比例积分式控制阀工作原理

比例积分式控制阀工作原理

比例积分式控制阀工作原理

本系统适用于空调系统的空气处理机组夏季温度控制.

由温度传感器TE-1,比例积分温度控制器TC-1和电动两通调节阀TV-1组成送风温度控制系统,安装在回风管道的TE-1把检测到的温度信号传送至TC-1,由TC-1将TE-1的检测值与设定值不断比较,同时不断地输出信号,控制TV-1的开度连接可调,使回风温度保持在需要的范围.

安装在新风入口的常闭开关式电动阀与机组的风机连锁,当风机开动,新风风阀全开:当风机关停进,风阀/水阀全关,R是连锁用的中间继电器.

空气压差开关DPS-1是用来检测过滤网的透气情况,过滤网越脏,透气越低,其两侧的压力差越大,当压力差超过DPS-1的设定值时,微动开关动作,发出报警信号.

热交换器控制工作原理

本系统适用于空调采暖系统的热交换器控制.

由插在水管中的温度信号传感器TE-1,比例积分温度控制器TC-1和电动两通调节阀TV-1组成热交换器出水温度控制系统,TE-1把检测到的温度信号传至TC-1,由TC-1将温度信号与设定值比较,并根据比较的结果输出相应的电压信号,控制TV-1的开度,从而控制通过热交换器的蒸汽量,使另一端的热水的温度保持在需要的范围.温控器工作方式设置为DA. R 是连锁用的中间继电器.

比例积分调节阀

比例积分调节阀 新政出台钢铁业将迎来黄金十年 据悉,即将出台的《钢铁产业发展政策》是我国建国以来第一个真正意义上的钢铁产业政策,也是继《汽车产业发展政策》后,第二个由发改委起草、国务院审议通过的国家级产业发展政策。粗放式增 长难以为继冶金工业规划研究院是参与起草《钢铁产业发展政策》的主要单位,该院教授级高级工程师王丽娟表示,之所以要制定这样一个产业政策,是因为钢铁行业发展出现了投资过热、布局不合理 一、产品[电动二通调节球阀(法兰式、对夹式、台湾三片式丝扣)]的详细资料: 产品型号:ZAJQ型 产品名称:电动二通调节球阀(法兰式、对夹式、台湾三片式丝扣) 产品特点:ZAJQ型智能电动球阀采用一体化结构,与DTR电动执行机构相配,有输入控制信号 (4~20mADC或1-5VDC)及单相电源即可控制运转,具有功能强、体积小、轻便宜人、性能可靠、配套简单、流通能力大、特别适合于介质是粘稠,含颗粒,纤维性质的场合。目前工洲阀门广泛应用于食品、环保、轻工、石油、造纸、化工、教学和科研设备、电力等行业的工业自动控制系统中。 二、阀体: 形式:角型单座铸造阀 公称通径:20-300mm 公称形式:PN1.6 4.0 6.4Mpa 连接形式:法兰式按JB78-59 JB79-59 材料:HT200 ZG230—450 ZG1Cr18Ni9Ti ZG0Cr18Ni12Mo2Ti 三、阀内组件: 阀芯形式:O型阀芯 流量特性:快开型 材料:1Cr18Ni9Ti 0Cr17Ni12Mo2衬聚四氟乙烯

密封面材料:聚四氟乙烯、PPL、硬密封 四、具有理想流量特性表: 公称通径(DN)不同开度角下的Kv值 温度10o 20o 30o 40o 50o 60o 70o 80o 90o 50 2 4 9 17 32 60 97 151 215 80 6 11 22 44 83 155 250 389 550 100 9 18 35 71 133 248 398 620 890 150 20 40 8/0 160 300 560 900 1400 2000 200 36 72 143 286 737 1002 1611 2506 3580 250 57 113 226 453 848 1582 2543 3955 5650 300 81 163 325 651 1220 2278 3661 5695 8100 五、执行机构: 类型:可选PSQ、DTR和3810系列电子式角行程执行机构。防爆型选用3810系列。 技术参数和性能:请参阅相应执行机构与阀门定位器说明书。 六、电动调节球阀规格参数: 公称 通径DN 1 5 2 2 5 3 2 40 5 6 5 8 100 1 2 5 150 2 2 5 300 流量 系数(Kv)2 3 8 7 2 1 1 170 2 1 5 3 8 5 5 890 1 4 200 3 5 8 5 6 5 8100 可调0-90o

比例调节阀-2

家用燃气用具比例调节阀 1 范围 本标准规定了家用燃气用具比例调节阀的术语和定义、产品分类、技术要求、试验方法、检验规则及标志、包装、运输、贮存。 本标准适用于家用燃气用具比例调节阀(以下简称“比例阀”)。 注:本标准所指燃气是GB/T 13611-1992《城市燃气分类》、GB/T 13612-2003《人工煤气》规定的燃气。其它气源可参照本标准执行。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 191-2000 包装储运图示标志 GB/T 7306.1-2000 55°密封管螺纹第1部分:圆柱内螺纹与圆锥外螺纹 GB/T 7306.2-2000 55°密封管螺纹第2部分:圆锥内螺纹与圆锥外螺纹 GB 9969.1 工业产品使用说明书总则 GB/T 13611-1992 城市燃气分类 GB/T 13612-2003 人工煤气 3 术语与定义 下列术语和定义适用于本标准。 3.1 比例阀ratio control valve 具有比例调节的燃气阀门,以下简称比例阀。 3.2 进气压力(P1)inlet pressure 比例阀入口处,运行时测得的相对静压力,单位kPa。 3.3 出气压力(P2)outlet pressure 比例阀出口处,运行时测得的相对静压力,单位kPa。 3.4 比例调节ratio control 进气压力不变的情况下,调节比例阀的电流,出气压力、流量按一定的函数关系变化;以及额定电流不变的情况下,调节进气压力,出气压力、流量按一定函数关系变化的调节性能。 3.5 标准状态reference conditions 环境温度为15℃,大气压力为101 kPa条件下的干燥状态。 3.6 燃气稳压装置gas governor 装在比例阀通道中稳定出口燃气压力的装置。 3.7

