控制实验报告二典型系统动态性能和稳定性分析

控制实验报告二典型系统动态性能和稳定性分析
控制实验报告二典型系统动态性能和稳定性分析

实验报告2

报告名称:典型系统动态性能和稳定性分析

一、实验目的

1、学习和掌握动态性能指标的测试方法。

2、研究典型系统参数对系统动态性能和稳定性的影响。

二、实验内容

1、观测二阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。

2、观测三阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。

三、实验过程及分析

1、典型二阶系统

结构图以及电路连接图如下所示:

对电路连接图分析可以得到相关参数的表达式:

;;;

根据所连接的电路图的元件参数可以得到其闭环传递函数为

;其中;

的阻值,能够调节闭环传递函数中的阻尼系数,调节系统性能。

因此,调整R

x

当时,为过阻尼系统,系统对阶跃响应不超调,响应速度慢,因此有如下的实验曲线。

当时,为临界阻尼系统,系统对阶跃响应恰好不超调,在不发生超调

的情况下有最快的响应速度,因此有如下的实验曲线。对比上下两张图片,可以发现系统最后的稳态误差都比较明显,应该与实验仪器的精密度有关。同时我们还观察了这个系统对斜坡输入的响应,其特点是输出曲线转折处之后有轻微的上凸的部分,最后输出十分接近输入。

当时,为欠阻尼系统,系统对阶跃超调,响应速度很快,因此有如下的实验曲线。

2、典型三阶系统

结构图以及电路连接图如下所示:

根据所连接的电路图可以知道其开环传递函数为:

其中,R

的单位为kΩ。系统特征方程为,根据

x

劳斯判据可以知道:系统稳定的条件为012,调节R

可以调节K,从而调节系统的性能。具体实

x

验图像如下:

四、软件仿真

1、典型2阶系统

取,程序为:G=tf(50,[1,50*sqrt(2),50]);

step(G)

调节时间为5s左右。

取,程序为:G=tf(50,[1,10*sqrt(2),50]);

step(G)

调节时间为左右。

取,程序为:G=tf(50,[1,2*sqrt(2),50]);

step(G)

可以看出系统有明显的超调,超调量达到了50%以上,响应速度十分快。

2、典型3阶系统

当取K=12时,程序为G=tf(12,[,,1,0]);

sys=feedback(G,1);

step(sys)

系统为临界稳定,输出震荡但不发散。

当取K=13时,程序为G=tf(13,[,,1,0]);

sys=feedback(G,1);

step(sys)

注意到纵轴坐标很大,横轴时间很长,初期的震荡发散因此看不出来,但能够从最后的系统输出走向判断出系统是不稳定的。

当取K=11时,程序为G=tf(11,[,,1,0]);

sys=feedback(G,1);

step(sys)

可以看出系统最终区域稳定,由于取K比较接近临界稳定,因此系统擦除器震荡频率较快,系统超调大。

五、实验心得

通过这次的实验,我们小组对典型的二阶和三阶的系统有了更深更直观的了解。由其是对于二阶系统对阶跃信号和斜坡信号的相应印象深刻。因为一开始不太明白临界阻尼情况下系统的性能有何特点,因此调节参数时不知道调节到实验图像是什么样子时时合适的。因此我们小组通过自己对自动控制一些原理的理解,通过对比系统在不同参数情况下对阶跃信号和斜坡信号的不同表现最终明白

并理解了临界阻尼时的系统特点。

控制系统仿真与设计实验报告

控制系统仿真与设计实验报告 姓名: 班级: 学号: 指导老师:刘峰 7.2.2控制系统的阶跃响应 一、实验目的 1.观察学习控制系统的单位阶跃响应; 2.记录单位阶跃响应曲线; 3.掌握时间相应的一般方法; 二、实验内容 1.二阶系统G(s)=10/(s2+2s+10)

键入程序,观察并记录阶跃响应曲线;录系统的闭环根、阻尼比、无阻尼振荡频率;记录实际测去的峰值大小、峰值时间、过渡时间,并与理论值比较。 (1)实验程序如下: num=[10]; den=[1 2 10]; step(num,den); 响应曲线如下图所示: (2)再键入: damp(den); step(num,den); [y x t]=step(num,den); [y,t’] 可得实验结果如下:

记录实际测取的峰值大小、峰值时间、过渡时间,并与理论计算值值比较 实际值理论值 峰值 1.3473 1.2975

峰值时间 1.0928 1.0649 过渡时间+%5 2.4836 2.6352 +%2 3.4771 3.5136 2. 二阶系统G(s)=10/(s2+2s+10) 试验程序如下: num0=[10]; den0=[1 2 10]; step(num0,den0); hold on; num1=[10]; den1=[1 6.32 10]; step(num1,den1); hold on; num2=[10]; den2=[1 12.64 10]; step(num2,den2); 响应曲线:

(2)修改参数,分别实现w n1= (1/2)w n0和w n1= 2w n0响应曲线试验程序: num0=[10]; den0=[1 2 10]; step(num0,den0); hold on; num1=[2.5]; den1=[1 1 2.5]; step(num1,den1); hold on; num2=[40]; den2=[1 4 40]; step(num2,den2); 响应曲线如下图所示:

过程控制系统课程设计报告报告实验报告

成都理工大学工程技术学院《过程控制系统课程设计实验报告》 名称:单容水箱液位过程控制 班级:2011级自动化过程控制方向 姓名: 学号:

目录 前言 一.过程控制概述 (2) 二.THJ-2型高级过程控制实验装置 (3) 三.系统组成与工作原理 (5) (一)外部组成 (5) (二)输入模块ICP-7033和ICP-7024模块 (5) (三)其它模块和功能 (8) 四.调试过程 (9) (一)P调节 (9) (二)PI调节 (10) (三)PID调节 (11) 五.心得体会 (13)

