循迹小车原理

循迹小车原理
循迹小车原理

寻迹小车

在历届全国大学生电子设计竞赛中多次出现了集光、机、电于一体的简易智能小车题目。笔者通过论证、比较、实验之后,制作出了简易小车的寻迹电路系统。整个系统基于普通玩具小车的机械结构,并利用了小车的底盘、前后轮电机及其自动复原装置,能够平稳跟踪路面黑色轨迹运行。

总体方案

整个电路系统分为检测、控制、驱动三个模块。首先利用光电对管对路面信号进行检测,经过比较器处理之后,送给软件控制模块进行实时控制,输出相应的信号给驱动芯片驱动电机转动,从而控制整个小车的运动。系统方案方框图如图1所示。

图1 智能小车寻迹系统框图

传感检测单元

小车循迹原理

该智能小车在画有黑线的白纸“路面”上行驶,由于黑线和白纸对光线的反射系数不同,可根据接收到的反射光的强弱来判断“道路”—黑线。笔者在该模块中利用了简单、应用也比较普遍的检测方法——红外探测法。

红外探测法,即利用红外线在不同颜色的物理表面具有不同的反射性质的特点。在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色地面时发生漫发射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,则小车上的接收管接收不到信号。

传感器的选择

市场上用于红外探测法的器件较多,可以利用反射式传感器外接简单电路自制探头,也可以使用结构简单、工作性能可靠的集成式红外探头。ST系列集成红外探头价格便宜、体积小、使用方便、性能可靠、用途广泛,所以该系统中最终选择了ST168反射传感器作为红外光的发射和接收器件,其内部结构和外接

电路均较为简单,如图2所示:

图2 ST168检测电路

ST168采用高发射功率红外光、电二极管和高灵敏光电晶体管组成,采用非接触式检测方式。ST168的检测距离很小,一般为8~15毫米,因为8毫米以下是它的检测盲区,而大于15毫米则很容易受干扰。笔者经过多次测试、比较,发现把传感器安装在距离检测物表面10毫米时,检测效果最好。

R1限制发射二极管的电流,发射管的电流和发射功率成正比,但受其极限输入正向电流50mA的影响,用R1=150的电阻作为限流电阻,Vcc=5V作为电源电压,测试发现发射功率完全能满足检测需要;可变电阻R2可限制接收电路的电流,一方面保护接收红外管;另一方面可调节检测电路的灵敏度。因为传感器输出端得到的是模拟电压信号,所以在输出端增加了比较器,先将ST168输出电压与2.5V进行比较,再送给单片机处理和控制。

传感器的安装

正确选择检测方法和传感器件是决定循迹效果的重要因素,而且正确的器件安装方法也是循迹电路好坏的一个重要因素。从简单、方便、可靠等角度出发,同时在底盘装设4个红外探测头,进行两级方向纠正控制,将大大提高其循迹的可靠性,具体位置分布如图3所示。

图3 红外探头的分布图

图中循迹传感器全部在一条直线上。其中X1与Y1为第一级方向控制传感器,X2与Y2为第二级方向控制传感器,并且黑线同一边的两个传感器之间的宽度不得大于黑线的宽度。小车前进时,始终保持(如图3中所示的行走轨迹黑线)在X1和Y1这两个第一级传感器之间,当小车偏离黑线时,第一级传感器就能检测到黑线,把检测的信号送给小车的处理、控制系统,控制系统发出信号对小车轨迹予以纠正。第二级方向探测器实际是第一级的后备保护,它的存在是考虑到小车由于惯性过大会依旧偏离轨道,再次对小车的运动进行纠正,从而提高了小车循迹的可靠性。

软件控制单元

单片机选型及程序流程

此部分是整个小车运行的核心部件,起着控制小车所有运行状态的作用。控制方法有很多,大部分都采用单片机控制。由于51单片机具有价格低廉是使用简单的特点,这里选择了ATMEL公司的AT89S51作为控制核心部件,其程序控制方框图如图4所示。

图4 系统的程序流程图

小车进入循迹模式后,即开始不停地扫描与探测器连接的单片机I/O口,一旦检测到某个I/O口有信号变化,程序就进入判断程序,把相应的信号发送给电动机从而纠正小车的状态。

