第三章化工原理_修订版_天津大学_

第三章化工原理_修订版_天津大学_
第三章化工原理_修订版_天津大学_

第三章 机械分离和固体流态化

1. 取颗粒试样500 g ,作筛分分析,所用筛号及筛孔尺寸见本题附表中第1、2列,筛析后称取各号筛面上的颗粒截留量列于本题附表中第3列,试求颗粒群的平均直径。

习题1附表

解:

颗粒平均直径的计算 由

11i

a i G d d G

=∑ 2204080130110(500 1.651 1.168 1.1680.8330.8330.5890.5890.4170.4170.295

603015105

0.2950.2080.2080.1470.1470.1040.1040.0740.0740.053

=

?++++

+++++++++++++++ )

2.905=(1/mm)

由此可知,颗粒群的平均直径为d a =0.345mm.

2. 密度为2650 kg/m 3的球形石英颗粒在20℃空气中自由沉降,计算服从斯托克斯公式的最大颗粒直径及服从牛顿公式的最小颗粒直径。

解:20C o 时,351.205/, 1.8110kg m Pa s ρμ-==??空气

对应牛顿公式,K 的下限为69.1,斯脱克斯区K 的上限为2.62 那么,斯脱克斯区:

max 57.4d m

μ=

==

min 1513d m μ=

=

3. 在底面积为40 m 2的除尘室内回收气体中的球形固体颗粒。气体的处理量为3600 m 3/h ,固体的密度3/3000m kg =ρ,操作条件下气体的密度3/06.1m kg =ρ,黏度为2×10-5 P a·s。试求理论上能完全除去的最小颗粒直径。

解:同P 151.例3-3

在降尘室中能被完全分离除去的最小颗粒的沉降速度u t , 则 3600

0.025/4003600

s t V u m s bl =

==? 假设沉降在滞流区,用斯托克斯公式求算最小颗粒直径。

min

17.5d um ===

核算沉降流型:6min 5

17.5100.025 1.06

R 0.0231210t et d u ρ

μ

--???=

==

假设合理。求得的最小粒径有效。

4. 用一多层降尘室除去炉气中的矿尘。矿尘最小粒径为8m μ,密度为4000 kg/m 3。除尘室长4.1 m 、宽1.8 m 、高4.2 m ,气体温度为427℃,黏度为3.4×10-5 P a·s,密度为0.5 kg/m 3。若每小时的炉气量为2160标准m 3,试确定降尘室内隔板的间距及层数。

解:由气体的状态方程PV nRT =有'

'

s s T V V T

=

则气体的流量为'34272732160

1.54/2733600

s V m s +=

?= 1.54

0.2034/1.8 4.2

s t V u m s bH =

==? 假设沉降发生在滞流区,用斯托克斯公式求最小粒径。

min

57.02d m μ===

核算沉降流型:6min e 5

57.02100.2080.5

R 0.17413.410

t t d u ρ

μ

--???=

==

假设合理。求得的最小粒径有效。

由以上的计算可知。粒径为8m μ的颗粒沉降必定发生在滞流区。 用斯托克斯公式求沉降速度

26235

()(810)(40000.5)9.81 4.110/1818 3.410

s t d g u m s ρρμ----??-?===??? 层数3

1.54

50.91.8 4.1 4.110s t V n blu -=

==???取为51层。 板间距/(1) 4.2/(511)80.8h H n mm =+=+= 核算气体在多层降尘室中的流型。

/() 1.54/(1.8 4.1)0.208/s u V bl m s ==?=

当量直径(对降尘室)4 1.80.081

4/2()0.1542(1.80.081)

e d bh b h m ??=+=

=?+

5e R /0.1540.2080.5/(3.410)471.06e d u ρμ-==???=

气体在降尘室中的流动为层流流动。设计合理。

5. 已知含尘气体中尘粒的密度为2300 kg/m 3

,气体流量为1000 m 3

/h 、黏度为3.6×10-5 P a·s、密度为0.674 kg/m 3,采用如图3-7所示的标准型旋风分离器进行除尘。若分离器圆筒直径为0.4 m ,试估算其临界粒径、分割粒径及压强降。

解:对标准型旋风分离器,已知D =0.4m ,B =D /4=0.1m ,h =D /2=0.2m 。 气体流速为1000

/1000/(3600)13.89/36000.10.2

i s u V A B h m s ==??=

=??

临界粒径8.04c d m μ=

==

500.27 5.73d m μ===

压强降2

2

0.674(13.89)8.052022

i u p Pa ρξ??==?= 所以,临界粒径8.04c d m μ=,分割粒径50 5.73d m μ=,压强降520Pa

6. 某旋风分离器出口气体含尘量为0.7×10-3kg/标准m3,气体流量为5000标准m

3

/h ,每小时捕集下来的灰尘量为21.5 kg 。出口气体中的灰尘粒度分布及捕

集下来的灰尘粒度分布测定结果列于本题附表中。

习题6附表1

解:(1) 除尘总效率

出口气体中尘粒的质量流量为320.7105000 3.5/w kg h -=??= 进口气体中尘粒的质量流量为1221.521.5 3.525/w w kg h =+=+= 所以0121.521.5

0.8625

w η=

==,即86% (2) 粒级效率曲线

1121

ci ci pi ci w w w w w η=

=+ 根据附表的数据求得粒级效率值如本题附表所示

根据~

d 的数据绘制粒级效率曲线如附图所示

mi pi

7. 在实验室用一片过滤面积为0.1 m 2的滤叶对某种颗粒在水中的悬浮液进行过滤实验,滤叶内部真空度为500 mmHg 。过滤5 min 得滤液1 L,又过滤5 min 得滤液0.6 L 。若再过滤5min,可再得滤液多少?

解:由过滤基本方程:22e q qq K θ+=,代入数据有:

2

33233

11()2()5600.1100.110

1.6 1.6()2()10600.110

0.110e e q K q K ?+=???????

?+=?????? 解得:53272710/,810/e q m m K m s --=?=? 当15min θ=时,25727108101560q q --+??=??? 解得3220.02073/20.73/q m m L m ==,

20.730.1 2.073V qA L ==?=

2.073 1.60.473V L ?=-=

8. 以小型板框压滤机对碳酸钙颗粒在水中的悬浮液进行过滤实验,测得数据列于本题附表中。

已知过滤面积为0.093 m 2,试求:(1) 过滤压强差为103.0 kPa 时的过滤常数K 、q e 及e θ;(2) 滤饼的压缩性指数s ;(3) 若滤布阻力不变,试写出此滤浆在过滤压强差为196.2kPa 时的过滤方程式。

习题6附图

01020304050607080

0.0

0.2

0.4

0.6

0.8

1.0

级效率

d m /微

习题8附表

解:(1) 103.0kPa 下,

3321 2.2710/0.0930.0244/q m m -=?=,33229.1010/0.0930.0978/q m m -=?=

52

22332

1.57210/0.024420.0244500.097820.0978660 3.9110/e e e

K m s

q K q K q m m --?=??+?=?????+?=?=???? 2325

(3.9110)0.9731.57210e e q s K θ--?===?

同理可以求出343.4kPa 下的过滤常数

52332' 4.3610/,' 3.0910/,'0.219e e K m s q m m s θ--=?=?=

(2) 由12s K k p -=?得

5115'' 4.3610343.4()()0.15261.57210103

s s K p s K p ----??=?=?=?? (3) 's m e e R rL r p vq ==?=常数,所以1/s e q p ∝?, 以103kPa 下的数值为基准,得到

510.1526522.0'' 1.57210() 2.71410/1.05

K m s ---=??=?

310.1526

3322.0'' 3.9110() 3.54410/1.05

e q m m ---=??=?