前言 现代高等教育对高校大学生的实际动手能力、创新能力以及专业技能等方面提出了很高的要求,工程实训中心的建设应紧紧围绕这一思想进行。 首先工程实训首先应面向学生主体群,建设一个有较宽适应面的基础训练基地。通过对基础训练设施的 集中投入,面向全校相关专业,形成一定的规模优势,建立科学规范的训练和管理方法,使训练对象获得机械、 电子基本生产过程和生产工艺的认识,并具备一定的实践动手能力。 其次,工程实训的内容应一定程度地体现技术发展的时代特征。为了适应现代化工业技术综合性和多学科交叉的特点,工程实训的内容应充分体现机与电结合、技术与非技术因素结合,贯穿计算机技术应用,以适应科学技术高速发展的要求。应以一定的专项投入,建设多层次的综合训练基地,使不同的训练对象在获得对现代工业生产方式认识的同时,熟悉综合技术内容,初步建立起“大工程”的意识,受到工业工程和环境保护方面的训练,并具备一定的实用技能。 第三,以创新训练计划为主线,依靠必要的软硬件环境,建设创新教育基地。以产品的设计、制造、控制乃至管理为载体,把对学生的创新意识和创新能力的培养,贯穿于问题的观测和判断、创造和评价、建模和设计、仿真和建造的整个过程中。

哈工大_控制系统实践_磁悬浮实验报告

研究生自动控制专业实验 地点:A区主楼518房间 姓名:实验日期:年月日斑号:学号:机组编号: 同组人:成绩:教师签字:磁悬浮小球系统 实验报告 主编:钱玉恒,杨亚非 哈工大航天学院控制科学实验室

磁悬浮小球控制系统实验报告 一、实验内容 1、熟悉磁悬浮球控制系统的结构和原理; 2、了解磁悬浮物理模型建模与控制器设计; 3、掌握根轨迹控制实验设计与仿真; 4、掌握频率响应控制实验与仿真; 5、掌握PID控制器设计实验与仿真; 6、实验PID控制器的实物系统调试; 二、实验设备 1、磁悬浮球控制系统一套 磁悬浮球控制系统包括磁悬浮小球控制器、磁悬浮小球实验装置等组成。在控制器的前部设有操作面板,操作面板上有起动/停止开关,控制器的后部有电源开关。 磁悬浮球控制系统计算机部分 磁悬浮球控制系统计算机部分主要有计算机、1711控制卡等; 三、实验步骤 1、系统实验的线路连接 磁悬浮小球控制器与计算机、磁悬浮小球实验装置全部采用标准线连接,电源部分有标准电源线,考虑实验设备的使用便利,在试验前,实验装置的线路已经连接完毕。 2、启动实验装置 通电之前,请详细检察电源等连线是否正确,确认无误后,可接通控制器电源,随后起动计算机和控制器,在编程和仿真情况下,不要启动控制器。 系统实验的参数调试

根据仿真的数据及控制规则进行参数调试(根轨迹、频率、PID 等),直到获得较理想参数为止。 四、实验要求 1、学生上机前要求 学生在实际上机调试之前,必须用自己的计算机,对系统的仿真全部做完,并且经过老师的检查许可后,才能申请上机调试。 学生必须交实验报告后才能上机调试。 2、学生上机要求 上机的同学要按照要求进行实验,不得有违反操作规程的现象,严格遵守实验室的有关规定。 五、系统建模思考题 1、系统模型线性化处理是否合理,写出推理过程? 合理,推理过程: 由级数理论,将非线性函数展开为泰勒级数。由此证明,在平衡点)x ,(i 00对 系统进行线性化处理是可行的。 对式2x i K x i F )(),(=作泰勒级数展开,省略高阶项可得: )x -)(x x ,(i F )i -)(i x ,(i F )x ,F(i x)F(i,000x 000i 00++= )x -(x K )i -(i K )x ,F(i x)F(i,0x 0i 00++= 平衡点小球电磁力和重力平衡,有 (,)+=F i x mg 0 |,δδ===00 i 00 i i x x F(i,x) F(i ,x )i ;|,δδ===00x 00i i x x F(i,x)F (i ,x )x 对2 i F(i,x )K()x =求偏导数得:

实验四 串级控制系统

实验四 加热炉温度串级控制系统 (实验地点:程控实验室,崇实楼407) 一、实验目的 1、熟悉串级控制系统的结构与特点。 2、掌握串级控制系统临界比例度参数整定方法。 3、研究一次、二次阶跃扰动对系统被控量的影响。 二、实验设备 1、MATLAB 软件, 2、PC 机 三、实验原理 工业加热炉温度串级控制系统如图4-1所示,以加热炉出口温度为主控参数,以炉膛温度为副参数构成串级控制系统。 图4-1 加热炉温度串级控制系统工艺流程图 图4-1中,主、副对象,即加热炉出口温度和炉膛温度特性传递函数分别为 主对象:;)130)(130()(18001++=-s s e s G s 副对象:2 1802)1)(110()(++=-s s e s G s 主控制器的传递函数为PI 或PID ,副控制器的传递函数为P 。对PI 控制器有 221111)(),/(, 1 11)(c c I c I I c I c c K s G T K K s K K s T K s G ==+=???? ? ?+= 采用串级控制设计主、副PID 控制器参数,并给出整定后系统的阶跃响应曲线和阶跃扰动响应曲线,说明不同控制方案控制效果的区别。 四、实验过程 串级控制系统的设计需要反复调整调节器参数进行实验,利用MATLAB 中的Simulink 进行仿真,可以方便、快捷地确定出调节器的参数。 1.建立加热炉温度串级控制系统的Simulink 模型 (图4-2) 在MATLAB 环境中建立Simulink 模型如下:)(01s G 为主被控对象,)(02s G 为副被控对象,Step 为系统的输入,c 为系统的输出,q1为一次阶跃扰动,q2为二次阶跃扰动,可以用示波器观察输出波形。PID1为主控制器,双击PID 控制器可设置参数:(PID 模块在

