ,求三角形DEF 的面积。 C F D E A B 5、一个正方形,将它的一边截去15厘米,另一边截去10厘米,剩下的长方形比原来正方形的面积减少了1750平方厘米,求剩下的长方形的面积。

甲乙 丙 15 10 6、红、黄、绿三块同样大小的正方形纸片,放在一个正方形盒的底部,它们之间互相叠合(见图),知露在外面的部分中,红色面积是20,黄色面积是14,绿色面积是10,求正方形盒子底部的面积。 黄 红 绿 7、如图所示,两个相同的直角三角形重叠在一起,求阴影部分的面积? A B F 10 8、如图所示,平行四边形ABCD 的边BC 长10厘米,直角三形 ECB 的直角边EC 长8厘米,已知阴影部分的面积比三角形EFG 的面积大10平方厘米,求平行四边形ABCD 的面积。 B D 五、练习: 1、等腰直角三角形的面积是20平方厘米,在其中做一个最大的正方形,求这个正方形的面积。

小学奥数几何图形的面积

1,已知三角形EBC的面积是105平方厘米,AD=13厘米,BC=15厘米,求阴影部分的面积。2,有两个相同的长方形,长14厘米,宽8厘米,如果把他们按右图叠加在一起,这个图形的面积是多少? 3,求下图中阴影部分面积。(单位:厘米) 4,如图所示:一个打谷场长是70米,宽是40米,扩建后长增加了15米,宽增加了7米,这个打谷场的面积增加了多少平方米?

5,梯形草坪(如下图)有一平行四边形人行道,求人行道的面积是多少平方米? 1,求下图中阴影部分面积。(单位:米) 2,梯形面积是48平方厘米,求下图中阴影部分面积。(单位:厘米) 3,下图是平行四边形,面积是35平方厘米,求下图中阴影部分面积。(单位:厘米)

4,把一个长10米的长方形草地的一条边长增加4米,面积增加12平方米,求增加后草地的面积是多少平方米? 5,求下图中阴影部分面积。(单位:厘米) 6,在长方形中,A、B分别是两边是中心,三角形ABC的面积是6平方厘米,这个长方形的面积是多少平方厘米?

7,如图,在平行四边形ABCD之中,AE=EB,BF=FC,CG=GD,平行四边形ABCD的面积是阴影面积的多少倍? 8,如图在平行四边形ABCD的面积是80平方分米,E、F分别是AB和AD边上的中点,图中阴影部分的面积是多少平方分米?

9,如图,在平行四边形ABE之中,BC=CE=7l厘米如果三角形DCE的面积是21平方厘米,那么梯形ABED的面积是多少平方厘米? 10,A和B分别是正方形边上的中心,求下图中阴影部分面积。(单位:厘米)

1,图中平行四边形的面积是36平方厘米,求下图中阴影部分面积。(单位:厘米) 2,如图ABCD是长方形,长是24厘米,宽是18厘米,AF=BE,图中阴影部分的面积是多少平方厘米? 3,已知一个四边形的两条边的长度和三个角,试求出这个四边形的面积是多少?(单位:厘米)

六年级奥数组合图形面积计算(20200614123204)

面积计算(一) 一,求阴影部分的面积 1.如下图,已知6 AD厘米,三角形ABE和三角形ADF AB厘米,10 1,三角形AEF的面积是多少平方厘米?的面积各占长方形ABCD的 3 2.如下图,两个正方形的边长分别是6厘米和2厘米,阴影部分的面积是多少平方厘米? 3.在四边形ABCD中,BD AC和互相垂直并相交于O点,四个小三角形的面积如下图所示,求阴影部分三角形BCO的面积。

4.三角形E ABC,. 中(如下图),是中点,S甲比S乙多5平方厘米,三角 D 形ABC的面积是多少平方厘米? 5.图中扇形的半径6 OA厘米,AOB等于45,AC垂直于点C, OB 那么图中阴影部分的面积是多少平方厘米?() .3 (14 取 6.下图的正方形是由大家熟悉的七巧板拼成的,边长是10厘米,那么阴影部分的面积是多少平方厘米?

