现代控制理论大作业倒立摆

现代控制理论大作业倒立摆
现代控制理论大作业倒立摆

摘要

倒立摆系统是一个复杂的、高度非线性的、不稳定的高阶系统,是学习和研究现代控制理论最合适的实验装置。倒立摆的控制是控制理论应用的一个典型范例,一个稳定的倒立摆系统对于证实状态空间理论的实用性是非常有用的。

本文主要研究的是二级倒立摆的极点配置方法,首先用Lagrange方程建立了二级倒立摆的数学模型,然后对二级倒立摆系统的稳定性进行了分析和研究,并给出了系统能控能观性的判别。基于现代控制理论中的极点配置理论,根据超调量和调整时间来配置极点,求出反馈矩阵并利用Simulink对其进行仿真,得到二级倒立摆的变化曲线,实现了对闭环系统的稳定控制。

关键词:二级倒立摆;极点配置;Simulink

目录

1.绪论..............................................................

2 数学模型的建立和分析..............................................

2.1 数学建模的方法..................................................

2.2 二级倒立摆的结构和工作原理......................................

2.3 拉格朗日运动方程................................................

2.4推导建立数学模型.................................................

3 二级倒立摆系统性能分析............................................

3.1 稳定性分析....................................................

3.2 能控性能观性分析..............................................

4 状态反馈极点配置..................................................

4.1 二级倒立摆的最优极点配置1.....................................

4.2 二级倒立摆最优极点配置2.........................................

5. 二级倒立摆matlab仿真............................................

5.1 Simulink搭建开环系统............................................

5.2 开环系统Simulink仿真结果.......................................

5.3 Simulink搭建极点配置后的闭环系统................................

5.4极点配置Simulink仿真结果........................................

5.4.1 第一组极点配置仿真结果........................................

5.4.2 第二组极点配置仿真结果........................................

6.结论..............................................................

7.参考文献..........................................................

附录一..............................................................

1.绪论

倒立摆最初诞生于麻省理工学院,仅有一级摆杆,另一端铰接于可以在直线导轨上自由滑动的小车上。后来在此基础上,人们又进行拓展,设计出了直线二级倒立摆、环型倒立摆、平面倒立摆、柔性连接倒立摆、多级倒立摆等实验设备。

在控制理论的发展过程中,为验证某一理论在实际应用中的可行性需要按其理论设计的控制器去控制一个典型对象来验证。倒立摆系统作为一个实验装置,形象直观,结构简单,成本低廉;作为一个控制对象,他又相当复杂,同时就其本身而言,是一个高阶次、不稳定、多变量、非线性、强耦合系统,只有采取行之有效的控制方法才能使之稳定,因此倒立摆装置被公认为是自动控制理论中的典型实验设备。

综合文献资料,倒立摆控制的方法主要有:PID控制,状态反馈,利用云模型,神经网络控制,遗传算法,自适应控制,模糊控制,变论域自适应模糊控制理论,智能控制等多种算法来实现倒立摆的控制。

本文主要构建二级倒立摆的数学模型的建立与分析,对倒立摆系统进行控制方法的研究。本文就以下几个问题进行了论述。

1.二级倒立摆的数学模型的建立与分析。

在建模部分,首先采用拉格朗日方程推导数学模型,并对系统的可控性可观性进行分析,并分析倒立摆系统控制的难易程度。

2.二级倒立摆的控制原理及方法的研究。

本文主要采用状态反馈极点配置的方法对二级倒立摆进行研究。

3.采用Matlab语言进行数字仿真,分析仿真结果。

2 数学模型的建立和分析

2.1 数学建模的方法

所谓系统的数学模型就是利用数学结构来反映系统内部之间、内部与外部某些因素之间的精确的定量的表示。它是分析、设计、预报和控制一个系统的基础,所以要对一个系统进行研究,首先要建立它的数学模型。

建立倒立摆系统的模型时,一般采用牛顿运动规律,结果要解算大量的微分方程组,而且考虑到质点组受到的约束条件,建模问题将更加复杂,为此本文采用分析力学方法中的Lagrange方程推导倒立摆的系统模型。Lagrange方程有如下特点:

1.它是以广义坐标表达的任意完整系统的运动方程式,方程式的数目和系统的自由度是一致的。

2.理想约束反力不出现在方程组中,因此在建立运动方程式时,只需分析已

知的主动力,而不必分析未知的约束反力。

https://www.360docs.net/doc/472750947.html,grange方程是以能量观点建立起来的运动方程,为了列出系统的运动方程,只需要从两个方面去分析,一个是表征系统运动的动力学量-系统的动能,另一个是表征主动力作用的动力学量-广义力。

因此用Lagrange方程来求解系统的动力学方程可以大大简化建模过程。2.2 二级倒立摆的结构和工作原理

如图2.1,系统包括计算机、运动控制卡、伺服机构、倒立摆本体(小车,上摆,下摆,皮带轮等)和光电码盘几大部分,组成了一个闭环系统。光电码盘1将小车的位移、速度信号反馈给伺服驱动器和运动控制卡,下面一节摆杆(和小车相连)的角度、角速度信号由光电码盘2反馈回控制卡和伺服驱动器,上面一节摆杆的角度和角速度信号则由光电码盘3反馈。计算机从运动控制卡中读取实时数据,确定控制决策(小车向哪个方向移动、移动速度、加速度等),并由运动控制卡来实现该控制决策,产生相应的控制量,使电机转动,带动小车运动,

保持两节摆杆的平衡。

图2.1 系统结构和工作原理图

2.3 拉格朗日运动方程

拉格朗日提出了用能量的方法推导物理系统的数学模型,首先我们引入广义坐标,拉格朗日方程。

广义坐标:系统的广义坐标是描述系统运动必需的一组独立坐标,广义坐标数等同于系统自由度数。如果系统的运动用n维广义坐标q1,q2,…q n来表示,我们可以把这n维广义坐标看成是n维空间的n位坐标系中的坐标。对于任一系统可由n维空间中的一点来表征。系统在n维空间中运动形成的若干系统点连成一条曲线,此曲线表示系统点的轨迹。

拉格朗日方程:

(2.1) 式中,L——拉格朗日算子,

q——系统的广义坐标,

T——系统的动能,

V——系统的势能。

拉格朗日方程由广义坐标i q和L表示为:

(2.2)

式中,n i 3,2,1=,i f ——系统沿该广义坐标方向上的外力,在本系统中,设系统的三个广义坐标分别是21,,θθx 。 2.4推导建立数学模型

在推导数学模型之前,我们需要几点必要的假设: 1.上摆、下摆及小车均是刚体;

2.皮带轮与传动带之间无相对滑动;传动皮带无伸长现象;

3.小车运动时所受的摩擦力正比于小车的速度;

4.小车的驱动力与直流放大器的输入成正比,且无滞后,忽略电机电枢绕组中的电感;

5.下摆转动时所受到的摩擦力矩正比于下摆的转动速度;

6.上摆运动时所受到的摩擦力矩正比于上摆对下摆的相对角速度; 二级倒立摆的运动分析示意图如图2.2

图2.2 二级倒立摆运动分析示意图

倒立摆系统参数如下: 小车系统的等效质量M =1.32Kg 摆杆1 质量1m =0.04Kg 摆杆1 转动中心到杆质心距离1l =0.09m 摆杆2 质量m 2=0.132Kg

摆杆2 转动中心到杆质心距离l 2=0.27m

质量块质量3m =0.208Kg 作用在系统上的外力F

摆杆1 与垂直向上方向的夹角1θ 摆杆2 与垂直向上方向的夹角2θ

首先,计算系统的动能:

321m m m M T T T T T +++=

(2.3)

M T 小车动能:

(2.4)

1m T 摆杆1动能:

111m m m T T T ''+'=

(2.5)

式中, --摆杆1质心平东动能

--摆杆1绕质心转动动能

22

'1111

11(sin )(cos )12m d x l d l T m dt dt θθ??-????=+= ? ? ?