过程控制系统实验报告

实验一过程控制系统的组成认识实验 过程控制及检测装置硬件结构组成认识,控制方案的组成及控制系统连接 一、过程控制实验装置简介 过程控制是指自动控制系统中被控量为温度、压力、流量、液位等变量在工业生产过程中的自动化控制。本系统设计本着培养工程化、参数化、现代化、开放性、综合性人才为出发点。实验对象采用当今工业现场常用的对象,如水箱、锅炉等。仪表采用具有人工智能算法及通讯接口的智能调节仪,上位机监控软件采用MCGS工控组态软件。对象系统还留有扩展连接口,扩展信号接口便于控制系统二次开发,如PLC控制、DCS控制开发等。学生通过对该系统的了解和使用,进入企业后能很快地适应环境并进入角色。同时该系统也为教师和研究生提供一个高水平的学习和研究开发的平台。 二、过程控制实验装置组成 本实验装置由过程控制实验对象、智能仪表控制台及上位机PC三部分组成。 1、被控对象 由上、下二个有机玻璃水箱和不锈钢储水箱串接,4.5千瓦电加热锅炉(由不锈钢锅炉内胆加温筒和封闭外循环不锈钢锅炉夹套构成),压力容器组成。 水箱:包括上、下水箱和储水箱。上、下水箱采用透明长方体有机玻璃,坚实耐用,透明度高,有利于学生直接观察液位的变化和记录结果。水箱结构新颖,内有三个槽,分别是缓冲槽、工作槽、出水槽,还设有溢流口。二个水箱可以组成一阶、二阶单回路液位控制实验和双闭环液位定值控制等实验。 模拟锅炉:锅炉采用不锈钢精致而成,由两层组成:加热层(内胆)和冷却层(夹套)。做温度定值实验时,可用冷却循环水帮助散热。加热层和冷却层都有温度传感器检测其温度,可做温度串级控制、前馈-反馈控制、比值控制、解耦控制等实验。 压力容器:采用不锈钢做成,一大一小两个连通的容器,可以组成一阶、二阶单回路压力控制实验和双闭环串级定值控制等实验。 管道:整个系统管道采用不锈钢管连接而成,彻底避免了管道生锈的可能性。为了提高实验装置的使用年限,储水箱换水可用箱底的出水阀进行。 2、检测装置 (液位)差压变送器:检测上、下二个水箱的液位。其型号:FB0803BAEIR,测量范围:0~1.6KPa,精度:0.5。输出信号:4~20mA DC。 涡轮流量传感器:测量电动调节阀支路的水流量。其型号:LWGY-6A,公称压力:6.3MPa,精度:1.0%,输出信号:4~20mA DC 温度传感器:本装置采用了两个铜电阻温度传感器,分别测量锅炉内胆、锅炉夹套的温度。经过温度传感器,可将温度信号转换为4~20mA DC电流信号。 (气体)扩散硅压力变送器:用来检测压力容器内气体的压力大小。其型号:DBYG-4000A/ST2X1,测量范围:0.6~3.5Mpa连续可调,精度:0.2,输出信号为4~20mA DC。 3、执行机构 电气转换器:型号为QZD-1000,输入信号为4~20mA DC,输出信号:20~100Ka气压信号,输出用来驱动气动调节阀。 气动薄膜小流量调节阀:用来控制压力回路流量的调节。型号为ZMAP-100,输入信号为4~20mA DC或0~5V DC,反馈信号为4~20mA DC。气源信号 压力:20~100Kpa,流通能力:0.0032。阀门控制精度:0.1%~0.3%,环境温度:-4~+200℃。 SCR移相调压模块:采用可控硅移相触发装置,输入控制信号0~5V DC或4~20mA DC 或10K电位器,输出电压变化范围:0~220V AC,用来控制电加热管加热。 水泵:型号为UPA90,流量为30升/分,扬程为8米,功率为180W。

自动控制系统实验报告

自动控制系统实验报告 学号: 班级: 姓名: 老师:

一.运动控制系统实验 实验一.硬件电路的熟悉和控制原理复习巩固 实验目的:综合了解运动控制实验仪器机械结构、各部分硬件电路以及控制原理,复习巩固以前课堂知识,为下阶段实习打好基础。 实验内容:了解运动控制实验仪的几个基本电路: 单片机控制电路(键盘显示电路最小应用系统、步进电机控制电路、光槽位置检测电路) ISA运动接口卡原理(搞清楚译码电路原理和ISA总线原理) 步进电机驱动检测电路原理(高低压恒流斩波驱动电路原理、光槽位置检测电路)两轴运动十字工作台结构 步进电机驱动技术(掌握步进电机三相六拍、三相三拍驱动方法。) 微机接口技术、单片机原理及接口技术,数控轮廓插补原理,计算机高级语言硬件编程等知识。 实验结果: 步进电机驱动技术: 控制信号接口: (1)PUL:单脉冲控制方式时为脉冲控制信号,每当脉冲由低变高是电机走一步;双 脉冲控制方式时为正转脉冲信号。 (2)DIR:单脉冲控制方式时为方向控制信号,用于改变电机转向;双脉冲控制方式 时为反转脉冲信号。

(3)OPTO :为PUL 、DIR 、ENA 的共阳极端口。 (4)ENA :使能/禁止信号,高电平使能,低电平时驱动器不能工作,电机处于自由状 态。 电流设定: (1)工作电流设定: (2)静止电流设定: 静态电流可用SW4 拨码开关设定,off 表示静态电流设为动态电流的一半,on 表示静态电流与动态电流相同。一般用途中应将SW4 设成off ,使得电机和驱动器的发热减少,可靠性提高。脉冲串停止后约0.4 秒左右电流自动减至一半左右(实际值的60%),发热量理论上减至36%。 (3)细分设定: (4)步进电机的转速与脉冲频率的关系 电机转速v = 脉冲频率P * 电机固有步进角e / (360 * 细分数m) 逐点比较法的直线插补和圆弧插补: 一.直线插补原理: 如图所示的平面斜线AB ,以斜线起点A 的坐标为x0,y0,斜线AB 的终点坐标为(xe ,ye),则此直线方程为: 00 00Y Ye X Xe Y Y X X --= -- 取判别函数F =(Y —Y0)(Xe —Xo)—(X-X0)(Ye —Y0)

串级控制系统

过程控制 实验报告实验名称:串级控制班级: 姓名: 学号:

实验二 串级控制系统 一、实验目的 1) 通过本实验,了解串级控制系统的基本结构以及主、副回路的性能特点。 2) 掌握串级控制系统的设计思想和主、副回路控制器的参数整定方法。 二、 实验原理 串级控制系统由两个或两个以上的控制器、相应数量的检测变送器和一个执行器组成。控制器相串联,副控制器的输入由主控制器的输出设定。主回路是恒值控制系统,对主控制器的输出而言,副回路是随动系统,对二次扰动而言,副回路是恒值控制系统。 串级控制的主要优点可概括如下: 1) 由于副回路的存在,改善了对象的部分特性,使系统的工作频率提高,加快了调节过程。 2) 由于副回路的存在,串级控制系统对二次扰动具有较强的克服能力。 3) 串级控制系统提高了克服一次扰动的能力和回路参数变化的自适应能力。 串级控制系统副回路的设计原则: 1) 副回路应尽量包含生产过程中主要的、变化剧烈、频繁和幅度大的扰动。在可能的情况下力求包含尽可能多的扰动。 2) 当对象具有较大纯滞后时,在设计时应使副回路尽量少包括或不包括纯滞后。 3) 当对象具有非线性环节时,在设计时应使非线性环节于副环之中。 4) 副回路设计时应考虑主、副对象时间常数的匹配,以防共振。 5) 所设计的副回路需考虑到方案的经济性和工艺的合理性。 串级控制系统常用的控制器参数整定方法有逐步逼近法、两步法、一步法等。 ? 逐步逼近法 1) 在主回路断开的情况下,求取副控制器的整定参数; 2) 将副控制器的参数设置在所求的数值上,使串级控制系统主回路闭合,以求取主调节器的整定参数值; 3) 将主调节器参数设置在所求值上,再次整定副控制器的参数值。 4) 如控制品质未达到指标,返回2)继续。 三、实验内容 某系统的主、副对象传递函数分别为: 122 11 (),()301(101)(1)P P G s G s s s s = = +++

控制系统仿真实验报告

哈尔滨理工大学实验报告 控制系统仿真 专业:自动化12-1 学号:1230130101 姓名:

一.分析系统性能 课程名称控制系统仿真实验名称分析系统性能时间8.29 地点3# 姓名蔡庆刚学号1230130101 班级自动化12-1 一.实验目的及内容: 1. 熟悉MATLAB软件的操作过程; 2. 熟悉闭环系统稳定性的判断方法; 3. 熟悉闭环系统阶跃响应性能指标的求取。 二.实验用设备仪器及材料: PC, Matlab 软件平台 三、实验步骤 1. 编写MATLAB程序代码; 2. 在MATLAT中输入程序代码,运行程序; 3.分析结果。 四.实验结果分析: 1.程序截图

得到阶跃响应曲线 得到响应指标截图如下

2.求取零极点程序截图 得到零极点分布图 3.分析系统稳定性 根据稳定的充分必要条件判别线性系统的稳定性最简单的方法是求出系统所有极点,并观察是否含有实部大于0的极点,如果有系统不稳定。有零极点分布图可知系统稳定。

二.单容过程的阶跃响应 一、实验目的 1. 熟悉MATLAB软件的操作过程 2. 了解自衡单容过程的阶跃响应过程 3. 得出自衡单容过程的单位阶跃响应曲线 二、实验内容 已知两个单容过程的模型分别为 1 () 0.5 G s s =和5 1 () 51 s G s e s - = + ,试在 Simulink中建立模型,并求单位阶跃响应曲线。 三、实验步骤 1. 在Simulink中建立模型,得出实验原理图。 2. 运行模型后,双击Scope,得到的单位阶跃响应曲线。 四、实验结果 1.建立系统Simulink仿真模型图,其仿真模型为

北京化工大学过程控制工程串级控制系统实验报告

实验名称:串级控制实验 班级:自控 实验设备编号: 2 实验日期:年月 同组人: 年月日

实验名称:串级控制系统 实验的目的:正确认识串级控制系统,理解和熟练串级控制系统的特点和操作要求。 实验的要求:正确理解串级控制系统的特点,结合本实验装置的情况,构建一个以下水箱液位H2为主被控参数,上水箱液位H1为副被控参数,进水流量为控制手段的液位-液位串级控制系统。 实验过程的主要步骤: 1、构建串级控制系统,在软件中组态。 2、对串级控制系统进行正确的设置,确保系统的连接方式正确,正反作用正确。 3、系统启动后将调节阀CV101,CV102的开度设置在50%,80%左右。 4、待系统达到稳定,按照先副后主的顺序将串级控制系统投入自动,投运过程无扰动串级控制系统参数整定,使用一步法 1、系统流程图: 系统方框图:

串级控制系统因为具有主副两个控制回路,从传递方式来看,是串联的进行工作,主回路的输出是通过副回路起作用;按照回路闭合向来看,副回路被包括在主回路中,可以看成一个具有一定跟踪能力的控制环节,它以主回路的输出作为跟踪目标。由于副回路的存在,分担了系统中的部分容量滞后和部分干扰的镇定作用,使系统的整体放大倍数、静态控制精度、系统抗干扰能力和工作频率等指标都提高到一个新的高度。 2、为了主变量的稳定,主控制器必须具有积分作用;副环是一个随动系统,它的给定值随主控制器输出的变化而变化为了能快速跟踪,一般只需采取比例式。 主副控制器的正反作用确定应遵循先副后主的原则。为了使副回路构成一个稳定的系统,副环内所有放大倍数各环节放大倍数的乘积应是负号;主控制器的正反作用也是根据主环内各个环节的乘积为负来确定,一般,主变送器为正,副回路为正,主控制器的正反作用只取决于主对象放大倍数的符号。 投运时要按照先副后主的顺序进行,先投运副回路,再投运主回路。无扰动投运的步骤:(1)、主副控制器均放于手动位置。主控制器放于内给定,副控制器放于外给定;将主副控制器正反作用开关置于正确位置;主副控制器参数放于预定数值。 (2)、用副控制器的手操器进行手操作。 (3)、当遥控使主变量接近或等于给定值而副变量也较平稳时,调节主控制器的手操旋钮,使副控制器的偏差表指示为零,这时副控制器的自动电流将跟踪等于手动电流,于是可将副控制器切入自动。由于切换前控制器的自动电流等于手动电流,自动电流信号等于手动电流信号就意味着切换时刻不会造成控制阀阀位变化,因此切换是无扰动的。 (4)、当副环切入自动后控制稳定,主变量接近或等于给定值时,调整主控制器的内给定旋钮,使主控制器偏差表指示为零。此时主控制器的自动输出电流跟踪等于手动输出电流,于是可将主控制器切入自动。至此,系统则处于串级工作状态,而切换是无扰动的。 3、串级系统的参数整定: 与单回路的情况相同,串级控制系统也是在控制系统器投入自动后,通常并不能保证控