7.如下图,斜边长为30厘米的等腰直角三角形内有一个内接的正方形,那么阴影部分的面积是多少平方厘米? 二,解答题。 1.由三角形面积分别为2,3,5,7的四个三角形拼成一个大三角形,如 下图所示。即已知:S AED =2, S AEC=5, S BDF =7, S BCF=3,那么S BEF 是 多少? 2.如下图,BD=4厘米,DE=8厘米,EC=4厘米,F是AE的中点, ABC在BC边上的高为8厘米,DFE的面积是多少平方厘米?

3运动会入场式要求运动员排成一个9行9列的正方形方阵,如果去掉3行3列,要减少多少名运动员? 3.如图所示是由正方形和半圆组成的图形,其中P点为半圆的中点, Q点为正方形一边的中点,那么阴影部分的面积是多少?

五年级数学奥数专题组合图形面积

五年级数学奥数专题组 合图形面积 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

组合图形面积(一) 【知识点击】 组合图形是由两个或两个以上的简单的几何图形组合而成的。组合的形式分为两种:一是拼合组合,二是重叠组合。由于组合图形具有条件相等的特点,往往使得问题的解决无从下手。要正确解答组合图形的面积,应该注意以下几点: 1.切实掌握有关简单图形的概念、公式,牢固建立空间观念; 2.仔细观察,认真思考,看清所求图形是由哪几个基本图形组合而成的; 3.适当采用增加辅助线等方法帮助解题; 4,采用割、补、分解、代换等方法,可将复杂问题变得简单。 【典型例题1】一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米? 【对点演练1】1.求四边形ABCD的面积。(单位:厘米) 2.已知正方形ABCD的边长是7厘米,求正方形EFGH的面积。 【典型例题2】正图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。求中间长方形的面积。 【对点演练2】1.(如下图)已知大正方形的边长是12厘米,求中间最小正方形的面积。 2.正图长方形ABCD的面积是16平方厘米,E、F都是所在边的中点,求三角形AEF 的面积。 【典型例题3】四边形ABCD和四边形DEFG都是正方形,已知三角形AFH的面积是7平方厘米。三角形CDH的面积是多少平方厘米?

【对点演练3】1.图中两个正方形的边长分别是6厘米和4厘米,求阴影部分的面积。 2.下图中两个完全一样的三角形重叠在一起,求阴影部分的面积。(单位:厘米)【典型例题4】下图中正方形的边长为8厘米,CE为20厘米,梯形BCDF的面积是多少平方厘米? 【对点演练4】1.如下图,正方形ABCD中,AB=4厘米,EC=10厘米,求阴影部分的面积。 2.在一个直角三角形铁皮上剪下一块正方形,并使正方形面积尽可能大,正方形的面积是多少?(单位:厘米) 【典型例题5】图中ABCD是长方形,三角形EFD的面积比三角形ABF的面积大6平方厘米,AB=4厘米,BC=6厘米。求ED的长。 【对点演练5】1.如图,平行四边形BCEF中, BC=8厘米,直角三角形中,AC=10厘米,阴影 部分面积比三角形ADH的面积大8平方厘米。 求AH长多少厘米? 2.图中三个正方形的边长分别是1厘米、2厘米和3厘米,求图中阴影部分的面积。【答记者问】大家还有什么疑问吗? 【学以致用】 1.有一个梯形,它的上底是5厘米,下底7厘米。如果只把上底增加3厘米,那么面积就增加4.5平方厘米。求原来梯形的面积。 2.求下图(上右图)长方形ABCD的面积(单位:厘米)。 3.下图中,甲三角形的面积比乙三角形的面积大多少平方厘米?