???????2221111111111cos 2

2m x m l x m l θθθ-+

(2.6) 212112121121'

'161312121θθω l m l m J T p m =???

? ??==

(2.7)

21

211111121'

'1'113

2cos 21θθθ l m x l m x m T T T m m m +-=

+= (2.8)

2m T 摆杆2动能:

222m m

m T T T ''+'= (2.9)

式中,

--摆杆1质心平东动能

--摆杆1绕质心转动动能

()

()

2

2

211122*********

1

2cos cos 2sin sin 2

2

m x l l m l l θθθθθθθθ=

--+

+

(2.10) 22222222222

22''261312121θωω l m l m J T m =??

? ??==

(2.11)

()??

? ??-+++1221212

22221212cos 434421θθθθθθ l l l l m

(2.12)

3m T 质量块动能:

222331113111

2cos 22

m x m l x m l θθθ=

-+ (2.13) 因此,可以得到系统总动能:

21

2131113232cos 22

1

θθθ l m x l m x m +-+ (2.14)

系统的势能为:

()11131121122cos 2cos 2cos cos m gl m gl m g l l θθθθ=+++

(2.15)

至此得到拉格朗日算子L :

()22112113cos cos 2cos 2θθθl l g m gl m +--

(2.16)

由于因为在广义坐标21,θθ上均无外力作用,有以下等式成立:

01

1=??-???? ????θθL L dt d (2.17)

022=??-???

? ????θθL L dt d (2.18)

展开(2.17)、(2.18)式,分别得到(2.19)、(2.20)式 0))cos sin ))((2(11321=++++θθx

g m m m (2.19)

22111222112123sin 6sin()46cos()3cos 0g l l l x θθθθθθθθθ---++--= (2.20)

将(2.19)、(2.20)式对2

1,θθ 求解代数方程,得到以下两式 )))(cos 912124(2(212

23211θθ-+---m m m m l

(2.21)

))(cos 4))(3(9

16(2122

2212222213212θθ-+++-

l l m l l m m m m (2.22) 表示成以下形式: ),,,,,,(212111x x x f θθθθθ= (2.23)

),,,,,,(212122x x x f θθθθθ=

(2.24)

取平衡位置时各变量的初值为零,

1212(,,,,,,)(0,0,0,0,0,0,0)0A x x x θθθθ===

(2.25)

将(2.23)式在平衡位置进行泰勒级数展开,并线性化,令

1

110

0A f K x

=?=

=?

(2.26)

1231120

11231

3(244)

2(4312)A gm gm gm f K m m m l θ=---?=

=?---

(2.27)

12130

2

1231

92(4312)A f m g

K m m m l θ=?=

=

?---

(2.28) 1140

0A f K x

=?=

=?

(2.29)

1150

10A f K θ=?==? (2.30)

1160

2

0A f K θ=?=

=?

(2.31)

1231170

1231

3(24)

2(4312)A m m m f K x

m m m l =---?=

=

?---

(2.32)

得到线性化之后的公式

x K K K 172131121++=θθθ

(2.33)

将),,,,,,(212122x x x f θθθθθ=在平衡位置进行泰勒级数展开,并线性化,令

2210

0A f K x

=?=

=?

(2.34)

1232

220

1

221232

2(2())16

4(3())9

A g m m m f K m l m m m l θ=++?=

=

?-++ (2.35)

1232

230

2

2212324(3())16

3(4(3()))

9A g m m m f K m l m m m l θ=++?==-

?-++ (2.36) 2240

0A f K x

=?=

=?

(2.37)

2250

10A f K θ=?==? (2.38)

2260

2

0A f K θ=?=

=?

(2.39)

1231232270

221232

4

2(2())(3()

316

4(3())9

A m m m m m m f K x

m l m m m l =++-++?=

=

?-++ (2.40)

得到

x K K K 272231222++=θθθ

(2.41)

即:

x K K K 172131121++=θθθ (2.42)

x K K K 272231222++=θθθ

(2.43)

现在得到了两个线性微分方程,由于我们采用加速度作为输入,因此还需加上一个方程:

x

u = (2.44)

取状态变量如下:

???????????======2

6

1

542

31

21

θθ

θθ x x x x x x x x (2.45)

则状态空间方程如下:

u K K x x x x x x K K K K x x x x x x

?

?

?

???

?

???

??????????+???????????????????????????????????

?????=???????????????????

?271765432123

221312654321100000000000000000100000010000001000

(2.46)

将以下参数代入 ???????????=======27

.009.08.9208.0132.004

.032.12

13

2

1l l g m m m M 求出各个K 值:

得到状态方程各个参数矩阵: 3 二级倒立摆系统性能分析 3.1 稳定性分析

二级倒立摆的特征方程为:

det()0I A λ-= (3.1)

Matlab 中,用函数eig(A )来计算系统矩阵的特征值,经过计算,系统的特征值为:

[]9.5972 4.77259.5972 4.772500λ=-- (3.2) 开环系统有两个开环极点位于S 平面右半平面上,所以系统是不稳定的。 同时,根据前面的状态空间表达式,在matlab 中,用step(A,B,C,D)函数对系统的阶跃响应进行分析:

图1 开环系统单位阶跃响应

从上图可以看出,在阶跃响应的作用下,系统是发散的。 3.2 能控性能观性分析 对于线形状态方程

X AX BU

Y CX

=+=

(3.3)

其能控性矩阵为:

23450[,,,,,]T B AB A B A B A B A B =

(3.4)

求0T 的秩

0()6rank T =

(3.5)

所以系统是完全能控的。 其能观性矩阵为:

(3.6)

求0C 的秩

0rank()=6C

(3.7)

所以系统是完全能观的。(代码见附录)

由上述计算结果可知,二级倒立摆系统是开环不稳定系统,但它的状态是完全能控且完全能观测的。因此,可以对其实现闭环最优控制。 4 状态反馈极点配置

4.1 二级倒立摆的最优极点配置1

在式3.3中,A 为6*6阵;B 为6*1阵;C 为3*6阵。是一个单输入系统,且完全能控、能观测。因此,可按照最优控制系统的极点配置方法进行设计。

对于一般控制系统,闭环主导极点的选取应使。但二级倒立摆是一个特殊的高阶系统,稳定性是主要矛盾,因此可适当增加,即适当降低响应速度,来弥补系统稳定性要求。相应在选择性能指标时,应适当减小系统的超调量。

对于二阶倒立摆系统,主要针对如下两个主要的性能指标进行设计:

超调量:

调节时间:

(4.1)

(4.2)

这里,误差范围取为2%,将上述性能指标代入式4.1和式4.2得到二级倒立摆系统的2个性能指标满足,,取,将得到的阻尼比与自然角频率代入下式:

(4.3)

得到二级倒立摆系统的2个主导极点为:

,(4.4) 对于其他四个非主导极点,不妨设为四重极点,且距主导极点10倍以上,即满足下式:

(4.5)

所以,另外四个非主导极点取为:

到此,二级倒立摆的6个极点都已确定。

P=[-1.87+1.11j -1.87-1.11j -22 -22 -22 -22] (4.6)在matlab中输入K=acker(A,B,P)可求得:

K =

1.0e+03 *

0.5281 0.4618 -2.6379 0.5136 -0.0797 -0.4476

至此,完成了二级倒立摆控制器的设计。接下来在matlab中仿真得到:

图2 极点配置后单位阶跃响应1

4.2 二级倒立摆最优极点配置2

在上述基础上,继续调整超调量和调整时间,使二级倒立摆达到稳定。第二次取:

超调量:

调节时间:

这里,误差范围仍取为2%,代入式4.1和式4.2得到二级倒立摆系统的2个性能指标满足,,取,

将得到的阻尼比与自然角频率式4.3得到第二组主导极点:

,(4.4) 对于其他四个非主导极点,不妨设为四重极点,且距主导极点10倍以上,即满足下式:

(4.5)

所以,另外四个非主导极点取为:

因此,第二组极点P2=[-1.73+1.81j -1.73-1.81j -30 -30 -30 -30]

在matlab中输入K2=acker(A,B,P2)可求得:

K2 =

1.0e+03 *

2.4205 0.5209 -7.4977 1.6587 -0.2846 -1.2008

接下来绘制极点配置后系统的单位阶跃响应图:

图3极点配置后单位阶跃响应2

5. 二级倒立摆matlab仿真

5.1 Simulink搭建开环系统

图4 开环系统仿真图

5.2 开环系统Simulink仿真结果

图5 开环系统matlab仿真结果图

由上图可知,在Simulink中搭建的开环系统是发散的,与理论计算的结果吻合。

5.3 Simulink搭建极点配置后的闭环系统

图6 极点配置优化后的系统结构图

5.4极点配置Simulink仿真结果

5.4.1 第一组极点配置仿真结果

图7 极点配置优化后的结果图

图8 小车位移曲线

图9 一级倒立摆角度曲线

图10 二级倒立摆角度曲线

从以上的图片可以看出,系统在给定输入的情况下,1秒左右恢复到平衡点的位置附近,系统较好的快速性、稳定性和精确性都非常理想,且无超调量,符

合要求。

5.4.2 第二组极点配置仿真结果

图11 极点配置优化后的结果图

图12 小车位移曲线

图13 一级倒立摆角度曲线

图14 二级倒立摆角度曲线

与第一组极点相比,超调量略有增加,但调整时间有所下降,且都达到稳定

状态符合要求。

6.结论

倒立摆系统就其本身而言,是一个多变量、快速、严重非线性和绝对不稳定系统,必需采用有效的控制法使之稳定,对倒立摆系统的研究在理论上和方法论上均有着深远的意义。

本文借助拉格朗日方程,建立了二级倒立摆的数学模型,并通过线性化,得到了二级倒立摆系统的状态空间模型。应用现代控制理论,分析了倒立摆的稳定性、能控性、能观性。随后采用二次型最优控制理论研究了倒立摆控制问题,并且运用状态反馈极点配置的方法得到较好的控制效果。最后进行了Matlab仿真,通过优化前后优化后的响应曲线可以看出经过极点配置算法优化后的系统响应的速度加快,超调量明显减少,稳定时间和上升时间有所减少,系统的动态性能

和静态性能要比没有优化的控制效果好了很多。

7.参考文献

[1]刘豹唐万生现代控制理论(第三版)机械工业出版社

[2]夏德钤翁贻方自动控制理论(第4版)机械工业出版社

[3]李国勇程永强计算机仿真技术与CAD—基于matlab的控制系统(第三版)电子工业出版社

[4] 基于LQR的二级倒立摆控制系统研究 [本科毕业论文]

[5]汤唯基于直线二级倒立摆控制系统的研究 [硕士学位论文]

[6]基于极点配置的倒立摆控制器设计 [硕士学位论文]

附录一

%-------------------------阶跃响应下系统的稳定性------------------

A=[0 0 0 1 0 0;0 0 0 0 1 0;0 0 0 0 0 1;0 0 0 0 0 0;

0 77.0642 -21.1927 0 0 0;0 -38.5321 37.8186 0 0 0];

B=[0;0;0;1;5.7012;-0.0728];

C=[1 0 0 0 0 0;0 1 0 0 0 0;0 0 1 0 0 0];

D=[0;0;0];

step(A,B,C,D) %绘制阶跃响应

%--------------------------能控能观性判断-------------------------

A=[0 0 0 1 0 0;0 0 0 0 1 0;0 0 0 0 0 1;0 0 0 0 0 0;

0 77.0642 -21.1927 0 0 0;0 -38.5321 37.8186 0 0 0];

B=[0;0;0;1;5.7012;-0.0728];

C=[1 0 0 0 0 0;0 1 0 0 0 0;0 0 1 0 0 0];

D=[0;0;0];

Uc=ctrb(A,B) %求能控矩阵

rank(Uc) %求能控阵的秩

Vo=obsv(A,C) %求能观矩阵

rank(Vo) %求能观矩阵的秩

%---------------------------极点配置1---------------------------- A=[0 0 0 1 0 0;

0 0 0 0 1 0;

0 0 0 0 0 1;

0 0 0 0 0 0;

0 77.0642 -21.1927 0 0 0;

0 -38.5321 37.8186 0 0 0];

B=[0;0;0;1;5.7012;-0.0728];

C=[1 0 0 0 0 0;

0 1 0 0 0 0;

0 0 1 0 0 0];

P=[-1.87+1.11i -1.87-1.11i -22 -22 -22 -22]; %

K=acker(A,B,P); %就反馈矩阵

A1= A1=A-B*K;

step(A1,B,C,D)

%---------------------------极点配置2--------------------------- A=[0 0 0 1 0 0;

0 0 0 0 1 0;

0 0 0 0 0 1;

0 0 0 0 0 0;

0 77.0642 -21.1927 0 0 0;

0 -38.5321 37.8186 0 0 0];

B=[0;0;0;1;5.7012;-0.0728];

C=[1 0 0 0 0 0;

0 1 0 0 0 0;

0 0 1 0 0 0];

D=0;

P2=[-1.73+1.81i -1.73-1.81i -30 -30 -30 -30]; % K2=acker(A,B,P2) %求反馈矩阵

A2=A-B*K2;

step(A2,B,C,D)

现代控制理论大作业

现代控制理论 (主汽温对象模型) 班级: 学号: 姓名:

目录 一. 背景及模型建立 1.火电厂主汽温研究背景及意义 2.主汽温对象的特性 3.主汽温对象的数学模型 二.分析 1.状态空间表达 2.化为约当标准型状态空间表达式并进行分析 3.系统状态空间表达式的求解 4.系统的能控性和能观性 5.系统的输入输出传递函数 6.分析系统的开环稳定性 7.闭环系统的极点配置 8.全维状态观测器的设计 9.带状态观测器的状态反馈控制系统的状态变量图 10.带状态观测器的闭环状态反馈控制系统的分析 三.结束语 1.主要内容 2.问题及分析 3.评价