232

5

''(3.54410)''0.463'' 2.71410e e q s K θ--?===?

于是得到1962.kPa 下的过滤方程式为

225( 3.54410) 2.7410(0.463)q θ--+?=?+

9. 在实验室中用一个每边长0.162 m 的小型滤框对CaCO 3颗粒在水中的悬浮液进行过滤实验。料浆温度为19℃,其中CaCO 3固体的质量分数为0.0723。测

得每

1 m 3滤饼烘干后的质量为l06

2 kg 。在过滤压强差为275800 Pa 时所得的数据列于本题附表中。

习题9附表

试求过滤介质的当量滤液体积V e ,滤饼的比阻r ,滤饼的空隙率ε及滤饼颗粒的比表面积a 。已知CaCO 3颗粒的密度为2930 kg/m 3,其形状可视为圆球。

解:由恒压过滤方程式22()()e e V V KA θθ+=+可得

222()()()e e V V d rv V V dV KA A p θμ+==+?,也可写作2()()

e rv

V V V A p θμ?=+?? 对题给的数~V θ数据进行处理,以

θ

?对V 作图,据图可求得有关参数

习题9附图

5.9s /L

V /L

6

8010

2030405060

斜率=18.25s /L 2

由图得知:直线斜率26618.25/18.2510/s L s m ==? 直线的截距335.9/ 5.910/s L s m ==? 即

662

18.2510/()

rv

s m A p μ=??,

332

5.910/()

e rv

V s m A p μ=??

则33436

5.910/ 3.231018.2510

s m V m -?==??,22254

(20.162) 2.75510A m -=?=? 31.0310Pa s μ-=??,1602

10.45322930

ε=-

= 设滤饼与滤液的体积比是v ,并以1m 3滤液为基准做固相的物料衡算,得

29300.4532(100029300.453210000.5468)0.0723v v v ?=+?+??

解0.0497v = 则滤饼的比阻为

2551423

18.2518.2510 2.75510275800 2.71101/1.03100.0497A p r m v μ--?????===??? 31430.50.5623

22

2.71100.4532()() 4.10810/5(1)5(10.4532)r a m m εε??===?-?-

10. 用一台BMS5O/810-25型板框压滤机过滤某悬浮液,悬浮液中固相质量分数为0.139,固相密度为2200 kg/m 3,液相为水。每1 m 3滤饼中含500 kg 水,其余全为固相。已知操作条件下的过滤常数K =2.72×10-5 m 2/s ,q e =3.45×10-3 m 3/m2。滤框尺寸为810mm×810mm×25mm,共38个框。试求:(1) 过滤至滤框内全部充满滤渣所需的时间及所得的滤液体积;(2) 过滤完毕用0.8 m 3清水洗涤

滤饼,求洗涤时间。洗水温度及表压与滤浆的相同。

解: (1):过滤面积为:220.8123849.86A m =??= 滤框总容积:230.810.025380.623V m =??= 设13500.. 1.1100.22001000

x m xkg x +==的滤饼中含固相那么 则1 3m 滤饼中对应的滤液量

:

滤饼中对应的滤液量为3

3

11006313.6750011006313.67. 6.314.0.13910

l kg V m --===滤液体积 3331.1.1m m m 悬浮液总量滤饼中的水滤液饼中的固相. 当滤框全部充满时,其滤液体积36.3140.623 3.935.V m =?=

过滤终了时.单位面积上的滤液量32/ 3.935/49.860.0789/.q V A m m ===

22325/(3.4510)/(2.7210)0.438.e e e q k q k s ρθθ--=?==??= 则该体系的恒压过滤方程为:

225( 3.4510) 2.7210(0.438):249.().q s q θθ--+?=?+=得前已知

(2):洗涤时间:

53332.7210()49.868.2310/.2()2(0.789 3.4510)

E e dv k A m s d q q θ---?==?=?+?+? 30.8w V m =

34(/).40.8/(8.2310)389.w v V d d E w s θθ-==??=所以

11. 用叶滤机处理某种悬浮液,先以等速过滤20 min ,得滤液2 m 3。随即保持当时的压强差再过滤40 min,问共得滤液多少(m 3

)?若该叶滤机每次卸渣、重装等全部辅助操作共需20 min ,求滤液日产量。滤布阻力可以忽略。

解:在恒速阶段.

222236:22/22/(6020) 6.6710/.

v R

R R

R R d V kA d V kA V m s θθθ-====??=?有

在恒压过程.

1

1

2

2

22222

23

3

()

()(2 6.67104060) 4.47.

R R R R V V kA V V kA m θθθθ--=-??=+-=+???=??

生产能力:3243600 4.47

80.5/.206040602060

d V m d ??==?+?+?

12. 在3×105 Pa 的压强差下对钛白粉在水中的悬浮液进行过滤实验,测得过滤常数K =5×10-5 m 2/s 、q e =0.0l m 3/m 2,又测得滤饼体积与滤液体积之比v =0.08。现拟用有38个框的BMY50/810-25型板框压滤机处理此料浆,过滤推动力及所用滤布也与实验用的相同。试求:(1) 过滤至框内全部充满滤渣所需的时间;(2) 过滤完毕,以相当于滤液量1/10的清水进行洗涤,求洗涤时间;(3) 若每次卸渣、重装等全部辅助操作共需15 min ,求每台过滤机的生产能力(以每小时平均可得多少(m 3

)滤饼计)。

解:板框过滤机的总容积为230.810.025380.623.V m =??=

其对应的滤液体积为:

30.623

7.79.0.108m = 过滤终了时的滤液量:322

7.79

0.156/.0.81238

V q m m A ===?? 恒压过滤方程:2()().e e q q k θθ+=+

其中:2

5

32230.156;0.01;510;2.

550.8.

7.790.10.779.0.0499.

e e e e e e q q q k Q s k

Q s m V kA Q V m -===?===?===代入上式解得。过滤时间洗涤时,清水体积为:

则由恒压过滤速率方程有:可知:

其过滤介质的当量滤液体积:

由()

()2

3310.00187/.8415.63.

0.6233600/415.63550.791560 1.202/.

v e w w

w v w

d kA m s d V V V s d d Q m h θθθ??=?

= ?+??==?? ???=?++?=那么。洗涤时间为生产能力

13. 某悬浮液中固相质量分数为9.3%,固相密度为3000 kg/m 3,液相为水。在一小型压滤机中测得此悬浮液的物料特性常数k =1.1×104 m 2(s·atm),滤饼

的空隙率为40%。现采用一台GB-1.75型转筒真空过滤机进行生产(此过滤机的转鼓直径为

1.75 m ,长度为0.98 m,过滤面积为5 m 2,浸没角度为120o),转速为0.5 r/min ,操作真空度为80.0 kPa 。已知滤饼不可压缩,过滤介质阻力可以忽略。试求此过滤机的生产能力及滤饼厚度。

解:滤饼不可压缩,s=0,不计过滤介质阻力,0e θ=。

过滤常数:4

14425

31.1102228.010 1.74310/.1.0110

465465512.51/.

12.510.122(0.058360

0.122

0.00486 4.86.