(完整版)五年级图形面积奥数题

五年级图形 1.如图,阴影部分是正方形,则长方形的周长是厘米. 2.下图两个正方形的边长分别是8厘米和6厘米,求阴影部分的 面积? 3.用四个相同的长方形拼成个面积为 49平方厘米的大正方形, 每个长方形的周长是多少厘米? 4.将一个大长方形如下图分割为16个小长方形。图上已标出部 分小长方形的面积。那么,A长方形的面积是多少? 5.如图,三个面积都是20平方厘米正方形,放在一个大正方形的 盒内,它们之间互相叠合,一共把大正方形盖住40平方厘米, 求大正方形的面积. 6.正方形的边长为10,四边形ABCD的面积的面积是6,求阴影部 分的面积。 7. 正方形边长是6cm, 长方形的长是8cm,求长方形宽? 8.长方形ABCD中, 四边形AHEP=12cm2, S△FBP=7cm2, S△ HGD=3cm 2,求四边形EFCG的面积。 9.如图,长方形中,长和宽分别是8cm和4cm, S△HBF与 S△DEP的 面积和是10cm2,求四边形ABCD的面积. 10.长方形的长是10米,宽是8米,ABCD分别在四条边上,且C比B低 4米,D在A的右边3米,四边形ABCD的面积? 11.长方形的长是10米,宽是8米,ABCD分别在四条边上,且B比D低 4米, C在A的左边1米,四边形ABCD的面积? 12.长方形ABCD周长为16米,在它的每条边上各画一个以该边 为边长的正方形,已知这四个正方形的面积和是68平方米,求长方形ABCD的面积 13.正方形边长是10cm,BF⊥AE,BF=8cm,求AE长,(18) 14.如下图,甲乙丙丁四个长方形拼成一个大正方形,已知 甲乙丙丁四个长方形面积的和是48cm2,四边形ABCD的面积是40cm2,求甲乙丙丁四个长方形周长的总和。

小学奥数图形的面积

直线型面积计算(1) 对于三角形的面积计算,我们除了熟练运用基本的计算公式,在技巧性很强的奥数题中还要根据相应的性质和结论来解题,下面就是我们小学奥数常用的三条性质: 【例 1】 如图,长方形ABCD 的面积是56平方厘米,点E 、F 、G 分别是长方形ABCD 边上的中点,H 为AD 边上的任意一点, 求阴影部分的面积. E B A E B A 【分析】 本题是等底等高的两个三角形面积相等的应用. 连接BH 、CH . ∵AE EB =, ∴S S AEH BEH =V V . 同理,S S BFH CFH =V V ,S =S CGH DGH V V , ∴11 S S 562822 ==?=阴影长方形ABCD (平方厘米). [铺垫]你有多少种方法将任意一个三角形分成: ⑴2个面积相等的三角形; ⑵3个面积相等的三角形; ⑶4个面积相等的三角形. [分析] ⑴如右图,D 、E 、F 分别是对应边上的中点,这样就将三角形分成了2个面积相等的三角形; C B A E A B C F C B A ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; ③夹在一组平行线之间的等积变形,如BCD ACD S S ??=; 反之,如果BCD ACD S S ??=,则可知直线AB 平行于CD . D C B A

⑵如右图,D 、E 是BC 的三等分点,F 、G 分别是对应线段的中点;答案不唯一; E D A B C F C B A D G D A B C ⑶如下图,答案不唯一,以下仅供参考. (5) (4)(3)(2)(1) 【例 2】 如图,三角形ABC 的面积为1,其中3AE AB =,2BD BC =,三角形BDE 的面积是多少? E D C B A E D C B A 【分析】 连接CE . ∵3AE AB =,∴2BE AB =,2BCE ACB S S ??=. 又∵2BD BC =,∴244BDE BCE ABC S S S ???===. 【例 3】 如图,三角形ABC 中,2DC BD =,3CE AE =,三角形ADE 的面积是20平方厘米,三角形ABC 的面积是多少? E C B A 【分析】 ∵3CE AE =,∴4AC AE =,4ADC ADE S S ??=; 又∵2DC BD =,∴32BC DC =,3 61202 ABC ADC ADE S S S ???===(平方厘米). [铺垫]如图,三角形ABC 被分成了甲、乙两部分,4BD DC ==,3BE =,6AE =,甲部分面积是乙部分面积的几分之几? 乙甲 E C B A A B C D E [分析] 连接AD . ∵3BE =,6AE =, ∴13BE AB =,1 3 BDE ABD S S ??=. 又∵4BD DC ==, ∴1 2ABD ABC S S ??=, ∴11 36BDE ABD ABC S S S ???==, ∴1 5 S S =乙甲. [拓展]如图,在三角形ABC 中,8BC =厘米,6AD =厘米,E 、F 分别为AB 和AC 的中点,那么三角形EBF 的面积是多少平