一.背景及模型建立 1.火电厂主汽温研究背景及意义 火电厂锅炉主汽温控制决定着机组生产的经济性和安全性。由于锅炉的蒸汽容量非常大、过热汽管道很长,主汽温调节对象往往具有大惯性和大延迟,导致锅炉主汽温控制存在很多方面的问题,影响机组的整个工作效率。主汽温系统是表征锅炉特性的重要指标之一,主汽温的稳定对于机组的安全运行至关重要。其重要性主要表现在以下几个方面: (1) 汽温过高会加速锅炉受热面以及蒸汽管道金属的蠕变,缩短其使用寿命。例如,12CrMoV 钢在585℃环境下可保证其应用强度的时间约为10万小时,而在 595℃时,其保证应用强度的时间可能仅仅是 3 万小时。而且一旦受热面严重超温,管道材料的强度将会急剧下降,最终可能会导致爆管。再者,汽温过高也会严重影响汽轮机的汽缸、汽门、前几级喷嘴和叶片、高压缸前轴承等部件的机械强度,从而导致设备损坏或者使用年限缩短。 (2) 汽温过低,会使得机组循环热效率降低,增大煤耗。根据理论估计可知:过热汽温每降低10℃,会使得煤耗平均增加0.2%。同时,汽温降低还会造成汽轮机尾部的蒸汽湿度增大,其后果是,不仅汽轮机内部热效率降低,而且会加速汽轮机末几级叶片的侵蚀。此外,汽温过低会增大汽轮机所受的轴向推力,不利于汽轮机的安全运行。 (3) 汽温变化过大会使得管材及有关部件产生疲劳,此外还将引起汽轮机汽缸的转子与汽缸的胀差变化,甚至产生剧烈振动,危及机组安全运行。 据以上所述,工艺上对汽温控制系统的质量要求非常严格,一般控制误差范围在±5℃。主汽温太高会缩短管道的使用寿命,太低又会降低机组效率。所以必须实现汽温系统的良好控制。而汽温被控对象往往具有大惯性、大延时、非线性,时变一系列的特性,造成对象的复杂性,增加了控制的难度。现代控制系统中有很多关于主汽温的控制方案,本文我们着重研究带状态观测器的状态反馈控制对主汽温的控制[1] 。 2.主汽温对象的特性 2.1主汽温对象的静态特性 主汽温被控对象的静态特性是指汽温随锅炉负荷变化的静态关系。过热器的传热形式、结构和布置将直接影响过热器的静态特性。现代大容量锅炉多采用对流过热器、辐射过热器和屏式过热器。对流过热器布置在450℃~1000℃烟气温度的烟道中,受烟气的横向和纵向冲刷,烟气以对流方式将热量传给管道。而辐射过热器则是直接吸收火焰和高温烟气的辐射能。屏式过热器布置在炉膛内上部

现代控制理论课后习题答案

绪论 为了帮助大家在期末复习中能更全面地掌握书中知识点,并且在以后参加考研考博考试直到工作中,为大家提供一个理论参考依据,我们11级自动化二班的同学们在王整风教授的带领下合力编写了这本《现代控制理论习题集》(刘豹第三版),希望大家好好利用这本辅助工具。 根据老师要求,本次任务分组化,责任到个人。我们班整体分为五大组,每组负责整理一章习题,每个人的任务由组长具体分配,一个人大概分1~2道题,每个人任务虽然不算多,但也给同学们提出了要求:1.写清题号,抄题,画图(用CAD或word画)。2.题解详略得当,老师要求的步骤必须写上。3.遇到一题多解,要尽量写出多种方法。 本习题集贯穿全书,为大家展示了控制理论的基础、性质和控制一个动态系统的四个基本步骤,即建模、系统辨识、信号处理、综合控制输入。我们紧贴原课本,强调运用统一、联系的方法分析处理每一道题,将各章节的知识点都有机地整合在一起,力争做到了对控制理论概念阐述明确,给每道题的解析赋予了较强的物理概念及工程背景。在课后题中出现的本章节重难点部分,我们加上了必要的文字和图例说明,让读者感觉每一题都思路清晰,简单明了,由于我们给习题配以多种解法,更有助于发散大家的思维,做到举一反三!

这本书是由11级自动化二班《现代控制理论》授课老师王整风教授全程监管,魏琳琳同学负责分组和发布任务书,由五个小组组组长李卓钰、程俊辉、林玉松、王亚楠、张宝峰负责自己章节的初步审核,然后汇总到胡玉皓同学那里,并由他做最后的总审核工作,绪论是段培龙同学和付博同学共同编写的。 本书耗时两周,在同学的共同努力下完成,是二班大家庭里又一份智慧和努力的结晶,望大家能够合理使用,如发现错误请及时通知,欢迎大家的批评指正! 2014年6月2日

现代控制理论习题解答..

《现代控制理论》第1章习题解答 1.1 线性定常系统和线性时变系统的区别何在? 答:线性系统的状态空间模型为: x Ax Bu y Cx Du =+=+ 线性定常系统和线性时变系统的区别在于:对于线性定常系统,上述状态空间模型中的系数矩阵A ,B ,C 和D 中的各分量均为常数,而对线性时变系统,其系数矩阵A ,B ,C 和 D 中有时变的元素。线性定常系统在物理上代表结构和参数都不随时间变化的一类系统, 而线性时变系统的参数则随时间的变化而变化。 1.2 现代控制理论中的状态空间模型与经典控制理论中的传递函数有什么区别? 答: 传递函数模型与状态空间模型的主要区别如下: 1.3 线性系统的状态空间模型有哪几种标准形式?它们分别具有什么特点? 答: 线性系统的状态空间模型标准形式有能控标准型、能观标准型和对角线标准型。对于n 阶传递函数 121210 1110 ()n n n n n n n b s b s b s b G s d s a s a s a ------++++=+++++, 分别有 ⑴ 能控标准型: []012 101 210100000100000101n n n x x u a a a a y b b b b x du ---????? ???????????? ???=+?? ???????? ? ?????----???? ? =+??

⑵ 能观标准型: []0011221100010 00 100010 1n n n b a b a x a x u b a b y x du ---?-?? ????? ??-????? ?????=-+???? ? ????? ??????-???? ?=+?? ⑶ 对角线标准型: []1212 001001001n n p p x x u p y c c c x du ????? ??????? ???=+?????? ????? ??????=+? 式中的12,, ,n p p p 和12,,,n c c c 可由下式给出, 12121012 1 11012 ()n n n n n n n n n b s b s b s b c c c G s d d s a s a s a s p s p s p ------++++=+=+++ +++++--- 能控标准型的特点:状态矩阵的最后一行由传递函数的分母多项式系数确定,其余部分具有特定结构,输出矩阵依赖于分子多项式系数,输入矩阵中的元素除了最后一个元素是1外,其余全为0。 能观标准型的特点:能控标准型的对偶形式。 对角线标准型的特点:状态矩阵是对角型矩阵。 1.4 对于同一个系统,状态变量的选择是否惟一? 答:对于同一个系统,状态变量的选择不是惟一的,状态变量的不同选择导致不同的状态空间模型。 1.5 单输入单输出系统的传递函数在什么情况下,其状态空间实现中的直接转移项D 不等 于零,其参数如何确定? 答: 当传递函数)(s G 的分母与分子的阶次相同时,其状态空间实现中的直接转移项D 不等于零。 转移项D 的确定:化简下述分母与分子阶次相同的传递函数 1110 111)(a s a s a s b s b s b s b s G n n n n n n n ++++++++=---- 可得: d a s a s a s c s c s c s G n n n n n ++++++++=----0 11 10 111)( 由此得到的d 就是状态空间实现中的直接转移项D 。 1.6 在例1. 2.2处理一般传递函数的状态空间实现过程中,采用了如图1.12的串联分解,试 问:若将图1.12中的两个环节前后调换,则对结果有何影响?

现代控制理论大作业 北科

现代控制理论大作业分析对象:汽车悬架系统 指导老师:周晓敏 专业:机械工程 姓名:白国星 学号:S2*******

1.建模 悬架是车轮或车桥与汽车承载部分之间具有弹性的连接装置的总称,具有传递载荷、缓和冲击、衰减振动以及调节汽车行驶中的车身位置等作用。传统汽车悬驾系统是被动悬驾,其参数不能改变,无法控制其对不同路面激励的响应,因此对不同路面的适应性较差。为提高汽车的行驶平顺性、操纵稳定性和制动性等性能,人们开始用主动悬架系统来代替传统的被动悬架系统。主动悬架系统能根据路面的情况通过一个动力装置改变悬挂架的参数,改善汽车的各方面性能。 对悬驾系统进行仿真计算首先要建立悬驾系统动力学模型,随后对所建立的模型进行仿真分析。为了简化模型,取汽车的一个车轮的悬驾系统进行研究,该模型可简化为一维二自由度的弹簧阻尼质量系统,图1所示为该模型的模拟图。 图1 悬架系统模型的模拟图 其中u为动力装置的作用力,w为路面位移,x1为车身位移,x2为悬驾位移,用车身位移来度量车身的振动情况,并视为系统的输出。路面状况以w为尺度,并视为系统的一个干扰输入。当汽车从平面落入坑时,w可用一个阶跃信

