第六章 动态回归与误差修正模型

第六章 动态回归与误差修正模型
第六章 动态回归与误差修正模型

第6章 动态回归与误差修正模型

本章假定时间序列是平稳的。

6.1 均衡与误差修正机制

1 均衡

均衡指一种状态,达到均衡时将不存在破坏均衡的内在机制。这里只考虑平稳的均衡状态,即当系统受到干扰后会偏离均衡点,而内在均衡机制将努力使系统重新回到均衡状态。

下面通过一个例子说明系统均衡概念。以两个地区某种商品的价格为例,假设地区A 中该商品物价由于某种原因上升时,该商品就会通过批发商从价格低的B地区向价格高的A 地区流动。从而使批发商从中获利。这种活动将直接导致该商品在B地区的需求增加,从而使该商品在B地区的价格上涨。从A地区看,由于增加了该商品的供给,则导致价格下降,反之依然,从而使两各地区的该商品价格趋同。

若称价格A = 价格B的直线表示均衡价格。如上所述,当价格离开这条均衡价格直线后,市场机制这只无形之“手”就会把偏离均衡点的状态重新拉回到均衡状态。随着时间推移,无论价格怎样变化,两个地区的价格都具有向均衡价格调整的趋势。

若两个变量x t , y t永远处于均衡状态,则偏差为零。然而由于各种因素的影响,x t , y t并不是永远处于均衡位置上,从而使u t≠ 0,称u t为非均衡误差。当系统偏离均衡点时,平均来说,系统将在下一期移向均衡点。这是一个动态均衡过程。t期非均衡误差u t是y t下一期取值的重要解释变量。当u t > 0时,说明y t相对于x t取值高出均衡位置。平均来说,变量y t 在t+1期的取值y t+1将有所回落。所以,u t= f (y t , x t) 具有一种误差修正机制。

6.2 分布滞后模型

如果回归模型中不仅包括解释变量的本期值,而且包括解释变量的滞后(过去)值,则这种回归模型称为分布滞后模型。例

y t = α0 + ∑

=?

n

i

i

t

i

x

β+ u t,u t~ IID (0, σ2 ) (6.1)

上述模型的一个明显问题是x t 与x t -1 , x t -2, …, x t - n 高度相关,从而使 βj 的OLS 估计值存在严重偏倚。

实际上,对于分布滞后模型,这并不是一个严重问题,因为人们的注意力并不在单个回归系数上,而是在这些回归系数的和式,∑=n

i i 0β上。通过这个和式可以了解当x t 变化时,

对y t 产生的长期影响。尽管对每个βj 的估计量不是很准确,但这些估计值的和却是相当精确的。

Var(∑=n i i 0?β) = ∑=n i i 0)?(Var β+ 2∑∑=?=n i i k k i 01

0)?,?(Cov ββ, (6.2) 若x t - i 与x t - k , (i ≠ k ) 是正相关的(实际中常常如此),则(6.2)式中的协方差项通常是负的。

当这些项的值很大(绝对值)且为负时,Var (∑=n i i 0?β) 比 0?()n i

i Var β=∑小,甚至比每个Var (i

β?) 还小。 分布滞后模型中的解释变量存在高度相关,克服高度相关的一个方法是在等号右侧加一个被解释变量的滞后项。于是,得到动态模型。

动态模型(自回归模型):如果在回归模型的解释变量中包括被解释变量的一个或几个滞后值,则称这种回归模型为动态模型(或自回归模型)。例如,

y t = α0 + α1 y t -1 + β1 x t + u t

6.3 动态分布滞后模型

如果在分布滞后模型中包括被解释变量的若干个滞后值作解释变量,则称之为动态分布滞后模型或自回归分布滞后模型。例

y t = α0 + ∑=?m i i t i

y 1α+10p n ji jt i j i x β?==∑∑+ u t , u t ~ IID (0, σ 2 ) (6.3)

用ADL (m , n , p ) 表示,其中m 是自回归阶数,p 是分布滞后阶数, n 是外生变量个数。

对ADL (m , n , p ) 模型可采用OLS 法估计,尽管,参数估计量是有偏的,但是,它们是参数的一致估计。

例如,对于AR(1)模型

y t = β y t -1 + u t , | β | < 1, u t ~ IID(0, σ 2) , (6.5) 如果y t ~I(0);y t 具有非零的有限的4阶矩;则

β 的OLS 估计量计算公式是

β? = ????????∑∑=?=?T

t t T t t t y y y 22121. (6.6) 把 (6.5) 式代入 (6.6) 式得

β? = ∑∑∑=?==??+T t t T t T t t t t y

u y y 221

22121

β

= β +????????∑∑=?=?T

t t T

t t t y u y 22121. (6.7) y t -1与u t 是相关的。上式右侧第二项的期望不为零。所以,用OLS 法得到的回归系数估计量是有偏估计量。若对 (6.7) 式右侧第二项的分子分母分别除以(T -1)(样本容量)并求概率极限,

lim p ∞→T β

? = β +∑∑=??∞→=??∞→??T t t T T t t t T y T u y T 2211211]

)

1[(lim p ])

1[(lim p = β (6.8)

可见β

?也是一致估计量。 最常见的是ADL (1, 1,1) 和ADL (2,1, 2) 模型,

y t = α0 + α1 y t -1 + β0 x t + β1 x t -1 + u t , u t ~ IID (0, σ 2 ), (6.9) 和

y t = α0 + α1 y t -1 + α2 y t -2 + β0 x t + β1 x t -1 + β2 x t -2 + u t , u t ~ IID (0, σ 2 )

对于ADL (1, 1,1) 模型 (6.9),x t 和 y t 的长期关系是

y t = 101αα?+1

101αββ?+x t = θ0 + θ1 x t , (6.10) 其中,式(6.10)被称为静态模型,参数被称为静态参数或长期参数。

长期参数描述了变量之间的均衡关系。动态模型 (6.9) 中的参数称作动态参数或短期参数。短期参数描述了变量通向均衡状态过程中的非均衡关系。通过对α0 , β0 和 β1 施加约束条件,从ADL 模型(6.9)可以得到许多特殊的经济模型。下面以9种约束条件为例,给出特定模型如下:

(1) 当 α1 = β1 = 0 成立,模型(6.9)变为

y t = α0 + β0 x t + u t . (6.11) 即,静态回归模型。

(2) 当 β0= β1= 0时,由模型(6.9)得

y t = α0 + α1 y t -1 + u t . (6.12) 即,一阶自回归模型。

(3) 当 α1 = β0 = 0 时,则有

y t = α0 + β1 x t -1 + u t . (6.13) x t -1是y t 的超前指示变量。此模型称为前导模型。

(4) 当约束条件是α1 =1,β1 = - β0时,(6.9)式变为

Δ y t = α0 + β0 Δ x t+ u t . (6.14) 这是一个一阶差分模型。当x t与y t为对数形式时,上述模型为增长率模型。

(5) 若α1 = 0成立,模型(6.9)则变为一阶分布滞后模型。

y t = α0 + β0 x t+β1 x t - 1 + u t. (6.15) (6) 取β1 = 0,则模型(6.9)变为标准的局部调整模型(偏调整模型)。

y t = α0 + α1 y t -1 + β0x t+ u t.(6.16) (7) 当β0 = 0 时,由模型(6.9)得

y t = α0 + α1 y t -1 + β1 x t -1 + u t . (6.17) 模型中的解释变量只有变量的滞后值,y t的值仅依靠滞后信息。这种模型称为“盲始”模型。

(8)给定β1 = - α1 ,模型(6.9)化简为

y t = α0 + α1 ( y t-1 - x t-1 ) + β0 x t+ u t(6.18) 此模型称为比例响应模型。解释变量为x t与 ( y t-1- x t-1)。