五年级数学奥数专题组合图形面积

组合图形面积(一) 【知识点击】 组合图形是由两个或两个以上的简单的几何图形组合而成的。组合的形式分为两种:一是拼合组合,二是重叠组合。由于组合图形具有条件相等的特点,往往使得问题的解决无从下手。要正确解答组合图形的面积,应该注意以下几点: 1.切实掌握有关简单图形的概念、公式,牢固建立空间观念; 2.仔细观察,认真思考,看清所求图形是由哪几个基本图形组合而成的; 3.适当采用增加辅助线等方法帮助解题; 4,采用割、补、分解、代换等方法,可将复杂问题变得简单。 【典型例题1】一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米? 【对点演练1】1.求四边形ABCD的面积。(单位:厘米) 2.已知正方形ABCD的边长是7厘米,求正方形EFGH的面积。 【典型例题2】正图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。求中间长方形的面积。

【对点演练2】1.(如下图)已知大正方形的边长是12厘米,求中间最小正方形的面积。 2.正图长方形ABCD的面积是16平方厘米,E、F都是所在边的中点,求三角形AEF的面积。 【典型例题3】四边形ABCD和四边形DEFG都是正方形,已知三角形AFH的面积是7平方厘米。三角形CDH 的面积是多少平方厘米? 【对点演练3】1.图中两个正方形的边长分别是6厘米和4厘米,求阴影部分的面积。 2.下图中两个完全一样的三角形重叠在一起,求阴影部分的面积。(单位:厘米)

【典型例题4】下图中正方形的边长为8厘米,CE为20厘米,梯形BCDF的面积是多少平方厘米? 【对点演练4】1.如下图,正方形ABCD中,AB=4厘米,EC=10厘米,求阴影部分的面积。 2.在一个直角三角形铁皮上剪下一块正方形,并使正方形面积尽可能大,正方形的面积是多少?(单位:厘米) 【典型例题5】图中ABCD是长方形,三角形EFD的面积比三角形ABF的面积大6平方厘米,AB=4厘米,BC=6厘米。求ED的长。 【对点演练5】1.如图,平行四边形BCEF中,BC=8厘米,直角三角形中,AC=10厘米,阴影部分面积比三角形ADH的面积大8平方厘米。求AH长多少厘米?

最新整理小学五年级奥数组合图形的面积

组合图形的面积 十一右图正方形边长为12厘米,四边形EFGH面积是6平方厘米,那么阴影面积是多少平方厘 米? 分析:S阴影=S AFC+S BDF-2*S EFGH =FC*AB÷2+BF*AB÷2-2*S EFGH =(FC+ BF)*AB÷2-2*S EFGH =BC*AB÷2-2*S EFGH =12*12÷2-2*6=60平方厘米 十二如图,正方形ABCD的边长是12厘米,CE=4厘米。求阴影部分的面积。 分析:△CEF与△AFB相似;CE:AB=4:12=1:3 EF:BF=1:3 S BCE=CE*BC÷2=4*12÷2=24平方厘米,EF:BF=1:3,所以S BCF=3S CFE S CFE=6平方厘米S BCF=18平方厘米;S AFE=18平方厘米 S阴影= S BCF + S AFE =36平方厘米 十三在右图中,三角形EDF的面积比三角形ABE的面积大75平方厘米,已知正方形ABCD 的边长为15厘米,DF的长是多少厘米? 分析:S ACF=(CD+DF)*AC÷2=(15+DF)*15÷2 S ABCD=AB*AC=15*15=225平方厘米 S ACF-S ABCD=(S ACDE+S EDF)-(S ACDE+S ABE) S ACF-S ABCD= S EDF-S ABE=75 (15+DF)*15÷2-225=75 DF=25厘米 十四如图,ABCD是一个长12厘米,宽5厘米的长方形,求阴影部分三角形ACE的面积。 分析:过E点做S AEC的高,其值等于CD,为55厘米 S AEC=AC*CD÷2=12*5÷2=30平方厘米 十五已知正方形乙的边长是8厘米,正方形甲的面积是36平方厘米,那么图中阴影部分的面积 是多少?