号来模拟。u 为主动悬架的作用力,它是系统的控制量。 进行受力分析,由牛顿第二规律可得车身悬架系统的动力学方程为: ()()()()() 1121212212122s s t m x K x x b x x u m x K x x b x x u K w x ?=-+-+?? =-+--+-??& &&&&&&& 设系统状态变量为: []1 2 12x x x x x =&& 则上面系统动力学方程可改写为状态空间表达式: x Ax Bu y Cx Du =+?? =+?& 其中: ()1 1 1 1222 200 100001s s s t s K K b b A m m m m K K K b b m m m m ????????--=????-+??-??? ? 12 200 001 01t B m K m m ?? ??????=????-???? []1000C = []00D = u u w ??=???? Matlab 系统模型程序代码: m1=800;m2=320;ks=10000;b=30000; kt=10*ks;

(精选)现代控制理论作业题答案

第九章 线性系统的状态空间分析与综合 9-1 设系统的微分方程为 u x x x =++23&&& 其中u 为输入量,x 为输出量。 ⑴ 设状态变量x x =1,x x &=2,试列写动态方程; ⑵ 设状态变换211x x x +=,2122x x x --=,试确定变换矩阵T 及变换后的动态方程。 解:⑴ u x x x x ??????+????????????--=???? ??1032102121&&,[]??????=2101x x y ; ⑵ ??????=??????2121x x T x x ,??????--=2111T ;?? ????--=-11121 T ;AT T A 1-=,B T B 1-=,CT C =; 得,??????--=2111T ;u x x x x ??????-+??????????? ?-=??????1110012121&&,[]??????=2111x x y 。 9-2 设系统的微分方程为 u y y y y 66116=+++&&&&&& 其中u 、y 分别系统为输入、输出量。试列写可控标准型(即A 为友矩阵)及可观标准型(即A 为友矩 阵转置)状态空间表达式,并画出状态变量图。 解:可控标准型和可观标准型状态空间表达式依次为, []x y u x x 00610061161 00010=??????????+??????????---=&;[]x y u x x 100 006610 1101600=???? ? ?????+??????? ???---=&; 可控标准型和可观标准型的状态变量图依次为, 9-3 已知系统结构图如图所示,其状态变量为1x 、2x 、3x 。试求动态方程,并画出状态变量图。 解:由图中信号关系得,31x x =&,u x x x 232212+--=&,32332x x x -=&,1x y =。动态方程为 u x x ?? ?? ? ?????+??????????---=020*********&,[]x y 001;

现代控制理论试题

现代控制理论试题

现代控制理论试题 一、名词解释(15分) 1、4、能近稳定性、能观性3 、系统的最小实现 二、 简答题(15分) 1、 连续时间线性时不变系统(线性定常连续 系统)做线性变换时不改变系统的那些性质? 2、 如何 断线性 ......... 的充传要条数什么? 4、 囚于线:性定常系统能够任意配置极点的充 要条件是什么? 5、 线性定常连续系统状态观测器的存在条件 是什么? 三、 计算题(70分) “+、J 、RC 无源网络如图1所示犬试列写出其 状态万程和输出万程。其中 选G 两端的电压为状态变量"宀两 态变量"电压叭为为系统的输出y 常系 统的 如何判 G 国的最小实现A 、B 、C 和D 台匕 「两系统的压入犬 ■0 图1: RC 无源网 络 2、计算下列状态空间描述的传递函数 g (s )

3、求出下列连续时间线性是不变系统的时间 离散化状态方程: 其中,采样周期为T=2. 4、求取下列各连续时间线性时不变系统的状 态变量解认)和社? 5、确定是下列连续时间线性时不变系统联合 完全能控和完全能观测得待定参数 a 的取值 范围: 6、对下列连续时间非线性时不变系统,判断原 点平衡状态即是否为大范围渐近稳定: 直=衍 =-JT1 - X t 1X 1 7、给定一个单输入单输出连续时间线性时不 变系统的传递函数为 1 恥国=s(s + 4)(^ + 0) 试确定一个状态反馈矩阵 K ,使闭环极点配 置为竝二-2用=?4和找二?7 r = -1 0 1 —2 a r 卄 0 0 0 -3 1 ity = [0 0 l]x U

现代控制理论大作业

现代控制理论 直流电动机模型的分析 姓名:李志鑫 班级:测控1003 学号:201002030309

2 1直流电动机的介绍 1.1研究的意义 直流电机是现今工业上应用最广的电机之一,直流电机具有良好的调速特性、较大的启动转矩、功率大及响应快等优点。在伺服系统中应用的直流电机称为直流伺服电机,小功率的直流伺服电机往往应用在磁盘驱动器的驱动及打印机等计算机相关的设备中,大功率的伺服电机则往往应用在工业机器人系统和CNC铣床等大型工具上。[1] 1.2直流电动机的基本结构 直流电动机具有良好的启动、制动和调速特性,可以方便地在宽范围内实现无级调速,故多采用在对电动机的调速性能要求较高的生产设备中。 直流伺服电机的电枢控制:直流伺服电机一般包含3个组成部分: - 图1.1 ①磁极: 电机的定子部分,由磁极N—S级组成,可以是永久磁铁(此类称为永磁式直流伺服电机),也可以是绕在磁极上的激励线圈构成。 ②电枢: 电机的转子部分,为表面上绕有线圈的圆形铁芯,线圈与换向片焊接在一起。 ③电刷: 电机定子的一部分,当电枢转动时,电刷交替地与换向片接触在一起。 直流电动机的启动

电动机从静止状态过渡到稳速的过程叫启动过程。电机的启动性能有以下几点要求: 1)启动时电磁转矩要大,以利于克服启动时的阻转矩。 2)启动时电枢电流要尽可能的小。 3)电动机有较小的转动惯量和在加速过程中保持足够大的电磁转矩,以利于缩短启动时间。 直流电动机调速可以有: (1)改变电枢电源电压; (2)在电枢回路中串调节电阻; (3)改变磁通,即改变励磁回路的调节电阻Rf以改变励磁电流。 本文章所介绍的直流伺服电机,其中励磁电流保持常数,而有电枢电流进行控制。这种利用电枢电流对直流伺服电机的输出速度的控制称为直流伺服电机的电枢控制。如图1.2 Bm 电枢线路图1.2 ——定义为电枢电压(伏特)。 ——定义为电枢电流(安培)。 ——定义为电枢电阻(欧姆)。 ——定义为电枢电感(亨利)。 ——定义为反电动势(伏特)。 ——定义为励磁电流(安培)。 ——定义为电机产生的转矩(牛顿?米) ——定义为电机和反射到电机轴上的负载的等效粘带摩擦系数(牛顿?米∕度?秒) —定义为电机和反射到电机轴上的负载的等效转动惯量(千克?米)。 1.3建立数学模型 电机所产生的转矩,正比于电枢电流I与气隙磁通Φ的乘积,即: Φ (1-1) 而气隙磁通Φ又正比于激励电流,故式(1-1)改写为 (1-2)