0.55

s

k k P

k P m s m h r

r m mm nA θθθθδ---?===???=??==?==

=====?V V ’’’生产能力:对应的滤饼的量为:为滤饼与滤液体积比。取为)滤饼厚度

14. 用板框过滤机在恒压差下过滤某种悬浮液,滤框边长为0.65 m ,己测得操作条件下的有关参数为:K =6×10-5 m 3/h 、q e =0.0l m 3/m 2、v =0.1 m 3/m 3滤液。滤饼不要求洗涤,其他辅助时间为20min ,要求过滤机的生产能力为9 m 3/h ,试计算:(1) 至少需要几个滤框?(2)框的厚度L 。

15. 已知苯酐生产的催化剂用量为37400 kg ,床径为3.34 m ,进入设备的气速为0.4 m/s ,气体密度为1.19 kg/m 3

。采用侧缝锥帽型分布板,求分布板的开孔率。

16. 平均粒径为0.3 mm 的氯化钾球形颗粒在单层圆筒形流化床干燥器中进行流化干燥。固相密度s ρ=1980 kg/m 3。取流化速度为颗粒带出速度的78%,试求适宜的流化速度和流化数。干燥介质可按60℃的常压空气查取物性参数。

解:假设沉降在沉流区。

()()()

()

()

2

3

2

5

0.3101980 1.69.816

1818 2.0110

35

e

e

4.8310/.

R0.31040831980/ 2.0110 1.

0.270.27/.

R27.8.

s

d g

t

t

t

t

ut m s

du

u m s ρρ

μ

ρ

μ

-

-

??-?

--

??

--===?

==????>

==

=

核算

假设不合理。假设沉降在过滤区。

核算符合要求。

流化速度.u=0.7

()6

5

0.09101978.949.81

0.0527/.

16501650 2.0110

1.33/0.05273

2.

3.

mf

s

u

u

g

m s ρρ

μ

-

-

?

-???

==

??

==

t

2

p

mf

8u=0.78 1.7=1.33m/s.

d

u=

流化数

如有侵权请联系告知删除,感谢你们的配合!

化工原理课件_天大版

第一章流体流动 ?学习指导 ?一、基本要求: ?了解流体流动的基本规律,要求熟练掌握流体静力学基本方程、连续性方程、柏努利方程的内容及应用,并在此基础上解决流体输送的管路计算问题。

?二、掌握的内容 ?流体的密度和粘度的定义、单位、影响因素及数据的求取;?压强的定义、表示法及单位换算; ?流体静力学基本方程、连续性方程、柏努利方程的内容及应用; ?流动型态及其判断,雷诺准数的物理意义及计算; ?流动阻力产生的原因,流体在管内流动时流动阻力(直管阻力和局部阻力)的计算; ?简单管路的设计计算及输送能力的核算; ?管路中流体的压力、流速及流量的测量:液柱压差计、测速管(毕托管)、孔板流量计、转子流量计的工作原理、 基本结构及计算; ?因次分析法的原理、依据、结果及应用。 ?3、了解的内容 ?牛顿型流体与非牛顿型流体; ?层流内层与边界层,边界层的分离。

第一节流体的重要性质 ? 1.1.1连续介质假定 把流体视为由无数个流体微团(或流体质点)所组成,这些流体微团紧密接触,彼此没有间隙。这就是连续介质模型。流体微团(或流体质点): 宏观上足够小,以致于可以将其看成一个几何上没有维度的点;同时微观上足够大,它里面包含着许许多多的分子,其行为已经表现出大量分子的统计学性质。 u ?? ?液体 气体流体

密度——单位体积流体的质量。 V m = ρkg/m 31.单组分密度 ) ,(T p f =ρ液体密度仅随温度变化(极高压力除外),其变 化关系可从手册中查得。 1.1.2 流体的密度

气体当压力不太高、温度不太低时,可按理想 气体状态方程计算: RT pM = ρ注意:手册中查得的气体密度均为一定压力与温度 下之值,若条件不同,则需进行换算。

化工原理(天大版)干燥过程的物料衡算与热量衡算

8.3干燥过程的物料衡算与热量衡算 干燥过程是热、质同时传递的过程。进行干燥计算,必须解决干燥中湿物料去除的水分量及所需的热空气量。湿物料中的水分量如何表征呢? 湿物料中的含水量有两种表示方法 1.湿基含水量w 湿物料总质量 湿物料中水分的质量= w kg 水/kg 湿料 2.干基含水量X 量 湿物料中绝干物料的质湿物料中水分的质量= X kg 水/kg 绝干物料 3.二者关系 X X w +=1w w X -=1 说明:干燥过程中,湿物料的质量是变化的,而绝干物料的质量是不变的。因此,用干基含 水量计算较为方便。 图8.7 物料衡算 符号说明: L :绝干空气流量,kg 干气/h ; G 1、G 2:进、出干燥器的湿物料量,kg 湿料/h ; G c :湿物料中绝干物料量,kg 干料/h 。 产品 G 2, w 2, (X 2), θ2 G 1, w 1, (X 1), θ1 L, t 2 , H 2

目的:通过干燥过程的物料衡算,可确定出将湿物料干燥到指定的含水量所需除去的水分量及所需的空气量。从而确定在给定干燥任务下所用的干燥器尺寸,并配备合适的风机。 1.湿物料的水分蒸发量W[kg 水/h] 通过干燥器的湿空气中绝干空气量是不变的,又因为湿物料中蒸发出的水分被空气带 走,故湿物料中水分的减少量等于湿物料中水分汽化量等于湿空气中水分增加量。即: [])]([][)(1221221121H H L W X X G w G w G G G c -==-=-=- 所以:1212221 1 2111w w w G w w w G G G W --=--=-= 2.干空气用量L[kg 干气/h] 1212) (H H W L H H L W -=∴-=Θ 令121H H W L l -== [kg 干气/kg 水] l 称为比空气用量,即每汽化1kg 的水所需干空气的量。 因为空气在预热器中为等湿加热,所以H 0=H 1,0 21211H H H H l -=-=,因此l 只与空气的初、终湿度有关,而与路径无关,是状态函数。 湿空气用量:)1(0'H L L += kg 湿气/h 或)1(0'H l l += kg 湿气/kg 水 湿空气体积:H s L V υ= m 3湿气/h 或H s l V υ=' m 3湿气/kg 水 通过干燥器的热量衡算,可以确定物料干燥所消耗的热量或干燥器排出空气的状态。作为计算空气预热器和加热器的传热面积、加热剂的用量、干燥器的尺寸或热效率的依据。 1.流程图

天津大学化工原理课程设计实例

《化工原理课程设计》报告 48000吨/年乙醇~水 精馏装置设计 年级 专业 设计者姓名 设计单位 完成日期年月日 1

目录 一、概述 (4) 1.1 设计依据 (4) 1.2 技术来源 (4) 1.3 设计任务及要求 (5) 二:计算过程 (5) 1. 塔型选择 (6) 2. 操作条件的确定 (6) 2.1 操作压力 (6) 2.2 进料状态 (6) 2.3 加热方式 (6) 2.4 热能利用 (7) 3. 有关的工艺计算 (7) 3.1 最小回流比及操作回流比的确定 (8) 3.2 塔顶产品产量、釜残液量及加热蒸汽量的计算 (8) 3.3 全凝器冷凝介质的消耗量 (9) 3.4 热能利用 (9) 3.5 理论塔板层数的确定 (10) 3.6 全塔效率的估算 (11) N (12) 3.7 实际塔板数 P 4. 精馏塔主题尺寸的计算 (12) 4.1 精馏段与提馏段的体积流量 (12) 4.1.1 精馏段 (12) 4.1.2 提馏段 (14) 4.2 塔径的计算 (15) 4.3 塔高的计算 (17) 5. 塔板结构尺寸的确定 (17) 5.1 塔板尺寸 (17) 5.2 弓形降液管 (18) 5.2.1 堰高 (18) 5.2.2 降液管底隙高度h0 (18) 5.2.3 进口堰高和受液盘 (19) 5.3 浮阀数目及排列 (19) 2