电动调节阀的工作原理

一、课程导引——执行器的作用 在过程控制系统中,执行器接受调节器的指令信号,经执行机构将其转换成相应的角位移或直线位移,去操纵调节机构,改变被控对象进、出的能量或物料,以实现过程的自动控制。在任何自动控制系统中,执行器是必不可少的组成部分。如果把传感器比拟成控制系统的感觉器官,调节器就是控制系统的大脑,而执行器则可以比拟为干具体工作的手。 执行器常常工作在高温、高压、深冷、强腐蚀、高粘度、易结晶、闪蒸、汽蚀、高压差等恶劣状态下,因此,它是整个控制系统的薄弱环节。如果执行器选择或使用不当,往往会给生产过程自动化带来困难。在许多场合下,会导致控制系统的控制质量下降、调节失灵,甚至因介质的易燃、易爆、有毒而造成严重的事故。 为此,对于执行器的正确选用和安装、维修等各个环 节,必须给予足够的注意。 执行器根据驱动动力的不同,可划分为气动执行 器、液动执行器和电动执行器,本次课将结合实验装 置所用的智能电动调节阀使用知识进行介绍。 二、产品知识——电动调节阀 的结构与工作原理(20分钟) 1、电动调节阀的基本结构 在THJ-2的实验装置上,配置了上海万迅仪表有 限公司生产的智能型电动调节阀,其型号为 QSVP-16K ,图1是电动调节阀的典型外形,它由两 个可拆分的执行机构和调节阀(调节机构)部分组成。 上部是执行机构,接受调节器输出的0~10mADC 或4~20mADC 信号,并将其转换成相应的直线位移,推动下部的调节阀动作,直接调节流体的流量。各类电动调节阀的执行机构基本相同,但调节阀(调节机构)的结构因使用条件的不同类型很多,最常用的是直通单阀座和直通双阀座两种。 2、电动执行机构的基本结构(部分摘自上海万迅仪表产品说明书) 执行机构采用了德国进口的PSL 电子式一体化的电动执行机构,该产品体积小、重量轻,功能强、操作方便,已广泛应用于工业控制。 其直线行程电动执行器主要是由相互隔离的电气部分和齿轮传动部分组成,电机作为连执 行 机 构调节阀图1 电动调节阀外形机构

电动调节阀工作原理_secret

电动调节阀工作原理 电动调节阀工作原理:压力控制的叫电动调节阀,电动球阀啊、电动碟阀、智能调节阀,其实都是电动阀扭距电动阀大调节形式上电动阀可以粗略控制开度实现原理就是在电机转动过程中停止。 结构:由电动执行机构和调节阀连接组合后经过调试安装构成电动调节阀。 工作电源:AC22V 380V等电压等级。 通过接收工业自动化控制系统的信号(如:4~20mA)来驱动阀门改变阀芯和阀座之间的截面积大小控制管道介质的流量、温度、压力等工艺参数。实现自动化调节功能。 流量特性介绍:电动调节阀的流量特性,是在阀两端压差保持恒定的条件下,介质流经电动调节阀的相对流量与它的开度之间关系。主要有:线性特性,等百分比特性及抛物线特性三种。 应用领域:电力、化工、冶金、环保、水处理、轻工、建材等工业自动化系统领域。 安装:电动调节阀最适宜安装为工作活塞上端在水平管线下部。温度传感器可安装在任何位置,整个长度必须浸入到被控介质中。 电动调节阀一般包括驱动器,接受驱动器信号(0-10V或4-20MA)来控制阀门进行调节,也可根据控制需要,组成智能化网络控制系统,优化控制实现远程监控。 类似产品:与电动调节阀功能相似的还有:自力式调节阀。 电动调节阀不需外加能源,通过调节设定点控制温度。当温度升高,阀门根据温度变化成比例的关闭。 电动调节阀包含一个控制阀和一个温控器(包含一个温度传感器、一个设定点调整器、一个毛细管和一个工作活塞),电动执行器依靠选择不同的温度状态应用。温度调节阀根据液体膨胀原理操作,如果在传感器上的温度升高,将使得液体填充物同时加热并膨胀,在工作活塞的作用下阀门关闭,此时将冷却介质。通过设定点键可以一步步调整,电动二通阀可以在标尺上读出。所有的温控器都配有一个超温安全保护设备。

调节规律与调节控制回路

调节规律与调节控制回路 1、在自动调节控制回路中比例(P)、积分(I)、微分(D)各起 什么作用? 比例调节器依据“偏差的大小”来动作,它的输出与输入偏差的大小成比例。比例调节及时、有力,但有余差。它用比例度δ来表示其作用的强弱,δ愈小,调节作用愈强,比例作用太强时,会引起振荡。 积分调节依据“偏差是否存在”来动作,它的输出与偏差对时间的积分成比例,只有当余差消失时,积分作用才会停止,其作用是消除余差。但积分作用使最大动偏差增大,延长了调节时间。它用积分时间T来表示其作用的强弱,T愈小,积分作用愈强,但积分作用太强时,也会引起振荡。 微分调节依据“偏差变化速度”来动作,它的输出与输入偏差变化的速度成比例,其效果是阻止被调参数的一切变化,有超前调节的作用,对滞后大的对象有很好的效果。它使调节过程偏差减小,时间缩短,余差也减小(但不能消除)。它用微分时间T d 来表示其作用的强弱,T d大,作用强,但T d太大,也会引起振荡。 2、比例(P)、比例积分(PI)、比例积分微分(PID)调节规律的 适用场合? 比例(P)调节规律适用于负荷变化较小,纯滞后不太大而工