现代控制理论1-8三习题库

信息工程学院现代控制理论课程习题清单

正确理解线性系统的数学描述,状态空间的基本概念,熟练掌握状态空间的表达式,线性变换,线性定常系统状态方程的求解方法。 重点容:状态空间表达式的建立,状态转移矩阵和状态方程的求解,线性变换的基本性质,传递函数矩阵的定义。要求熟练掌握通过传递函数、微分方程和结构图建立电路、机电系统的状态空间表达式,并画出状态变量图,以及能控、能观、对角和约当标准型。难点:状态变量选取的非唯一性,多输入多输出状态空间表达式的建立。 预习题 1.现代控制理论中的状态空间模型与经典控制理论中的传递函数有何区别? 2.状态、状态空间的概念? 3.状态方程规形式有何特点? 4.状态变量和状态矢量的定义? 5.怎样建立状态空间模型? 6.怎样从状态空间表达式求传递函数? 复习题 1.怎样写出SISO系统状态空间表达式对应的传递函数阵表达式 2.若已知系统的模拟结构图,如何建立其状态空间表达式? 3.求下列矩阵的特征矢量 ? ? ? ? ? ? ? ? ? ? - - = 2 5 10 2 2 1- 1 A 4.(判断)状态变量的选取具有非惟一性。 5.(判断)系统状态变量的个数不是惟一的,可任意选取。 6.(判断)通过适当选择状态变量,可将线性定常微分方程描述其输入输 出关系的系统,表达为状态空间描述。 7.(判断)传递函数仅适用于线性定常系统;而状态空间表达式可以在定 常系统中应用,也可以在时变系统中应用. 8.如果矩阵A 有重特征值,并且独立特征向量的个数小于n ,则只能化为 模态阵。 9.动态系统的状态是一个可以确定该系统______(结构,行为)的信息集 合。这些信息对于确定系统______(过去,未来)的行为是充分且必要 的。 10.如果系统状态空间表达式中矩阵A, B, C, D中所有元素均为实常数时, 则称这样的系统为______(线性定常,线性时变)系统。如果这些元素 中有些是时间t 的函数,则称系统为______(线性定常,线性时变)系 统。 11.线性变换不改变系统的______特征值,状态变量)。 12.线性变换不改变系统的______(状态空间,传递函数矩阵)。 13.若矩阵A 的n 个特征值互异,则可通过线性变换将其化为______(对 角阵,雅可比阵)。 14.状态变量是确定系统状态的______(最小,最大)一组变量。 15.以所选择的一组状态变量为坐标轴而构成的正交______(线性,非线性) 空间,称之为______(传递函数,状态空间)。

现代控制理论大作业

现代控制理论大作业-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

分类号:TH89 单位代码:10110 学号: 中北大学 综合调研报告题目: 磁盘驱动器读写磁头的定位控制 系别: 计算机科学与控制工程学院 专业年级: 电气工程与智能控制2014级 姓名: 何雨贾晨凌朱雨薇贾凯张钊中袁航 学号: 14070541 39/03/04/16/33/47 指导教师: 靳鸿教授崔建峰讲师 2017年5月7日

摘要 硬盘驱动器作为当今信息时代不可缺少的存储设备,在人们日常生活中正扮演着越来越重要的角色,同时它也成为信息时代科学技术飞速发展的助推器。然而,随着信息量的日益增长,人们对硬盘驱动器存储容量的要求越来越高。但另一方面由于传统硬盘驱动器的低带宽、低定位精度,导致磁头很难准确地定位在目标磁道中心位置,从而限制了存储容量的持续增加。 自IBM公司于1956年向全球展示第一台磁盘存储系统R.AMAC以来,随着存储介质、磁头、电机及半导体芯片等相关技术的不断发展,硬盘的存储容量成倍增长、读写速度不断提高。要保证可靠的读写性能,盘片的转速控制和磁头的定位控制问题具有重要意义。其中磁头的定位控制主要包括寻道控制与定位跟踪控制两个问题,如PID控制、自适应控制、模态切换控制等,这些控制方法大大提高了硬盘磁头伺服系统的性能。为达到更高的精度,磁头双级驱动模型成近年的研究热点,多种控制策略已有相关报道,但目前仍处于实验水平。 关键词: 磁盘驱动器;磁头;定位;控制 Abstract Hard disk drive (HDD), acted as requisite storage equipment in current information age,plays a more and more vital role in people’s daily life, and it becomes a roll booster in rapid development of science and technology. However, with the increase of information capacity, we put forward a severe request for HDD data storage capacity. Unfortunately, due to the low bandwidth, low positioning accuracy in conventional HDD, magnetic head is hard to be positioned onto the destination track center, thus it limits the continuing increase in storage capacity. Since IBM brought the first disk-the random access memory accounting machine(RAMAC) to market in 1956, the storage capacity and read/write speed have continuously increased along with the development of the techniques of media,read/write head, actuators and semiconducting chips. The problems of R/W head's settling control is definitely important in order to ensure the reliability of read and write performance. Track seeking and track following are two main stages of the hard disk servo system. Researchers have developed kinds of control strategies to implement the servo control from PID control to advanced control methods.Dual-stage actuator has attracted many researchers and engineers for its broaderbandwidth compared with single-stage actuator. Key Words:Hard Disk Drive;Heads; Location; Control

现代控制理论作业题答案

s 第九章 线性系统的状态空间分析与综合 9-1 设系统的微分方程为 其中 u 为输入量, x 为输出量。 x 3x 2x u ⑴ 设状态变量 x 1 x , x 2 x ,试列写动态方程; ⑵ 设状态变换 x 1 x 1 x 2 , x 2 x 1 2 x 2 ,试确定变换矩阵 T 及变换后的动态方程。 x 1 0 1 x 1 0 x 1 解:⑴ u , y 1 0 ; x 2 2 x 1 x 1 3 x 2 1 1 1 x 2 1 2 1 1 1 ⑵ T , T ; T ; A T AT , B T B , C CT ; x 2 x 2 1 1 1 2 1 1 x 1 1 0 x 1 1 x 1 得, T ; u , y 1 1 。 1 2 x 2 1 x 2 1 x 2 9-2 设系统的微分方程为 y 6 y 11y 6 y 6u 其中 u 、 y 分别系统为输入、输出量。试列写可控标准型 (即 A 为友矩阵 )及可观标准型 (即 A 为友矩 阵转置 )状态空间表达式,并画出状态变量图。 解:可控标准型和可观标准型状态空间表达式依次为, ; ; 6 11 6 1 y 6 0 0 x y 0 0 1 x 可控标准型和可观标准型的状态变量图依次为, u x 3 s -1 x 2 s -1 x 1 s -1 x 1 6 y u 6 x 1 s -1 x 1 x 2 s -1 x 2 x 3 -1 x 3 y - 6 11 6 - - - 6 11 6 9-3 已知系统结构图如图所示,其状态变量为 x 1 、 x 2 、 x 3 。试求动态方程,并画出状态变量图。 U (s) 2 X 2(s) s 3 2 s(s 1) X 1(s)= Y(s) - - X 3(s) s 解:由图中信号关系得, x 1 x 3 , x 2 0 0 2x 1 1 3 x 2 0 2u , x 3 2 x 2 3 x 3 , y x 1 。动态方程为 x 2 0 状态变量图为 0 0 6 6 x 1 0 11 x 0 u 0 1 6 0 1 0 0 x 0 0 1 x 0 u 3 x 2 u , y 1 0 0 x ; 2 1