5.3.1 浮阀数目 (19) 5.3.2 排列 (19) 5.3.3 校核 (20) 6. 流体力学验算 (20) h (20) 6.1 气体通过浮阀塔板的压力降(单板压降) p h (21) 6.1.1 干板阻力 c h (21) 6.1.2 板上充气液层阻力 1 6.1.3 由表面张力引起的阻力h (21) 6.2 漏液验算 (21) 6.3 液泛验算 (22) 6.4 雾沫夹带验算 (22) 7. 操作性能负荷图 (23) 7.1 雾沫夹带上限线 (23) 7.2 液泛线 (23) 7.3 液体负荷上限线 (24) 7.4 漏液线 (24) 7.5 液相负荷下限线 (24) 7.6 操作性能负荷图 (24) 8. 各接管尺寸的确定 (26) 8.1 进料管 (26) 8.2 釜残液出料管 (26) 8.3 回流液管 (27) 8.4 塔顶上升蒸汽管 (27) 8.5 水蒸汽进口管 (28) 3

天津大学826化工原理考研真题及解析

天津大学专业课考研历年真题解析 ——826化工原理 主编:弘毅考研 编者:轶鸿大师 弘毅教育出品 https://www.360docs.net/doc/4714023706.html,

【资料说明】 《天津大学化工原理(826)专业历年真题》系天津大学优秀考研辅导团队集体编撰的“历年考研真题解析系列资料”之一。 历年真题是除了参考教材之外的最重要的一份资料,其实,这也是我们聚团队之力,编撰此资料的原因所在。历年真题除了能直接告诉我们历年考研试题中考了哪些内容、哪一年考试难、哪一年考试容易之外,还能告诉我们很多东西。 1.命题风格与试题难易 从历年天津大学化工原理(826)考研真题来看,化工原理考研试题有以下几个特点: ①天津大学化工原理的考研试题均来自于课本,但是这些试题并不拘泥于课本,有些题目还高于课本。其中的一些小题,也就是选择填空题以及实验题需要对基础知识有很好的掌握。当然部分基础题也有一定的难度,需要考生培养发散的思维方式,只靠记背是无法答题的。 ②天津大学化工原理的大型计算题的题型、考点均保持相同的风格不变。但是各年的考题难度有差异。例如,10年的传热题、11年的精馏题、12年的吸收题在当年来说都是相对较难的题目。那么14年的答题会是哪一个题目较难了? ③天津大学化工原理的考研试题,总体难度是不会太难,基本题型与大家考试非常熟悉。但是,据笔者在2013年的考研过程中,最后考分不高的最直接原因是时间不够。因此,这就需要考生加强计算能力,提高对知识点的认识熟悉度。 2.考试题型与分值 天津大学化工原理考研试题有明确的考试大纲,提出考试的重、难点。考试大纲给出了各章节的分值分配,并可以从历年真题中总结题型特点。这些信息有助于大家应付这场考试,希望大家好好把握。 3.重要的已考知识点 天津大学化工原理考试试卷中,很多考点会反复出现,甚至有些题目会重复考。一方面告诉大家这是重点,另一方面也可以帮助大家记忆重要知识点,灵活的掌握各种答题方法。比如08年的干燥题与09年的干燥题基本相同,只是改变了一个条件和一个数据,问题也相同。如此相近的两年出现如此相近的两题,这说明历年考研真题在考研专业课复习过程中的重要性。再如:05年实验题中的第(1)题,在09年实验题的第(3)题有些雷同,再有,笔者记得,在05年的实验题在13年的考研题中再次出现,笔者在做05年这一题时做错了,但是考前复习后,在13年考试中,这一题时得心应手。

化工原理课件 天大版

第二章流体输送机械 流体输送机械:向流体作功以提高流体机械能的装置。?输送液体的机械通称为泵; 例如:离心泵、往复泵、旋转泵和漩涡泵。 ?输送气体的机械按不同的工况分别称为: 通风机、鼓风机、压缩机和真空泵。

本章的目的: 结合化工生产的特点,讨论各种流体输送机械的操作原理、基本构造与性能,合理地选择其类型、决定规格、计算功率消耗、正确安排在管路系统中的位置等 ∑+++=+++f 2222e 2 11122h g u g p Z h g u g p Z ρρ

学习指导: ?学习目的: ?(1)熟悉各种流体输送机械的工作原理和基本结构; ?(2)掌握离心泵性能参数、特性曲线、工作点的计算及 学会离心泵的选用、安装、维护等; ?(3)了解各种流体输送机械的结构、特点及使用场合。 ?学习内容: ?(1)离心泵的基本方程、性能参数的影响因素及相似泵 的相似比;(2)离心泵安装高度的计算;(3)离心泵在管路系统中的工作点与流量调节;(4)风机的风量与风压,以及离心泵与风机的特性曲线的测定、绘制与应用。

?学习难点: ?(1)离心泵的结构特征和工作原理; ?(2)离心泵的气缚与气蚀性能,离心泵的安装高度; ?(3)离心泵在管路系统中的工作点与流量调节; ?(4)离心泵的组合操作。 ?学习方法: ?在教学过程中做到课堂授课和观看模型相结合,例题讲解 与练习相结合,质疑与习作讨论相结合。

2.1概述 ?2.1.1流体输送机械的作用 ?一、管路系统对流体输送机械的能量要求?——管路特性方程 在截面1-1′与2-2′间列柏 努利方程式,并以1-1′截面为 基准水平面,则液体流过管路 所需的压头为:

天津大学化工原理课程设计

《化工原理》课程设计报告 真空蒸发制盐系统卤水分效预热器设计 学院天津大学化工学院 专业化学工程与工艺 班级 学号 姓名 指导教师

化工流体传热课程设计任务书 专业化学工程与工艺班级姓名学号(编号) (一)设计题目:真空蒸发制盐系统卤水分效预热器设计 (二)设计任务及条件 1、蒸发系统流程及有关条件见附图。 2、系统生产能力:40 万吨/年。 3、有效生产时间:300天/年。 4、设计内容:Ⅱ效预热器(组)第 3 台预热器的设计。 5、卤水分效预热器采用单管程固定管板式列管换热器,试根据附图中卤水预热的温度要求对预热器(组)进行设计。 6、卤水为易结垢工质,卤水流速不得低于0.5m/s。 7、换热管直径选为Φ38×3mm。 (三)设计项目 1、由物料衡算确定卤水流量。 2、假设K计算传热面积。 3、确定预热器的台数及工艺结构尺寸。 4、核算总传热系数。 5、核算压降。 6、确定预热器附件。 7、设计评述。 (四)设计要求 1、根据设计任务要求编制详细设计说明书。 2、按机械制图标准和规范,绘制预热器的工艺条件图(2#),注意工艺尺寸和结构的清晰表达。

设计说明书的编制 按下列条目编制并装订:(统一采用A4纸,左装订) (1)标题页,参阅文献1附录一。 (2)设计任务书。 (3)目录。 (4)说明书正文 设计简介:设计背景,目的,意义。 由物料衡算确定卤水流量。 假设K计算传热面积。 确定预热器的台数及工艺结构尺寸。 核算总传热系数。 核算压降。 确定预热器附件。 设计结果概要或设计一览表。 设计评述。 (5)主要符号说明。 (6)参考文献。 (7)预热器设计条件图。 主要参考文献 1. 贾绍义,柴诚敬. 化工原理课程设计. 天津: 天津大学出版社, 2002 2. 柴诚敬,张国亮. 化工流体流动和传热. 北京: 化学工业出版社, 2007 3. 黄璐,王保国. 化工设计. 北京: 化学工业出版社, 2001 4. 机械制图 自学内容: 参考文献1,第一章、第三章及附录一、三; 参考文献2,第五~七章; 参考文献3,第1、3、4、5、11部分。

