第五章--配位聚合

第五章--配位聚合
第五章--配位聚合

第五章--配位聚合

第五章配位聚合习题参考答案

1.举例说明聚合物的异构现象,如何评价聚合物的立构规整性?

解答:

(1)聚合物的异构现象:

①结构异构聚合物,如聚甲基丙烯酸甲酯与聚丙烯酸乙酯:

CH3

|

-[-CH2-C-]n-

-[-CH2-CH-]n-

|

|

CO2CH3

CO2C2H5

聚甲基丙烯酸甲酯聚丙烯酸乙酯

②几何异构聚合物,汉分子链中由于双键或环形结构上取代基在空间排列方式不同造成的立体异构称为几何异构,也称顺-反异构。如丁二烯聚合所形成的1,4-聚丁二烯,其结构单元有顺式结构和反式结构两种:

~~~CH2 CH2~~~~~~CH2H

C = C C = C

H H H CH2~~~

顺式结构(顺-1,4聚丁二烯)反式结构(反-1,4聚丁二烯)

③光学异构聚合物,如聚环氧丙烷有一个真正的手性碳原子:

H

|

~~~O-C*-CH2~~~

|

CH3

④构象异构聚合物,当大分子链中原子或原子团绕单键自由旋转所占据的特殊空间位置或单键连接的分子链单元的相对位置的改变称构象异构。构象异构可以通过单键的旋转而互相转换。

(2)当大分子链上大部分结构单元(大于75%)是同一种立体构型时,称该大分子为有规立构聚合物,或立构规整聚合物、定向聚合物。反之,称为无规立构聚合物。

2.写出下列单体聚合后可能出现的立构规整聚合物的结构式及名称:

(1)CH2=CH-CH3

(2)CH2-CH-CH3

O

(3)CH 2=CH-CH=CH 2 CH 3 | (4)CH 2 =C-CH=CH 2 解答:

(1) 聚丙烯

全同聚丙烯(R

为甲基) 间同聚丙烯(R 为甲基)

(2) 聚环氧丙烷

全规聚环氧丙烷 间规聚环氧丙烷 (3) 丁二烯 ~~~CH 2 CH 2~~~ ~~~CH 2 H C = C C = C H H H H H O O O O H CH 3 H CH 3 H H CH 3 H H H O O O O H H H CH 3 H H H H R H H H R H

H H H R H H R H H H R H H R H H H H H R H H H R H H H H R H H H R H H H H R H H R H H

H H H CH 2~~~

顺式结构(顺-1,4聚丁二烯) 反式结构(反-1,4聚丁二烯)

全同1,2-聚丁二烯(R 为乙烯基) 间同1,2-聚丁二烯(R 为乙烯基)