实验一电力拖动自动控制系统实验报告

第五章仿真及实验 第一节晶闸管直流调速系统参数和环节特性的测定 一、实验目的 1 熟悉晶闸管直流调速系统的组成及其基本结构。 2掌握晶闸管直流调速系统参数及反馈环节测定方法。 二、实验原理 晶闸管直流调速系统由整流变压器、晶闸管整流跳水装置、平波电抗器、电动机-发电机组等组成。 在本实验中,整流装置的主电路喂三相桥式电路,控制电路可直接由给定电压Ug作为触发器的移相控制电压Ua。改变Ug的大小即可改变控制角a,从而获得可调的直流电压,以满足实验要求。实验系统的组成原理如图5.1所示。 三.实验内容 1测定晶闸管直流调速系统主电路总电阻值R。 2测定晶闸管直流系统电路电感值L.. 3测定直流电机-直流发电机-测速发电机的飞轮惯量GD的平方。 4测定晶闸管直流调速系统主电路电磁时间常数Td。

5测定直流电动机电势常数Ce和转矩常数Cm。 6测定晶闸管直流调速系统机电时间常数Tm。 7测定晶闸管触发及整流装置特性Ud=f(Ue)。 8测定测速发电机特性Utg=f(n)。 四.实验仿真 晶闸管直流调速系统的原理如图5.1所示。该系统由给定信号、同步脉冲触发器、晶闸管整流桥、平波电抗器、直流电动机等部分组成。图5.2势采用面向电气原理图方法构成的晶闸管直流系统的仿真模型。下面介绍各部分建模与参数设置过程。 1.系统的建模和模型参数设置 系统的建模包括主电路的建模和控制电路的建模俩部分。 1)主电路的建模和参数设置 由图5.2可见,开环直流调速系统的主电路由三相对称交流电压器、晶闸管整流桥、平波电抗器、直流电动机等部分组成。由于同步脉冲与晶闸管整流桥是不可分割的两个环节,通常作为一个组合体讨论,所以将触发器归到主电路进行建模。 2)三相整流桥时,桥臂数取3,A,B,C三相交流电源接到整流桥的输入端,

串级控制系统整定实验报告

学院 过程控制系统实验报告书 实验名称串级控制系统整定 专业自动化专业 班级 指导教师 姓名 学号 实验日期

串级控制系统整定 一、实验目的 (1)掌握动态模型的创建方法.。 (2)掌握串级控制系统整定方法。 (3)了解控制系统的特点。 (4)了解串联控制系统的特点。 二、实验器材 计算机一台,MATLAB软件 三、实验原理 .串级控制系统:就是由两个调节器串联在一起,控制一个执 行阀,实现定值控制的控制系统。 .串级控制系统的通用方框图: .串级控制系统特点:(1)改善了被控过程的动态特性。 (2)提高了系统的工作频率。 (3)具有较强的抗扰动能力。 (4)具有一定的自适应能力。 .两步整定法

(1)工况稳定时,闭合主回路,主、副调节器都在纯比例作用的条件下,主调节器的比例度置于100%,用单回路控制系统的衰减曲线法整定,求取副调节器的比例度s δ和操作周期s T 。 (2)将副调节器的比例度置于所求得的数值上,把副回路作为主回路中的一个环节,用同样方法整定主回路,求取主调节器的比例度和操作周期。 四、实验步骤 (1)启动计算机,运行MATLAB 应用程序。 (2)在MATLAB 命令窗口输入Smulink,启动Simulink 。 (3)在Simulink 库浏览窗口中,单击工具栏中的新建窗口快捷按钮或在Simulink 库窗口中选择菜单命令File New Modeel,打开一个标题为“Untitled ”的空白模型编辑窗口。 (4)设被控对象的传递函数为: 24 21 (110)(120)s s ?++,要求被调量始 终维持在设定值。设计一个串级控制系统,并且要求控制系统的衰减率为75%,静态误差为零。用MATLAB 创建仿真模型。 (5)按两步整定法整定调节器参数。 (6)按步骤(5)的结果设置调节器参数,启动仿真,通过示波器模块观测并记录系统输出的变化曲线。 (7)施加内扰,观测系统运行情况。 . 衰减曲线法整定参数计算表:

计算机控制系统实验报告

《计算机控制系统》实验报告 学校:上海海事大学 学院:物流工程学院 专业:电气工程及其自动化 姓名:*** 学号:************

一、实验课程教学目的与任务 通过实验设计或计算机仿真设计,使学生了解和掌握数字PID控制算法的特点、了解系统PID参数整定和数字控制系统的直接设计的基本方法,了解不同的控制算法对被控对象的控制特性,加深对计算机控制系统理论的认识,掌握计算机控制系统的整定技术,对系统整体设计有一个初步的了解。 根据各个实验项目,完成实验报告(用实验报告专用纸)。 二、实验要求 学生在熟悉PC机的基础上,熟悉MATLAB软件的操作,熟悉Simulink工具箱的软件编程。通过编程完成系统的设计与仿真实验,逐步学习控制系统的设计,学习控制系统方案的评估与系统指标评估的方法。 计算机控制系统主要技术指标和要求: 根据被控对象的特性,从自动控制系统的静态和动态质量指标要求出发对调节器进行系统设计,整体上要求系统必须有良好的稳定性、准确性和快速性。一般要求系统在振荡2~3次左右进入稳定;系统静差小于3%~5%的稳定值(或系统的静态误差足够小);系统超调量小于30%~50%的稳定值;动态过渡过程时间在3~5倍的被控对象时间常数值。 系统整定的一般原则: 将比例度置于较大值,使系统稳定运行。根据要求,逐渐减小比例度,使系统的衰减比趋向于4:1或10:1。若要改善系统的静态特性,要使系统的静差为零,加入积分环节,积分时间由大向小进行调节。若要改善系统的动态特性,增加系统的灵敏度,克服被控对象的惯性,可以加入微分环节,微分时间由小到大进行调节。PID控制的三个特性参数在调节时会产生相互的影响,整定时必需综合考虑。系统的整定过程是一个反复进行的过程,需反复进行。

单容水箱实验报告

单容液位定值控制系统 一、实验目的 1.了解单容液位定值控制系统的结构与组成。 2.掌握单容液位定值控制系统调节器参数的整定和投运方法。 3.研究调节器相关参数的变化对系统静、动态性能的影响。 4.了解P、PI、PD和PID四种调节器分别对液位控制的作用。 5.掌握同一控制系统采用不同控制方案的实现过程。 二、实验设备 THPCAT-2型现场总线过程控制对象系统实验装置、AT-1智能仪表挂件一个、RS485/232转换器一个、RS485通讯线一根、计算机一台、万用表一个、软管若干。 三、实验原理 图3-6 中水箱单容液位定值控制系统 (a)结构图 (b)方框图 本实验系统结构图和方框图如图3-6所示。被控量为上小水箱(也可采用上大水箱或下水箱)的液位高度,实验要求中水箱的液位稳定在给定值。将压力传感器LT1检测到的上小水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制水箱液位的目的。为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。 四、实验内容与步骤 本实验选择上小水箱作为被测对象(也可选择上大水箱或下水箱)。以上小水箱为例叙述实验步骤如下: 1. 实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-3、F1-4、F1-6全开,将上小水箱出水阀门F1-10开至适当开度(30%~80%),其余阀门均关闭。 2. 管路连接:将工频泵出水口和支路1进水口连接起来;将支路1出水口和上小水箱

进水口连接起来;将上小水箱出水口和储水箱进水口连接起来。 3. 采用智能仪表控制: 1)将“AT-1智能调节仪控制”挂件挂到网孔板上,并将挂件的通讯线插头通过RS485通讯线与RS485/232转换器连接到计算机串口1。 2)强电连线:单相I电源L、N端对应接到AT-1挂件电源输入L、N端。 3)弱电连线:上小水箱液位LT1的1-5V+、-端对应接到智能调节仪I的1-5V电压输入1、2端;智能调节I输出7、5对应接到电动调节阀控控制输入+ 、-端。 4)管路、阀门、接线检查无误后接通总电源开关,打开24V电源开关、电动调节阀开关、单相I开关。 5)检查智能调节仪基本参数设置:ctrl=1, dip=1,Sn=33, DIL=0,DIH=50,OPL=0,OPH=100,run=0。 6)打开上位机MCGS组态环境,打开“THPCAT-2智能仪表控制系统”工程,然后进入MCGS运行环境,在主菜单中点击“实验六、单容水箱液位定值控制实验”,进入“实验六”的监控界面。 7)先将仪表设置为手动状态,将磁力泵开关打到“手动”位置,磁力驱动泵上电打水,适当增加或减小仪表输出值,使水箱液位平衡在设定值。 8)按本章第一节中的经验法或动态特性参数法整定调节器参数,选择PI控制规律,并按整定后的PI参数进行调节器参数设置。 9)待液位稳定于给定值后,将调节器切换到“自动”控制状态,待液位平衡后,通过以下几种方式加干扰: a.突增(或突减)仪表设定值的大小,使其有一个正(或负)阶跃增量的变化;(此法推荐,后面两种仅供参考)。 b.将电动调节阀的旁路F1-5(同电磁阀)开至适当开度,将电磁阀开关打至“手动”位置。 c.适当改变上小水箱出水阀F1-10开度(改变负载)。 以上几种干扰均要求扰动量为控制量的5%~15%,干扰过大可能造成水箱中水溢出或系统不稳定。加入干扰后,水箱的液位便离开原平衡状态,经过一段调节时间后,水箱液位稳定至新的设定值(采用后面两种干扰方法仍稳定在原设定值),记录此时的智能仪表的设定值、输出值和仪表参数,液位的响应过程曲线将如图3-7所示。 图3-7 单容水箱液位的阶跃响应曲线 10)分别适量改变调节仪的P及I参数,重复步骤9,用计算机记录不同参数时系统的阶跃响应曲线。

控制系统的典型环节的模拟实验报告.docx

课程名称:控制理论乙指导老师:成绩: 实验名称:控制系统典型环节的模拟实验类型:同组学生姓名:一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.熟悉超低频扫描示波器的使用方法 2.掌握用运放组成控制系统典型环节的电子电路 3.测量典型环节的阶跃响应曲线 4.铜鼓哦是暗夜男了解典型环节中参数的变化对输出动态性能的影响 二、实验内容和原理 以运算放大器为核心元件,由其不同的RC输入网络和反馈网络组成的各种典型环节,如下图所示。 右图中可以得到: 由上式可求得有下列模拟电路组成的典型环节的传递函数及其单位阶跃响应 1.积分环节 连接电路图如下图所示 和第一个实验相同,电源为峰峰值为30V的阶跃函数电源,运放为LM358型号运放。在这次实验中,R2并不出现在电路中,所以我们可以同时调节R1的值和C的值来改变该传递函数的其他参量值。具体表达式为: 式中: 由表达式可以画出在阶跃函数的激励下,电路所出现的阶跃响应图像 实验要求积分环节的传递函数需要达到(1)(2) 2.比例微分环节 连接电路图如下图所示 在该电路中,实验器材和第一次实验与第二次实验不变,R2仍然固定为1M不改变。R1与C并联之后与运算放大器的负端相连,R2接在运放的输出端和负输入端两端,起到了负反馈调节作用。具体表达式为: 式中,, 由表达式可以画出在阶跃函数的激励下,电路所出现的阶跃响应图像 实验要求惯性环节的传递函数需要达到(1)(2) 3.惯性环节 连接电路图如图所示 在该图中,电源由控制理论电子模拟箱中的阶跃响应电源来代替,电源的峰峰值为30V;在模拟电子箱中,运算放大器采用LM358型号的运算放大器。在控制理论电子模拟箱中,R2是一个固定值,固定为1MΩ,所以我们可以调整R1和C来改变阶跃响应