化工原理天大版干燥习题答案

第七章干燥 一、名词解释 1干燥 用加热的方法除去物料中湿分的操作。 2、湿度(H) 单位质量空气中所含水分量。 3、相对湿度() 在一定总压和温度下,湿空气中水蒸气分压与同温度下饱和水蒸气压比值。 4、饱和湿度(s) 湿空气中水蒸气分压等于同温度下水的饱和蒸汽压时的湿度。 5、湿空气的焓(I) 每kg干空气的焓与其所含Hkg水汽的焓之和。 6、湿空气比容(V H ) 1kg干空气所具有的空气及Hkg水汽所具有的总体积。 7、干球温度⑴ 用普通温度计所测得的湿空气的真实温度。 8、湿球温度(tw) 用湿球温度计所测得湿空气平衡时温度。 9、露点(td) 不饱和空气等湿冷却到饱和状态时温度。 10、绝对饱和温度(tas) 湿空气在绝热、冷却、增湿过程中达到的极限冷却温度。 11、结合水分 存在于物料毛细管中及物料细胞壁内的水分。 12、平衡水分 一定干燥条件下物料可以干燥的程度。 13、干基含水量 湿物料中水分的质量与湿物料中绝干料的质量之比。14、临界水分 恒速段与降速段交点含水量。 15、干燥速率 单位时间单位面积气化的水分质量。 二、单选择题 1、B 2、A 3、B 4、B 5、B

7、A 8、B

10、A 11、C 12、D 13、C 14、D 15、D 16、C 17、A 18 C 19、C 20、C 21、C 22、C 23、C 24、A 25、D 26、 B 27、A 三、填空题 1、高 2、对 3、上升;下降;不变;不变 4、Q=( +)(t1-t0) 5、①较大;较小②③由恒速干燥转到降速阶段的临界点 时物料中的含水率; 6、逆流 7、H=0.0235 kg 水/kg 绝干气;I = kJ/kg 绝干气 8、变大;不变;变小 9、气流;流化 10、粉粒状;起始流化速度;带出速度 11、①U=-GC dx/ (Ad B); q=Q/ (Ad 0) ②; 12、大;少;水面;流速>5m/s 13、>;< 14、湿度;温度;速度;与物料接触的状况 15、;;\ 16、在物料表面和大孔隙中附着的水份 17、咼 18、流化床干燥器 19、物料结构;含水类型;物料与空气接触方式;物料本身的温度 20、=;=;= 21、咼 四、问答题 1、答:将不饱和的空气等湿冷却至饱和状态,此时的温度称为该空气的露点td。

天津大学化工原理上册课后习题答案

大学课后习题解答 绪 论 1. 从基本单位换算入手,将下列物理量的单位换算为SI 单位。 (1)水的黏度μ= g/(cm ·s) (2)密度ρ= kgf ?s 2/m 4 (3)某物质的比热容C P = BTU/(lb ·℉) (4)传质系数K G = kmol/(m 2 ?h ?atm) (5)表面张力σ=74 dyn/cm (6)导热系数λ=1 kcal/(m ?h ?℃) 解:本题为物理量的单位换算。 (1)水的黏度 基本物理量的换算关系为 1 kg=1000 g ,1 m=100 cm 则 )s Pa 1056.8s m kg 1056.81m 100cm 1000g 1kg s cm g 00856.044??=??=? ? ? ????????????? ???=--μ (2)密度 基本物理量的换算关系为 1 kgf= N ,1 N=1 kg ?m/s 2 则 3 242m kg 13501N s m 1kg 1kgf N 81.9m s kgf 6.138=?? ??????????????????=ρ (3)从附录二查出有关基本物理量的换算关系为 1 BTU= kJ ,l b= kg o o 51F C 9 = 则 ()C kg kJ 005.1C 5F 10.4536kg 1lb 1BTU kJ 055.1F lb BTU 24.0??=?? ? ????????????????????????=p c (4)传质系数 基本物理量的换算关系为 1 h=3600 s ,1 atm= kPa 则 ()kPa s m kmol 10378.9101.33kPa 1atm 3600s h 1atm h m kmol 2.342 52G ???=? ? ??????????????????=-K (5)表面张力 基本物理量的换算关系为 1 dyn=1×10–5 N 1 m=100 cm 则 m N 104.71m 100cm 1dyn N 101cm dyn 742 5 --?=????? ??????????????=σ (6)导热系数 基本物理量的换算关系为 1 kcal=×103 J ,1 h=3600 s 则

天津大学化工原理考研内容及题型

化工原理 一、考试的总体要求对于学术型考生,本考试涉及三大部分内容: (1)化工原理课程, (2)化工原理实验, (3)化工传递。 其中第一部分化工原理课程为必考内容(约占85%),第二部分化工原理实验和第三部分化工传递为选考内容(约占15%),即化工原理实验和化工传递为并列关系,考生可根据自己情况选择其中之一进行考试。 对于专业型考生,本考试涉及二大部分内容:(1)化工原理课程,(2)化工原理实验。均为必考内容,其中第一部分化工原理课程约占85%,第二部分化工原理实验约占15%。 要求考生全面掌握、理解、灵活运用教学大纲规定的基本内容。要求考生具有熟练的运算能力、分析问题和解决问题的能力。答题务必书写清晰,过程必须详细,应注明物理量的符号和单位,注意计算结果的有效数字。不在试卷上答题,解答一律写在专用答题纸上,并注意不要书写在答题范围之外。 二、考试的内容及比例 (一)【化工原理课程考试内容及比例】(125分) 1.流体流动(20分)流体静力学基本方程式;流体的流动现象(流体的黏性及黏度的概念、边界层的概念);流体在管内的流动(连续性方程、柏努利方程及应用);流体在管内的流动阻力(量纲分析、管内流动阻力的计算);管路计算(简单管路、并联管路、分支管路);流量测量(皮托管、孔板流量计、文丘里流量计、转子流量计)。 2.流体输送设备(10分)离心泵(结构及工作原理、性能描述、选择、安装、操作及流量调节);其它化工用泵;气体输送和压缩设备(以离心通风机为主)。 3.非均相物系的分离(12分)重力沉降(基本概念及重力沉降设备-降尘室)、;离心沉降(基本概念及离心沉降设备-旋风分离器);过滤(基本概念、恒压过滤的计算、过滤设备)。 4.传热(20分)传热概述;热传导;对流传热分析及对流传热系数关联式(包括蒸汽冷凝及沸腾传热);传热过程分析及传热计算(热量衡算、传热速率计算、总传热系数计算);辐射传热的基本概念;换热器(分类,列管式换热器的类型、计算及设计问题)。 5.蒸馏(16分)两组分溶液的汽液平衡;精馏原理和流程;两组分连续精馏的计算。6.吸收(15分)气-液相平衡;传质机理与吸收速率;吸收塔的计算。 7.蒸馏和吸收塔设备(8分)塔板类型;板式塔的流体力学性能;填料的类型;填料塔的流体力学性能。 8.液-液萃取(9分)三元体系的液-液萃取相平衡与萃取操作原理;单级萃取过程的计算。 9.干燥(15分)湿空气的性质及湿度图;干燥过程的基本概念,干燥过程的计算(物料衡算、热量衡算);干燥过程中的平衡关系与速率关系。 (二)【化工原理实验考试内容及比例】(25分) 1.考试内容涉及以下几个实验单相流动阻力实验;离心泵的操作和性能测定实验;流量计性能测定实验;恒压过滤常数的测定实验;对流传热系数及其准数关联式常数的测定实验;精馏塔实验;吸收塔实验;萃取塔实验;洞道干燥速率曲线测定实验。 2.考试内容涉及以下几个方面实验目的和内容、实验原理、实验流程及装置、实验方法、实验数据处理方法、实验结果分析等几个方面。 (三)【化工传递考试内容及比例】(25分) 1.微分衡算方程的推导与简化连续性方程(单组分)的推导与简化;传热微分方程的推