车速的控制

车速调节的方法有两种:一是用步进电机代替小车上原有的直流电机;二是在原有直流电机的基础上,采用pwm调速法进行调速。考虑到机械装置不便于修改等因素,这里选择后者,利用单片机输出端输出高电平的脉宽及其占空比的大小来控制电机的转速,从而控制小车的速度。经过多次试验,最终确定合适的脉宽和占空比,基本能保证小车在所需要的速度范围内平稳前行。

电机驱动单元

从单片机输出的信号功率很弱,即使在没有其它外在负载时也无法带动电机,所以在实际电路中我们加入了电机驱动芯片提高输入电机信号的功率,从而能够根据需要控制电机转动。根据驱动功率大小以及连接电路的简化要求选择L298N,其外形、管脚分布如图5所示。

图5 L298N管脚分布图

从图中可以知道,一块L298N芯片能够驱动两个电机转动,它的使能端可以外接高低电平,也可以利用单片机进行软件控制,极大地满足各种复杂电路需要。另外,L298N的驱动功率较大,能够根据输入电压的大小输出不同的电压和功率,解决了负载能力不够这个问题。

结语

此方案选择的器件比较简单,实际中也很容易实现。经过多次测试,结果表明在一定的弧度范围内,小车能够沿着黑线轨迹行进,达到了预期目标。不足之处,由于小车采用直流电机,其速度控制不够精确和稳定,不能实现急转和大弧度的拐弯。

程序

#include

#define uchar unsigned char

#define uint unsigned int

ucharpro_left,pro_right,i,j; //左右占空比标志

sbit left1=P2^0;

sbit left2=P2^1;

sbit right1=P2^2;

sbit right2=P2^3;

sbit en1=P1^0;

sbit en2=P1^1;

//循迹口三个红外传感器

sbitleft_red=P1^2; //白线位置sbitmid_red=P1^3; //黑线位置sbitright_red=P1^4; //白线位置

void delay(uint z)

{

uchari;

while(z--)

{for(i=0;i<121;i++);}

}

void init()

{

left_red=0; //白线位置

mid_red=1; //黑线位置

right_red=0;

TMOD=0X01;//定时器0选用方式1

TH0=(65536-100)/256;

TL0=(65536-100)%256;

EA=1;

ET0=1;

TR0=1;

en1=1;

en2=1;

}

void time0(void)interrupt 1

{

i++;

j++;

if(i<=pro_right) {en1=1;}

else en1=0;

if(i==40) {en1=~en1;i=0;}

if(j<=pro_left) {en2=1;}

else en2=0;

if(j==40) {en2=~en2;j=0;}

TH0=(65536-100)/256;

TL0=(65536-100)%256;

}

void straight() //走直线函数

{

pro_right=39;

pro_left=39;

left1=0;

left2=1;

right1=1;

right2=0;

}

void turn_left() //左转弯函数

{

pro_right=5;

pro_left=39;

left1=0;

left2=1;

right1=1;

right2=0;

}

void turn_right() //右转弯函数

{

pro_right=39;

pro_left=5;

left1=0;

left2=1;

right1=1;

right2=0;

}

void turn_back() //后退(反转)函数

{

left1=1;

left2=0;

right1=0;

right2=1;

pro_right=39;

pro_left=39;

}

void infrared() //循迹

{

uchar flag;

if(left_red==1)

{flag=1;}

else

if(right_red==1)

{flag=2;}

else

if((left_red==0)&(mid_red==0)&(right_red==0)) {flag=3;}

else flag=0;

switch (flag)

{

case 0: straight();

break;

case 1: turn_left();

break;

case 2: turn_right();

break;

case 3: turn_back();

break;

default:

break;

}

}

void main(void)

{

init();

delay(1);

while(1)

{

infrared();

// straight();

}

}

void int0(void)interrupt 0 {

}

智能循迹小车___设计报告

智能循迹小车___设计报告

智能循迹小车设计 专业:自动化 班级:自动化132 姓名:罗植升莫柏源梁 桂宾 指导老师: 2014年4月——2010年6月

本课题是基于STC89C52单片机的智能小车的设计与实现,小车完成的主要功能是能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。小车系统以 STC89C52单片机为系统控制处理 器; 采用红外传感获取赛道的信息,来对小车的方向和速度进行控制。此外,对整个控制软件进行设计和程序的编制以及程序的调试,并最终完成软件和硬件的融合,实现小车的预期功能。