串级控制实验报告

过程控制工程实验报告 实验名称:串级控制系统 班级: 组员:

思考题 1. 若控制阀为气闭式,试分析液位-液位串级系统中主、副控制器的正、反作用应如何选? 主控制器选反作用, 副控制器选正作用 分析:在串级控制系统中主副控制器正、反作用的选择遵循先副后主的原则; 副回路确定与单回路相同,即各环节放大倍数乘积为负,控制阀为气闭阀即为负,变送器和水箱液位都为正,故副控制器应为正作用; 主回路中,把负回路等效为一正环节,因为液位变送器和水箱液位都为正,故主控制器应为负作用。 2. 如何才能保证串级控制系统的无扰动切换? 先副后主:调节主控制器的输出,使其等于副回路的测量值,这时副回路的偏差为0,则副控制器的自动电流将跟踪等于手动电流,于是可将副控制器切入自动; 当副环切入自动控制稳定,主变量接近或等于设定值时,调整主控制器器的设定值,使主控制器偏差为0,此时主控制器的自动输出电流跟踪等于手动输出电流,于是可将主控制器切入自动。 3.串级系统投运整定前需要做好哪几项工作? ①检查管路、阀门(闸板的高度),设备加电;进行控制系统信号连线,构建一个有主参数、副参数,主控制器、副控制器和控制阀的完整串级控制系统。②启动实验软件,置主、副控制器皆为手动状态;先调整副控制器的手动输出为50-60%,开启副回路动力装置;待系统达到平稳,各控制量处于中间合适位置即可。③控制系统投自动前,务必要确认控制系统闭环后一定是负反馈的,即控制作用是消弱而不是增强干扰作用的影响。根据调节回路中各环节作用关系、控制阀的开闭方向来判定、确定主、副控制器的正、反作用。 4.一步整定法的依据是什么? 依据:在串级控制系统中一般来说,主变量时工艺的主要操作指标,直接关系产品的质量,因此对它要求比较严格。而副的设立主要是为了提高主变量的控制质量,对副变量本身没有很高的要求,允许它在一定范围内变化,因此在整定时不必将过多的精力放在副环上,只要主变量达到规定的质量指标要求即可。此外对于一个具体的出串级控制系统来说,在一 Z2 (s) Z1 (s)

串级控制实验步骤-给学生

过程控制系统实验报告 姓名:黄佳鑫 班级:自动化1201 学号:1210410106

实验三:利用MATLAB/对串级控制系统进行仿真 一、实验目的 1.学会利用MATLAB/Simulink 对串级控制系统进行参数整定。 2.学会利用MA TLAB/Simulink 分析串级控制系统的抗干扰能力。 二、实验设备 安装Windows 系统和MATLAB 软件的计算机一台。 三、实验内容 构成以锅炉温度为主变量,锅炉夹套温度为副变量的串级控制系统,假设主、副对象传递函数分别为 试采用串级控制设计主、副PID 控制器的参数,并与等效的简单控制系统进行抗干扰能力的比较。 四、实验步骤 1.系统设计和参数整定 1)简单控制系统 (1) 利用NCD Outport ( 或Signal Constraint )模块,建立如下图所示的简单控制系统的Simulink 结构图。 图一 仿真电路图 首先点击Simulation →Configuration Parameters(stop time 设置为100,其余参数采用默认值) 在MA TLAB 窗口中利用以下命令对PID 控制器的初始值进行任意设置:>>Kc=1;Ti=1;Td=1; 然后,双击Signal constraint →g oals →desired response →点击第2个选框→进行设置参数(Settling Time 为25、Rise Time 为15、% overshoot 为12,其余参数采用默认值)单机ok 。 图二 11()(301)(31)p G s s s =++22 1()(101)(1)p G s s s =++

实验三 串级控制实验2016

实验三串级控制实验 一、实验目的 1.熟悉串级控制系统的结构与特点。 2.掌握串级控制系统的投运与参数整定方法。 3.了解阶跃扰动分别作用于副对象和主对象时对系统主变量的影响。 二、实验设备 1.PCS-C型过程控制综合实验装置(DDC控制单元、信号及控制板)。2.计算机及MCGS组态软件(PCS-C-DDC.MCG)。3.实验专用线若干及九芯通讯线两根。 三、实验原理 本实验采用计算机控制,将下水箱液位控制在设定高度。串级回路是由内反馈组成的双环控制系统,属于复杂控制范畴。在计算机中设置了两个虚拟控制器作为主副控制器。将上水箱的液位信号输出作为主控制器输入,主控制器的输出作为副控制器的输入,在串级控制系统中,两个控制器任务不同,因此要选择控制器的不同调节规律进行控制,副控制器主要任务是快速动作,迅速抵制进入副回路的扰动,至于副回路的调节不要求一定是无静差。主控制器的任务是准确保持下水箱液位在设定值,因此,主控制器采用PI控制器也可考虑采用PID控制器。 上下水箱液位串级控制系统的方块原理图如图4.2所示。 图4.1 液位串级控制系统块原理图 串级控制系统的参数整定参考本章概述部分内容。 四、实验步骤与内容 1.了解实验装置中的对象,流程图如图4.2所示。

图4.2 上下水箱液位串级控制系统流程图 2.按图4.3接好实验导线和通讯线。 图4.3上下水箱双容串级控制实验接线图(高联实验台)