6.4“一般到特殊”建模方法

以上所列举的例子说明实际上许多有特殊经济意义的模型都是由一个一般的ADL模型化简得到的。这种建立模型的方法是首先从一个包括了尽可能多解释变量的“一般”ADL 模型开始,通过检验回归系数的约束条件逐步剔除那些无显著性变量,压缩模型规模,(在这个过程中要始终保持模型随机误差项的非自相关性。)最终得到一个简化(或“特殊”)的模型。这种方法称为“一般到特殊”建模法。也称作亨德里(Hendry)建模法。关于检验约束条件是否成立的方法将在后面讨论。

众所周知,模型若丢失重要解释变量将导致回归系数的OLS估计量丧失无偏性和一致性。“一般到特殊”建模法的主要优点是能够把由于选择变量所带来的设定误差减到最小。因为在初始模型中包括了许多变量,所以不会使回归系数的OLS估计量存在丢失变量误差。虽然因为在初始模型中包括了许多非重要解释变量,从而使回归参数估计量缺乏有效性,但随着检验约束条件的继续,那些非重要的解释变量被逐步剔除掉,从而使估计量缺乏有效性的问题得到解决。

6.5 动态模型的若干检验方法

在用“一般到特殊”方法建立模型时的,首先应对初始模型(即对回归参数不加任何约束的动态分布滞后模型)的随机误差项进行异方差和自相关检验。对模型的其他检验都应建立在随机误差项是一个白噪声序列的基础之上。在检验约束条件是否成立的过程中逐步剔除不显著变量,化简模型,同时还要保持模型随机误差项的非自相关性和同方差性不被破坏。在这个过程中要用到许多统计量。下面介绍一些常用的检验方法。

1.F检验

把样本数据取对数后建立回归模型,随机误差项一般不会存在异方差。对于随机误差项

的一阶自相关检验可用DW 统计量完成。对于ADL 模型(6.9),约束条件(5),(6),(7)和(10),即 α1 = 0,β1 = 0,β0 = 0 和 α1 + β0 + β1 - 1 = 0(见6.2和6.3节)的是否成立可用t 检验完成。如果t 统计量的绝对值大于临界值,则相应约束条件不成立,相应解释变量不能轻易地从模型中剔除掉。否则接受相应约束条件,从模型中剔除相应解释变量。

对于联合线性约束条件(1),(2),(3)和(4)(见6.2节)可用F 检验完成。假定模型误差项服从正态分布,共有m 个线性约束条件,则所用统计量是

F = )

/(/)(k T SSE m SSE SSE u u r ?? (6.45) 其中SSE r 表示施加约束条件后估计模型的残差平方和,SSE u 表示未施加约束条件的估计模型的残差平方和,m 表示约束条件个数,T 表示样本容量,k 表示未加约束的模型中被估参数的个数。在零假设“约束条件真实”条件下,

F ~ F ( m , T – k )

因为两个模型都是用OLS 法估计的,所以可把被解释变量的总平方和(SST )分解为回归平方和 (SSR ) 与误差平方和(SSE )两部分。对于不加约束的模型有

SST = SSR u + SSE u .

对于施加约束条件的模型有,

SST = SSR r + SSE r .

如果约束条件成立,那么在施加约束条件下求到的SSE r 不会比不加约束条件的SSE u 大很多,用样本计算的F 值不会很大。若F 值小于临界值,则约束条件是可接受的(真实的)。否则应该拒绝零假设。注意,F 检验的零假设是m 个约束条件同时为零,备择假设是m 个约束条件不同时为零。所以拒绝零假设并不排除有部分约束条件为零。应利用t 检验进一步对每一个参数进行显著性判别。

比如对ADL 模型(6.9)检验联合约束条件 α1 = β1 = 0,

则(6.9)式为无约束模型,(6.11) 式为约束模型。

y t = α0 + α1 y t -1 + β0 x t + β1 x t -1 + u t , u t ~ IID (0, σ 2 ), (无约束模型) (6.9) y t = α0 + β0 x t + u t . (约束模型) (6.11) 用SSE u 和SSE r 分别表示对(6.9)和(6.11)式进行OLS 估计得到的SSE ,F 统计量按下式计算

F = )

4/(2/)(??T SSE SSE SSE u u r 其中2表示约束条件个数,T 表示样本容量,4表示无约束模型(6.9)中被估计参数的个数。 判别规则是,

若F < F α (2, T - 4),则接受两个约束条件,

若F > F α (2, T - 4),则拒绝两个约束条件同时成立。

2 似然比(LR )检验

以上介绍的t 检验和F 检验只适用于对线性约束条件的检验。对于6.2节中的约束条件

(9),α1 β0 + β1 = 0,则无法用t 或F 检验完成。下面介绍三种常用的检验方法,即似然比(LR )检验,沃尔德(W )检验和拉格朗日(lagrange )乘数(LM )检验。这三种检验所用

统计量都是利用极大似然估计法计算的。LR 检验由内曼—皮尔逊(Neyman-Pearson 1928)提出,只适用于对线性约束的检验。W 检验和LM 检验既适用于对线性约束条件的检验,也适用于对非线性约束条件的检验。

首先介绍LR 检验。LR 检验的基本思路是如果约束条件成立则相应约束模型与非约束模型的极大似然函数值应该是近似相等的。用

log L (β?,2?σ) = -2T log 2π2?σ-σ?2?2

∑t e (6.53) 表示非约束模型的极大似然函数。其中β

?和2?σ分别是对 β(参数集合),σ 2 的极大似然估计。用

log L (β~,2~σ) = -2

T log 2π2~σ-σ~2?2

∑t e (6.54) 表示约束模型的极大似然函数。其中β~和2~σ分别是对 β 和 σ 2 的极大似然估计。定义似然比(LR )统计量为

LR = - 2 [ log L (β~, 2~σ) - log L (β

?, 2?σ) ] (6.55) 中括号内是两个似然函数之比(似然比检验由此而得名)。在零假设约束条件成立条件下

LR ~ χ 2(m ) (6.56) 其中m 表示约束条件个数。用样本计算LR 统计量。判别规则是,

若LR < χ 2α (m ) , 则接受零假设,约束条件成立。

若LR > χ 2α (m ) , 则拒绝零假设,约束条件不成立。

再看前面的例子,(6.9)式为无约束模型。(6.11)式为约束模型。

y t = α0 + α1 y t -1 + β0 x t + β1 x t -1 + u t , u t ~ IID (0, σ 2 ), (无约束模型) (6.9) y t = α0 + β0 x t + u t . (约束模型) (6.11) 约束条件为 α1 = β1 = 0。在零假设成立条件下,

LR ~ χ 2(2) .