艺要求不高又允许有余差的调节系统。 比例积分(PI)调节规律适用于对象调节通道时间常数较小,系统负荷变化较大(需要消除干扰引起的余差)、纯滞后不大(时间常数不是太大)而被调参数不允许与给定值有偏差的调节系统。 比例积分微分(PID)调节规律适用于容量滞后较大,纯滞后不太大,不允许有余差的对象。 3、微分(D)调节规律的作用? 由于微分(D)调节规律有超前作用,因此调节器加入微分作用可以:克服调节对象的惯性滞后(时间常数T)、容量滞后(τc); 但微分作用不能克服调节对象的纯滞后τ0,因为在τ0时间内,被调参数的变化速度为零。 4、压力、流量的调节为何不选用微分调节?而温度、成分调节多 采用微分调节? 对于压力、流量等被调参数来说,对象调节通道时间常数T0较小,而负荷又变化较快,这时微分作用和积分作用都要引起振荡,对调节质量影响很大,故不采用微分调节规律。 而对于温度、成分等测量通道和调节通道的时间常数较大的系统来说,采用微分规律这种超前作用能够收到较好的效果。

电动调节阀的结构与工作原理

课前准备:多媒体课件制作、演示实验设备调试、以4人/小组进行分组。 一、课程导引——执行器的作用 在过程控制系统中,执行器接受调节器的指令信号,经执行机构将其转换成相应的角位移或直线位移,去操纵调节机构,改变被控对象进、出的能量或物料,以实现过程的自动控制。在任何自动控制系统中,执行器是必不可少的组成部分。如果把传感器比拟成控制系统的感觉器官,调节器就是控制系统的大脑,而执行器则可以比拟为干具体工作的手。 执行器常常工作在高温、高压、深冷、强腐蚀、高粘度、易结晶、闪蒸、汽蚀、高压差等状态下,使用条件恶劣,因此,它是整个控制系统的薄弱环节。如果执行器选择或使用不当,往往会给生产过程自动化带来困难。在许多场合下,会导致控制系统的控制质量下降、调节失灵,甚至因介质的易燃、易爆、有毒而造成严重的事故。为此,对于执行器的正确选用和安装、维修等各个环节,必须给予足够的注意。 执行器根据驱动动力的不同,可划分为气动执行 器、液动执行器和电动执行器,本次课将结合实验装 置所用的智能电动调节阀使用知识进行介绍。 二、产品知识——电动调节阀 的结构与工作原理(20分钟) 1、电动调节阀的基本结构 在THJ-2的实验装置上,配置了上海万迅仪表有 限公司生产的智能型电动调节阀,其型号为 QSVP-16K ,图1是电动调节阀的典型外形,它由两个可拆分的执行机构和调节阀(调节机构)部分组成。 上部是执行机构,接受调节器输出的0~10mADC 或 4~20mADC 信号,并将其转换成相应的直线位移, 推动下部的调节阀动作,直接调节流体的流量。各类电动调节阀的执行机构基本相同,但调节阀(调节机构)的结构因使用条件的不同类型很多,最常用的是直通单阀座和直通双阀座两种。 2、电动执行机构的基本结构(部分摘自上海万迅仪表产品说明书) 执行机构采用了德国进口的PSL 电子式一体化的电动执行机构,该产品体积小、重量执 行 机 构调节阀图1 电动调节阀外形机构

二通阀与比例积分阀的区别

二通阀与比例积分阀的区别 二通阀分为普通二位阀(也就是开关阀)及二通调节阀。而比例积分阀,包含了二通调节阀,只不过它增加了阀门驱动器,可以根据室内负荷自动调节阀门的开度。 一般DN20,DN25都用二通阀,而大于DN32以上都用比例积分阀. 二通阀又叫电磁阀,它只有两个状态点,即通电常开,断电常闭。 比例积分调节阀又叫电动调节阀,它能根据一些所测参数(如:温度、压力)要求进行线性调节阀门的开度大小 电磁二(三)通阀只有开和关的可能(0&1) 比例积分阀可以作开和关的控制用不过大材小用了.. 常用0~10V&4~20MA控制就有0,1,2,3,....10哪么多可能出现了... 二通阀又叫电磁阀,它只有两个状态点,即通电常开,断电常闭。 比例积分调节阀又叫电动调节阀,它能根据一些所测参数(如:温度、压力)要求进行线性调节阀门的开度大小。 电动两通阀不叫电磁阀,各位不要混了.电动两通阀是开关量的,只可以全开或全关. 电动调节阀是等百分比或等线性的阀门,它的执行器常用0~10V&4~20MA控制. 电动二通阀一般设于风机盘管回水管上,按是否带弹簧复位功能分为两种。 电磁阀按动作方式分为直动式和先导式两种。直动式电磁阀由电磁作用产生磁力启闭阀体;先导式电磁阀是通过导阀的先导作用在主阀室造成压差,靠压差打开阀门。空调水系统中所用电磁阀均为先导式。 电磁阀和电动二通阀都是位式阀,区别在于一种是靠电磁作用产生的磁力作为动力源,而另一种是靠电动机驱动作为动力源;另外电动二通阀也可以作成三位式的。电磁阀由于电磁作用的发热,本身寿命受一定影响,而且会产生磁场作用,其应用有一定的限制。一般认为风机盘管因启闭频繁不宜采用电磁阀。 控制器对电动调节阀的控制过程是:控制器接收输入信号,通过与设定值比较,得到偏差信号,根据设定的调节规律对此信号进行处理(如比例计算、比例积分计算等),再将处理后的信号发送给执行机构,执行机构接收控制器发出的连续信号驱动电机按信号变化动作(开大或关小)。经控制器计算处理后发出的信号一般并无规律可循,阀门和电动执行机构更不具备任何调节规律(信号计算处理能力)。比例、积分、微分是三种基本调节规律,由此衍生比例积分、比例微分等调节规律,采用什么调节规律是由系统的需求决定的,要求静差小的就采用比例积分,要求响应快、调节时间短的就采用比例微分 请大家不要把电动调节阀说成比例积分阀了!