上下水箱双容串级控制实验接线图(云创实验台) 3.将控制台背面的通讯口与上位机连接。4.将手动阀门1V1、V4、V6打开,将手动阀门1V6、1V7、LV关闭。5.先打开实验对象的系统电源,然后打开控制台上的总电源,再打开直流电压和DDC控制单元电源。6.打开计算机上的MCGS运行环境,选择“系统管理”下拉菜单中的“用户登录”,出现如下界面。 图4.4 用户登录界面 7.点击“确认”,用户登录完毕。选择“串级控制实验”下拉菜单中的“上下水箱双容控制实验”。出现如下的“上下水箱双容串级控制实验”界面。

控制系统的典型环节的模拟实验报告

控制系统的典型环节的模 拟实验报告 The pony was revised in January 2021

课程名称:控制理论乙指导老师:成绩:实验名称:控制系统典型环节的模拟实验类型:同组学生姓名: 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.熟悉超低频扫描示波器的使用方法 2.掌握用运放组成控制系统典型环节的电子电路 3.测量典型环节的阶跃响应曲线 4.铜鼓哦是暗夜男了解典型环节中参数的变化对输出动态性能的影响 二、实验内容和原理 以运算放大器为核心元件,由其不同的RC输入网络和反馈网络组成的各种典型环节,如下图所示。

右图中可以得到: 由上式可求得有下列模拟电路组成的典型环节的传递函数及其单位阶跃响应 1.积分环节 连接电路图如下图所示 和第一个实验相同,电源为峰峰值为30V 的阶跃函数电源,运放为LM358型号运放。在这次实验中,R2并不出现在电路中,所以我们可以同时调节R1的值和C 的值来改变该传递函数的其他参量值。具体表达式为: 式中:RC T = 由表达式可以画出在阶跃函数的激励下,电路所出现的阶跃响应图像 实验要求积分环节的传递函数需要达到(1)s s G 1)(1=(2)s s G 5.01)(2= 2.比例微分环节 连接电路图如下图所示 在该电路中,实验器材和第一次实验与第二次实验不变,R2仍然固定为1M 不改变。R1与C 并联之后与运算放大器的负端相连,R2接在运放的输出端和负输入端两端,起到了负反馈调节作用。具体表达式为: 式中,12R R K = ,C R T 1= 由表达式可以画出在阶跃函数的激励下,电路所出现的阶跃响应图像

计算机控制系统实验报告

计算机控制系统实验一 班级:自动化092班姓名: 一、实验目的 1:验证闭环系统可以克服干扰。 2:搭建由PID控制器组成的闭环控制系统,测试P、I、D(比例、积分、微分参数)变化对控制系统的影响。验证PID控制器对不同的控制对象都有控制作用,即控制对象的变动对PID控制器的影响不大。 3:验证PID控制器对大惯性对象的调节不明显。 二、实验步骤 1:在Simulink工具箱下构建开环系统,选择合适的对象,仿真观察开环下该系统在阶跃信号和同是阶跃信号的干扰信号的作用下系统的输出情况。 2:将上述开环系统由负反馈构成闭环,其他不变动,观察仿真结果与开环是比较,观察闭环是否可以克服干扰。 3:记录PID控制器的初试参数及初试参数下系统的输出情况,然后先后依次调节P、I、D三个参数,再观察记录系统的输出情况,并比较,得出比例、积分、和微分参数变化下对系统动态特性的影响。4;保持原来的PID控制器的参数不变,改变控制对象的传递函数,仿真,观察输出情况是否发生变化。 5:将控制对象改成大惯性环节,PID控制器保持不变,然后调节PI PID D 控制器的参数,观察阶跃信号及干扰信号下系统的输出在PID调节

下是否有明显改善。 三、实验结果及数据记录 1:开环系统 系统开环在单位阶跃信号及阶跃干扰信号下的输出情况 结果:系统开环时,在单位阶跃信号和阶跃干扰信号的作用下,系统是发散的,很显然是不稳定的。 闭环系统如下:

系统闭环下输出情况如下: 结果:系统闭环后在0时刻给定阶跃信号,在时刻10时趋于稳定,在时刻50时介入干扰信号,系统又恢复稳定,可见闭环的系统抗干扰性能上明显优于开环系统。 2:初始P 、PI 、PD 的系数都为1===D I p K K K ,被控对象为二阶系统,传递 函数为 1 5.01 )(2 ++=s s s G

计算机控制系统实验报告

计算机控制系统 实验报告 学院机电工程学院 专业电气工程及其自动化姓名__________________学号__________________ 实验一

已知闭环Z 传递函数 32 1 () 1.40.070.26 W z z z z = +-- (1) 判定系统的稳定性。 一、实验目的 1、掌握离散系统稳定的充要条件; 2、掌握稳定的物理意义; a. 有界输入得到有界输出; b. 李雅普诺夫稳定判据; 3、熟悉matlab 以及simulink 的基本应用。 二、实验设备 计算机、matlab2012a 软件 三、实验理论分析 判断系统的稳定性,可以通过分析闭环传递函数的极点分布情况判定。如果系统极点都在z 平面内单位圆内,则系统稳定,否者,系统不稳定。 另外,也可以通过matlab 软件仿真系统在阶跃函数下的输出波形,来判定系统是否稳定。 四、实验内容及步骤 1、实验内容: (1)计算系统的极点分布,据此判断系统的稳定性; (2)给出系统在特定输入作用的输出波形,并据此判断系统的稳定性。 2、实验步骤: (1)用MATLAB 求出系统闭环传递函数的极点分布,算法及结果如下: >> a=1; >> b=[1 1.4 -0.07 -0.26]; >> G=tf(a,b); >> G1=zpk(G) G1 = 1 ----------------------- (s+1.3) (s+0.5) (s-0.4) (2)用simulink 模块仿真单位阶跃信号下系统输出,结构框图及输出波形分别如下图a 和b 。

图a 图b (3)根据李雅普诺夫判据验证系统抗干扰的能力,结构框图及系统输出如下图c,d所示。 图C

相关文档
最新文档