LR 统计量只适用于对线性约束条件的检验。对非线性约束条件应该采用如下两种检验方法。

6.6 误差修正模型(ECM )

误差修正模型由Sargan 1964年提出,最初用于库存管理问题建模。1977年由Hendry 、Anderson 和Davidson 完善,ECM 模型由 ADL (m , n , p ) 模型变换而来。

下面通过ADL (1,1, 1) 模型推导简单的ECM 模型。对于ADL (1,1, 1) 模型,

y t = α0 + α1 y t -1 + β0 x t + β1 x t -1 + u t , | α1 | < 1, u t ~ IID (0, σ 2 ), (6.12) 其中u t 不存在自相关和异方差。

如果这个条件不能满足,可通过增加x t 和 y t 的滞后项或加入新的变量使u t 满足要求。 从上式两侧同时减y t -1,在右侧同时加减 β0 x t -1得,

Δy t = α0 + β0Δx t + (α1 -1) y t-1 + (β0+ β1)x t-1+ u t(6.13)

上式右侧第三、四项合并,

Δy t = α0 + β0Δx t + (α1 - 1) ( y t-1 - k1 x t-1) + u t(6.14)

则称式(6.14)为ECM模型,(α1 -1) ( y t-1- k1 x t-1) 称为误差修正项。( y t -1- k1 x t -1) 表示前一期的非均衡误差,其中k1 = (β0+ β1) / (1 - α1 )。

显然,在上述变换中没有破坏恒等关系,所以不会影响模型对样本数据的解释能力,也不会改变OLS估计量的性质。

由式(6.12)知,若y t平稳,必有|α1 | < 1,所以非均衡误差项的系数(α1 -1) 必为负。说明误差修正项对Δy t有一个反向修正作用。当前一期y t,即y t-1相对于均衡点取值过高(低)时,通过误差修正项的反向修正作用,使本期Δy t减小(增加),y t 向均衡位置移动。(α1 -1) 表示误差修正项对Δy t的调节速度。进一步变换 (6.14) 式

Δy t = β0Δx t + (α1- 1) ( y t-1 - k0 - k1 x t-1) + u t(6.15)

其中k0 = α0 / (1 - α1 ),( y t -1 - k0 - k1 x t –1 ) 是x t和y t的长期关系,Δy t = β0Δx t + (α1- 1) (?) 是x t和y t的短期关系。

当约束条件α1 + β0 + β1 =1成立时,模型(6.15)变为

Δ y t = β0Δ x t + (α1 - 1) [ y t-1 - k0 - x t-1 ] + u t,(6.16)这是一个k1 = 1的特殊误差修正模型。

ECM模型的特点

ECM模型有如下特点:

⑴上述模型中的Δ y t,Δ x t 和非均衡误差项都是平稳的。应用最小二乘法估计模型时,参数估计量都具有优良的渐进特性。在第7章可以看到,即使变量是非平稳的,只要存在协整关系,误差修正模型也不会存在虚假回归问题。

⑵误差修正模型中既有描述变量长期关系的参数,又有描述变量短期关系的参数;既可研究经济问题的静态(长期)特征又可研究其动态(短期)特征。

⑶误差修正模型中的变量不存在多重共线性问题。

⑷u t是非自相关的。如果u t是自相关的,可在模型中加入Δy t和Δx t的足够多滞后项,从而消除u t的自相关。同时相应加大误差修正项的滞后期。

⑸建模过程中允许根据t检验和F检验剔除ECM模型中的差分变量。在ECM模型中剔除差分变量,相当于在原ADL 模型中施加一个约束条件。例如剔除差分变量Δx t,相当于在原ADL(1,1, 1) 模型中施加约束条件,β0 = 0。

⑹在非均衡误差项中剔除任何滞后变量都是危险的,这将影响长期关系的表达。

⑺模型中的k0 , k1未知,ECM模型不能直接被估计。估计方法是①若变量为平

ECM

稳变量或者为非平稳变量但存在长期均衡关系,可以把误差修正项的括号打开,对模型直接用OLS法估计。②先估计长期均衡关系,然后把估计的非均衡误差作为误差修正项代入ECM 模型,并估计该模型。

案例:中国国债发行额模型

首先分析中国国债发行额序列的特征。1980年国债发行额是43.01亿元(占GDP的1%),2001年国债发行额是4604亿元(占GDP的4.8%)。以当年价格计算,21年间(1980-2001)增长了106倍。平均年增长率是24.9%。

1000

20003000

4000

5000

8082848688909294969800DEBT

中国当前正处在社会主义市场经济逐步完善,宏观经济平稳运行的阶段。国债发行总量(DEBT t ,亿元)应该与经济总规模,财政赤字的多少,每年的还本付息能力有关系。选择3个解释变量,国内生产总值(百亿元),财政赤字额(亿元),年还本付息额(亿元),根据散点图建立中国国债发行额(DEBT t ,亿元)模型如下:

DEBT t = β0 +β1 GDP t +β2 DEF t +β3 REP AY t + u t

其中GDP t 表示年国内生产总值(百亿元),DEF t 表示年财政赤字额(亿元),REP AY t 表示年还本付息额(亿元)。用1980-2000年数据得输出结果如下;

DEBT t = 4.38 +0.34 GDP t +1.00 DEF t +0.88 REP AY t (6.17)

(0.2) (2.1) (26.6) (17.2)

R 2 = 0.9986, DW=2.12, T =21, (1980-2000) , SSE = 48447.75

用F 统计量检验是否可以对上式施加约束GDP t 和DEF t 的系数β1 =0,β2 = 0。给出约束模型估计结果如下,

DEBT t = 104.85 +1.63 REP AY t (6.18)

(0.8) (12.4)

R 2 = 0.89, DW=0.7, T =21, (1980-2000) , SSE = 3772378

F =)/(/)(k T SSE m SSE SSE u u r ??=)

421/(75.484472/)75.484473772378(??= 653.35 因为F = 653.35 > F 0。

05 (2 , 17),约束条件不成立,不应在模型中删除变量GDP t 和DEF t 。 附录:

EViews 操作(1):在估计窗口中点击View ,选Coefficient Tests, Redundant Variables -Likelihood Ratio 功能(模型中是否存在多余的不重要解释变量),在随后弹出的对话框中填入拟删除变量GDP ,DEF 。可得如下结果。

EViews 操作(2):在估计窗口中点击View ,选Coefficient Tests, Omitted Variables -Likelihood Ratio 功能(模型中是否丢了重要的解释变量),在随后弹出的对话框中填入拟加入的解释变量GDP ,DEF 。也可得到如上结果。

误差修正模型实例(精)

一、误差修正模型的构造 对于yt的(1,1阶自回归分布滞后模型: 在模型两端同时减yt-1,在模型右端,得: 其中,,,。 记(5-5) 则(5-6) 称模型(5-6)为“误差修正模型”,简称ECM。 二、误差修正模型的含义 如果yt ~ I(1,x t ~ I(1,则模型(5-6)左端,右端,所以只有当yt和x t协整、即yt和x t之间存在长期均衡关系时,式(5-5)中的ecm~I(0,模型(5-6)两端的平稳性才会相同。 当yt和x t协整时,设协整回归方程为:

它反映了yt与x t的长期均衡关系,所以称式(5-5)中的ecm t-1是前一期的“非均衡误差”,称误差修正模型(5-6) 中的是误差修正项,是 修正系数,由于通常 ,这样;当ecm t-1 >0时(即出现正误差),误差修正项< 0,而ecm t-1 < 0时(即出现负误差), > 0,两者的方向恰好相反,所以,误差修正是一个反向 调整过程(负反馈机制)。 误差修正模型有以下几个明确的含义: 1.均衡的偏差调整机制 2.协整与长期均衡的关系 3.经济变量的长期与短期变化模型 长期趋势模型: 短期波动模型: 三、误差修正模型的估计 建立ECM的具体步骤为: 1.检验被解释变量y与解释变量x(可以是多个变量)之间的协整性; 2.如果y与x存在协整关系,估计协整回归方程,计算残差序列e t:

3.将e t-1作为一个解释变量,估计误差修正模型: 说明: (1)第1步协整检验中,如果残差是确定趋势过程,可以在第2步的协整回归方程中加入趋势变量; (2)第2步可以估计动态自回归分布滞后模型: 此时,长期参数为: 协整回归方程和残差也相应取成: , (3)第2步估计出ECM之后,可以检验模型的残差是否存在长期趋势和自相关性。如果存在长期趋势,则在ECM中加入趋势变量。如果存在自相关性,则在ECM的右端加入 误差修正项的滞后期一般也要作相应 调整。 如取成以下形式:

误差修正模型

第二节 误差修正模型(Error Correction Model ,ECM ) 一、误差修正模型的构造 对于y t 的(1,1)阶自回归分布滞后模型: t t t t t y x x y εβββα++++=--12110 在模型两端同时减y t-1,在模型右端10-±t x β,得: t t t t t t t t t t t t t x y x x y x y x x y εααγβεββββαββεββββα+--+?=+---+--+?=+-+++?+=?------)(]) 1()1()[1()1()(1101012120120121100 其中,12-=βγ,)1/()(200ββαα-+=,)1/(211ββα-=。 记 11011-----=t t t x y ecm αα (5-5) 则 t t t t ecm x y εγβ++?=?-10 (5-6) 称模型(5-6)为“误差修正模型”,简称ECM 。 二、误差修正模型的含义 如果y t ~ I(1),x t ~ I(1),则模型(5-6)左端)0(~I y t ?,右端)0(~I x t ?,所以只有当y t 和x t 协整、即y t 和x t 之间存在长期均衡关系时,式(5-5)中的ecm~I(0),模型(5-6)两端的平稳性才会相同。 当y t 和x t 协整时,设协整回归方程为: t t t x y εαα++=10 它反映了y t 与x t 的长期均衡关系,所以称式(5-5)中的ecm t -1

是前一期的“非均衡误差”,称误差修正模型(5-6)中的1-t ecm γ是误差修正项,12-=βγ是修正系数,由于通常1||2<β,这样 0<γ; 当ecm t -1 >0时(即出现正误差),误差修正项1-t ecm γ< 0,而ecm t -1 < 0时(即出现负误差),1-t ecm γ> 0,两者的方向恰 好相反,所以,误差修正是一个反向调整过程(负反馈机制)。 误差修正模型有以下几个明确的含义: 1.均衡的偏差调整机制 2.协整与长期均衡的关系 3.经济变量的长期与短期变化模型 长期趋势模型: t t t x y εαα++=10 短期波动模型: t t t t ecm x y εγβ++?=?-10 三、误差修正模型的估计 建立ECM 的具体步骤为: 1.检验被解释变量y 与解释变量x (可以是多个变量)之间的协整性; 2.如果y 与x 存在协整关系,估计协整回归方程,计算残差序列e t : t t t x y εβα++=0 t t t x y e 0??βα--= 3.将e t-1作为一个解释变量,估计误差修正模型: t t t t v e x y ++?=?-10γβ 说明: (1)第1步协整检验中,如果残差是确定趋势过程,可以在第2步的协整回归方程中加入趋势变量; (2)第2步可以估计动态自回归分布滞后模型: t i t i i t i t y x y εβαα∑∑+++=-- 此时,长期参数为: ∑∑-=)1(i i βαθ 协整回归方程和残差也相应取成:

协整检验及误差修正模型实验指导

协整检验及误差修正模型实验指导 一、实验目的 理解经济时间序列之间的理论关系,并学会用统计方法验证他们之间的关系。学会验证时间序列存在的不平稳性,掌握ADF检验平稳性的方法。认识不平稳的序列容易导致虚假回归问题,掌握为解决虚假回归问题引出的协整检验,协整的概念和具体的协整检验过程。协整描述了变量之间的长期关系,为了进一步研究变量之间的短期均衡是否存在,掌握误差纠正模型方法。 二、实验内容及要求 1、实验内容 用Eviews来分析1982年到2002年中国居民实际消费支出的对数序列和中国居民实际可支配收入的对数序列{}之间的关系。内容包括: (1)对两个对数序列分别进行ADF平稳性检验; (2)进行二者之间的协整关系检验; (3)若存在协整关系,建立误差修正模型ECM。 2、实验要求 (1)在认真理解本章内容的基础上,通过实验掌握ADF检验平稳性的方法; (2)掌握具体的协整检验过程,以及误差修正模型的建立方法; (3)能对宏观经济变量间的长期均衡关系进行分析。 三、实验指导 1、对两个数据序列分别进行平稳性检验: (1)做时序图看二者的平稳性 在workfile中按住ctrl选择要检验的二变量,击右键,选择open—as group,此时他们可以作为一个数据组被打开。点击“View”―“graph”—“line”,得到两个序列的时序图。 给出两个序列的时序图。 从上图可以看出两个序列都呈上升趋势,显然不平稳,但二者有大致相同的增长和变化趋势,说明二者可能存在协整关系。但若要证实二者有协整关系,必须先看二者的单整阶数,如果都是一阶单整,则可能存在协整关系,若单整地阶数不相同,则需采取差分的方式,

协整检验及误差修正模型实验指导

实验八 协整检验及误差修正模型实验指导 一、实验目的 理解经济时间序列之间的理论关系,并学会用统计方法验证他们之间的关系。学会验证时间序列存在的不平稳性,掌握ADF 检验平稳性的方法。认识不平稳的序列容易导致虚假回归问题,掌握为解决虚假回归问题引出的协整检验,协整的概念和具体的协整检验过程。协整描述了变量之间的长期关系,为了进一步研究变量之间的短期均衡是否存在,掌握误差纠正模型方法。 二、基本概念 设随机向量t X 中所含分量均为d 阶单整,记为t X I(d ):。如果存在一个非零向量β,使得随机向量()~t t Y X I d b =-β,0b >,则称随机向量t X 具有d ,b 阶协整关系,记为t X CI(d ,b ):,向量β被称为协整向量。特别地,t y 和t x 为随机变量,并且t y ,~(1)t x I ,当01()~I(0)t t t y x εββ=-+,即t y 和t x 的线性组合与I(0)变量有相同的统计性质,则称t y 和t x 是协整的,()01,ββ称为协整系数。更一般地,如果一些I(1)变量的线性组合是I(0),那么我们就称这些变量是协整的。 三、实验内容及要求 1、实验内容 用Eviews5.1来分析1978年到2002年中国农村居民对数生活费支出序列{ln }t y 和对数人均纯收入{ln t x }序列之间的关系。内容包括: (1)对两个对数序列分别进行ADF 平稳性检验; (2)进行二者之间的协整关系检验; (3)若存在协整关系,建立误差纠正模型ECM 。 2、实验要求 (1)在认真理解本章内容的基础上,通过实验掌握ADF 检验平稳性的方法; (2)掌握具体的协整检验过程,以及误差纠正模型的建立方法; (3)能对宏观经济变量间的长期均衡关系进行分析。 四、实验指导 1、对两个数据序列分别进行平稳性检验: (1)做时序图看二者的平稳性 首先按前面介绍的方法导入数据,在workfile 中按住ctrl 选择要检验的二变量,击右键,选择open —as group ,此时他们可以作为一个数据组被打开。 点击“View ”―“graph ”—“line ”,对两个序列做时序图见图8-1,两个序列都呈上升趋势,显然不平稳,但二者有大致相同的增长和变化趋势,说明二者可能存在协整关系。但若要证实二者有协整关系,必须先看二者的单整阶数,如果都是一阶单整,则可能存在协整关系,若单整地阶数不相同,则需采取差分的方式,将他们变成一阶单整序列。 图8-1 ln t x 和ln t y 时序图