液压比例阀工作原理

液压比例阀工作原理)置信电气生产非晶合金变压器,2间电网投资的快速增长为公司提供了良好的发展机遇。市场占公司为国内唯一的规模化生产非晶合金变压器的企业,属于国家推广的节能类产品,%以上。受政府强制采购政策的推动,非晶合金变压器有望获得大范围的推广,80有率达到得益于此,公司将面临一个巨大的市场空间。建议重点关注特变电工和置信电气。电力行业“节能减排”形势严峻“十一五”期间在“十一五”乃至相当长的时间内,“节能减排”将是我国政府工作的重点。%。但电力%、主要污染物排放总量减少10节能减排目标:实现国内生产总值能耗降低20亿吨,排放的二氧年,发电用煤超过121)2006行业节能减排形势很严峻,具体表现为:%,烟尘排放量占全国排放量的40化碳占全国排放总量的54%,火电用水占工业用水的)电网32)我国火电发电机组所占比例大,大量小机组存在,这使得煤耗显著偏高。%。20“重发轻供”导致电网建设落后于电源建设,电网建设中超高压输电线路比重偏建设滞后,低,高耗能变压器使用量太大。电气设备将在“节能减排”中发挥重要作用加强现有电厂设备未来国内电力行业节能的主要途径为:大力发展特高压电网;我们认为,改造,提高能源使用效率;积极鼓励新能源开发利用。电气设备将在“发送配用”各个环节发 首页>>产品中心>>比例式减压阀 的详细资料:固定比例式减压阀一、产品[] 产品名称:固定比例式减压阀. 产品特点:本厂生产的比例式减压阀,外形美观,质量可靠,比例准确,工作平稳.既减动压也减静压。该阀利用阀体内部活塞两端不同截面积产生的压力差,改变阀后的压力,达到减压目的。我厂减压阀的减压比例是:2:1,3:1,4:

调节阀执行机构的工作原理与分类研究

调节阀执行机构的工作原理与分类研究 摘要:调节阀是物料或能量供给系统中不可缺少的重要组成部分,而执行机构是调节阀的关键组成部件。针对执行机构对调节阀工作性能的影响,分析了调节阀的执行机构类型,讨论了不同类型执行机构的组成、工作原理和特点,在此基础上对不同类型的执行机构适用范围进行了探讨,为调节阀的选择提供指导作用。 1引言 调节阀广泛应用于火力发电、核电、化工等流体控制场合,是工业生产过程最常用的终端控制元件。执行机构和调节阀门是组成调节阀的两大部件,执行机构根据控制信号驱动调节阀门,对通过的流体进行调节,从而改变操纵变量的数值[1~2]。作为调节阀的驱动部分,执行机构在很大程度上影响着调节阀的工作性能。本文讨论了调节阀的执行机构,并对各种类型执行机构的性能特点进行了分析。 2调节阀执行机构 按操作能源的不同,调节阀执行机构可分为气动执行机构、电动执行机构和电液执行机构。 2.1气动执行机构 气动薄膜执行机构是最常用的气动执行机构[3],工作原理如图1所示。将20~100kPa的标准气压信号P通入薄膜气室中,在薄膜上便产生一个向下的推力,驱动阀杆部件向下移动,调节阀门打开。与此同时,弹簧被压缩,对薄膜产生一个向上的反作用力。当弹簧的反作用力与气压信号在薄膜产生的推力相等时,阀杆部件停止运动。信号压力越大,在薄膜上产生的推力就越大,弹簧压缩量即调节阀门的开度也就越大。

气动薄膜调节阀 将与执行阀杆刚性连接的调节阀运动部件视为一典型的质量-弹簧-阻尼环节,系统运动受力模型如图2所示。系统在运动过程满足以下方程: 方程式(1) 式中:m为与执行阀杆刚性连接的运动部件总质量;x为阀杆位移;c为阻尼系数;f为摩擦力;Fs为信号压力在薄膜上产生的推力;G为运动部件总重力;F t为调节阀所控流体在阀芯上的压力差产生的不平衡力;k为弹簧刚度系数。当阀杆由下往上运动时,式(1)等号左端各项符号变负。