(4) 异戊二烯

~~~

CH 2 CH 2~~~ ~~~CH 2 H C =

C C = C CH 3

H

CH 3 CH 2~~~ 顺式结构(顺-1,4聚异戊二烯)

H H H R H H H R H

H H H R H H R H H

反式结构(反-1,4聚异戊二烯)

全同3,4-聚异戊二烯(R 为-C(CH 3)=CH 2) 间同

3,4-聚异戊二烯(R 为-C(CH 3)=CH 2)

全同1,2-聚异戊二烯(R 乙烯基) 间

同3,4-聚异戊二烯(R 为乙烯基)

H H CH 3 R H H CH 3 R H H H H R H H R H H

H H H R H H H R H H H CH 3 R H H R CH 3 H H

3.什么是配位聚合?主要有几类催化剂(或引发剂),各有什么特点?

解答:

(1)配位聚合:是指单体分子的碳-碳双键先在显正电性的低价态过渡金属的空位上配位,形成某种形式的络合物(常称σ-π络合物),经过四元环过渡态,随后单体分子插入过渡金属-碳键中进行增长的聚合过程。又称络合聚合、插入聚合。

(2)主要催化剂类型:

① Ziegler-Natta催化剂。主要由Ⅳ~Ⅷ族过渡金属卤化物和Ⅰ~Ⅲ族的有机金属化合物组成。可用于α-烯烃、二烯烃和环烯烃的配位聚合,种类繁多,催化能力强。

②π烯丙基过渡金属型催化剂。主要为Ⅳ~Ⅷ族过渡金属或铀的π-烯丙基卤化物,主要用于二烯烃的配位聚合。

③烷基锂引发剂。习惯上属于阴离子聚合,但用于二烯烃聚合时本质上也属于配位聚合。

4.简述配位聚合(络合聚合、插入聚合),定向聚合(有规立构聚合),Ziegler-Natta聚合的特点,相互关系。

配位聚合、络合聚合、插入聚合是同义语,是从单体在活性中心处的反应机理的角度讨论问题。任何聚合反应,只要包括单体在活性中心处的配位(或络合)、活化的单体插入金属-烷基键中进行增长,均属于配位聚合。如用Ziegler-Natta催化剂进行的α-烯烃、二烯烃、环烯烃和极性烯类单体的聚合;烷基锂引发的二烯烃聚合等。配位聚合产物大多数是立构规整聚合物,但并不是说必须是立构规整聚合物,如用Ziegler-Natta催化剂进行的乙烯聚合,产物就谈不上立体异构,再如很多对丙烯有活性的Ziegler-Natta催化剂,其产物的全同指数并不高。

定向聚合、有规立构聚合是同义语,是从聚合所得产物的角度讨论问题。任何引发体系,聚合反应,聚合方法,只要得到立构规整产物,即为定向聚合。

Ziegler-Natta聚合通常是指采用Ziegler-Natta催化剂的任何单体的聚合和共聚合,产物可以是立构规整聚合物,也可以不是立构规整聚合物。

5.对自由基聚合、离子聚合、配位聚合对所合成聚合物立构规整性的控制能力进行分析,并给予简要解释。

①自由基聚合活性中心有一个电子,没有反离子,对产物的立构基本没有控制能力。

②离子聚合活性中心为一离子对,单体插入增长,因此对产物的立构有一定的控制能力。

③配位聚合单体在活性中心处按一定方向配位,再插入增长,因而对立构有强的控制能力。

6.丁基锂引发苯乙烯和异戊二烯聚合属于阴离子聚合,它们是否也属于配位聚合,简述理由。

解答:

①丁基锂引发苯乙烯为典型的阴离子聚合,反应为直接亲核加成,不属配位聚合。

②丁基锂引发异戊二烯聚合属于阴离子聚合,但从增长看,单体先与活性中心形成某种形式的络合物,再插入增长,因此也属配位聚合。

7.下列引发剂何者能引发乙烯、丙烯、丁二烯的配位聚合:

(1)n-C4H9Li

(2)α-TiCl3 / AlEt2Cl

(3)(π-C3H5)NiCl

(4)TiCl4 / AlEt3

解答:

①n-C4H9Li可引发丁二烯进行配位聚合。

②α-TiCl3/ AlEt2Cl可引发丙烯进行配位聚合。

③(π-C3H5)NiCl可引发丁二烯进行配位聚合。

④TiCl4 / AlEt3可引发乙烯进行配位聚合。

8.比较阳离子引发剂、阴离子引发剂和Ziegler-Natta催化剂有何异同。

解答:

阳离子引发剂为路易斯酸。阴离子聚合引发为路易氏碱。两组分Ziegler-Natta催化剂的主催化剂是路易氏酸,共催化剂是路易氏碱,但由二者组成的Ziegler-Natta催化剂既不是阳离子聚合也不是阴离子聚合,而是配位阴离子聚合。

9.简述两组分Ziegler-Natta催化剂、三组分Ziegler-Natta催化剂、载体型Ziegler-Natta催化剂、茂金属催化剂和后过渡金属催化剂的组成和特点。

解答:

①两组分Ziegler-Natta催化剂:

组成:主催化剂主要由Ⅳ~Ⅷ族过渡金属卤化物组成,共催化剂主要由Ⅰ~Ⅲ族的有机金属化合物组成。

特点:最典型和基本的Ziegler-Natta催化剂,配位聚合的主要催化剂。

②三组分Ziegler-Natta催化剂:

组成:在两组分基础上再加入第三组分路易氏碱:含氧有机化合物、含磷有机化合物、含硫有机化合物、含氮有机化合物、含硅有机化合物、芳烃、脂肪烃、脂环烃及其卤代衍生物、金属卤化合物及络合物。

特点:加入第三组分可以提高催化剂活性,有些可以提高催化剂的定向能力。

③载体型Ziegler-Natta催化剂:

组成:将一种或几种过渡金属(Ti、V、Cr)化合物载负在无机物固体表面或高分子物上(如MgO、Mg(OR)Cl、MgCl2、Mg(OR)2、RMgX等)形成主催化剂,共催化剂仍为烷基金属化合物。

特点:提高活性中心数目,进而可提高催化剂活性及提高催化剂的定向能力。

④茂金属催化剂:

组成:由过渡金属(多为ⅣB族钛、锆、铪)

或稀土金属元素与至少一个环戊二烯(简称茂)或环戊二烯衍生物生物配体组成的一类有机金属配合物为主催化剂,以烷基铝氧烷或有机硼化物作助催化剂组成的催化体系。

特点:

(1)催化活性高,由于为均相体系,几乎所有催化剂均为活性中心。

(2)催化活性中心单一,可得到窄相对分子质量分布的聚合物。

(3)改变催化剂结构可以有效地控制产物的相对分子质量、相对分子质量分布、共聚组成、序列结构、支化度、密度、熔点等指标,即可实现可控聚合。

(4)基本为均相体系,便于对活性中心状态、立构规整聚合物的形成机理等进行研究。

(5)茂金属催化剂的一个主要缺点是共催化剂MAO的用量过大,而MAO过高的成本制约了茂金属催化剂的应用。如何减少MAO用量,或用其它共催化剂代替MAO是茂金属催化剂研究的一个重要领域。

⑤后过渡金属催化剂

组成:以Ⅶ族过渡金属为主催化剂,在MAO

或有机硼助催化剂活化后对烯烃聚合有高活性的新一代烯烃催化剂。

特点:与Ziegler-Natta催化剂和茂金属催化剂相比,后过渡金属催化剂既增大了活性中心原子的立体效应,又通过共轭体系的电子效应使中心原子的正电性得以改变,更适合于α-烯烃的配位和插入;由于改变了配体,使Ⅶ族过渡金属催化剂对α-烯烃呈现出高的活性;催化剂制备容易,在空气中相当稳定,可长期保存使用。后过渡金属催化剂可以合成出许多以前无法得到的聚合物。

10.简述Ziegler-Natta催化剂开发的意义。

解答:

20世纪50年代出现的Ziegler-Natta催化剂是高分子化学发展史上的一个里程碑:以此为开端开发出一大类催化剂;它的出现使50年代以来由于石油化学工业的发展为高分子合成提供的大量廉价原料中最后一大类-丙烯实现了工业化生产,并且在常温常压下得到线型聚乙烯及人们渴望已久的合成天然橡胶-高顺式聚异戊二烯;通过对聚丙烯的结构分析,揭示并证明了聚合物的立体异构现象,使α-烯烃、共轭二烯烃及其它不饱和单体的立体规整聚合成为可能;

通过对聚合反应的研究,提出了配位阴离子聚合的机理;所有这些成就使高分子化学进入了一个全新的发展时期。1963年Ziegler和Natta因其在这方面的杰出贡献而共同荣获诺贝尔化学奖。

11.丙烯进行自由基聚合、离子聚合及配位阴离子聚合时能否形成高分子聚合物?为什么?怎样分离和鉴定所得聚合物为全同聚丙烯?

解答:

①丙烯只有一个较弱的推电子基,阳离子聚合困难,无法阴离子聚合,如进行自由基聚合,易形成稳定的烯丙基自由基,无法进行增长。因此只有在具有强催化能力的配位聚合才能得到聚合物。