第5章 动态回归与误差修正模型(案例)汇总

例:(file: break2)东北、华北、华东、华中21省市1993和1998年耕地面积(land ,百万公顷)和农业产值(Y , 百亿元)数据见图(已取对数)。用圆圈表示的观测点为1993年数据,用三角表示的观测点为1998年数据。大体看各省市1998年耕地面积比1993年耕地面积略有减少,产值却都有增加。以1993和1998年数据为两个子样本,以42个数据为总样本,求得残差平方和见下表 -10 12 3 -2 -1 1 2 3 LOG(LAND) LOG(Y93)LOG(Y98) -10 1 2 3 -2 -1 1 2 3 LOG(LAND) LOG(Y93)LOG(Y98) 样本容量 残差平方和 相应自由度 回归系数 1 T = 42 SSE T = 14.26 T - k = 40 2 n 1= 21 SSE 1 = 4.37 n 1 - k = 19 α1 3 n 2= 21 SSE 2 = 3.76 n 2 - k = 19 β1 注:三次回归的模型形式Lnout t = β0 +β1 Lnland t + u t 。 因为, F = ) 2/()(/)]([2121k T SSE SSE k SSE SSE SSE T -++-= 38 /)76.337.4(2 /)]76.337.4(26.14[++-= 14.33 > F (1, 40) = 7.31

所以两个年度21省市的农业生产发生了很大变化。

案例1:开滦煤矿利润影响因素的实证分析(1903-1940,动态分布滞后模型,file:LH1) (发表在《学术论坛》,2003.1, p. 88-90) 1000 2000300040005000600005 10 15 20 25 30 35 40 销煤量 x1 图 1 开滦煤矿销煤量变化曲线(x 1, 1903-1940) 2 4681012141605 10 15 20 25 30 35 40 吨煤售价 X2 图2 开滦煤矿吨煤售价变化曲线(x 2, 1903-1940)

ECM误差修正模型

协整与误差修正模型 在处理时间序列数据时,我们还得考虑序列的平稳性。如果一个时间序列的均值或自协方差函数随时间而改变,那么该序列就是非平稳的。对于非平稳的数据,采用传统的估计方法,可能会导致错误的推断,即伪回归。若非平稳序列经过一阶差分变为平稳序列,那么该序列就为一阶单整序列。对一组非平稳但具有同阶的序列而言,若它们的线性组合为平稳序列,则称该组合序列具有协整关系。对具有协整关系的序列,我们算出误差修正项,并将误差修正项的滞后一期看做一个解释变量,连同其他反映短期波动关系的变量一起。建立误差修正模型。 建立误差修正模型的步骤如下:首先,对单个序列进行单根检验,进行单根检验有两种:ADF (Augument Dickey-Fuller )和DF(Dickey-Fuller)检验法。若序列都是同阶单整,我们就可以对其进行协整分析。在此我们只介绍单个方程的检验方法。对于多向量的检验参见Johensen 协整检验。我们可以先求出误差项,再建立误差修正模型,也可以先求出向量误差修正模型,然后算出误差修正项。补充一点的是,误差修正模型反映的是变量短期的相互关系,而误差修正项反映出变量长期的关系。下面我们给出案例分析。 案例分析 在此,我们考虑从1978年到2002年城镇居民的人均可支配收入income 与人均消费水平consume 的关系,数据来自于《中国统计年鉴》,如表8.1所示。根据相对收入假设理论,在一定时期,人们的当期的消费水平不仅与当期的可支配收入、而且受前期的消费水平的影响,具有一定的消费惯性,这就是消费的棘轮效应。从这个理论出发,我们可以建立如下(8.1)式的模型。同时根据生命周期假设理论,消费者的消费不仅与当期收入有关,同时也受过去各项的收入以及对将来预期收入的限制和影响。从我们下面的数据分析中,我们可以把相对收入假设理论与生命周期假设理论联系起来,推出如下的结果:当期的消费水平不仅与当期的可支配收入有关,而且还与前期的可支配收入、前两期的消费水平有关。在此先对人均可支配收入和人均消费水平取对数,同时给出如下的模型 t t t lincome lconsume lconsume 2110?+?+?=- t=1,2,…,n (8.1) 如果当期的人均消费水平与当期的人均可支配收入及前期的人均消费水平均为一阶单整序列,而它们的线性组合为平稳序列,那么我们可以求出误差修正序列,并建立误差修正模型,如下: t ecm lconsume lincome lconsume t t t t 4131210βββββ++?+?+=?-- t=1,2,…,n (8.2) t ecm = 12110--?-?-?-t t t lincome lconsume lconsume t=1,2,…,n (8.3) 从(8.2)式我们可以推出如下的方程: t lincome lincome lconsume lconsume lconsume t t t t t 4030123222131131)()()1(ββββββββββ+?-+?--+?--++=---(8.4) 在(8.2)中lconsume ?、 lincome ?分别为变量对数滞后一期的值,)1(-ecm 为误差修正项,如(8.3)式所示。(8.2)式为含有常数项和趋势项的形式,我们省略了只含趋

stata-误差修正模型讲解

误差修正模型: 如果用两个变量,人均消费y 和人均收入x (从格林的数据获得)来研究误差修正模型。 令z=(y x )’,则模型为: t t k i i t t z p z A z επ+?++=?-=-∑11 10 其中,'αβπ= 如果令1=k ,即滞后项为1,则模型为 t t t t z p z A z επ+?++=?--1110 实际上为两个方程的估计: t t t t t y t x p y p x b y b a y 1112111112111ε+?+?+++=?---- t t t t t x t x p y p x b y b a x 2122121122121ε+?+?+++=?---- 用ols 命令做出的结果: gen t=_n tsset t time variable: t, 1 to 204 gen ly=L.y (1 missing value generated) gen lx=L.x (1 missing value generated) reg D.y ly lx D.ly D.lx Source | SS df MS Number of obs = 202 -------------+------------------------------ F( 4, 197) = 21.07 Model | 37251.2525 4 9312.81313 Prob > F = 0.0000 Residual | 87073.3154 197 441.996525 R-squared = 0.2996 -------------+------------------------------ Adj R-squared = 0.2854 Total | 124324.568 201 618.530189 Root MSE = 21.024 ------------------------------------------------------------------------------ D.y | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- ly | .0417242 .0187553 2.22 0.027 .0047371 .0787112 lx | -.0318574 .0171217 -1.86 0.064 -.0656228 .001908 ly | D1. | .1093189 .082368 1.33 0.186 -.0531173 .2717552 lx | D1. | .0792758 .0566966 1.40 0.164 -.0325344 .1910861 _cons | 2.533504 3.757158 0.67 0.501 -4.875909 9.942916 这是t t t t t y t x p y p x b y b a y 1112111112111ε+?+?+++=?----的回归结果,其中y a =2.5335,

误差修正模型案例

大型作业报告 课程名称计量经济学 课程代码142102601 题目误差修正模型 专业经济学 班级2010271 成员陈晓燕

上海电力学院经济与管理学院

计量经济学大型作业评分表 备注: 课程设计报告的质量70%,分4个等级: 1、按要求格式书写,计算正确,方案合理,内容完整,绘图规范整洁,符合任务书的要求35-40 2、按要求格式书写,计算较正确,有少量错误,方案较合理,内容完整,绘图较规范整洁,基本符合任务书的要求26-34 3、基本按要求格式书写,计算较正确,有部分错误,方案较合理,内容基本完整,绘图不规范整洁,基本符合任务书的要求15-25 4、基本按要求格式书写,计算错误较多,方案不合理,内容不完整,绘图不规范整洁,不符合任务书的要求0-14 工作态度30%,分4个等级: 1、很好,积极参与,答疑及出勤情况很好16-20 2、良好,比较能积极参与,答疑情况良好但有少量缺勤记录,或答疑情况

一般但出勤情况良好11-15 3、一般,积极性不是很高,基本没有答疑记录,出勤情况较差6-10 4、欠佳,不认真投入,且缺勤很多,也没有任何答疑记录0-5 实验报告 一、实验目的与要求 1、掌握时间序列的ADF平稳性检验; 2、掌握双变量的Engel-Granger检验; 3、掌握双变量的误差修正模型; 4、熟练使用Eviews软件建立误差修正模型。 二、实验内容 依据1978-2010年我国人均消费和人均GDP的数据,完成以下内容。 1、对实验数据进行单位根检验; 2、利用E-G两步法对实验数据进行协整检验; 3、根据实验数据的关系,建立误差修正模型,估计并进行解释。 三、实验步骤 (1)收集数据

误差修正模型.