5 比例调节器的工作原理及比例系数 孚子式液面调节器系统示意图

2有一温控系统,当。。。。。请根据比例系数和积分时间常数变化的情况进行分析曲线一:积分时间Ti 取得极大(趋于无穷大)比例积分调节器就化成为纯比例调节器,调节过程就变成纯比例调节器的调节过程。若比例带取得适当,则调节过程波动二三次后即趋稳定,但调节过程最终存在静态偏差。 曲线二:比例积分调节器的积分时间选的太大(因积分阀开的太小),积分作用弱,消除静态偏差过程太慢。 曲线三:积分时间选取适当,积分作用亦适当,则调节过程中被调参数波动次数适当,一般以向上波动二次,向下波动一到二次为宜。调节过程持续时间短,且静态偏差过程消除迅速。 曲线四:积分时间太小(因积分阀开的太大),积分作用太强,被调参数波动次数增多,过渡过程持续时间延长。 3浮子调节阀控制液位调节对象:容器 发信器:浮子 调节器:杠杆结构 执行器:阀件 被调参数:容器内的液位值 4、库房温度调节系统 调节对象:冷库 发信器:温包 调节器:温度控制器 执行器:电磁阀 7制冷侧调节,冷凝压力推动调节过程:冬季压缩机开机前,冷凝器和贮液器中压力都很低,高压调节阀和差压调节阀关闭着。开机后,在冷凝压力升至高压调节阀的开启设定值之前高压调节阀仍关闭,压缩机排除的制冷机积存在冷凝器,积液是冷凝器的内空间和有效传热面积减小,冷凝压力逐步升高。由于调节的真正目的在于使贮液器维持正常高的压力,以便为膨胀阀提供足够的供液动力。所以,压差调节阀在阀前后建立起压力差是打开,将压缩机排气通到贮液器,使贮液器压力升高。冷凝压力升到高压调节阀的开阀值以上时,阀稍开启。由于高压调节阀的节流,差压调节阀的开启状态依然保持。运转达到稳定平衡时,高压调节阀部分打开,有热气旁通到贮液器。随着外界气温变暖,维持正常冷凝压力平衡时,高压调节阀开度增大,而差压调节阀开度变小,直至高压调节阀全开,差压调节阀全关,制冷剂走正常循环路径 5 比例调节器的工作原理及比例系数 孚子式液面调节器系统示意图。 此系统的被调参数为水槽中的液位,调节器的调节目的就是要使水槽中的液位保持在一定的范围。假定系统原来处于平衡的状态,即水位处于规定的平衡状态下不变,进水量q1等于出水量q2皆不变。当液位突然升高时,就意味着进水量超过出水量,通过浮球杆特性对杆的作用,可使阀杆下滑,阀门开度减小,从而减小了进水量。同理当液位下降时,则通过浮球和杠杆的作用,可使阀杆上移,阀门开度增大,从而增加了进水量,这两种情况下,可使流入量等于流出量,液位不再升高或降低,系统达到新的平衡状态。 比例系数:假定h 表示液位的变化量,也就是调节器的输入;l 表示阀杆的位移量,即调节器的输出。杠杆的支点o 和两端的距离分别为a 和b ,根据相似三角形关系,得下式 ()()t h b t l ?=?a 所以 ()()b a K h K t h b a t l P p =?=?= ? 10.制冷剂风冷式冷凝器压力图。冷凝器出口管安装一只高压调节阀3,在压缩机排气管与储液器入口管之间接一段旁通管,旁通管上安装一直差压调节阀4。利用高压调节阀3与

调节阀的基本知识

气动调节阀工作原理 已有76 次阅读2011-01-27 09:04标签: 气动调节阀电磁阀转换器动力源 气动调节阀 气动调节阀是石油、化工、电力、冶金等工业企业广泛使用的工业过程控制仪表之一。通常由气动执行机构、阀门、**等连接安装调试后形成气动调节阀。 气动调节阀工作原理气动调节阀就是以压缩空气为动力源,以气缸为执行器,并借助于电气阀门**、转换器、电磁阀、保位阀等附件去驱动阀门,实现开关量或比例式调节,接收工业自动化控制系统的控制信号来完成调节管道介质的流量、压力、温度等各种工艺参数。气动调节阀的特点就是控制简单,反应快速,且本质安全,不需另外再采取防爆措施。 结构分类根据阀门动作方式可基本分为:直行程(薄膜调节阀、直行程气缸)和角行程(拨叉式、齿轮齿条式)两种方式。 维修检查气动调节阀准确正常地工作对保证工艺装置的正常运行和安全生产有着十分重要的意义。因此加强气动调节阀的维修是必要的。 一、检修时的重点检查部位 检查间体内壁:在高压差和有腐蚀性介质的场合,阀体内壁、隔膜阀的隔膜经常受到介质的冲击和腐蚀,必须重点检查耐压耐腐情况; 检查阀座:因工作时介质渗入,固定阀座用的螺纹内表面易受腐蚀而使阀座松弛; 检查阀芯:阀芯是调节阀的可动部件之一,受介质的冲蚀较为严重,检修时要认真检查阀芯各部是否被腐蚀、磨损,特别是在高压差的情况下,阀芯的磨损因空化引起的汽蚀现象更为严重。损坏严重的阀芯应予更换;检查密封填料:检查盘根石棉绳是否干燥,如采用聚四氟乙烯填料,应注意检查是否老化和其配合面是否损坏; 检查执行机构中的橡胶薄膜是否老化,是否有龟裂现象。 二、气动用调节阀的日常维护 当调节阀采用石墨一石棉为填料时,大约三个月应在填料上添加一次润滑油,以保证调节阀灵活好用。如发现填料压帽压得很低,则应补充填料,如发现聚四氟乙燥填料硬化,则应及时更换;应在巡回检查中注意调节阀的运行情况,检查阀位指示器和调节器输出是否吻合;对有**的调节阀要经常检查气源,发现问题及时处理;应经常保持调节阀的卫生以及各部件完整好用。 三、常见故障及产生的原因 (一)调节阀不动作。故障现象及原因如下: 1.无信号、无气源。①气源未开,②由于气源含水在冬季结冰,导致风管堵塞或过滤器减压阀堵塞失灵,③压缩机故障;④气源总管泄漏。 2.有气源,无信号。①调节器故障;③**波纹管漏气;④调节网膜片损坏。 3.**无气源。①过滤器堵塞;②减压阀故障I③管道泄漏或堵塞。 4.**有气源,无输出。**的节流孔堵塞。

气动调节阀知识

气动调节阀知识 气动调节阀就是以压缩空气为动力源,以气缸为执行器,并借助于电气阀门定位器、转换器、电磁阀、保位阀等附件去驱动阀门,实现开关量或比例式调节,接收工业自动化控制系统的控制信号来完成调节管道介质的:流量、压力、温度等各种工艺参数。气动调节阀的特点就是控制简单,反应快速,且本质安全,不需另外再采取防爆措施。 ◆◆◆ 气动调节阀工作原理(图)