②常用沸腾正庚烷萃取法。将不溶于沸腾正庚烷的部分所占的百分重量代表等规立构聚丙烯含量:

沸腾正庚烷萃取剩余物重

聚丙烯的全同指数(IIP)= ──────────

──×100 %

未萃取时的聚合物总重12.在用Ziegler-Natta催化剂进行α-烯烃聚合理论研究中曾提出过自由基聚合、阳离子聚合和阴离子聚合机理,但均未获得公认,试对其依据和不足之处加以讨论。

解答:

①自由基聚合机理:

1954年,C.D.Nenitzescu提出自由基机理,认为过渡金属卤化物被部分烷基化,随后烷基过渡金属化合物分解,过渡金属被还原,同时产生自由基R·并引发自由基聚合:

AlR3+ TiCl4→ RTiCl3 + AlR2Cl

RTiCl3 → R·+ ·TiCl3

└→ TiCl3

R·+ 单体→ 聚合物

这一机理被后面的许多实验结果所否定。如使用在自由基聚合中有明显链转移作用的异丙苯作溶剂进行Ziegler-Natta聚合,产物相对分子质量并不降低。此外,聚合物的支化度低,催化剂活性中心寿命长等事实,都与一般的自由基聚合规律不符。

②阳离子聚合机理:

H.Uelzman提出AlR3和TiCl4可形成络合阳离子:

AlR3+ TiCl4→ TiCl2+AlR3Cl-

该阳离子络合物可引发丙烯进行阳离子聚合。但由于α-烯烃使用Ziegler-Natta催化剂的聚合速率随双键上烷基R的增大而降低,即存在:

CH2=CH2 >CH2=CH-CH3 >CH2=CH-CH2-CH3

这一顺序正好与阳离子聚合活性顺序相反,所以阳离子聚合机理没有得到承认。

③阴离子聚合机理:

A.J.Anderson基于RTiCl3 的异裂,提出阴离子聚合机理:

RTiCl3 → R-+ +TiCl3

R- + 单体→ 聚合物

这种典型阴离子聚合机理由于无法解释丙烯是如何形成立构规整聚合物的,因而未得到人们的认可。

13.简述丙烯配位聚合时,Natta的双金属机理和Cossrr-Arlman的单金属机理的基本论点,各自的实验依据,这两种机理各解释了什么问题及存在的主要不足。

解答:

①Natta的双金属机理

基本论点:

(1)离子半径小、电正性强的有机金属化合物在TiCl3表面上化学吸附,形成缺电子桥形络合物,这一络合物为聚合的活性种。

(2)富电子的丙烯在亲电子的过渡金属(如Ti)上配位(或叫π络合),即在Ti上引发生成。

(3)该缺电子桥形络合物部分极化后,被络合(或配位)的单体和桥形络合物形成六元环过渡态。

(4)当极化的单体插入Al-C键后,六元环结构瓦解,重新形成四元环缺电子桥形络合物。

由于聚合时首先是富电子的丙烯在Ti上配位,Al-Et键断裂,Et接到单体的β碳上,因此称为配位阴离子聚合。

主要实验依据是:

(1)共催化剂的作用由多种实验可看出共催化剂对聚丙烯的IIP有较大影响,说明共催化剂参与了活性种的形成,并应成为活性种的组成部分。

(2)可溶性引发剂的研究推定存在Ti…Cl…Al为缺电子三中心键或称氯桥结构

(3)对所得聚乙烯进行端基分析,表明均含

有14C,由此认为钛化合物和铝化合物形成活性种,聚合链连在铝上,即在铝上增长。

根据以上实验依据,G..Natta提出丙烯在双金属桥形络合物上进行配位阴离子聚合的机理,主要论点为:

解释的问题及存在的主要不足:

Natta双金属机理首先提出了配位聚合的概念,这一概念至今尚有普遍意义;其次提出了活性中心,建立了活性中心的反应图像;考虑了共催化剂的作用。

最大不足是在铝上增长。另一个明显不足是没有涉及立构规整的成因。

②Cossrr-Arlman的单金属机理

基本论点:

(1)活性中心是一个以Ti+3离子为中心、Ti 上带有一个烷基(或增长链)、一个空位(1位)和四个氯的五配位正八面体。

(2)AlR3先在五氯配体Ti+3的空位上与Ti 配位,然后Ti上Cl5和AlR3上的R发生烷基-卤素交换,结果Ti被烷基化,并再生出一个最开始空位。AlR3只是起使Ti烷基化的作用。

(3)丙烯在TiCl3表面上定向吸附,在空位处与Ti+3配位(称π络合),烯烃的双键平行于

Cl3-Ti-R,而烯烃上的烷基向远处远离Ti上的R基,形成一个四元环过渡态。R基接近丙烯的β碳原子,发生顺式加成。总的结果是丙烯在Ti-C键间插入增长,同时空位回到原位。

(4)在下一个丙烯分子占据空位之前链又跳回到空位上来,恢复最开始空位。这样丙烯的配位和增长就始终在最开始空位上进行,由此得到全同聚丙烯。

主要实验依据是:

(1)对于传统的二元Ziegler-Natta催化剂有许多实验证明链增长活性中心是在过渡金属-碳键上进行的。

(2)对α-TiCl3-Al(CH3)3反应前后及用于催化丙烯聚合后的电镜照片进行了分析,表明增长的活性中心是在晶体的边棱上。这是对Cossee-Arlman 的单金属机理的最直接的证明。

解释的问题及存在的主要不足:

(1)每增长一次,分子链与空位互换一次位置在热力学上不够合理。

(2)对共催化剂的作用重视不够。

14.使用Ziegler-Natta催化剂时须注意什么问

题,聚合体系、单体、溶剂等应采用何种保证措施?聚合结束后用什么方法除去残余催化剂?

解答:

①Ziegler-Natta催化剂的主催化剂是路易氏酸,为常用的阳离子聚合引发剂;共催化剂是路易氏碱,为常用的阴离子聚合引发剂。因此聚合体系、单体、溶剂等应采用的保证措施与离子聚合相同,如原料精制、装置氮气保护,隔绝空气、水等。

②一般高效Ziegler-Natta催化剂用量少,可不脱除催化剂,如有需要,可加入水、醇螯合剂脱除。

15.用Ziegler-Natta催化剂进行乙烯、丙烯聚合时,为何能用氢气调节聚合物的相对分子质量?

解答:

利用了活性中心向氢的链转移作用原理:

Ti:CH2-CH~R → Ti-H + CH3-CH~R

↑ ↑ | |

H :H CH3 CH3

以上反应所形成的Ti-H或Ti-R同单体反应可再形成活性中心,继续进行聚合。但用氢调节相对分子质量时,聚合速率也会下降。

16.比较合成HDPE、LDPE、LLDPE在催化

第十一章 配位化合物

第十一章配位化合物 一、选择题 1. 配位数为6的配离子的空间构型是: A、三角锥形 B、四面体形 C、平面四边形 D、八面体形 2. Fe(Ⅲ)形成的配位数为6 的内轨配合物中,Fe3+离子接受孤对电子的空轨道是: A、d2sp3 B、sp3d2 C、p2d4 D、sd5 3. 在[CoCl(NH3)3(en)]2+中,中心离子Co3+的配位数为: A、3 B、4 C、5 D、6 4. [Cr(en)3]2+离子中铬的配位数及配合物中配体的个数是: A、3,3 B、3,6 C、6,6 D、6,3 5. 根据晶体场理论,在八面体场中,由于场强的不同,有可能产生高自旋或低自旋的电子构型是: A、d2 B、d3 C、d6 D、d9 6. 形成高自旋配合物的原因是: A、分裂能△< 电子成对能P B、分裂能△= 电子成对能P C、分裂能△> 电子成对能P D、不能只根据分裂能△和电子成对能P确定 7. 在[CoCl(NH3)3(en)]2+中,中心离子Co3+的配位数为: A、3 B、4 C、5 D、6 8. 对于配离子[Co(NH3)5H2O]3+,下列命名正确的是: A、一水五氨合钴(Ⅲ)离子 B、五氨一水合钴(Ⅲ)离子 C、氨一水合钴(Ⅲ)离子 D、五氨一水合钴离子 9. Ni(Ⅱ)形成的配位数为4具有四面体形的配合物中,Ni2+离子接受孤对电子的空轨道是: A、sp3 B、sp3d2 C、spd2 D、dsp2 10. 对于配离子[CoCl(NH3)3(en)]2+,下列命名正确的是: A、三氨一氯乙二胺合钴(Ⅲ)离子 B、一氯三氨乙二胺合钴(Ⅲ)离子 C、一氯乙二胺三氨合钴(Ⅲ)离子 D、乙二胺一氯三氨合钴(Ⅲ)离子 11. Co(Ⅱ)形成的配位数为6 的外轨配合物中,Co2+离子接受孤对电子的空轨道是: A、d2sp3 B、p2d4 C、s p2d3 D、sp3d2

潘祖仁《高分子化学》(第5版)【章节题库】-第7~9章【圣才出品】