第二节误差修正模型(Error Correction Model,ECM) 一、误差修正模型的构造 对于yt的(1,1阶自回归分布滞后模型: 在模型两端同时减yt-1,在模型右端,得: 其中,,,。 记(5-5) 则(5-6) 称模型(5-6)为“误差修正模型”,简称ECM。 二、误差修正模型的含义 如果yt ~ I(1,xt ~ I(1,则模型(5-6)左端 ,右端,所以只有当yt和xt协整、即yt 和xt之间存在长期均衡关系时,式(5-5)中的 ecm~I(0,模型(5-6)两端的平稳性才会相同。 当yt和xt协整时,设协整回归方程为:

它反映了yt与xt的长期均衡关系,所以称式(5-5)中的ecmt-1是前一期的“非均衡误差”,称误差修正模型(5-6)中的是误差修正项,是修正系数,由于通常 ,这样;当ecmt-1 >0时(即出现正误差),误差 修正项< 0,而ecmt-1 < 0时(即出现负误差), > 0,两者的方向恰好相反,所以,误差修正是一个反向 调整过程(负反馈机制)。 误差修正模型有以下几个明确的含义: 1.均衡的偏差调整机制 2.协整与长期均衡的关系 3.经济变量的长期与短期变化模型 长期趋势模型: 短期波动模型: 三、误差修正模型的估计 建立ECM的具体步骤为: 1.检验被解释变量y与解释变量x(可以是多个变量)之间的协整性; 2.如果y与x存在协整关系,估计协整回归方程,计算残差序列e t:

3.将e t-1作为一个解释变量,估计误差修正模型: 说明: (1)第1步协整检验中,如果残差是确定趋势过程,可以在第2步的协整回归方程中加入趋势变量; (2)第2步可以估计动态自回归分布滞后模型: 此时,长期参数为: 协整回归方程和残差也相应取成: , (3)第2步估计出ECM之后,可以检验模型的残差是否存在长期趋势和自相关性。如果存在长期趋势,则在ECM中加入趋势变量。如果存在自相关性,则在ECM的右端加入的滞后项来消除自相关性,误差修正项的滞后期一般也要作相应调整。如取成以下形式: 由于模型中的各项都是平稳变量,所以可以用t检验判断各项的显著性,逐个剔除其中不显著的变量,当然误差修正项要尽可能保留。

协整检验及误差修正模型实验指导(精)

实验八协整检验及误差修正模型实验指导 一、实验目的 理解经济时间序列之间的理论关系,并学会用统计方法验证他们之间的关系。学会验证时间序列存在的不平稳性,掌握ADF检验平稳性的方法。认识不平稳的序列容易导致虚假回归问题,掌握为解决虚假回归问题引出的协整检验,协整的概念和具体的协整检验过程。协整描述了变量之间的长期关系,为了进一步研究变量之间的短期均衡是否存在,掌握误差纠正模型方法。 二、基本概念 设随机向量中所含分量均为阶单整,记为。如果存在一个非零向量,使得随机向量,,则称随机向量具有阶协整关系,记为 ,向量被称为协整向量。特别地,和为随机变量,并且,,当,即和的线性组合与变量有相同的统计性质,则称和是协整的,称为协整系数。更一般地,如果一些变量的线性组 合是,那么我们就称这些变量是协整的。 三、实验内容及要求 1、实验内容 用Eviews5.1来分析1978年到2002年中国农村居民对数生活费支出序列和对数人均纯收入{}序列之间的关系。内容包括: (1)对两个对数序列分别进行ADF平稳性检验; (2)进行二者之间的协整关系检验; (3)若存在协整关系,建立误差纠正模型ECM。 2、实验要求 (1)在认真理解本章内容的基础上,通过实验掌握ADF检验平稳性的方法; (2)掌握具体的协整检验过程,以及误差纠正模型的建立方法; (3)能对宏观经济变量间的长期均衡关系进行分析。 四、实验指导 1、对两个数据序列分别进行平稳性检验: (1)做时序图看二者的平稳性

首先按前面介绍的方法导入数据,在workfile中按住ctrl选择要检验的二变量,击右键,选择open—as group,此时他们可以作为一个数据组被打开。 点击“View”―“graph”—“line”,对两个序列做时序图见图8-1,两个序列都呈上升趋势,显然不平稳,但二者有大致相同的增长和变化趋势,说明二者可能存在协整关系。但若要证实二者有协整关系,必须先看二者的单整阶数,如果都是一阶单整,则可能存在协整关系,若单整地阶数不相同,则需采取差分的方式,将他们变成一阶单整序列。 图8-1 和时序图 (2)用ADF检验分别对序列和进行单整检验 双击每个序列,对其进行ADF单位根检验,有两种方法。方法一:“view”—“unit root test”;方法二:点击菜单中的“quick”―“series statistic”―“unit root test”。序列和都有 明显的上升趋势,采用带常数项和趋势项的模型进行检验,见图8-2,对对数序列的原水平进行带趋势项和常数项的ADF检验,采用SC准则自动选择滞后阶数,检验结果见图8-3和8-4,在0.05的显著性水平下,都接受存在一个单位根的原假设,说明这两个序列都不平稳。

实验报告二——误差修正模型的建立与分析

实验报告(二)——误差修正模型(ECM)的建立与分析 一、单位根检验: 1、绘制cons与GDP的时间序列图: 从时间序列图中可以看出,cons与GDP随时间增加都呈上升趋势,表现出非平稳性。 2、对cons进行单位根检验: 先选择对原序列(level)进行单位根检验,根据cons与GDP的时间序列图的走势,选择trend and intercept的检验方法,在maximum lags中填写ADF 检验方法的滞后期为0,从上表中可以看出,P值为0.9888,大于0.05的显著性水平,说明原序列是非平稳的。

选择cons的一阶差分(1st)和trend and intercept,从上表中可以看出,经过一阶差分后,P值(=0.5099)仍然没有通过0.05的置信水平检验,说明是不平稳的,需要继续改进。 再试用ADF检验,在滞后期(maximum lags)中填入8,选择一阶差分和trend and intercept,得出上表,可以看出P值=0.0801,大于0.05,没有通过0.05的置信水平检验,说明是不平稳的,需要继续改进。

再试用ADF检验,在滞后期(maximum lags)中填入6,选择二阶差分和trend and intercept,得出上表,可以看出P值=0.0137,小于0.05,通过0.05的置信水平检验,说明是平稳的。 3、对GDP进行单位根检验:

先选择对原序列(level)进行单位根检验,根据cons与GDP的时间序列图的走势,选择trend and intercept的检验方法,在maximum lags中填写ADF 检验方法的滞后期为0,从上表中可以看出,P值为1.0000,大于0.05的显著性水平,说明原序列是非平稳的。 选择GDP的一阶差分(1st)和trend and intercept,从上表中可以看出,经过一阶差分后,P值(=0.5574)仍然没有通过0.05的置信水平检验,说明是不平稳的,需要继续改进。