现代控制理论试题

现代控制理论试题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

现代控制理论试题 一、名词解释(15分) 1、能控性 2、能观性 3、系统的最小实现 4、渐近稳定性 二、简答题(15分) 1、连续时间线性时不变系统(线性定常连续系统)做线性变换时不改变系 统的那些性质 2、如何判断线性定常系统的能控性如何判断线性定常系统的能观性 3、传递函数矩阵的最小实现A、B、C和D的充要条件是什么 4、对于线性定常系统能够任意配置极点的充要条件是什么 5、线性定常连续系统状态观测器的存在条件是什么 三、计算题(70分) 1、RC 无源网络如图1所示,试列写出其状态方程和输出方程。其中,为系统的输入,选两端的电压为状态变量,两端的电压为状态变量,电压为为系统的输出y。 2、计算下列状态空间描述的传递函数g(s) 图1:RC无源网络 3、求出下列连续时间线性是不变系统的时间离散化状态方程: 其中,采样周期为T=2. 4、求取下列各连续时间线性时不变系统的状态变量解和 5、确定是下列连续时间线性时不变系统联合完全能控和完全能观测得待定参数a的 取值范围: 6、对下列连续时间非线性时不变系统,判断原点平衡状态即是否为大范围渐 近稳定: 7、给定一个单输入单输出连续时间线性时不变系统的传递函数为 试确定一个状态反馈矩阵K,使闭环极点配置为,和。 现代控制理论试题答案 一、概念题 1、何为系统的能控性和能观性 答:(1)对于线性定常连续系统,若存在一分段连续控制向量u(t),能在有限时间区间[t0,t1]内将系统从初始状态x(t0)转移到任意终端状态x(t1),那么就称此状态是能控的。 (2)对于线性定常系统,在任意给定的输入u(t)下,能够根据输出量y(t)在有限时间区间[t0,t1]内的测量值,唯一地确定系统在t0时刻的初始状态x(t0 ),就称系统在t0时刻是能观测的。若在任意初始时刻系统都能观测,则称系统是状态完全能观测的,简称能观测的。

现代控制理论大作业

现代控制理论大作业 一、位置控制系统----双电位器位置控制系统 由系统分析可知,系统的开环传递函数: 2233.3 s =s s 2*0.07s*s 205353G ()(+1)*(++1) 另:该系统改进后的传递函数: 223.331s =s s 2*0.07s*s 3455353G ( )(+1)*(++1) 1、时域数学模型 <1>稳定性 >> s=tf('s'); >> G=33.3/(s*(s/20+1)*(s^2/53^2+2*0.07*s/53+1)); >>sys=feedback(G,1); >> sys Transfer function: 9.915e007 ----------------------------------------------------------- 53 s^4 + 1453 s^3 + 1.567e005 s^2 + 2.978e006 s + 9.915e007 >> pzmap(sys) 由零极点图可知,该系统有四个极点,没有零点,其中两个在左半s 开平面上,两个在s 平面的虚轴处,则,四个极点的坐标分别是:

>> p=pole(sys) p = 0.0453 +45.2232i 0.0453 -45.2232i -13.7553 +26.9359i -13.7553 -26.9359i 系统的特征方程有的根中有两个处于s的右半平面,系统处于不稳定状态 <2>稳态误差分析 稳态误差分析只对稳定的系统有意义,系统(G)处于不稳定状态,所以不做分析。改进后系统(G1)如下,求其特征方程的极点: >> s=tf('s'); >> G1=3.33/(s*(s/345+1)*(s^2/53^2+2*0.07*s/53+1)); >> sys2=feedback(G1,1); >>p=pole(sys2); p = 1.0e+002 * -3.4492 -0.0206 + 0.5258i -0.0206 - 0.5258i -0.0338 可以看出,改进后的传递函数G1的四个极点都在s平面的右半开平面上,则系统G1是稳定的,故对此系统做稳态误差分析: 由系统G1的开环传递函数在原点处有一个极点,故属于1型系统。系统是电位器位置控制,信号的输入应该是一种瞬时变化,类似于系统的阶跃响应,所以查稳态误差与系统结构参数、输入信号特性之间关系一览表,可得系统G1的稳态误差为零。 <3>动态响应分析(主要是单位阶跃响应,其他响应一般是用于静态性能的测试) ①系统的单位阶跃响应: >> s=tf('s'); >> G=33.3/(s*(s/20+1)*(s^2/53^2+2*0.07*s/53+1)) >>sys=feedback(G,1); >> step(sys)

现代控制理论试题

现代控制理论试题 一、名词解释(15分) 1、能控性 2、能观性 3、系统的最小实现 4、渐近稳定性 二、简答题(15分) 1、连续时间线性时不变系统(线性定常连续系统)做线性变换时不改变系统的那些性 质? 2、如何判断线性定常系统的能控性?如何判断线性定常系统的能观性? 3、传递函数矩阵错误!未找到引用源。的最小实现A、B、C和D的充要条件是什么? 4、对于线性定常系统能够任意配置极点的充要条件是什么? 5、线性定常连续系统状态观测器的存在条件是什么? 三、计算题(70分) 1、RC无源网络如图1所示,试列写出其状态方程和输出方程。其中,错误!未找到引用源。为系统的输入,选错误!未找到引用源。两端的电压为状态变量错误!未找到引用源。,错误!未找到引用源。两端的电压为状态变量错误!未找到引用源。,电压错误!未找到引用源。为为系统的输出y。 图1:RC无源网络 2、计算下列状态空间描述的传递函数g(s) 3、求出下列连续时间线性是不变系统的时间离散化状态方程: 其中,采样周期为T=2. 4、求取下列各连续时间线性时不变系统的状态变量解错误!未找到引用源。和错误! 未找到引用源。

5、确定是下列连续时间线性时不变系统联合完全能控和完全能观测得待定参数a的 取值范围: 6、对下列连续时间非线性时不变系统,判断原点平衡状态即错误!未找到引用源。是 否为大范围渐近稳定: 7、给定一个单输入单输出连续时间线性时不变系统的传递函数为 试确定一个状态反馈矩阵K,使闭环极点配置为错误!未找到引用源。,错误!未找到引用源。和错误!未找到引用源。。

现代控制理论试题答案 一、概念题 1、何为系统的能控性和能观性? 答:(1)对于线性定常连续系统,若存在一分段连续控制向量u(t),能在有限时间区间[t0,t1]内将系统从初始状态x(t0)转移到任意终端状态x(t1),那么就称此状态是能控的。 (2)对于线性定常系统,在任意给定的输入u(t)下,能够根据输出量y(t)在有限时间区间[t0,t1]内的测量值,唯一地确定系统在t0时刻的初始状态x(t0 ),就称系统在t0时刻是能观测的。若在任意初始时刻系统都能观测,则称系统是状态完全能观测的,简称能观测的。 2、何为系统的最小实现? 答:由传递函数矩阵或相应的脉冲响应来建立系统的状态空间表达式的工作,称为实现问题。在所有可能的实现中,维数最小的实现称为最小实现。 3、何为系统的渐近稳定性? 答:若错误!未找到引用源。在时刻错误!未找到引用源。为李雅普若夫意义下的稳定,且存在不依赖于错误!未找到引用源。的实数错误!未找到引用源。和任意给定的初始状态错误!未找到引用源。,使得错误!未找到引用源。时,有错误!未找到引用源。,则称错误!未找到引用源。为李雅普若夫意义下的渐近稳定 二、简答题 1、连续时间线性时不变系统(线性定常连续系统)做线性变换时不改变系统的那些性 质? 答:系统做线性变换后,不改变系统的能控性、能观性,系统特征值不变、传递函数不变 2、如何判断线性定常系统的能控性?如何判断线性定常系统的能观性? 答:方法1:对n维线性定常连续系统,则系统的状态完全能控性的充分必要条件为:错误!未找到引用源。。 方法2:如果线性定常系统的系统矩阵A具有互不相同的特征值,则系统能控的充要条件是,系统经线性非奇异变换后A阵变换成对角标准形,且错误!未找到引用源。不包含元素全为0的行 线性定常连续系统状态完全能观测的充分必要条件是能观性矩阵错误!未找到引用源。满秩。即:错误!未找到引用源。 3、传递函数矩阵错误!未找到引用源。的最小实现A、B、C和D的充要条件是什么?