当今世界,传感器技术和自动控制技术正在飞速发展,机械、电气和电子信息已经不再明显分家,自动控制在工业领域中的地位已经越来越重要,“智能”这个词也已经成为了热门词汇。现在国外的自动控制和传感器技术已经达到了很高的水平,特别是日本,比如日本本田制作的机器人,其仿人双足行走已经做得十分逼真,而且具有一定的学习能力,还据说其智商已达到6岁儿童的水平。 作为机械行业的代表产品—汽车,其与电子信息产业的融合速度也显著提高,呈现出两个明显的特点:一是电子装置占汽车整车(特别是轿车)的价值量比例逐步提高,汽车将由以机械产品为主向高级的机电一体化方向发展,汽车电子产业也很有可能成为依托整车制造业和用车提升配置而快速成为新的增长点;二是汽车开始向电子化、多媒体化和智能化方向发展,使其不仅作为一种代步工具、同时能具有交通、娱乐、办公和通讯等多种功能。 无容置疑,机电一体化人才的培养不论是在国外还是国内,都开始重视起来,主要表现在大学生的各种大型的创新比赛,比如:亚洲广播电视联盟亚太地区机器人大赛(ABU ROBCON)、全国大学生“飞思卡尔”杯智能汽车竞赛等众多重要竞赛都能很好的培养大学生对于机电一体化的兴趣与强化机电一体化的相关知识。但很现实的状况是,国内不论是在机械还是电气领域,与国外的差距还是很明显的,所以作为机电一体化学生,必须加倍努力,为逐步赶上国外先进水平并超过之而努力。 为了适应机电一体化的发展在汽车智能化方向的发展要求,提出简易智能小车的构想,目的在于:通过独立设计并制作一辆具有简单智能化的简易小车,获得项目整体设计的能力,并掌握多通道多样化传感器综合控制的方法。所以立“智能循迹小车”一题作为尝试。 此项设计是在以杨老师提供的小车为基础上,采用AT89C52单片机作为控制核心,实现能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。

循迹小车的设计与制作毕业设计论文

毕业论文声明 本人郑重声明: 1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。本人完全意识到本声明的法律结果由本人承担。 2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。 3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。 4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。 学位论文作者(签名): 年月

关于毕业论文使用授权的声明 本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。本人完全了解大学有关保存,使用毕业论文的规定。同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容: 按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据库和收录到《中国学位论文全文数据库》进行信息服务。在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。 论文作者签名:日期: 指导教师签名:日期: 毕业设计(论文)

基于51单片机智能小车循迹程序

#include #define uchar unsigned char #define uint unsigned int ////电机驱动模块位定义//// sbit M11=P0^0; //左轮 sbit M12=P0^1; sbit M23=P0^2; //右轮 sbit M24=P0^3; sbit ENA=P0^4; //左轮使能PWM输入改变dj1数值控制转速sbit ENB=P0^5; //右轮使能PWM输入改变dj2数值控制转速////占空比变量定义//// unsigned char dj1=0; unsigned char dj2=0; uchar t=0; ////红外对管位定义//// sbit HW1=P1^0; //左前方 sbit HW2=P1^1; //右前方 sbit HW3=P1^2; //左后方 sbit HW4=P1^3; //右后方 ////小车前进//// void qianjin() { M11=1; //左轮 M12=0; // M23=1; //右轮 M24=0; // dj1=50; dj2=50; } ////向左微调//// void turnleft2() { M11=1; M12=0; M23=1; M24=0; dj1=7; //左轮 dj2=50; //右轮 } ////向右微调//// void turnright2() { M11=1; M12=0;