气动调节阀通常由气动执行机构和调节阀连接安装调试组成,气动执行机构可分为单作用式和双作用式两种,单作用执行器内有复位弹簧,而双作用执行器内没有复位弹簧。其中单作用执行器,可在失去起源或突然故障时,自动归位到阀门初始所设置的开启或关闭状态。 气动调节阀根据动作形式分气开型和气关型两种,即所谓的常开型和常闭型,气动调节阀的气开或气关,通常是通过执行机构的正反作用和阀态结构的不同组装方式实现。 ◆◆◆ 气动调节阀作用方式: 气开型(常闭型)是当膜头上空气压力增加时,阀门向增加开度方向动作,当达到输入气压上限时,阀门处于全开状态。反过来,当空气压力减小时,阀门向关闭方向动作,在没有输入空气时,阀门全闭。顾通常我们称气开型调节阀为故障关闭型阀门。 气关型(常开型)动作方向正好与气开型相反。当空气压力增加时,阀门向关闭方向动作;空气压力减小或没有时,阀门向开启方向或全开为止。顾通常我们称气关型调节阀为故障开启型阀门。

气开气关的选择是根据工艺生产的安全角度出发来考虑。当气源切断时,调节阀是处于关闭位置安全还是开启位置安全。 举例来说,一个加热炉的燃烧控制,调节阀安装在燃料气管道上,根据炉膛的温度或被加热物料在加热炉出口的温度来控制燃料的供应。这时,宜选用气开阀更安全些,因为一旦气源停止供给,阀门处于关闭比阀门处于全开更合适。如果气源中断,燃料阀全开,会使加热过量发生危险。又如一个用冷却水冷却的的换热设备,热物料在换热器内与冷却水进行热交换被冷却,调节阀安装在冷却水管上,用换热后的物料温度来控制冷却水量,在气源中断时,调节阀应处于开启位置更安全些,宜选用气关式(即FO)调节阀。 ◆◆◆ 阀门定位器 阀门定位器是调节阀的主要附件,与气动调节阀大大配套使用,它接受调节器的输出信号,然后以它的输出信号去控制气动调节阀,当调节阀动作后,阀杆的位移又通过机械装置反馈到阀门定位器,阀位状况通过电信号传给上位系统。阀门定位器按其结构形式和工作原理可以分成气动阀门定位器、电-气阀门定位器和智能式阀门定位器。

【精品】比例积分电动调节阀

比例积分电动调节阀 的基础上,推广到所有改造行业,每年改造500万千瓦,形成年节电能力50亿千瓦时;同时抓紧实施电动机系统节电工程所需的配套政策、标准、规范的制定、颁布及宣贯;计划到2010年共改造2500万千瓦,实现节电250亿千瓦时。技术是“短板”电动机系统是一个面大量广的应用产业。2003年各类电动机总装机容量约为4.2亿千瓦,年耗电10000亿千瓦时以上,约占全国用电量的60%,运行效率比国外先进水平低10~20个百分点,相当于每年浪费电能约1500亿千瓦时。2003年我国电动机年产量约为4500万千瓦,平均效率比发达国家低2~3个百分点。电动机拖动系统效率比发达国家低10~30个百分点,相当于国际20世纪七、八十年代的水平。在使用寿命、可靠性、材料消耗、噪声及振动方面都有一定差距。有专家分析认为,目前电动机系统在技术方面的欠缺成为制约节能发展的“短板”。首先,我国电动机系统节能技术与装备水平距离节能目标相差很远,采用变频调速电动机系统仍为少数,不到总量的10%;我国中小电动机基本是通用常规类型,还没能形成变频调速电动机系列,变频器电动机集成、智能电动机、机电一体化技术与国际相比有一定差距. 其中,国产中小功率变频器多为U/f比控制方式,很少采用先进矢量控制及直接转矩控制方式,其控制性能、保护技术、可靠性等方面难以与国际产品抗衡,只能采取低成本、低价格的市场策略,占据低端市场。其次,新型可关断电力电子器件取代普通晶闸管已成为趋势,目前国际电机采用IGBT/IGCT等新型电力电子器件的变频器已成为电动机系统节能的主流。但我国电力电子器件技术及制造水平与国际水平差距很大,除普通晶闸管外还不能制造IGBT/IGCT等新型电力电子

比例阀原理

比例阀结构及工作原理 比例阀结构及工作原理 1 引言 电液比例阀是阀内比例电磁铁输入电压信号产生相应动作,使工作阀阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例压力、流量输出元件。阀芯位移也可以以机械、液压或电形式进行反馈。电液比例阀具有形式种类多样、容易组成使用电气及计算机控制各种电液系统、控制精度高、安装使用灵活以及抗污染能力强等多方面优点,应用领域日益拓宽。近年研发生产插装式比例阀和比例多路阀充分考虑到工程机械使用特点,具有先导控制、负载传感和压力补偿等功能。它出现对移动式液压机械整体技术水平提升具有重要意义。特别是电控先导操作、无线遥控和有线遥控操作等方面展现了其良好应用前景。 2 工程机械电液比例阀种类和形式 电液比例阀包括比例流量阀、比例压力阀、比例换向阀。工程机械液压操作特点,以结构形式划分电液比例阀主要有两类:一类是螺旋插装式比例阀(scr ewin cartridge proportional valve),另一类是滑阀式比例阀(spool proporti onal valve)。 滑阀式比例阀又称分配阀,是移动式机械液压系统最基本元件之一,是能实现方向与流量调节复合阀。电液滑阀式比例多路阀是比较理想电液转换控制元件,它保留了手动多路阀基本功能,还增加了位置电反馈比例伺服操作和负载传感等先进控制手段。它是工程机械分配阀更新换代产品。 出于制造成本考虑和工程机械控制精度要求不高特点,一般比例多路阀内不配置位移感应传感器,具有电子检测和纠错功能。,阀芯位移量容易受负载变化引起压力波动影响,操作过程中要靠视觉观察来保证作业完成。电控、遥控操作时更应注意外界干涉影响。近来,电子技术发展,人们越来越多采用内装差动变压器(LDVT)等位移传感器构成阀芯位置移动检测,实现阀芯位移闭环控制。这种由电磁比例阀、位置反馈传感器、驱动放大器和其它电子电路组成高度集成比例阀,具有一定校正功能,可以有效克服一般比例阀缺点,使控制精度到较大提高。 3 电液比例多路阀负载传感与压力补偿技术 节约能量、降低油温和提高控制精度,同时也使同步动作几个执行元件运动时互不干扰,现较先进工程机械都采用了负载传感与压力补偿技术。负载传感与