第7章配位聚合 一、填空题 1.Ziegler-Natta引发剂至少由两种组分,即______和______构成。 【答案】主引发剂;共引发剂 【解析】Ziegler-Natta引发剂由由ⅣB~ⅧB族过渡金属化合物和ⅠA~ⅢA族金属有机化合物两大组分配合而成。Ziegler-Natta引发体系可分成不溶于烃类(非均相)和可溶(均相)两大类,溶解与否与过渡金属组分和反应条件有关。 2.在丙烯的配位聚合反应中常需要加入第三组分如六甲基磷酸三酰胺,其目的是______和______。 【答案】增加等规度;增大相对分子质量 【解析】引发剂是α-烯烃配位聚合的核心问题,为了提高聚合活性、提高立构规整度、使聚合度分布和组成分布均一等目标,关键措施有:添加给电子体(加入第三组分)和负载。加入六甲基磷酸胺(HMPTA),能够使丙烯聚合活性增加10倍。 3.对Ziegler-Natta催化剂而言,第一代典型的Ziegler催化剂组成为______,属______相催化剂,而典型的Natta催化剂组成为______,属______相催化剂;第二代催化剂是______;第三代催化剂是______;近年发展较快的是______。 【答案】TiCl4+AlEt3;均;TiCl3+AlEt3;非均;加入适量带有孤对电子的第三组分——Lewis碱;将TiCl4负载在载体,如MgCl2上,同时在制备过程中引入第三组分作为内电

子给体,聚合时加入外电子给体;茂金属引发剂 【解析】第一代α-TiCl3-AIEt3两组分引发剂对丙烯的聚合活性只有5×103gPP/gTi。第二代曾添加六甲基磷酸胺(HMPTA),使丙烯聚合活性提高了l0倍。第三代,添加酯类给电子体并负载,活性进一步提高。活性提高后,引发剂用量减少,残留引发剂不必脱除,后处理简化。茂金属引发剂可用于多种烯类单体的聚合,包括氯乙烯。 4.二烯烃配位聚合的引发剂大致分为______、______和______三类。 【答案】Ziegler-Natta型;π-烯丙基型;烷基锂型 【解析】①Ziegler-Natta引发体系数量最多,可用于α-烯烃、二烯烃、环烯烃的定向聚合。②π-烯丙基镍(π-C3H5NiX)限用于共轭二烯烃聚合,不能使α-烯烃聚合。③烷基锂类可引发共轭二烯烃和部分极性单体定向聚合。 5.配位聚合的概念最初是______解释α-烯烃聚合(用Ziegler-Natta引发剂)时提出的,配位聚合是指单位分子首先在______的空位上配位,形成某种形式的______,常称______,随后单体分子相继插入______中增长。 【答案】Natta;活性种;络合物;σ-π络合物;金属-烷基键 【解析】配位聚合过程可以归纳为:形成活性中心(或空位),吸附单体定向配位,络合活化,插入增长,类似模板地进行定向聚合,形成立构规整聚合物。 二、名词解释 1.配位聚合和插入聚合 答:配位聚合是指单体分子首先在活性种的空位处配位,形成某些形式(σ-π)的配位

第十一章 配位化合物

第十一章配位化合物 一、判断题: 1. 已知K2 [ Ni (CN)4 ]与Ni (CO)4 均呈反磁性,所以这两种配合物的空间构型均为平面正方形。 2.某配离子的逐级稳定常数分别为K、K、K、K,则该配离子的不稳定常数K= K·K·K·K。 3.HgS 溶解在王水中是由于氧化还原反应和配合反应共同作用的结果。 4.在多数配位化合物中,内界的中心原子与配体之间的结合力总是比内界与外界之间的结合力强。因此配合物溶于水时较容易解离为内界和外界,而较难解离为中心离子(或原子)和配体。 5.Zn2+只能形成外轨型配合物。 6.Fe2+既能形成内轨型配合物又能形成外轨型配合物。 二、选择题: 1.下列配合物中,属于内轨型配合物的是......................................()。 (A) [ V(H2O)6 ]3+,μ = 2.8 B. M.;(B) [ Mn (CN) ]4-,μ = 1.8 B. M.;。 6 (C) [Zn (OH)4]2-,μ = 0 B. M.;(D) [ Co(NH3)6 ]2+,μ = 4.2 B. M.。 2.配合物(NH4 )3[ SbCl6 ]的中心离子氧化值和配离子电荷分别是()。 (A) + 2 和? 3; (B) + 3 和? 3; (C) ? 3 和 + 3; (D) ? 2 和 + 3。 3. 第一过渡系列二价金属离子的水合热对原子序数作图时有两个峰,这是由于( ) (A) 前半系列是6配位,后半系列是4配位 (B) d电子有成对能 (C) 气态离子半径大小也有类似变化规律 (D) 由于晶体场稳定化能存在,使水合热呈现这样的规律 4 Fe(Ⅲ)形成的配位数为 6 的外轨配合物中,Fe3+离子接受孤对电子的空轨道是 ( ) (A) d2sp3 (B) sp3d2 (C) p3d3 (D) sd5 5. [NiCl4]2-是顺磁性分子,则它的几何形状为 ( ) (A) 平面正方形 (B) 四面体形 (C) 正八面体形 (D) 四方锥形 6.下列配离子的形成体采用sp杂化轨道与配体成键且μ = 0 B.M.的是.........()。 (A) [Cu (en)2]2+; (B)[CuCl2]-; (C)[AuCl4]-; (D) [BeCl4]2-。 7. [Ni(en)3]2+离子中镍的价态和配位数是 ( ) (A) +2,3 (B) +3,6 (C) +2,6 (D) +3,3 8. [Co(SCN)4]2-离子中钴的价态和配位数分别是( ) (A) -2,4 (B) +2,4 (C) +3,2 (D) +2,12 9. 0.01mol氯化铬( CrCl3·6H2O )在水溶液中用过量AgNO3处理,产生0.02molAgCl沉淀,此氯 化铬最可能为 ( ) (A) [Cr(H2O)6]Cl3 (B) [Cr(H2O)5Cl]Cl2·H2O (C) [Cr(H2O)4Cl2]Cl·2H2O (D) [Cr(H2O)3Cl3]·3H2O 10. 在[Co(en)(C2O4)2]配离子中,中心离子的配位数为 ( ) (A) 3 (B) 4 (C) 5 (D) 6 11. 在 K[Co(NH3)2Cl4] 中,Co 的氧化数和配位数分别是( ) (A) +2 和4 (B) +4 和6 (C) +3 和6 (D) +3 和 4 12. 在 [Ru(NH3)4Br2]+中,Ru 的氧化数和配位数分别是( ) (A) +2 和4 (B) +2 和6 (C) +3 和6 (D) +3 和 4

第六章离子聚合

第六章离子聚合 一、名称解释 1. 阳离子聚合:增长活性中心为带正电荷的阳离子的连锁聚合。 2. 活性聚合:当单体转化率达到100%时,聚合仍不终止,形成具有反应活性聚合物(活性聚合物)的聚合叫活性聚合。 3. 化学计量聚合:阴离子的活性聚合由于其聚合度可由单体和引发剂的浓度定量计算确定,因此也称为化学计量聚合。 4. 开环聚合:环状单体在引发剂作用下开环,形成线形聚合物的聚合反应。 5. Ziegler-Natta引发剂:Zigler-Natta引发剂是一大类引发体系的统称,通常有两个组份构成:主 引发剂是Ⅳ~Ⅷ族过渡金属化合物。共引发剂是Ⅰ~Ⅲ族的金属有机化合物。 6. 配位聚合:单体与引发剂经过配位方式进行的聚合反应。具体的说,采用具有配位(或络合)能力的引发剂、链增长(有时包括引发)都是单体先在活性种的空位上配位(络合)并活化,然手插入烷基—金属键中。配位聚合又有络合引发聚合或插入聚合之称。 7. 定向聚合:任何聚合过程(包括自由基、阳离子、阴离子、配位聚合)或任何聚合方法(如本体、悬浮、乳液和溶液等),只要它是经形成有规立构聚合物为主,都是定向聚合。定向聚 合等同于立构规整聚合。 二、选择题 1. 下列单体中哪一种最容易进行阳离子聚合反应---------------------------------------------( B ) A.CH2=CH2B.CH2=CHOCH3C.CH2=CHCl D.CH2=CHNO2 2. 下列哪种物质不能作为阳离子聚合的引发剂------------------------------------------------(B ) A.正碳离子盐B.有机碱金属C.质子酸D.Lewis酸 3. 四氢呋喃可以进行下列哪种聚合---------------------------------------------------------( C ) A.自由基聚合B.阴离子聚合C.阳离子聚合D.配位聚合 4. 在无终止的阴离子聚合中,阴离子无终止的原因是(C ) A 阴离子本身比较稳定 B 阴离子无双基终止而是单基终止 C 从活性链上脱出负氢离子困难 D 活化能低,在低温下聚合 5. 合成聚合物的几种方法中,能获得最窄相对分子质量分布的是( A ) A 阴离子聚合 B 阳离子聚合 C 自由基聚合D自由基共聚合 6. 能引发苯乙烯阴离子活性聚合,并且聚合度等于两倍的动力学链长的是(D) A. BuLi B. AIBN C. AlCl3+H2O D. 萘+钠 7. 制备分子量分别较窄的聚苯乙烯,应该选择(B) A阳离子聚合B阴离子聚合反应C配位聚合反应D自由基聚合反应