现代控制理论-大作业-倒立摆

现代控制理论-大作业-倒立 摆 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

摘要 倒立摆系统是一个复杂的、高度非线性的、不稳定的高阶系统,是学习和研究现代控制理论最合适的实验装置。倒立摆的控制是控制理论应用的一个典型范例,一个稳定的倒立摆系统对于证实状态空间理论的实用性是非常有用的。 本文主要研究的是二级倒立摆的极点配置方法,首先用Lagrange方程建立了二级倒立摆的数学模型,然后对二级倒立摆系统的稳定性进行了分析和研究,并给出了系统能控能观性的判别。基于现代控制理论中的极点配置理论,根据超调量和调整时间来配置极点,求出反馈矩阵并利用Simulink对其进行仿真,得到二级倒立摆的变化曲线,实现了对闭环系统的稳定控制。 关键词:二级倒立摆;极点配置;Simulink

目录 1.绪论 (1) 2 数学模型的建立和分析 (2) 2.1 数学建模的方法 (2) 2.2 二级倒立摆的结构和工作原理 (2) 2.3 拉格朗日运动方程 (3) 2.4推导建立数学模型 (4) 3 二级倒立摆系统性能分析 (10) 3.1 稳定性分析 (10) 3.2 能控性能观性分析 (11) 4 状态反馈极点配置 (12) 4.1 二级倒立摆的最优极点配置1 (12) 4.2 二级倒立摆最优极点配置2 (14) 5. 二级倒立摆matlab仿真 (16) 5.1 Simulink搭建开环系统 (16) 5.2 开环系统Simulink仿真结果 (16) 5.3 Simulink搭建极点配置后的闭环系统 (17) 5.4极点配置Simulink仿真结果 (18) 5.4.1 第一组极点配置仿真结果 (18) 5.4.2 第二组极点配置仿真结果 (20) 6.结论 (22) 7.参考文献 (23) 附录一 (24)

现代控制理论复习题

概念: 设动态系统为)()()(,)()()(t Du t Cx t y t Bu t Ax t x +=+=&, (1)若At e t =Φ) (,则)(t Φ称为(状态转移矩阵 ) (2)若D B A sI C s G +-=-1 )()(,则)(s G 称为( 传递函数矩阵 ) (3)若],,,,[],[1 2B A B A AB B B A n c -=ΓΛ,则],[B A c Γ称为(能控性矩阵) (4)若T n o CA CA CA C A C ],,,,[],[12-=ΓΛ,则],[A C o Γ称为(能观性矩阵) (5)若],,,,,[],,[1 2D B CA B CA CAB CB B A C n oc -=ΓΛ,则],,[B A C oc Γ称为(输出能 控性矩阵) (6)李雅普诺夫方程 Q PA P A T -=+,其中Q 为正定对称阵,当使方程成立的P 为( 正定对称阵 )时,系统为渐近稳定。 (7)设系统0)0(,0,)(=≥=f t x f x &,如果存在一个具有一阶导数的标量函数 )(x V ,0)0(=V ,并且对于状态空间X 中的且非零点x 满足如下条件:)(x V 为(正定);)(x V &为(负定);当∞→x 时,∞→)(x V 。则系统的原点平衡状态是 (大范围渐近稳定的)。 (8)状态反馈不改变系统的(可控性)。输出至状态微分反馈不改变系统的(可观测性)。输出至参考输入反馈,不改变系统的(可控性和可观测性)。状态反馈和输出反馈都能影响系统的(稳定性和动态性能)。 (9)状态反馈控制的极点任意配置条件是系统状态(完全可控)。状态观测的极点任意配置条件是系统状态(完全可观)。 (10)系统线性变换Px x =时,变换矩阵P 必须是(非奇异的,或满秩)的。 二:已知系统传递函数 ) 2()1(5 )(2 ++= s s s G ,试求约当型动态方程。 解:25 15) 1(5)2()1(5)(2 2+++-+=++= s s s s s s G

现代控制理论课程设计(大作业)

现代控制理论课 程设计报告 题目打印机皮带驱动系统能控能观和稳定性分析 项目成员史旭东童振梁沈晓楠 专业班级自动化112 指导教师何小其 分院信息分院 完成日期 2014-5-28

目录 1. 课程设计目的 (3) 2.课程设计题目描述和要求 (3) 3.课程设计报告内容 (4) 3.1 原理图 (4) 3.2 系统参数取值情况 (4) 3.3 打印机皮带驱动系统的状态空间方程 (5) 4. 系统分析 (7) 4.1 能控性分析 (7) 4.2 能观性分析 (8) 4.3 稳定性分析 (8) 5. 总结 (10)

项目组成员具体分工 打印机皮带驱动系统能控能观和稳定性 分析 课程设计的内容如下: 1.课程设计目的 综合运用自控现代理论分析皮带驱动系统的能控性、能观性以及稳定性,融会贯通并扩展有关方面的知识。加强大家对专业理论知识的理解和实际运用。培养学生熟练运用有关的仿真软件及分析,解决实际问题的能力,学会使用标准、手册、查阅有关技术资料。加强了大家的自学能力,为大家以后做毕业设计做很好的铺垫。 2.课程设计题目描述和要求 (1)环节项目名称:能控能观判据及稳定性判据 (2)环节目的: ①利用MATLAB分析线性定常系统的可控性和客观性。 ②利用MATLAB进行线性定常系统的李雅普诺夫稳定性判据。 (3)环节形式:课后上机仿真 (4)环节考核方式: 根据提交的仿真结果及分析报告确定成绩。 (5)环节内容、方法: ①给定系统状态空间方程,对系统进行可控性、可观性分析。 ②已知系统状态空间方程,判断其稳定性,并绘制出时间响应曲线验

证上述判断。 3.课程设计报告内容 3.1 原理图 在计算机外围设备中,常用的低价位喷墨式或针式打印机都配有皮带驱动器。它用于驱动打印头沿打印页面横向移动。图1给出了一个装有直流电机的皮带驱动式打印机的例子。其光传感器用来测定打印头的位置,皮带张力的变化用于调节皮带的实际弹性状态。 图1 打印机皮带驱动系统 3.2 系统参数取值情况 表1打印装置的参数

现代控制理论试题(详细答案)

现代控制理论试题B 卷及答案 一、1 系统[]210,01021x x u y x ? ??? =+=????-???? 能控的状态变量个数是cvcvx ,能观测的状态变量个数是。 2试从高阶微分方程385y y y u ++= 求得系统的状态方程和输出方程(4分/个) 解 1. 能控的状态变量个数是2,能观测的状态变量个数是1。状态变量个数是2。…..(4分) 2.选取状态变量1x y =,2x y = ,3x y = ,可得 …..….…….(1分) 12233131 835x x x x x x x u y x ===--+= …..….…….(1分) 写成 010*********x x u ???? ????=+????????--???? …..….…….(1分) []100y x = …..….…….(1分) 二、1给出线性定常系统(1)()(),()()x k Ax k Bu k y k Cx k +=+=能控的定义。 (3分) 2已知系统[]210 020,011003x x y x ?? ??==?? ??-?? ,判定该系统是否完 全能观?(5分)

解 1.答:若存在控制向量序列(),(1),,(1)u k u k u k N ++- ,时系统从第 k 步的状态()x k 开始,在第N 步达到零状态,即()0x N =,其中N 是大于 0的有限数,那么就称此系统在第k 步上是能控的。若对每一个k ,系统的所有状态都是能控的,就称系统是状态完全能控的,简称能控。…..….…….(3分) 2. [][]320300020012 110-=?? ?? ? ?????-=CA ………..……….(1分) [][]940300020012 3202=?? ?? ? ?????--=CA ……..……….(1分) ???? ? ?????-=??????????=940320110 2CA CA C U O ………………..……….(1分) rank 2O U n =<,所以该系统不完全能观……..….……. (2分) 三、已知系统1、2的传递函数分别为 2122211 (),()3232 s s g s g s s s s s -+==++-+ 求两系统串联后系统的最小实现。(8分) 解 112(1)(1)11 ()()()(1)(2)(1)(2)4 s s s s g s g s g s s s s s s -+++== ?=++--- …..….……. (5分) 最小实现为

相关文档
最新文档