M23=1; M24=0; dj1=50; dj2=7; } ////向左大调//// void left() { M11=0; M12=1; M23=1; M24=0; dj1=7; dj2=80; } ////向右大调//// void right() { M11=1; M12=0; M23=0; M24=1; dj1=80; dj2=7; } ////循迹动作子函数//// void xj() { if(HW1==0&&HW2==0&&HW3==0&&HW4==0) //前进逻辑 { qianjin(); } if(HW1==1&&HW2==0&&HW3==0&&HW4==0) //左右微调 { turnleft2(); } if(HW1==0&&HW2==1&&HW3==0&&HW4==0) { turnright2(); } if(HW1==1&&HW2==0&&HW3==1&&HW4==0) //左右大调 { left(); }

基于STM32 智能抓物小车的设计 电子设计II课程报告

摘要 本实验主要分析把握对象的智能车基于STM32F103的设计。智能系统的组成主要包括STM32F103控制器、伺服驱动电路、红外检测电路、超声波避障电路。本试验采用STM32F103微处理器作为核心芯片,速度和转向的控制采用PWM技术,跟踪模块、检测、障碍物检测和避免功能避障模块等外围电路,实现系统的整体功能。 小车行驶时,避障程序跟踪程序,具有红外线跟踪功能的汽车检测电路。然后用颜色传感器识别物体的颜色和抓取。在硬件设计的基础上提出了实现伺服控制功能,简单的智能车跟踪和避障功能的软件设计和控制程序,在STM32集成开发环境IAR编译,并使用JLINK下载程序。 关键词:stm32;红外探测;超声波避障;颜色传感;舵机控制

ABSTRACT This experiment mainly analyzed the grasping object intelligent car based on STM32F103 design. The composition of the intelligent system mainly includes STM32F103 controller, servo drive circuit, infrared detection circuit, ultrasonic obstacle avoidance circuit. This test uses the STM32F103 microprocessor as the core chip, the speed and steering control using PWM technology, tracking module and detection, obstacle avoidance module for obstacle detection and avoidance function, other peripheral circuit to achieve the overall function of the system. The car is moving, obstacle avoidance procedures prior to tracking program, car tracking function with infrared detection circuit. Then use color sensor to recognize object color and grab. On the basis of the hardware design is proposed to realize the servo control function, simple intelligent car tracking and obstacle avoidance function of the software design, and the control program is compiled in the STM32 integrated development environment IAR, and download the program using Jlink. Key words: STM32; infrared detection; ultrasonic obstacle avoidance; color sensing; steering control

智能循迹小车设计报告

电子作品设计报告 项目名称:智能小车 学院:机电工程学院 专业:应用电子技术 班级:09应电(1)班 组别:第三组 姓名:杨磊赖焕宁梁广生 指导老师:杨青勇玉宁

目录 摘要: (3) 关键词: (3) 引言: (3) 一、系统设计 (3) 1.1设计要求 (4) 1.2车体方案认证与选择 (4) 二、硬件设计及说明 (5) 2.1原理图设计 (5) 2.1.1稳压电源 (5) 2.1.2基本系统 (5) 2.1.3电机驱动 (5) 2.1.4液晶显示部分 (6) 2.1.5RS485数据总线 (6) 2.1.6循迹部分 (7) 2.2PCB设计 (7) 2.2.1主板PCB (7) 2.2.2循迹板PCB (8) 三、软件设计及说明 (8) 四、系统测试过程 (10)

五、总结 (11) 六、附录 (11) 附录一:系统元器件清单 (11) 附件二:系统测试源程序 (12) 摘要:本组的智能小车是采用凌阳的车架,是以两个电机来驱动小车,主板部 分自行设计。通过接收器MAX1483来采集信息,传送进主控芯片PIC16F886单片机,进行数据处理后,送进驱动芯片L293D以完成相应的操作。采用反射式红外光电传感器ST178来实现小车自动循迹功能,并且整个过程采用液晶显示屏RT1602来显示相应的数据。 关键词:PIC16F886 L293D 反射式红外光电传感器ST178 自动循迹引言: 近现代,随着电子科技的迅猛发展,人们对技术也提出了更高的要求。汽车的智能化在提高汽车的行驶安全性,操作性等方面都有巨大的优势,在一些特殊的场合下也能满足一些特殊的需要。智能小车系统涉及到自动控制,车辆工程,计算机等多个领域,是未来汽车智能化是一个不可避免的大趋势。本文设计的小车以PIC16f886 为控制核心,用反射式红外光电传感器作为检测元件实现小车的自动循迹前行,并显示等功能。 一、系统设计 本组智能小车的硬件主要有以PIC16f886 作为核心的主控器部分、自动循迹部分、显示部分、电机驱动部分。其中电机驱动部分和其他部分分别由两个不同的电源分开供电。 小车硬件系统结构示意图如下:

智能循迹小车总体设计方案

智能循迹小车总体设计方案 1.1 整体设计方案 本系统采用简单明了的设计方案。通过高发射功率红外光电二极管和高灵敏度光电晶体管组成的传感器循迹模块黑线路经,然后由AT89S52通过IO口控制L298N驱动模块改变两个直流电机的工作状态,最后实现小车循迹。 1.2系统设计步骤 (1)根据设计要求,确定控制方案; (2)将各个模块进行组装并进行简单调试; (3)画出程序流程图,使用C语言进行编程; (4)将程序烧录到单片机内; (5)进行调试以实现控制功能。 1.2.1系统基本组成 智能循迹小车主要由AT89S52单片机电路、循迹模块、L298N驱动模块、直流电机、小车底板、电源模块等组成。 (1)单片机电路:采用AT89S52芯片作为控制单元。AT89S52单片机具有低成本、高性能、抗干扰能力强、超低功耗、低电磁干扰,并且与传统的8051单片机程序兼容,无需改变硬件,支持在系统编程技术。使用ISP可不用编程器直接在PCB板上烧录程序,修改、调速都方便。 (2)循迹模块:采用脉冲调制反射红外发射接收器作为循迹传感器,调制信号带有交流分量,可减少外界的大量干扰。信号采集部分就相

当于智能循迹小车的眼睛,有它完成黑线识别并产生高、低平信号传送到控制单元,然后单片机生成指令来控制驱动模块来控制两个直流电机的工作状态,来完成自动循迹。 (3)L298N驱动模块:采用L298N作为点击驱动芯片。L298N具有高电压、大电流、响应频率高的全桥驱动芯片,一片L298N可以分别控制两个直流电机,并且带有控制使能端。该电机驱动芯片驱动能力强、操作方便、稳定性好,性能优良。L298N的使能端可以外接电平控制,也可以利用单片机进行软件控制,满足各种复杂电路的需要。另外,L298N的驱动功率较大,能够根据输入电压的大小输出不同的电压和功率,解决了负载能力不够的问题。

智能小车设计

2016—2017学年第二学期期末考试《单片机原理及应用*》实践考核 项目设计说明书 专业:电子科学与技术 学号: 20160060156

姓名:张一鸣 2017年6 月14日 考核项目及要求 项目一:电机驱动模块的设计与制作 1.考核要点 (1) 掌握驱动电路的工作原理; (2) 掌握电机驱动的制作方法; (3) 掌握焊接技术; 2.作品要求 学生自行运用工具进行作品的设计制作,作品达到电路连接正确、布局合理、美观整洁。 项目二:单片机最小系统板的设计制作 1.考核要点 (1) 掌握单片机在实际操作中的基本知识; (2) 实验板包括单片机最小系统、蓝牙遥控模块、温度检测模块、液晶模块、 报警模块电路等的设计; (3) 使用Proteus仿真软件绘制实验板所包含的所有模块电路; (4) 熟练使用keil编程软件编写各模块电路的演示程序。 2.作品要求 学生自行运用工具进行作品的设计、仿真及演示,达到正确实现、布局合理、美观整洁。 项目三:智能小车底盘设计 1.考核要点 (1) 理解电机的工作原理; (2) 了解部分机械机构的设计方法; (3) 掌握智能小车的整体安装方法。

2.作品要求 学生独立设计安装,车身结构美观,布局合理,功能实现。 目录 1.功能说明 (1) 1-1.蓝牙无线遥控 (1) 1-2.实时温度显示 (1) 2.硬件设计 (2) 2-1.元器件选择 (2) 2-2.硬件设计原理说明 (4) 3.软件设计 (5) 3-1.程序总体设计 (5) 3-2.程序详细设计 (5) 4.测试与总结 (6) 4-1驱动电路板测试 (6) 4-2控制电路板测试 (6) 4-3最终整体效果 (7) 4-4总结 (7)