高分子化学_余木火_第五章 配位聚合习题

返回 第五章配位聚合_习题 1.画出下列单体可能得到的立构规整聚合物的结构式并命名: (1)CH2=CH-CH3 (2)CH2=C(CH3)2 (3)CH2=CH-CH=CH2 (4)CH3-CH=CH-CH=CH2 (5)CH2=C(CH3)-CH=CH2 (6)CH3CHO (7)CH3-CO-CCl3 2.解释下列概念或名词: (1)配位聚合与定向聚合(2)全同立构、间同立构和无规立构 (3)光学异构、几何异构和构象异构(4)有规立构聚合和选择聚合(5)引发剂(6)Kaminsky聚合 (7)IIP (8)单金属机理与双金属机理 (9)淤浆聚合 3.说明负离子聚合与配位负离子聚合中链增长反应的不同? 4.工业上生产高密度聚乙烯(HDPE)全同聚丙烯常用的Ziegler-Natta引发剂各是什么?说明其原因。说明这两种聚合物的产业用途和生活用途。 5.举出两个用Ziegler-Natta引发剂引发聚合的弹性体的工业例子,说明选用的引发剂体系,产物的用途。 6.解释下列问题: (1)在配位负离子聚合中氢降低聚乙烯或聚丙烯的分子量; (2)由配位聚合而得的聚合物中有时含有聚合物-金属键。 7.从配位聚合的机理说明得到全同立构聚合物的成因。

8.在丙烯的本体气相聚合中,得聚丙烯98g,产物用沸腾正庚烷萃取后得不溶物90g,试求该聚丙烯的全同聚合指数。这种鉴定方法可否用于其它立构规整聚合物的鉴定中? 9.在Ziegler-Natta催化剂引发а-烯烃聚合的理论研究中曾提出过自由基、阳离子、络合阳离子和阴离子机理,但均未获得公认。试对其依据和不足之处加以讨论。 10.聚乙烯有几种分类方法?这几种聚乙烯在结构和性能上有何不同?它们分别是由何种聚合方法生产的? 11.乙烯、丙烯以TiCl4/Al(C6H13)3在己烷中进行共聚合。已知r E=3.36,r P=0.032,若预制得等摩尔比的乙丙橡胶,初始配料比应是多少? 12.为改善а-TiCl3/AlEtCl2体系催化丙烯聚合的引发活性和提高聚丙烯的立构规整度,常添加哪些第三组份?如何确定这种第三组份的用量和加料顺序? 返回

第11章 配位化合物(10)

第11章配位化合物 一.是非题(判断下列各项叙述是否正确,对的在括号中填“√ ”,错的填“×”)。 1.1 复盐和配合物就象离子键和共价键一样,没有严格的界限。() 1.2 Ni(NH3)2Cl2无异构现象,[Co(en)3]Cl3有异构体。 ()1.3 配离子 AlF63-的稳定性大于 AlCl63-。()1.4 已知[CaY]2-的Kθ为6.3×1018,要比[Cu(en)2]2+的Kθ= 4.0×1019小,所以后者更难离解。()1.5 MX2Y2Z2类型的化合物有 6 种立体异构体。()1.6 内轨配合物一定比外轨配合物稳定。()1.7 当CO作为配体与过渡金属配位时,证明存在“反馈π键”的证据之一是CO 的键长介于单键和双键 之间。()1.8 Fe3+和 X-配合物的稳定性随 X-离子半径的增加而降低。()1.9 HgX4-的稳定性按 F-??→I-的顺序降低。()1.10 CuX2-的稳定性按的 Cl-??→Br-??→I-??→CN-顺序增加。()

二.选择题(选择正确答案的题号填入) 2. 1 根据晶体场理论,在一个八面体强场中,中心离子 d 电子数为()时,晶体场稳定化能最大。 a. 9 b. 6 c. 5 d. 3 2. 2 下列各配离子中,既不显蓝色有不显紫色的是() a. Cu(H2O)24+ b. Cu(NH3)24+ c. CuCl24+ d. Cu(OH)24+ 2. 3 下列化合物中,没有反馈π键的是() a. [Pt(C2H4)Cl3]- b. [Co(CN)6]4- c. Fe(CO)5 d. [FeF6]3-

2. 4 在下列锰的化合物中,锰的氧化数最低的化合物是 () a. HMn(CO)5 b. Mn(NO)3(CO) c. Mn2(CO)10 d. CH3Mn(CO)5 2. 5 下列离子中配位能力最差的是() a. ClO4- b. SO24- c. PO34- d. NO3- 2. 6 M位中心原子,a, b, d 为单齿配体。下列各配合物中有顺反异构体的是() a. Ma2bd(平面四方) b. Ma3b c. Ma2bd(四面体) d. Ma2b(平面三角形) 2. 7 Ag(EDTA)3-中银的配位数是() a. 1

第五章--配位聚合

第五章--配位聚合

第五章配位聚合习题参考答案 1.举例说明聚合物的异构现象,如何评价聚合物的立构规整性? 解答: (1)聚合物的异构现象: ①结构异构聚合物,如聚甲基丙烯酸甲酯与聚丙烯酸乙酯: CH3 | -[-CH2-C-]n- -[-CH2-CH-]n- | | CO2CH3 CO2C2H5 聚甲基丙烯酸甲酯聚丙烯酸乙酯 ②几何异构聚合物,汉分子链中由于双键或环形结构上取代基在空间排列方式不同造成的立体异构称为几何异构,也称顺-反异构。如丁二烯聚合所形成的1,4-聚丁二烯,其结构单元有顺式结构和反式结构两种: ~~~CH2 CH2~~~~~~CH2H C = C C = C

H H H CH2~~~ 顺式结构(顺-1,4聚丁二烯)反式结构(反-1,4聚丁二烯) ③光学异构聚合物,如聚环氧丙烷有一个真正的手性碳原子: H | ~~~O-C*-CH2~~~ | CH3 ④构象异构聚合物,当大分子链中原子或原子团绕单键自由旋转所占据的特殊空间位置或单键连接的分子链单元的相对位置的改变称构象异构。构象异构可以通过单键的旋转而互相转换。 (2)当大分子链上大部分结构单元(大于75%)是同一种立体构型时,称该大分子为有规立构聚合物,或立构规整聚合物、定向聚合物。反之,称为无规立构聚合物。 2.写出下列单体聚合后可能出现的立构规整聚合物的结构式及名称: (1)CH2=CH-CH3 (2)CH2-CH-CH3 O

(3)CH 2=CH-CH=CH 2 CH 3 | (4)CH 2 =C-CH=CH 2 解答: (1) 聚丙烯 全同聚丙烯(R 为甲基) 间同聚丙烯(R 为甲基) (2) 聚环氧丙烷 全规聚环氧丙烷 间规聚环氧丙烷 (3) 丁二烯 ~~~CH 2 CH 2~~~ ~~~CH 2 H C = C C = C H H H H H O O O O H CH 3 H CH 3 H H CH 3 H H H O O O O H H H CH 3 H H H H R H H H R H H H H R H H R H H H R H H R H H H H H R H H H R H H H H R H H H R H H H H R H H R H H

第六章配位聚合

第六章 配位聚合 6.1引言 乙烯 丙烯和其他a-烯烃为石油裂解懂得主要产物 30年代 仅作为燃料 后 引发剂 高温高压 PE (高压) 1953 Zieglev (德) 70 ~5034常压、AlEt Ti -θ HDPE 1954 Natta (意) Ti 3θ35)(GH Al - PP 接着 Goodrich-Fire 公司 Ti 3524)(H C Al -θ 高顺式1、4-聚异戊二烯(天然橡胶) 同时 Fire-stene 轮胎和橡胶公司 锂或烷基锂 (Z-N 引发剂) 以后 以金属有机化合物-过渡金属化合物的洛合体系作引发剂单体配位而后聚合,聚合产物呈定向聚合 —洛合聚合,配位聚合,定向聚合 (区别) 常用术语的区别 ① 配位聚合和洛合为同义词 —采用具有配位(或洛合)能力的引发剂,链增长(有时包括引发)都是单体先在活性种的空位上配位(洛合)并活化,然后插入烷基—金属键(R —M )中。 (配位比洛合表达的意义更明确) ② 定向聚合和有规立构聚合是词义词