化工原理天大版干燥习题答案

第七章干燥 一、名词解释 1、干燥 用加热的方法除去物料中湿分的操作。 2、湿度(H) 单位质量空气中所含水分量。 3、相对湿度( ?) 在一定总压和温度下,湿空气中水蒸气分压与同温度下饱和水蒸气压比值。 4、饱和湿度 ) ( s ? 湿空气中水蒸气分压等于同温度下水的饱和蒸汽压时的湿度。 5、湿空气的焓(I) 每kg干空气的焓与其所含Hkg水汽的焓之和。 6、湿空气比容 ) ( H v 1kg干空气所具有的空气及Hkg水汽所具有的总体积。 7、干球温度(t) 用普通温度计所测得的湿空气的真实温度。 8、湿球温度(tw) 用湿球温度计所测得湿空气平衡时温度。 9、露点(td) 不饱和空气等湿冷却到饱和状态时温度。 10、绝对饱和温度(tas) 湿空气在绝热、冷却、增湿过程中达到的极限冷却温度。 11、结合水分 存在于物料毛细管中及物料细胞壁内的水分。 12、平衡水分 一定干燥条件下物料可以干燥的程度。 13、干基含水量 湿物料中水分的质量与湿物料中绝干料的质量之比。14、临界水分 恒速段与降速段交点含水量。 15、干燥速率 单位时间单位面积气化的水分质量。 二、单选择题 1、B 2、A 3、B 4、B 5、B 6、C 7、A 8、B

9、D 10、A 11、C 12、D 13、C 14、D 15、D 16、C 17、A 18、C 19、C 20、C 21、C 22、C 23、C 24、A 25、D 26、B 27、A 三、填空题 1、高 2、对 3、上升;下降;不变;不变 4、Q=(+)(t1-t0) 5、①较大;较小②③由恒速干燥转到降速阶段的临界点时物料中的含水率;大 6、逆流 7、H=0.0235 kg水/kg绝干气;I = kJ/kg绝干气 8、变大;不变;变小 9、气流;流化 10、粉粒状;起始流化速度;带出速度 11、①U=-GC dx/(Adθ);q=Q/(Adθ)②; 12、大;少;水面;流速>5m/s 13、>;< 14、湿度;温度;速度;与物料接触的状况 15、;; 16、在物料表面和大孔隙中附着的水份 17、高 18、流化床干燥器 19、物料结构;含水类型;物料与空气接触方式;物料本身的温度 20、=;=;= 21、高 四、问答题 1、答:将不饱和的空气等湿冷却至饱和状态,此时的温度称为该空气的露点td。 ∵Hd = / (P-ps) ∴ps = HdP /+Hd)

化工原理下(天津大学版)_习题答案

第五章蒸馏 1.已知含苯0.5(摩尔分率)的苯-甲苯混合液,若外压为99kPa,试求该溶液的饱和温度。苯和甲苯的饱和蒸汽压数据见例1-1附表。 t(℃)80.1 85 90 95 100 105 x 0.962 0.748 0.552 0.386 0.236 0.11 解:利用拉乌尔定律计算气液平衡数据 查例1-1附表可的得到不同温度下纯组分苯和甲苯的饱和蒸汽压P B*,P A*,由于总压 P = 99kPa,则由x = (P-P B*)/(P A*-P B*)可得出液相组成,这样就可以得到一组绘平衡t-x图数据。 以t = 80.1℃为例x =(99-40)/(101.33-40)= 0.962 同理得到其他温度下液相组成如下表 根据表中数据绘出饱和液体线即泡点线 由图可得出当x = 0.5时,相应的温度为92℃

2.正戊烷(C5H12)和正己烷(C6H14)的饱和蒸汽压数据列于本题附表,试求P = 1 3.3kPa下该溶液的平衡数据。 温度C5H12223.1 233.0 244.0 251.0 260.6 275.1 291.7 309.3 K C6H14 248.2 259.1 276.9 279.0 289.0 304.8 322.8 341.9 饱和蒸汽压(kPa) 1.3 2.6 5.3 8.0 13.3 26.6 53.2 101.3 解:根据附表数据得出相同温度下C5H12(A)和C6H14(B)的饱和蒸汽压 以t = 248.2℃时为例,当t = 248.2℃时P B* = 1.3kPa 查得P A*= 6.843kPa 得到其他温度下A?B的饱和蒸汽压如下表 t(℃) 248 251 259.1 260.6 275.1 276.9 279 289 291.7 304.8 309.3 P A*(kPa) 6.843 8.00012.472 13.30026.600 29.484 33.42548.873 53.200 89.000101.300 P B*(kPa) 1.300 1.634 2.600 2.826 5.027 5.300 8.000 13.300 15.694 26.600 33.250 利用拉乌尔定律计算平衡数据 平衡液相组成以260.6℃时为例 当t= 260.6℃时x = (P-P B*)/(P A*-P B*)

化工原理版天津大学上下册课后答案

化工原理版天津大学上 下册课后答案 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

上册 第一章 流体流动习题解答 1. 某设备上真空表的读数为×103 Pa ,试计算设备内的绝对压强与表压强。已知该地区大气压强为×103 Pa 。 解:真空度=大气压-绝压 表压=-真空度=310Pa ? 2. 在本题附图所示的贮油罐中盛有密度为960 kg/m 3的油品,油面高于罐底 m ,油面上方为常压。在罐侧壁的下部有一直径为760 mm 的圆孔,其中心距罐底800 mm ,孔盖用14 mm 的钢制螺钉紧固。若螺钉材料的工作应力取为×106 Pa ,问至少需要几个螺钉 解:设通过圆孔中心的水平液面生的静压强为p ,则p 罐内液体作用于孔盖上的平均压强 9609.81(9.60.8)82874p g z Pa ρ=?=??-=( 作用在孔盖外侧的是大气压a p ,故孔盖内外所受的压强差为82874p Pa ?= 作用在孔盖上的净压力为 每个螺钉能承受的最大力为: 螺钉的个数为433.7610/4.96107.58??=个 所需的螺钉数量最少为8个 3. 某流化床反应器上装有两个U 管压差计,如本题附图所示。测得R 1=400 mm ,R 2=50 mm ,指示液为水银。为防止水银蒸气向空间扩散,于右侧的U 管与大气连通的玻璃管内灌入一段水,其高度R 3=50mm 。试 求A 、B 两处的表压强。 解:U 管压差计连接管中是气体。若以2,,g H O Hg ρρρ分别表示气体、水与水银的密度,因为g Hg ρρ,故由 C p