误差修正模型ECM

Error Correction Model 用EVIEWS怎么做 一、利用EG两步法做协整检验。在两个变量情况下(设为Y、X),包括两序列单整检验、两变量最小二乘法回归并得到残差序列并命名为e、对e作单位根检验。 二、在证明Y、X两序列间存在协整后,才可以建立ECM。其中,误差修正项ecm的值就是之前的回归模型的残差序列e。 三、直接输入以下命令: ls y c y(-1) x x(-1) 得到的估计结果在实际预测时比较方便,不过需要计算得到ecm项的系数。 四、也可以直接输入以下命令: ls y c x e(-1) 其中,e(-1)项的系数就是ecm项的系数。这个模型的优点是直观,但是不便于预测。 五、两种估计是等价的。 六、建议参考阅读易丹辉:《数据分析与EViews应用》,中国统计出版社2002年版。(也许有新版也不一定) 对于误差修正模型,需要先建立一个模型,然后进行回归分析,分析它的短期均衡关系。 操作:举个例子说,比如试图建立y对y(-1)和x的误差修正模型。 STEP1 建立长期关系 ls y c y(-1) x STEP2 对残差进行单位根检验来检验协整关系 ecm=resid uroot(10,h) ecm STEP3 建立误差修正模型 ls d(y) c d(y(-1)) d(x) ecm(-1)

教程:

案例1 上面的分析可以证明序列lconsume、lincome及lconsme(-1)之间存在协整关系,故可以建立ecm(误差修正模型)。先分别对序列lconsume、lincome及lconsme(-1)进行一阶差分,然后对误差修正模型进行估计。在主窗口命令行中输入: ls d(lconsume) c d(lincome) d(lconsume(-1)) ecm(-1) 此时的常数项系数不明显,我们去掉常数项后再进行回归,结果如下图8.6所示 图8.6 从上式可以看出上式中的T检验值均显著,误差修正项的系数为-0.252,这说明长期均衡对短期波动的影响不大。 下面我们短期会给出另一种估计方式。我们可以直接进行估计,命令为:

协整检验及误差修正模型定稿版

协整检验及误差修正模 型 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

协整检验及误差修正模型 设随机向量t X 中所含分量均为d 阶单整,记为t X I(d )。如果存在一个非零向量β,使得随机向量()~t t Y X I d b =-β,0b >,则称随机向量t X 具有d ,b 阶协整关系,记为t X CI(d ,b ),向量β被称为协整向量。特别地,t y 和t x 为随机变量,并且t y , ~(1)t x I ,当01()~I(0)t t t y x εββ=-+,即t y 和t x 的线性组合与I(0)变量有相同的统计性质,则称t y 和t x 是协整的,()01,ββ称为协整系数。更一般地,如果一些I(1)变量的线性组合是I(0),那么我们就称这些变量是协整的。 用Eviews5.1来分析1978年到2002年中国农村居民对数生活费支出序列{ln }t y 和对数人均纯收入{ln t x }序列之间的关系。 1、对两个数据序列分别进行平稳性检验: (1)做时序图看二者的平稳性 首先按前面介绍的方法导入数据,在workfile 中按住ctrl 选择要检验的二变量,击右键,选择open —as group ,此时他们可以作为一个数据组被打开。 点击“View ”―“graph ”—“line ”,对两个序列做时序图见图8-1,两个序列都呈上升趋势,显然不平稳,但二者有大致相同的增长和变化趋势,说明二者可能存在协整关系。但若要证实二者有协整关系,必须先看二者的单整阶数,如果都是一阶单整,则可能存在协整关系,若单整地阶数不相同,则需采取差分的方式,将他们变成一阶单整序列。 图8-1 ln t x 和ln t y 时序图

协整与误差修正模型计算实验

协整与误差修正模型 武汉大学经济学系数量经济学教研室《实践教改项目组》编制 在处理时间序列数据时,我们还得考虑序列的平稳性。如果一个时间序列的均值或自协方差函数随时间而改变,那么该序列就是非平稳的。对于非平稳的数据,采用传统的估计方法,可能会导致错误的推断,即伪回归。若非平稳序列经过一阶差分变为平稳序列,那么该序列就为一阶单整序列。对一组非平稳但具有同阶的序列而言,若它们的线性组合为平稳序列,则称该组合序列具有协整关系。对具有协整关系的序列,我们算出误差修正项,并将误差修正项的滞后一期看做一个解释变量,连同其他反映短期波动关系的变量一起。建立误差修正模型。 建立误差修正模型的步骤如下:首先,对单个序列进行单根检验,进行单根检验有两种:ADF (Augument Dickey-Fuller )和DF(Dickey-Fuller)检验法。若序列都是同阶单整,我们就可以对其进行协整分析。在此我们只介绍单个方程的检验方法。对于多向量的检验参见Johensen 协整检验。我们可以先求出误差项,再建立误差修正模型,也可以先求出向量误差修正模型,然后算出误差修正项。补充一点的是,误差修正模型反映的是变量短期的相互关系,而误差修正项反映出变量长期的关系。下面我们给出案例分析。 案例分析 在此,我们考虑从1978年到2002年城镇居民的人均可支配收入income 与人均消费水平consume 的关系,数据来自于《中国统计年鉴》,如表8.1所示。根据相对收入假设理论,在一定时期,人们的当期的消费水平不仅与当期的可支配收入、而且受前期的消费水平的影响,具有一定的消费惯性,这就是消费的棘轮效应。从这个理论出发,我们可以建立如下(8.1)式的模型。同时根据生命周期假设理论,消费者的消费不仅与当期收入有关,同时也受过去各项的收入以及对将来预期收入的限制和影响。从我们下面的数据分析中,我们可以把相对收入假设理论与生命周期假设理论联系起来,推出如下的结果:当期的消费水平不仅与当期的可支配收入有关,而且还与前期的可支配收入、前两期的消费水平有关。在此先对人均可支配收入和人均消费水平取对数,同时给出如下的模型 t t t l i n c o m e l c o n s u m e l c o n s u m e 2110?+?+?=- t=1,2,…,n (8.1) 如果当期的人均消费水平与当期的人均可支配收入及前期的人均消费水平均为一阶单 整序列,而它们的线性组合为平稳序列,那么我们可以求出误差修正序列,并建立误差修正模型,如下: t ecm lconsume lincome lconsume t t t t 4131210βββββ++?+?+=?-- t=1,2,…,n (8.2) t ecm = 12110--?-?-?-t t t lincome lconsume lconsume t=1,2,…,n (8.3) 从(8.2)式我们可以推出如下的方程: t lincome lincome lconsume lconsume lconsume t t t t t 4030123222131131)()()1(ββββββββββ+?-+?--+?--++=---(8.4) 在(8.2)中lc o n s u m e ?、 lincome ?分别为变量对数滞后一期的值,)1(-ecm 为误差修正项,如(8.3)式所示。(8.2)式为含有常数项和趋势项的形式,我们省略了只含趋势项

协整检验及误差修正模型

协整检验及误差修正模型 设随机向量t X 中所含分量均为d 阶单整,记为t X I(d ):。如果存在一个非零向量β,使得随机向量()~t t Y X I d b =-β,0b >,则称随机向量t X 具有d ,b 阶协整关系,记为t X CI(d ,b ):,向量β被称为协整向量。特别地,t y 和t x 为随机变量,并 且t y ,~(1)t x I ,当01()~I(0)t t t y x εββ=-+,即t y 和t x 的线性组合与I(0)变量有相同的统计性质,则称t y 和t x 是协整的,()01,ββ称为协整系数。 更一般地,如果一些I(1)变量的线性组合是I(0),那么我们就称这些变量是协整的。 用Eviews5.1来分析1978年到2002年中国农村居民对数生活费支出序列{ln }t y 和对数人均纯收入{ln t x }序列之间的关系。 1、对两个数据序列分别进行平稳性检验: (1)做时序图看二者的平稳性 首先按前面介绍的方法导入数据,在workfile 中按住ctrl 选择要检验的二变量,击右键,选择open —as group ,此时他们可以作为一个数据组被打开。 点击“View ”―“graph ”—“line ”,对两个序列做时序图见图8-1,两个序列都呈上升趋势,显然不平稳,但二者有大致相同的增长和变化趋势,说明二者可能存在协整关系。但若要证实二者有协整关系,必须先看二者的单整阶数,如果都是一阶单整,则可能存在协整关系,若单整地阶数不相同,则需采取差分的方式,将他们变成一阶单整序列。 图8-1 ln t x 和ln t y 时序图 (2)用ADF 检验分别对序列ln t x 和ln t y 进行单整检验 双击每个序列,对其进行ADF 单位根检验,有两种方法。方法一:“view ”—“unit root test ”;方法二:点击菜单中的“quick ”―“series statistic ”―