宝德比例调节阀DS6223

Control electronics Cable plug version Proportional Valve with Control Electronics The valve Type 6223 can be used for the con-trol of larger ? ow quantities. Low hysteresis, high reproducibility and good response sen-sitivity guarantee good positioning behaviour. The valve closes tight. The push-over coil is easy to replace. Digital control electronics DIN-rail version Cable plug Universal controller

Approvals UR, CSA, CGA/AGA Further versions on request i Ordering chart for accessories Cable plug Type 2508 according to DIN EN 175301-803 Form A The delivery of a cable plug includes the ? at seal and ? xing screw Electronic Control Type 8605 Please see separate Datasheet Dimensions [mm] Ori? ce A B C E G H I 10.0G 3/8 or G 1/285.5 3.720.050.037.738.0 13.0G 1/2 or G 3/4106.2 3.324.058.044.550.5 20.0G 3/4 or G 1147.67.035.080.066.066.0 In case of special application conditions, please consult for advice. Subject to alteration. ? Christian Bürkert GmbH & Co. KG0903/2_EU-en_00891754

阀门定位器的工作原理与结构(很详细的介绍)

阀门定位器的工作原理与结构 阀门定位器是气动调节阀的关键附件之一,其作用是把调节装置输出的电信号变成驱动调节阀动作的气信号。它具有阀门定位功能,既克服阀杆摩擦力,又可以克服因介质压力变化而引起的不平衡力,从而能够使阀门快速的跟随,并对应于调节器输出的控制信号,实现调节阀快速定位,提升其调节品质。随着智能仪表技术的发展,微电子技术广泛应用在传统仪表中,大大提高了仪表的功能与性能。 阀门定位器(图1) 阀门定位器的原理:反馈杆反馈阀门的开度位置发生变化,当输入信号产生的电磁力矩与定位器的反馈系统产生的力矩相等,定位器力平衡系统处于平衡状态,定位器处于稳定状态,此时输入信号与阀位成对应比例关系。当输入信号变化或介质流体作用力等发生变化时,力平衡系统的平衡状态被打破,磁电组件的作用力与因阀杆位置变化引起的反馈回路产生的作用力就处于不平衡状态,由于喷嘴和挡板作用,使定位器气源输出压力发生变化,执行机构气室压力的变化推动执行机构运动,使阀杆定位到新位置,重新与输入信号相对应,达到新的平衡状态。在使用中改变定位器的反馈杆的结构(如凸轮曲线),可以改变调节阀的正、反作用,流量特性等,实现对调节阀性能的提升。 智能阀门定位器结构如下图所示,其中虚线内为定位器部分,右侧为气动执行机构。控制和驱动电路,以及位置反馈传感器的数据采集电路,均位于定位器内的电路板中。控制

电路主要完成控制信号和位置反馈信号的数据采集与处理工作,同时形成稳定输出电压。驱动电路用于PWM电流滤波后的功率放大。喷嘴挡板、喷嘴以及相应组件构成了I/P转换器,实现电气转换。调节喷嘴挡板和喷嘴的间距,通过气体放大器,完成对输出气体的调节。反馈杆和位置反馈传感器,完成气动执行机构位移的检测,并组成完整的闭环控制系统。 智能阀门定位器结构图(图2)

PID整定原则调节阀

PID整定原则 先是比例后积分,最后再把微分加 曲线振荡很频繁,比例度盘要放大 曲线漂浮绕大湾,比例度盘往小扳 曲线偏离回复慢,积分时间往下降 曲线波动周期长,积分时间再加长 曲线振荡频率快,先把微分降下来 动差大来波动慢。微分时间应加长 理想曲线两个波,前高后低4比1 一看二调多分析,调节质量不会低 λ法整定控制回路PID参数 一、 PID控制器的基本原理 1、比例控制器(P) 比例控制器的传递函数为Gc(S)=Kp,其作用是调整系统的开环比例系数,提高系统的静态精度,加快系统的响应速度,但对于高于二阶的系统,Kp过大会造成系统的不稳定。 2、积分控制器(I) 积分控制器的传递函数为Gc(S)=1/TiS,Ti为积分时间。它的作用是消除系统的静态误差,但积分控制有时会改变系统的稳定性,降低系统响应速度。 3、比例加积分控制器(PI) 比例积分控制器的传递函数为Gc(S)=Kp(1+1/TiS),由于它有Kp和T i两个可调参数,因此可兼有比例和积分两种控制器的优点,使系统

既稳定又有较好的静态和动态性能,这种控制是工程上用途最为广泛的。 4、比例加微分(PD) 比例加微分控制器的传递函数为Gc(S)=Kp(1+TdS),Td为微分时间。它所产生的控制作用不仅反映了系统的静态误差,同时还反映了误差信号的变化率,因此微分使控制信号提前作用,使系统的响应振荡减轻,过渡过程加快,对系统的稳定性有利。 5、比例加积分加微分控制器(PID) PID控制器的传递函数为Gc(S)=Kp(1+1/TiS+TdS),兼具比例积分和微分控制器的优点,是应用很普遍的一种控制器。 二、λ法整定回路: λ法整定法起源于1968年,由Dahlin最先提出,可参考以下文献:Dahlin E.B.,Designing and Tuning Digital Controllers,Instr and Cont Syst,41(6),77,1968。以下针对自平衡系统和积分系统分别给出例子,以供参考。 自平衡系统PID整定(流量,组分,温度,大部分压力) 1、回路置手动,OP改变5%(改变幅度可以同操作工商量),当PV 达到新的稳态值,OP回到原来的值。