第三章化工原理-修订版-天津大学-

第三章 机械分离和固体流态化 1. 取颗粒试样500 g ,作筛分分析,所用筛号及筛孔尺寸见本题附表中第1、2列,筛析后称取各号筛面上的颗粒截留量列于本题附表中第3列,试求颗粒群的平均直径。 习题1附表 解:颗粒平均直径的计算 由 11i a i G d d G =∑ 2204080130110 (500 1.651 1.168 1.1680.8330.8330.5890.5890.4170.4170.295 603015105 0.2950.2080.2080.1470.1470.1040.1040.0740.0740.053 = ?++++ +++++++++++++++ ) 2.905=(1/mm) 由此可知,颗粒群的平均直径为d a =0.345mm. 2. 密度为2650 kg/m 3的球形石英颗粒在20℃空气中自由沉降,计算服从斯托克斯公式的最大颗粒直径及服从牛顿公式的最小颗粒直径。 解:20C 时,351.205/, 1.8110kg m Pa s ρμ-==??空气 对应牛顿公式,K 的下限为69.1,斯脱克斯区K 的上限为2.62 那么,斯脱克斯区: max 57.4d m μ= ==

min 1513d m μ= = 3. 在底面积为40 m 2的除尘室回收气体中的球形固体颗粒。气体的处理量为3600 m 3/h ,固体的密度3/3000m kg =ρ,操作条件下气体的密度3/06.1m kg =ρ,黏度为2×10-5 P a·s。试求理论上能完全除去的最小颗粒直径。 解:同P 151.例3-3 在降尘室中能被完全分离除去的最小颗粒的沉降速度u t , 则 36000.025/4003600 s t V u m s bl = ==? 假设沉降在滞流区,用斯托克斯公式求算最小颗粒直径。 min 17.5d um === 核算沉降流型:6min 5 17.5100.025 1.06 R 0.0231210t et d u ρ μ --???= ==

化工原理试题(所有试题均来自天津大学题库)下册(DOC)

化工原理试题(所有试题均来自天津大学题库) [五] j05b10045考过的题目 通过连续操作的单效蒸发器,将进料量为1200Kg/h的溶液从20%浓缩至40%,进料液的温度为40℃,比热为3.86KJ/(Kg. ℃),蒸发室的压强为0.03MPa(绝压),该压强下水的蒸发潜热r’=2335KJ/Kg,蒸发器的传热面积A=12m2,总传热系数K=800 W/m2·℃。试求: (1)溶液的沸点为73.9℃,计算温度差损失 (2)加热蒸汽冷凝液在饱和温度下排出,并忽略损失和浓缩热时,所需要的加热蒸汽温度。 已知数据如下: 压强 MPa 0.101 0.05 0.03 溶液沸点℃ 108 87.2 纯水沸点℃ 100 80.9 68.7 [五] j05b10045 (1)根据所给数据,杜林曲线的斜率为 K=(108-87.2)/(100-80.9)=1.089 溶液的沸点 (87.2-t1)/(80.9-68.7)=1.089 t1=73.9℃ 沸点升高?′=73.9-68.7=5.2℃ (2)蒸发水量W=F(1-X0/X1) =1200(1-0.2/0.4)=600Kg/h 蒸发器的热负荷 Q=FCo(t1-t0)+Wr′ =(1200/3600)×3.86(73.9-40)+600/3600×2335 =432.8Kw 所需加热蒸汽温度T Q=KA(T-t1) T=Q/(KA)+t1 =432.8×103/(800×12)+73.9 =119℃ [五] j05b10048 用一双效并流蒸发器,浓缩浓度为5%(质量百分率,下同)的水溶液,沸点进料,进料量为2000Kg/h。第一、二效的溶液沸点分别为95℃和75℃,耗用生蒸汽量为800Kg/h。各个温度下水蒸汽的汽化潜热均可取为2280KJ/Kg。试求不计热损失时的蒸发水量。 [五] j05b10048 解:第一效蒸发量: 已知:D1=800kg/h, r1=r1′=2280KJ/kg, W1=D1=800kg/h 第二效蒸发水量: 已知:D2=W1=800kg/h, F2=F1-W1=2000-800=1200kg/h X02=X1=FX0/(F-W1)=2000×0.05/(2000-800)=0.0833 t02=95℃ t2=70℃ r2=r2′=2280KJ/kg Cp02=Cpw(1-X 02)=4.187×(1-0.0833) =3.84KJ/(kg·℃) D2r2=(F2Cp02(t2-t02))/r2′+W2 r2′ W2=(800×2280-1200×3.84×(75-95))/2280 =840kg/h 蒸发水量W=W1+W2 =800+840=1640kg/h[五] j05a10014 在真空度为91.3KPa下,将12000Kg的饱和水急送至真空度为93.3KPa的蒸发罐内。忽略热损失。试定量说明将发生什么变化。水的平均比热为4.18 KJ/Kg·℃。当地大气压为101.3KPa饱和水的性质为真空度, KPa 温度,℃汽化热,KJ/Kg 蒸汽密度,Kg/m3 91.3 45.3 2390 0.06798 93.3 41.3 2398 0.05514 [五] j05a10014 与真空度为91.3KPa相对应得绝压为101.3-91.3=10KPa 与真空度为93.3KPa相对应得绝压为101.3-93.3=8KPa

化工原理 修订版 天津大学 上下册课后答案

上册 第一章 流体流动习题解答 1. 某设备上真空表的读数为13.3×103 Pa ,试计算设备内的绝对压强与表压强。已知该地区大气压强为98.7×103 Pa 。 解:真空度=大气压-绝压 表压=-真空度=-13.3310Pa ? 2. 在本题附图所示的贮油罐中盛有密度为960 kg/m 3的油品,油面高于罐底9.6 m ,油面上方为常压。在罐侧壁的下部有一直径为760 mm 的圆孔,其中心距罐底800 mm ,孔盖用14 mm 的钢制螺钉紧固。若螺钉材料的工作应力取为32.23×106 Pa ,问至少需要几个螺钉 解:设通过圆孔中心的水平液面生的静压强为p ,则p 罐内液体作用于孔盖上的平均压强 9609.81(9.60.8)82874p g z ρ=?=??-= 作用在孔盖外侧的是大气压a p ,故孔盖内外所受的压强差为 82874p Pa ?= 作用在孔盖上的净压力为 每个螺钉能承受的最大力为: 螺钉的个数为433.7610/4.96107.58??=个 所需的螺钉数量最少为8个 3. 某流化床反应器上装有两个U 管压差计,如本题附图所示。测得R 1=400 mm ,R 2=50 mm ,指示液为水银。为防止水银蒸气向空间扩散,于右侧的U 管与大气连通的玻璃管内灌入一段水,其高度R 3=50mm 。试求A 、B 两处的表压强。 解:U 管压差计连接管中是气体。若以2,,g H O Hg ρρρ分别表示气体、水与水银的密度,因为g Hg ρρ=,故由气柱高度所产生的压强差可以忽略。由此可以认为A C p p ≈, B D p p ≈。 C D p

由静力学基本方程式知 7161Pa =(表压) 4. 本题附图为远距离制量控制装置,用以测定分相槽内煤油和水的两相界面位置。已知两吹气管出口的距离H =1 m ,U 管压差计的指示液为水银,煤油的密度为820 kg/m 3。试求当压差计读数R=68 m 时,相界面与油层的吹气管出口距离h 。 解:如图,设水层吹气管出口处为a ,煤油层吹气管出口处为b ,且煤油层吹气管到液气界面的高度为H 1。则 1a p p = 2b p p = 1()()a p g H h g H h ρρ=++-油水(表 压) 1b p gH ρ=油(表压) U 管压差计中,12Hg p p gR ρ-= (忽略吹气管内的气柱压力) 分别代入a p 与b p 的表达式,整理可得: 根据计算结果可知从压差指示剂的读数可以确定相界面的位置。并可通过控制分相槽底部排水阀的开关情况,使油水两相界面仍维持在两管之间。 5. 用本题附图中串联U 管压差计测量蒸汽锅炉水面上方的蒸汽压,U 管压差计的指示液为水银,两U 管间的连接管内充满水。已知水银面与基准面的垂直距离分别为:h 1=2.3 m 、h 2=1.2 m 、h 3=2.5 m 及h 4=1.4 m 。锅中水面与基准面间的垂直距离h 5=3 m 。大气压强a p =99.3×103 Pa 。试求锅炉上方水蒸气的压强p 。(分别以Pa 和kgf/cm 2来计量)。 2 3 4 H 1 压缩空气 p