协整方程(CE)与误差修正模型(VECM)

人民币实际有效汇率对我国经济影响的实证研究 巴曙松,王群2009-09-29 摘要:本文试从理论上给出实际汇率变动对产业结构调整的三种传导途径,并从有效汇率的角度出发,通过协整模型、Granger因果检验和脉冲响应方法对实际有效汇率对我国产业、就业结构的影响进行实证分析。结果表明,人民币实际有效汇率的升值提升了我国第三产业的比重并增加了该产业就业人数,在一定程度上促进了农村劳动力的转移,同时相应地对第二产业的就业造成了负面影响。总体上来看,人民币有效汇率的上升将有助于长期改善我国的产业结构,但短期会造成一定的就业压力。 关键词:实际汇率,产业结构,就业结构,传导途径 2008年以来,伴随着次级抵押贷款危机下全球金融市场的动荡,我国经济不仅面临着恶劣的国际环境、国内经济增长的周期性回落,同时还面临着以产业重组、产业升级和放松管制为重点的产业结构调整。随着近年来我国对外贸易依存度的不断上升,产业结构调整的动力则不可忽略地受到对外贸易部门发展的影响。实际汇率作为一种非贸易品和贸易品相对价格,则是影响外贸企业的重要因素之一,从而影响了不同产业之间的资源配置,进而对产业结构的调整产生影响。因此,在开放型经济条件下,实际汇率成为考察国内产业结构和就业结构调整的重要影响因素之一。而对该影响作用的分析和研究,不仅有助于加深对产业结构调整的宏观把握,而且将对汇率政策的制定起到一定的指导作用。另外,在2005年7月21日我国实行了汇率制度改革以后,如何通过人民币有效汇率这一衡量人民币整体水平的汇率指标来把握汇率政策,也引起了学者的普遍关注和研究,本文正是依据人民币实际有效汇率的数据,分析人民币的升值对我国产业结构和就业结构带来的影响。 一、研究背景

误差修正模型实例

一、误差修正模型的构造 对于y t 的(1,1)阶自回归分布滞后模型: t t t t t y x x y εβββα++++=--12110 在模型两端同时减y t-1,在模型右端10-±t x β,得: t t t t t t t t t t t t t x y x x y x y x x y εααγβεββββαββεββββα+--+?=+---+--+?=+-+++?+=?------)(]) 1()1()[1()1()(1101012120120121100 其中,12-=βγ,)1/()(200ββαα-+=,)1/(211ββα-=。 记 11011-----=t t t x y ecm αα (5-5) 则 t t t t ecm x y εγβ++?=?-10 (5-6) 称模型(5-6)为“误差修正模型”,简称ECM 。 二、误差修正模型的含义 如果y t ~ I(1),x t ~ I(1),则模型(5-6)左端)0(~I y t ?,右端)0(~I x t ?,所以只有当y t 和x t 协整、即y t 和x t 之间存在长期均衡关系时,式(5-5)中的ecm~I(0),模型(5-6)两端的平稳性才会相同。 当y t 和x t 协整时,设协整回归方程为: t t t x y εαα++=10 它反映了y t 与x t 的长期均衡关系,所以称式(5-5)中的ecm t -1是前一期的“非均衡误差”,称误差修正模型(5-6)中的1-t ecm γ是误差修正项,12-=βγ是修正系数,由于通常1||2<β,这样

0<γ;当ecm t -1 >0时(即出现正误差),误差修正项1-t ecm γ< 0, 而ecm t -1 < 0时(即出现负误差),1-t ecm γ> 0,两者的方向恰 好相反,所以,误差修正是一个反向调整过程(负反馈机制)。 误差修正模型有以下几个明确的含义: 1.均衡的偏差调整机制 2.协整与长期均衡的关系 3.经济变量的长期与短期变化模型 长期趋势模型: t t t x y εαα++=10 短期波动模型: t t t t ecm x y εγβ++?=?-10 三、误差修正模型的估计 建立ECM 的具体步骤为: 1.检验被解释变量y 与解释变量x (可以是多个变量)之间的协整性; 2.如果y 与x 存在协整关系,估计协整回归方程,计算残差序列e t : t t t x y εβα++=0 t t t x y e 0??βα--= 3.将e t-1作为一个解释变量,估计误差修正模型: t t t t v e x y ++?=?-10γβ 说明: (1)第1步协整检验中,如果残差是确定趋势过程,可以在第2步的协整回归方程中加入趋势变量; (2)第2步可以估计动态自回归分布滞后模型: t i t i i t i t y x y εβαα∑∑+++=-- 此时,长期参数为: ∑∑-=)1(i i βαθ 协整回归方程和残差也相应取成: t t x y θ=, t t t x y e θ?-= (3)第2步估计出ECM 之后,可以检验模型的残差是

实验四:协整检验及误差修正模型实验报告

课程论文 (2016 / 2017学年第 1 学期) 课程名称应用时间序列分析 指导单位经济学院 指导教师易莹莹 学生姓名班级学号 学院(系) 经济学院专业经济统计学

实验四协整检验及误差修正模型实验指导 一、实验目的: 理解经济时间序列之间的理论关系,并学会用统计方法验证他们之间的关系。学会验证时间序列存在的不平稳性,掌握ADF 检验平稳性的方法。认识不平稳的序列容易导致虚假回归问题,掌握为解决虚假回归问题引出的协整检验,协整的概念和具体的协整检验过程。协整描述了变量之间的长期关系,为了进一步研究变量之间的短期均衡是否存在,掌握误差纠正模型方法。 二、基本概念: 设随机向量t X 中所含分量均为d 阶单整,记为t X I(d ) 。 如果存在一个非零向量β,使得随机向量()~t t Y X I d b =-β,0b >,则称随机向量t X 具有d ,b 阶协整关系,记为 t X CI(d,b ) , 向量β被称为协整向量。特别地,t y 和t x 为随机变量,并且t y ,~(1)t x I ,当01()~I(0)t t t y x εββ=-+,即t y 和t x 的线性组合与I(0)变量有相同的统计性质,则称 t y 和t x 是协整的,()01,ββ称为协整系数。 更一般地,如果一些I(1)变量的线性组合是I(0),那么我们就称这些变量是协整的。 三、实验任务: 1、实验内容 用Eviews 来分析1992年到1998年中国城镇居民生活费支出序列和人均可支配收入序列之间的关系。内容包括: (1)对两个对数序列分别进行ADF 平稳性检验; (2)进行二者之间的协整关系检验; (3)若存在协整关系,建立误差纠正模型ECM 。 2、实验要求 (1)在认真理解本章内容的基础上,通过实验掌握ADF 检验平稳性的方法; (2)掌握具体的协整检验过程,以及误差纠正模型的建立方法; (3)能对宏观经济变量间的长期均衡关系进行分析。 四、实验要求: 实验过程描述(包括变量定义、分析过程、分析结果及其解释、实验过程遇到的问题及体会)。 实验题:1992年到1998年中国城镇居民生活费支出序列和人均可支配收入序列之间的关系。

相关文档
最新文档