PID参数如何设定调节

PID参数如何设定调节 PID(比例积分微分)英文全称为Proportion Integration Differentiation,它是一个数学物理术语。 PID控制简介 目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机等。自动控制系统可分为开环控制系统和闭环控制系统。一个控控制系统包括控制器﹑传感器﹑变送器﹑执行机构﹑输入输出接口。控制器的输出经过输出接口﹑执行机构﹐加到被控系统上﹔控制系统的被控量﹐经过传感器﹐变送器﹐通过输入接口送到控制器。不同的控制系统﹐其传感器﹑变送器﹑执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligentregulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC 系统等等。可编程控制器(PLC)是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。还有可以实现PID控制功能的控制器,如Rockwell的Logix产品系列,它可以直接与ControlNet 相连,利用网络来实现其远程控制功能。 1、开环控制系统 开环控制系统(open-loopcontrolsystem)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。 2、闭环控制系统

气动调节阀工作原理图文详解

气动调节阀工作原理图文详解(附图) 气动调节阀工作原理简单地说是通过压缩空气实现的,在实际应用中,了解气动调节阀工作原理有很大的意义。下面,世界工厂泵阀网综合运用图文为大家详细介绍气动调节阀工作原理。 气动调节阀是石油、化工、电力、冶金等工业企业广泛使用的工业过程控制仪表之一。通常由气动执行机构、阀门、定位器等连接安装调试后形成气动调节阀。 气动调节阀工作原理 气动调节阀就是以压缩空气为动力源,以气缸为执行器,并借助于电气阀门定位器、转换器、电磁阀、保位阀等附件去驱动阀门,实现开关量或比例式调节,接收工业自动化控制系统的控制信号来完成调节管道介质的流量、压力、温度等各种工艺参数。气动调节阀的特点就是控制简单,反应快速,且本质安全,不需另外再采取防爆措施。 气动调节阀动作分气开型和气关型两种。气开型(Air to Open) 是当膜头上空气压力增加时,阀门向增加开度方向动作,当达到输入气压上限时,阀门处于全开状态。反过来,当空气压力减小时,阀门向关闭方向动作,在没有输入空气时,阀门全闭。 故有时气开型阀门又称故障关闭型(Fail to Close FC)。气关型(Air to Close)动作方向正好与气开型相反。当空气压力增加时,阀门向关闭方向动作;空气压力减小或没有时,阀门向开启方向或全开为止。故有时又称为故障开启型(Fail to Open FO)。气动调节阀的气开或气关,通常是通过执行机构的正反作用和阀态结构的不同组装方式实现。 气开气关的选择是根据工艺生产的安全角度出发来考虑。当气源切断时,调节阀是处于关闭位置安全还是开启位置安全? 举例来说,一个加热炉的燃烧控制,调节阀安装在燃料气管道上,根据炉膛的温度或被加热物料在加热炉出口的温度来控制燃料的供应。这时,宜选用气开阀更安全些,因为一旦气源停止供给,阀门处于关闭比阀门处于全开更合适。 如果气源中断,燃料阀全开,会使加热过量发生危险。又如一个用冷却水冷却的的换热设备,热物料在换热器内与冷却水进行热交换被冷却,调节阀安装在冷却水管上,用换热后的物料温度来控制冷却水量,在气源中断时,调节阀应处于开启位置更安全些,宜选用气关式(即FO)调节阀。 阀门定位器

调节阀与调节器配合与PID整定

一、调节器、过程特性和调节阀的作用方式配合 说明: 1、通常,调节阀的气开、气关有工艺安全条件事先选定。 2、再假定阀门定位器和执行器构成调节阀正作用。如果为反作用,表中关于调节器作用方式结论取反。 3、工艺过程确定,阀门气开、气关方式也确定,无论阀门作用方式如何,都可以通过调节器作用方式选择来适应自动调节过程中的负反馈闭环控制系统来满足工艺控制。 4、对于调节器来说,按照统一的规定: 4.1、如果e﹥0,调节器输出增加,调节器放大系数Kc为负,则该调节器称为正作用调节器; 4.2、e﹥0,调节器输出减小,Kc为正,则该调节器称为反作用调节器。 5、关于工艺过程通常有几类常用控制调节需求,现归纳如下,便于识别。 5.1、本阀后压力、加热过程、流量调节和流入容器液位调节归纳为一类,即为:B过程; 5.2、本阀前压力、冷却过程和流出容器液位为另一类,为A过程。

调节器调节阀过程特性 a)SV-设定值; b)PV-过程值; c)e-偏差,e=PV-SV; d)KC-调节器放大系数; e)KV-调节阀作用特性; f)KP-过程特性; g)KT-变送特性;(通常为正) 对于单回路调节系统,当KC*KV*KP*KT = -PV才构成负反馈系统。带入g),此判别式简化为:KC*KV*KP = -PV。 所以,工艺过程确定、调节阀FC或FO一经选定,只有调整调节器正反作用方式来满足控制要求。单元仪表调节器与DCS系统调节器改变调节器极性是非常方便的。 至此,同行纠缠已久的此问题达到了简化处理。 如果是串级控制回路,选择主回路控制器的正反作用时将副回路看作是一个设定值不变的单回路,用与单回路中确定调节器正反作用同样的方法进行确定。

相关文档
最新文档