化工原理天津大学版化上下册习题答案

化工原理课后习题 1.某设备上真空表的读数为13.3×103 Pa,试计算设备内的绝对 压强与表压强。已知该地区大气压强为98.7×103 Pa。 解:由绝对压强= 大气压强–真空度得到: 设备内的绝对压强P绝= 98.7×103 Pa -13.3×103 Pa =8.54×103 Pa 设备内的表压强P表= -真空度= - 13.3×103 Pa 2.在本题附图所示的储油罐中盛有密度为960 ㎏/?的油品, 油面高于罐底 6.9 m,油面上方为常压。在罐侧壁的下部有一直 径为760 mm 的圆孔,其中心距罐底800 mm,孔盖用14mm 的钢制螺钉紧固。若螺钉材料的工作应力取为39.23×106 Pa , 问至少需要几个螺钉? 分析:罐底产生的压力不能超过螺钉的工作应力 即 P油≤ σ螺 解:P螺= ρgh×A = 960×9.81×(9.6-0.8) ×3.14×0.762 150.307×103 N σ螺= 39.03×103×3.14×0.0142×n P油≤ σ螺得n ≥ 6.23 取n min= 7 至少需要7个螺钉 3.某流化床反应器上装有两个U 型管

压差计,如本题附图所示。测得R1 = 400 mm ,R2 = 50 mm, 指示液为水银。为防止水银蒸汽向空气中扩散,于右侧的U 型 管与大气连通的玻璃管内灌入一段水,其高度R3 = 50 mm。试求 A﹑B两处的表压强。 分析:根据静力学基本原则,对于右边的U管压差计,a–a′为等压面,对于左边的压差计,b–b′为另一等压面,分别列出两个等压面处的静力学基本方程求解。 解:设空气的密度为ρg,其他数据如图所示 a–a′处P A+ ρg gh1= ρ水gR3+ ρ水银ɡR2 由于空气的密度相对于水和水银来说很小可以忽略不记 即:P A = 1.0 ×103×9.81×0.05 + 13.6×103×9.81×0.05 = 7.16×103 Pa b-b′处P B + ρg gh3 = P A + ρg gh2 + ρ水银gR1 P B = 13.6×103×9.81×0.4 + 7.16×103 =6.05×103Pa 4. 本题附图为远距离测量控制 装置,用以测定分相槽内煤油和 水的两相界面位置。已知两吹气 管出口的距离H = 1m,U管压差 计的指示液为水银,煤油的密度 为820Kg/?。试求当压差计读数R=68mm时,相界面与油层 的吹气管出口距离h。

天大_化工原理(上册)答案

化工原理课后习题解答 (夏清、陈常贵主编.化工原理.天津大学出版社,2005.) 第一章流体流动 1.某设备上真空表的读数为 13.3×103 Pa,试计算设备内的绝对压强与表压强。已知该地 区大气压强为 98.7×103 Pa。 解:由绝对压强 = 大气压强–真空度得到: 设备内的绝对压强P绝= 98.7×103 Pa -13.3×103 Pa =8.54×103 Pa 设备内的表压强 P表 = -真空度 = - 13.3×103 Pa 2.在本题附图所示的储油罐中盛有密度为 960 ㎏/?的油品,油面高于罐底 6.9 m,油面 上方为常压。在罐侧壁的下部有一直径为 760 mm 的圆孔,其中心距罐底 800 mm,孔盖用 14mm的钢制螺钉紧固。若螺钉材料的工作应力取为39.23×106 Pa , 问至少需要几个螺钉? 分析:罐底产生的压力不能超过螺钉的工作应 力即 P油≤?螺

解:P螺 = ρgh×A = 960×9.81×(9.6-0.8) ×3.14×0.762 150.307×103 N ?螺 = 39.03×103×3.14×0.0142×n P油≤?螺得 n ≥ 6.23 取 n min= 7 至少需要7个螺钉 3.某流化床反应器上装有两个U 型管压差计,如本题附 图所示。测得R1 = 400 mm , R2 = 50 mm,指示液为水 银。为防止水银蒸汽向空气中扩散,于右侧的U 型管与大气 连通的玻璃管内灌入一段水,其高度R3= 50 mm。试求A﹑B 两处的表压强。 分析:根据静力学基本原则,对于右边的U管压差计,a– a′为等压面,对于左边的压差计,b–b′为另一等压面,分 别列出两个等压面处的静力学基本方程求解。 解:设空气的密度为ρg,其他数据如图所示 a–a′处 P A + ρg gh1 = ρ水gR3 + ρ水银ɡR2 由于空气的密度相对于水和水银来说很小可以忽略不记 即:P A = 1.0 ×103×9.81×0.05 + 13.6×103×9.81×0.05 = 7.16×103 Pa b-b′处 P B + ρg gh3 = P A + ρg gh2 + ρ水银gR1 P B = 13.6×103×9.81×0.4 + 7.16×103 =6.05×103Pa 4. 本题附图为远距离测量控制装置,用以测 定分相槽内煤油和水的两相界面位置。已知两 吹气管出口的距离H = 1m,U管压差计的指示

化工原理(天津大学) 第二版复习题

一、名词解释 1.单元操作:在各种化工生产过程中,除化学反应外的其余物理操作。 2.牛顿流体:服从牛顿粘性定律的流体, 3.理想流体: 粘度为零的流体。实际自然中并不存在,引入理想流体的概念,对研究实际流体起重要作用。 4.真空度:当被测流体的绝对压强小于外界大气压强时,真空表的数值。 5.流体边界层:当流体流经固体壁面时,由于流体具有黏度,在垂直于流体流动的方向上流速逐渐减弱,受壁面影响而存在速度梯度的流体层。 6.边界层分离:当流体沿曲面流动或流动中遇障碍物时,不论是层流或湍流,会发生边界层脱离壁面的现象。 7.局部阻力:主要是由于流体流经管路中的管件、阀门及管截面的突然扩大或缩小等局部地方所引起的阻力。 8.直管阻力:是流体流经一定管径的直管时,由于流体内摩擦而产生的阻力,这种阻力的大 小与路程长度成正比,或称为沿程阻力。 9.层流流动:是流体两种基本流动形态之一,当管内流动的Re<2000时,流体质点在管内呈平行直线流动,无不规则运动和相互碰撞及混杂。 10.完全湍流区:λ-Re 曲线趋于水平线,即摩擦系数λ只与ε/d 有关,而与Re 准数无关的 一个区域,又hf 与u 2成正比,所以又称阻力平方区。 11.当量直径:非圆形管的直径用4倍的水力半径来代替,称当量直径,以de 表示,即de=4rH=4x 流通截面积/润湿周边长。 12.泵的特性曲线:泵在一定的转速下,压头、功率、效率与流量之间的关系曲线。 13.汽蚀现象:当吸上真空度达最大值(泵的入口压强等于或小于输送温度下的饱和蒸汽压)时,液体就要沸腾汽化,产生大量汽泡,汽泡随液流进入叶轮的高压区而被压缩,迅速凝成液体,体积急剧变小,周围液体就以极高速度冲向原汽泡所占空间,产生极大的冲击频率和压强,引起震动和噪音,材料表面由点蚀形成裂纹,致使叶片受到严重损伤。 14.泵的安装高度:泵的吸入口轴线与贮液槽液面间的垂直距离。1022110----=f g H g u g p p H ρ 15.泵的工作点:泵的特性曲线和管路特性曲线的交点。 dy du μτ=()Kg J u d L h f /22λ=

相关文档
最新文档