五年级奥数组合图形的面积

五年级奥数组合图形的面 积 Prepared on 24 November 2020

组合图形的面积 1.基本平面图形特征及面积公式 特征面积公式 正方形①四条边都相等。 ②四个角都是直角。 ③有四条对称轴。 S=a2 长方形①对边相等。 ②四个角都是直角。 ③有二条对称轴。 S=ab 平行四边形①两组对边平行且相等。 ②对角相等,相邻的两个角之和为180° ③平行四边形容易变形。 S=ah 三角形①两边之和大于第三条边。 ②两边之差小于第三条边。 ③三个角的内角和是180°。 ④有三条边和三个角,具有稳定性。 S=ah÷2 梯形①只有一组对边平行。 ②中位线等于上下底和的一半。 S=(a+b)h÷2 2.基本解题方法: 由两个或多个简单的基本几何图形组合成的组合图形,要计算这样的组合图形面积,先根据图形的基本关系,再运用分解、组合、平移、割补、添辅助线等几种方法将图形变成基本图形分别计算。 1.已知右面的两个正方形边长分别为6分米和4分米,求图中阴影部分的面 积。 2.右图是两个相同的直角三角形叠在一起,求阴影部分的面 积。(单位:厘米) 3.如图,这个长方形的长是9厘米,宽是8厘米,A和B 是宽的中点,求长方形内阴影部分的面积。 4.在右图中,三角形EDF的面积比三角形ABE的面积大6 平方厘米,已知长方形ABDC的长和宽分别为6厘米、4厘 米,DF的长是多少厘米 5.正方形ABCD的面积是100平方厘米,AE=8厘米,CF=6厘

米,求阴影部分的面积。 6.右图是一块长方形公园绿地,绿地长24米,宽16米,中间有一条宽为2米 的道路,求草地(阴影部分)的面积。 7.如图,三角形ABC的面积是24平方厘米,且DC=2AD,E、F分别是AF、BC的中点,那么阴影部分的面积是多少 8.如下图,是一块长方形草地,长方形的长是16米,宽是10米,中间有两条 宽2米的道路,一条是长方形,一条是平行四边形,那么有草部分(阴影部 分)的面积有多大 9.如图,一个三角形的底长5米,如果底延长1米,那么面积就增加2平方 米。问原来的三角形的面积是多少平方米 1米 组合图形的面积作业 1.在右图中,三角形EDF的面积比三角形ABE的面积大75平方厘米,已知正方 形ABCD的边长为15厘米,DF的长是多少厘米 2.如图,ABCD是一个长12厘米,宽5厘米的长方形, 求阴影部分三角形ACE的面积。 3.已知正方形乙的边长是8厘米,正方形甲的面积是 36平方厘米,那么图中阴影部分的面积是多少 4.如图,A、B两点是长方形长和宽的中点,那么阴影部 分占长方形的面积是多少 5.如图,在平行四边形ABCD中,E、F分别是AC、BC的 三等分点,且平行四边形的面积为54平方厘米,求S△ 。 BEF 6.计算右边图形的面积。(至少用3种方法)(单位: 米)

相关文档
最新文档