—按IUPAC 规定,均指以形成有规立构聚合物为主的聚合过程。 ③ Ziegler —Natto 聚合 —指采用Ziegler —Natto 引发剂的任何单体的聚合或共聚合。所得聚合物可以是立构规整的,也可以是无规聚合物。 6.2 结合物的立构规整性 配位聚合,除R P 、n X 外,首先要考虑立构规整性问题。异构现象—在有机化学中将分子式相同而结构不同因而性质不同的化合物叫异构体,这种现象称~分两类 ① 结构异构 —由于分子中原子或基团相互连接次序不同引起的: 如:头—尾和头—头或尾—尾相连的聚合物结构异构体 ② 立体异构 —由于分子中原子或基团相互连接次序不同引起的,称构型 聚合物中同样存在复杂的立体异构现象? ?????几何异构光学异构 即:聚合物分子组成和结构相同,只是构型不同。 一、 立体异构 ⒈光学异构。 (存在手性中心)? ??*(左)右S R C )( —取代基(原子)在手性中心的排布顺序不而产生的立体异构α—烯烃聚合 NCH 2 =CH-R → —CH 2-CH-CH 2-CH-

第十一章配位化合物

第十一章 配位化合物 首 页 习题解析 本章练习 本章练习答案 章后习题答案 习题解析 [TOP] 例7-1 固体CrCl 3·6H 2O 的化学式可能为〔Cr(H 2O)4Cl 2〕Cl·2H 2O 或〔Cr(H 2O)5Cl 〕Cl·H 2O 或〔Cr(H 2O)6〕Cl 3,今将溶解有0.200gCrCl 3·6H 2O 的溶液流过一酸性阳离子交换柱,在柱上进行离子交换反应: X n+(aq) + n (RSO 3H) (RSO 3)n X + n H +(aq) 配合物正离子 阳离子交换树脂 交换后的交换树脂 交换下来的H + 交换下来的H +用0.100mol·L - 1NaOH 标准溶液滴定,计耗去22.50mL ,通过计算推断上述配合物的正确化学式〔已知Mr(CrCl 3·6H 2O)=266.5〕。 析 根据题中条件可知离子的物质的量与配合物的电荷数有确定的关系,因此只要确定离子的物质的量即可求出配离子的电荷,进而求出配合物的化学式。 解 0.200gCrCl 3?6H 2O 的物质的量为 1mol 1000mmol mol 266.5g 0.200g 1 ??-=0.75mmol 滴定测得 n (H +)=22.50mL×0.100mol·L -1=2.25mmol 由交换反应式知:1mol X n+可交换出n mol H +。因0.75 mmol CrCl 3?6H 2O 交换出2.25 mmol 的H +,由此可得 1 :n = 0.75 :2.25 n = 3 即X n+为X 3+,所以配正离子只能是[Cr(H 2O)6]3+,配合物为[Cr(H 2O)6]Cl 3。 例7-2(1)根据价键理论,画出[Cd(NH 3)4]2+(μ=0μB )和[Co(NH 3)6]2+(μ=3.87μB )的中心原子与配体成键时的电子排布,并判断空间构型。(2)已知[Co(NH 3)6]3+的分裂能Δo 为273.9kJ·mol -1,Co 3+的电子成对能P 为251.2kJ·mol -1;[Fe(H 2O)6]2+分裂能Δo 为124.4kJ·mol -, Fe 2+的电子成对能P 为179.40kJ·mol -1。根据晶 体场理论,判断中心原子的d 电子组态和配离子自旋状态。并计算晶体场稳定化能。 析(1)利用磁矩确定未成对电子数,然后确定内轨或外轨及杂化类型。(2)比较分裂能与电子成对能,确定高自、自旋化合物,计算晶体场稳定化能。 解(1)[Cd(NH 3)4]2+中Cd 2+的电子组态为4d 10,μ=0μB ,无未成对电子,采取sp 3杂化轨道成键,配体NH 3中N 的孤电子对填入sp 3杂化轨道,配离子空间构型为正四面体。

第七章配位聚合

第七章配位聚合 一、名称解释 配位聚合:指单体分子首先在活性种的空位处配位,形成某些形式(σ-π)的配位络合物。随后单体分子插入过渡金属(Mt)-碳(C)中增长形成大分子的过程,所以也可称作插 入聚合。 络合聚合:与配位聚合的含义相同,可以互用。络合聚合着眼于引发剂有络合配位能力,一般认为配位聚合比络合聚合意义更明确。 定向聚合:也称有规立构聚合,指形成有规立构聚合物的聚合反应,配位络合引发剂是重要的条件。 异构体:分子式相同,但原子相互联结的方式或顺序不同,或原子在空间的排布方式不同的化合物叫做异构体。 构象异构:由单键内旋转造成的立体异构现象。 立体构型异构:原子在大分子中不同空间排列所产生的异构现象。 对映异构:又称手性异构,由手性中心产生的光学异构体R型和S型。 顺反异构:由双键引起的顺式和反式的几何异构,两种构型不能互变。 全同立构:将碳-碳主链拉直成锯齿形,使处在同一平面上,取代基处于平面的同侧,或相邻手性中心的构型相同。 间同立构:若取代基交替地处在平面的两侧,或相邻手性中心的构型相反并交替排列,则称为间同立构聚合物。 全同聚合指数:一致立构规整度的表示方法,指全同立构聚合物占总聚合物的分数。 立构规整度:立构规整聚合物占聚合物总量的百分数。 二、选择题 1. 氯化钛是α-烯烃的阴离子配位聚合的主引发剂,其价态将影响其定向能力,试从下列3 种排列选出正确的次序( A ) A TiCl3(α,γ,δ) > α- TiCl3-AlEtCl2>TiCl4 B TiCl2>TiCl4>TiCl3(α,γ,δ) C TiCl4>TiCl3(α,γ,δ) > TiCl2 2. 下列聚合物中哪些属于热塑性弹性体(d和e) (a) ISI (b)BS (c) BSB (d)SBS (e) SIS 3. 下列哪一种引发剂可使乙烯、丙烯、丁二烯聚合成立构规整聚合物? (1)n-C4H9Li/正己烷(2)萘钠/四氢呋喃 (3) TiCl4-Al(C2H5)3(4) α- TiCl3-Al(C2H5) 2Cl (5)π-C3H5NiCl (6) (π-C4H7)2Ni 4. 下列哪一种引发剂可使丙烯聚合成立构规整聚合物?(D)

第十一章配位化合物

第十一章 配位化合物 一. 是非题: 1. 因[Ni(NH3)6]2+ 的K s=5.5×108, [Ag(NH3)2]+ 的K s=1.1×107, 前者大于后者,故溶液中 [Ni(NH3)6]2+比[Ag(NH3)2]+稳定() 2. H[Ag(CN)2]- 为酸,它的酸性比HCN强() 3. 因CN-为强场配体,故[30Zn(CN)4]2-为内轨型化合物() 二. 选择题: 1. 在[Co(en)(C2O4)2]-中,Co3+的配位数是() A.3 B.4 C.5 D.6 E.8 2. 下列配离子中属于高自旋(单电子数多)的是() A. [24Cr(NH3)6]3+ B. [26FeF6]3- C. [26Fe(CN)6]3- D. [30Zn(NH3)4]2+ E. [47Ag(NH3)2]+ 3. 下列分子或离子能做螯合剂的是() A.H2N-NH2 B.CH3COO- C.HO-OH D.H2N-CH2-NH2 E.H2NCH2CH2NH2 4. 已知[25Mn(SCN)6]4-的μ=6.1×AJ?T-1,该配离子属于() A.外轨 B.外轨 C.内轨 D.内轨 E.无法判断 5. 已知H2O和Cl-作配体时,Ni2+的八面体配合物水溶液难导电,则该配合物的化学式为 () A. [NiCl2(H2O)4] B. [Ni (H2O)6] Cl2 C. [NiCl(H2O)5]Cl D. K[NiCl3(H2O)3] E. H4[NiCl6] 三. 填充题: 1. 配合物[Cr(H2O)(en)(C2O4)(OH)]的名称为,配位数为。 2. 配合物“硝酸氯?硝基?二(乙二胺)合钴(III)”的化学,它的 外层是。 3. 价键理论认为,中心原子与配体间的结合力是。 四. 问答题:

配位聚合物的应用与进展

配位聚合物的应用与进展 王雄化学化工与材料学院应用化学1班 20133443 摘要:配位聚合物是由金属和有机配体自组装而形成的, 具有独特的空间几何构型, 在非线性光学材料、气体吸附、手性拆分和催化、分子磁性材料、超导材料, 微孔材料等诸多方面都有广阔的应用前景。本文介绍了配位聚合物的分类,列举了金属-有机骨架(MOFs)等功能型配位聚合物的研究进展,并对配位聚合物的发展前景作了展望。 关键词:配位聚合物;有机配体;合成方法;应用;催化 引言:配位聚合物(coordination polymers)或金属-有机框架(metal-organic frameworks,简称MOFs)是指利用金属离子与有机桥联配体通过配位键合作用而形成的一类具有一维,二维或三维无限网络结构的配位化合物[1]。近年来,配位聚合物作为一种新型的功能化分子材料以其良好的结构可裁性和易功能化的特性引起了研究者浓厚的兴趣。配合物有无机的金属离子和有机配体,因此它兼有无机和有机化合物的特性,而且还有可能出现无机化合物和有机化合物均没有的新性质。配位聚合物分子材料的设计合成、结构及性能研究是近年来十分活跃的研究领域之一,它跨越了无机化学、配位化学、有机化学、物理化学、超分子化学、材料化学、生物化学、晶体工程学和拓扑学等多个学科领域,它的研究对于发展合成化学、结构化学和材料化学的基本概念及基础理论具有重要的学术意义,同时对开发新型高性能的功能分子材料具有重要的应用价值[2-7]。并对分子器件和分子机器的发展起着至关重要的作用。配位聚合物在新的分子材料中将发挥重要的作用。配位化学理论在材料的分子设计中也将起着重要的指导作用。 材料按其性能特征和用途大致可划分为结构材料和功能材料两大类。功能材料种类繁多,功能各异,其共同的特点和发展趋势是:(1) 性能优异;(2) 分子化; (3) 巨大的应用前景。金属有机光电磁材料综合了这几方面特点,将发展成为新一代材料,其结构和性能决定了它的应用越来越广泛。以下是金属有机化合物分别在光电磁材料中的应用。 1.配位聚合物的分类 1998年,R obson教授根据聚合物框架结构的不同将其分为三大类:一维链

配位聚合

第六章配位聚合 1.解释和区别下列诸名词:配位聚合、络合聚合、插入聚合、定向聚合、有规立构聚合。 2.区别聚合物构型和构象。简述光学异构和几何异构。聚丙烯和聚丁二烯有几种立体异构体? 3.丙烯进行自由基聚合、离子聚合及配位阴离子聚合,能否形成高分子量聚合物?分析其原因。 4.丙烯配位聚合时,提高引发剂的活性和等规度有何途径?简述添加给电子体和负载的方法和作用。 5.简述丙烯配位聚合时的双金属机理和单金属机理模型的基本论点。 6.下列引发剂何者能引发乙烯、丙烯或丁二烯的配位聚合?形成何种立构规整聚合物? (1)n-C4H9Li; (2)α-TiCl3/AlEt2Cl; (3)萘-Na; (4)(π-C4H7)2Ni; (5)(π-C3H5)NiCl; (6)TiCl4/AlR3。 7. α-烯烃和二烯烃的配位聚合,在选用Ziegler-Natta引发剂时有哪些不同?除过渡金属种类外,还需考虑哪些问题。 8.使用Ziegler-Natta引发剂时,为保证试验成功,需采取哪些必要的措施?用什么方法除去残存的引发剂?怎样分离和鉴定全同聚丙烯。 9.为改善α-TiCl3/AlEtCl2体系催化丙烯聚合的引发活性和提高聚丙烯的立构规整度,常添加哪些第三组分?如何确定这种第三组分的用量和加料顺序? 10.丙烯进行本体气相聚合,得聚丙烯98g,产物经沸腾庚烷萃取后得不溶物90g。试求该聚丙烯的全同聚合指数。这种鉴定方法可否用于其他立构规整聚合物? 答案 5. 答: 双金属机理模型的基本要点 ①主、共引发剂反应形成双金属碳桥(四员环)络合物活性中心; ②富电子的α-烯烃在钛的空轨道配位; ③配位单体插入Ti-C键之间,形成六员环过渡态;(Ti,C对M双键顺式加成) ④Al-C键断裂,链位移至插入单体的β碳上,插入M的α-C与Ti,Al形成碳桥。

第五章--配位聚合

第五章 配位聚合 习题参考答案 1.举例说明聚合物の异构现象,如何评价聚合物の立构规整性? 解答: (1)聚合物の异构现象: ① 结构异构聚合物,如聚甲基丙烯酸甲酯与聚丙烯酸乙酯: CH 3 | -[-CH 2-C-]n - -[-CH 2-CH-]n - | | CO 2CH 3 CO 2C 2H 5 聚甲基丙烯酸甲酯 聚丙烯酸乙酯 ② 几何异构聚合物,汉分子链中由于双键或环形结构上取代基在空间排列方式不同造成 の立体异构称为几何异构,也称顺-反异构。如丁二烯聚合所形成の1,4-聚丁二烯,其结构单元有顺式结构和反式结构两种: ~~~CH 2 CH 2~~~ ~~~CH 2 H C = C C = C H H H CH 2~~~ 顺式结构(顺-1,4聚丁二烯) 反式结构(反-1,4聚丁二烯) ③ 光学异构聚合物,如聚环氧丙烷有一个真正の手性碳原子: H | ~~~O-C *-CH 2~~~ | CH 3 ④ 构象异构聚合物,当大分子链中原子或原子团绕单键自由旋转所占据の特殊空间位置或 单键连接の分子链单元の相对位置の改变称构象异构。构象异构可以通过单键の旋转而互相转换。 (2)当大分子链上大部分结构单元(大于75%)是同一种立体构型时,称该大分子为有规立构聚合物,或立构规整聚合物、定向聚合物。反之,称为无规立构聚合物。 2.写出下列单体聚合后可能出现の立构规整聚合物の结构式及名称: (1)CH 2=CH-CH 3 (2)CH 2-CH-CH 3 O (3)CH 2=CH-CH=CH 2 CH 3 | (4)CH 2 =C-CH=CH 2 解答: (1) 聚丙烯 全同聚丙烯(R 为甲基) 间同聚丙烯(R 为甲基)

北京化工大学《高分子化学》各章要求、重点内容

《高分子化学》各章要求及重点内容 第一章绪论 、基本要求 1、掌握高分子化学的基本概念。 2、对重要的相关概念进行辨析。 3、掌握聚合物的分类与命名。 4、正确写出常用聚合物的名称、分子式、聚合反应式。 、主要内容 1、基本概念 单体、高分子、大分子、聚合物、低聚物(齐聚物); 结构单元、重复单元、单体单元、链节; 主链、侧链、端基、侧基; 聚合度、相对分子质量、相对分子质量分布等; 加聚反应、缩聚反应、加聚物、缩聚物、连锁聚合、逐步聚合; 2、聚合物的分类、命名及典型聚合物的命名、来源、结构特征 -表1-5、1-6、1-7、1-8、内容 合成高分子、天然高分子; 碳链聚合物、杂链聚合物、元素有机聚合物、无机高分子; 聚酯、聚酰胺、聚氨酯、聚醚、聚脲、聚砜。 3、聚合反应的分类及聚合反应式 聚合物分子式(结构式)、结构单元-重复单元的区别与联系; 聚合反应的分类及聚合反应式写法; 加成聚合与缩合聚合、连锁聚合与逐步聚合的联系与区别。 第二章逐步聚合要求 、基本要求 1、掌握逐步聚合的基本概念; 2、逐步聚合反应分类(从不同的角度分类) 3、比较线形逐步聚合与体型逐步聚合反应; 4、线形逐步聚合反应聚合度的计算与控制(单体等摩尔比反应与非等摩尔比反应); 5、体型逐步聚合凝胶点的控制; 6、正确书写重要逐步聚合聚合物的合成反应式; 7、比较连锁聚合与逐步聚合,讨论影响两类反应速率及产物分子量的因素。 、主要内容 1、基本概念 平衡缩聚与不平衡缩聚、线形缩聚与体形缩聚、均缩聚、混缩聚、共缩聚; 缩合聚合、逐步加聚反应(聚加成反应)、氧化偶取联聚合、加成缩合聚合、分解缩聚。 官能团与官能度、平均官能度、官能团等活性理论、反应程度与转化率、当量系数与过量分率; 热塑性树脂与热固型树脂、凝胶点、结构预聚物与无规预聚物; 2、线性逐步聚合相对分子质量控制方法及其计算 (1 )等物质量反应: 1 X n 1 P 封闭体系:P . K /( i K 1)X n , K 1 开放体系:X n w

第十一章 配位化合物习题解答

第十一章 配位化合物习题解答 1.指出下列配合物(或配离子)的中心原子、配体、配位原子及中心原子的配位数。 (1) H 2[PtCl 6] (2) NH 4[Cr(NCS)4(NH 3)2] (3) [Co(NH 3)6](ClO 4)2 (4) Na 2[Fe(CN)5(CO)] (5) [Cr(OH)(C 2O 4) (H 2O)(en)] 7.计算下列反应的平衡常数,并判断下列反应进行的方向。已知:lg K s θ([Hg(NH 3)4]2+ ) = 19.28;lg K s θ(HgY 2-) = 21.8;lg K s θ([Cu(NH 3)4]2+) = 13.32;lg K s θ([Zn(NH 3)4]2+) = 9.46 ;lg K s θ([Fe(C 2O 4)3]3-) = 20.2;lg K s θ([Fe(CN)6]3-) = 42 (1)[Hg(NH 3)4]2+ + Y 4- HgY 2- + 4NH 3 (2)[Cu(NH 3)4]2+ + Zn [Zn(NH 3)4]2+ + Cu 2+ (3)[Fe(C 2O 4)3]3- + 6CN - [Fe(CN)6]3- + 3C 2O 42- 解:反应均为配离子相互转化,配离子之间的转化方向是由稳定常数小的转化为稳定常数大的,通过两个配离子的稳定常数的组合形成新的平衡常数的大小来判断。 (1)] Hg ][Y ][)NH (Hg []Hg []NH ][HgY [] ][Y )[Hg(NH ] NH ][[HgY 2424 32432- 424 343- 2+ - ++ - + = = K 2 19 2124 3s 210 3.310 90.110 3.6} ])Hg(NH {[} [HgY]{?=??= = + - θθ K K s 该反应进行的方向是 [Hg(NH 3)4]2+ +Y 4- =[HgY]2- +4NH 3 ,即:反应正向进行。

高分子第五章习题参考答案

高分子第五章习题参考答案 1.下列单体选用哪一引发剂才能聚合,指出聚合机理,并写出引发反应式。 单体引发体系 CH2=CHC6H5(1)(C6H5CO)2O2(自由基)CH2=C(CN)2(2)Na+萘(阴离子) CH2=C(CH3)2(3)BF3+H2O(阳离子) CH2=CH-O-nC4H9(4)nC4H9Li(阴离子) CH2=CHCl (5)SnCl4+H2O(阳离子)CH2=C(CH3)COOCH3 CH2=O 参考答案: CH2=CHC6H5可被引发剂(1)(2)(3)(4)引发聚合。 CH2=CHC6H5+(C6H5CO)2O2属自由基聚合,引发反应式为: (C6H5CO)2O2→C6H5CO2· C6H5CO2·+CH2=CHC6H5→C6H5CO2 CH2-C·HC6H5 CH2=C(CN)2可被引发剂(2)(4)引发聚合。 CH2=C(CH3)2可被引发剂(3)(5)引发聚合。 CH2=CH-O-nC4H9可被引发剂(3)(5)引发聚合。 CH2=CHCl可被引发剂(1)引发聚合。 CH2=C(CH3)COOCH3可被引发剂(1)(2)(4)引发聚合。 CH2=O可被引发剂(2)(3)(4)(5)引发聚合。

2.在离子聚合反应中,活性中心离子和反离子之间的结合有几种形式?其存在形式受哪些因素影响?不同形式对单体的聚合能力有何影响? 参考答案: 在离子聚合反应中,活性中心离子和反离子之间的结合有以下几种形式: 以上各种形式之间处于平衡状态。结合形式和活性种的数量受溶剂性质、温度及反离子等因素的影响。 溶剂的溶剂化能力越大,越有理于形成松对甚至自由离子;随着温度的降低,离解平衡常数(K值)变大,因此温度越低越有利于形成松对甚至自由离子;反离子的半径越大,越不易被溶剂化,所以一般在具有溶剂化能力的溶剂中随反离子半径的增大,形成松对和自由离子的可能性减小;在无溶剂化作用的溶剂中,随反离子半径的增大。A+与B-之间的库仑引力减小,A+与B-之间的距离增大。 活性中心离子与反离子的不同结合形式和单体的反应能力顺序如下: 共价键连接A-B一般无引发能力。 4.异丁烯阳离子聚合时,以向单体链转移为主要终止方式,聚合物

第十一章 配位化合物习题解答

第十一章配位化合物习题解答 第十一章配位化合物习题解答 1.指出下列配合物的中心原子、配体、配位原子及中心原子的配位数。 配合物或配离子H2[PtCl6] [Co(ONO)(NH3)5]SO4 NH4[Co(NO2)4(NH3)2] [Ni(CO)4] Na3[Ag(S2O3)2] [PtCl5(NH3)]- [Al (OH)4]- 中心原子 Pt4+ Co3+ Co3+ Ni Ag+ Pt4+ Al3+ 配体 Cl- ONO-、NH3 NO2、 NH3 CO S2O32- Cl- 、NH3 OH- 配位原子 Cl O、N N、N C S Cl、N O 配位数 6 6 6 4 2 6 4 2.命名下列配离子和配合物,并指出配离子的电荷数和中心原子氧化值。配合物或配离子[Co(NO2)3(NH3)3] [Co(en)3]2(SO4)3 Na2[SiF6] [Pt Cl (NO2) (NH3)4] [CoCl2(NH3)3(H2O)]Cl [PtCl4]2- [Pt Cl2 (en)] K3[Fe(CN)6] 名称三硝基·三氨合钴硫酸三(乙二胺)合钴(Ⅲ) 六氟合硅(Ⅳ)酸钠氯·硝基·二氨合铂氯化二氯·三氨·水合钴(Ⅲ) 四氯合铂(Ⅱ)配离子二氯·(乙二胺)合铂六氰合铁(Ⅲ)酸钾配离子的电荷数 0 +3 -2 0 +1 -2 0 -3 中心原子的氧化值ⅢⅢⅣⅡⅢⅡⅡⅢ 3.写出下列配合物的化学式: (1) H2[PtCl6] (2) NH4[Cr(NCS)4(NH3)2] (3) [Co(NH3)6](ClO4)2 (4) Na2[Fe(CN)5(CO)](5) [Cr(OH)(C2O4)

高分子化学第五章答案

高分子化学第五章答案 第五章聚合方法 思考题5.1聚合方法(过程)中有许多名称,如本体聚合、溶液聚合和悬浮聚合,均相聚合和非均相聚合,沉淀聚合和淤浆聚合,试说明它们相互问的区别和关系。答聚合方法有不同的分类方法,如下表:

按聚合体系中反应物的相态考虑,本体聚合是单体加有(或不加)少量引发剂的聚合。溶液聚合 是单体和引发剂溶于适当溶剂中的聚合。悬浮聚合一般是单体以液滴状悬浮在水中的聚合,体系主要由单体、水、油溶性引发剂、分散剂四部分组成。 按聚合体系的溶解性进行分类,聚合反应可以分成均相聚合和非均相聚合。当单体、溶剂、聚合物之间具有很好的相溶性时,聚合为均相聚合;当单体、溶剂、聚合物之间相溶性不好而产生相分离的聚合,则为非均相聚合。 聚合初始,本体聚合和溶液聚合多属于均相体系,悬浮聚合和乳液聚合属于非均相聚合;如 单体和聚合物完全互溶,则该本体聚合为均相聚合;当单体对聚合物的溶解性不好,聚合物从单体中析出,此时的本体聚合则成为非均相的沉淀聚合;溶液聚合中,聚合物不溶于溶剂从而沉析出来,就成为沉淀聚合,有时称作淤浆聚合。 思考题5.2本体法制备有机玻璃板和通用级聚苯乙烯,比较过程特征,说明如何解决传热问题、保证产品品质。 答间歇本体聚合是制备有机玻璃板的主要方法。为解决聚合过程中的散热困难、避免体积收缩和气泡产

生,保证产品品质,将聚合分成预聚合、聚合和高温后处理三个阶段来控制。① 预聚合。在90-95C下进行,预聚至10%?20% 转化率,自动加速效应刚开始较弱,反应容易控制,但体积已经部分收缩,体系有一定的黏度,便于灌模。②聚合。将预聚物灌入无机玻璃平板模,在(40-50 C )下聚合至转化率90%。低温(40?50°C )聚合的目的在于避免或减弱自动加速效应和气泡的产生(MMA的沸点为100C ),在无机玻璃平板模中聚合的目的在于增加散热面。③高温后处理。转化率达90%以后,在高于PMMA 的玻璃化温度的条件(100?120C)下,使残留单体充分聚合,通用级聚苯乙烯可以采用本体聚合法生产。其散热问题可由预聚和聚合两段来克服。苯乙烯是聚苯乙烯的良溶剂,聚苯乙烯本体聚合时出现自动加速较晚。因此预聚时聚合温度为80?90C,转化率控制在30%?35%,此时未出现自动加速效应,该阶段的聚合温度和转化率均较低,体系黏度较低,有利于聚合热的排除。后聚合阶段可在聚合塔中完成,塔顶温度为100 C,塔底温度为200C,从塔顶至塔底温度逐渐升高,目的在于逐渐提高单体转化率,尽量使单体完全转化,减少残余单体,最终转化率在99%以上。 思考题5.3溶液聚合多用离子聚合和配位聚合,而较少用

相关文档
最新文档