智能寻迹小车设计报告

~ 目录 1.项目设计目的 (1) 2.项目设计正文 (3) .项目分析及方案制定 (3) .设计步骤及流程图 (4) 寻迹设计步骤 (4) 流程图 (4) ( .主要模块介绍 (4) LM393的主要特点 (4) LM393引脚图及内部框图 (5) LM393 功能简介 (5) 89C2051 (5) 89C2051简介 (5) 89C2051 主要性能参数 (5) 89C2051 功能特性概述 (6) 。 .电路设计及PCB绘制 (6) 电源电路 (6) 红外收发电路 (6) 电机驱动电路 (7) 单片机最小系统 (7) 整体电路 (8)

PCB板的绘制 (8) . 成品展示 (9) \ 3.项目设计总结 (9) 4.参考文献 (10) 智能寻迹小车 ——CDIO三级项目 王君杰 (电子信息工程 1501 6) 一、项目设计目的 在科技飞速发展的今天,智能化的概念已经渗入到各行各业,自动控制系统也出现在生活的方方面面,早到工厂的机械化生产,近到目前的自动驾驶。越来越多的领域涉及到电控制技术。特别是使用单片机一类的MCU的控制,在生活中越来越常见。因此,基于单片机控制的电路的学习和时间对于我们来说就显得尤为重要。同时,对于单片机作为软件主控单元,结合模电数电的硬件电路支持的综合项目开发,也是作为大学生需要了解并且熟练运用的基础。掌握了这些知识,对于我们以后的职业发展也有着莫大的帮助。 二、? 三、项目设计正文 、项目分析及方案制定 首先对于“智能寻迹小车”这个标题而言,我们可以分为两个部分:小车和智能寻迹。“小车”决定了硬件电路的大致构成:电源、电容、电阻、开关、电机、LED。而“智能”则决定了一些高级电路的选用:MCU、传感器、电机驱动、电位器及一些IC。 其次,假如去掉“智能”两字,仅关注如何做成一个能够行驶的小车,那么电路的搭建将会变得尤为简单。假如做一个“上电即跑”的小车,那么连开关都不需要,仅需要电源(干电池即可),两个电机 (3V/100mA)和两个限流电阻按图一方式连接即可。当然,这样的 小车只能实现向一个方向前进,无法实现跑道的自动识别和转向。 不过,这个电路也是所有行驶工具的基础,所有的行驶工具,都是 在这个电路的基础上按照想要实现的功能进行拓展开发。 接着让我们来到“智能”的环节。所谓智能,也就是需要小车 有人的思想,正如同课题所述——寻迹。智能的小车需要具备自动识别跑道的能力。同时,在采集到跑道信息后要做出相应的处理。在我们这个课题中,也就是需要及时并

小车循迹原理

小车循迹原理 2009-07-11 12:40 1.小车控制及驱动单元的选择 此部分是整个小车的大脑,是整个小车运行的核心部件,起着控制小车所有运行状态的作用。通常选用单片机作为小车的核心控制单元,本文以台湾凌阳公司的SPCE061A单片机为例予以介绍。SPCE061是一款拥有2K RAM、32KFlash、32 个I/O 口,并集成了AD/DA功能强大的16位微处理器,它还拥有丰富的语音处理功能,为小车的功能扩展提供了相当大的空间。只要按照该单片机的要求对其编制程序就可以实现很多不同的功能。 小车驱动电机一般利用现成的玩具小车上的配套直流电机。考虑到小车必须能够前进、倒退、停止,并能灵活转向,在左右两轮各装一个电机分别进行驱动。当左轮电机转速高于右轮电机转速时小车向右转,反之则向左转。为了能控制车轮的转速,可以采取PWM调速法,即由单片机的IOB8、IOB9输出一系列频率固定的方波,再通过功率放大来驱动电机,在单片机中编程改变输出方波的占空比就可以改变加到电机上的平均电压,从而可以改变电机的转速。左右轮两个电机转速的配合就可以实现小车的前进、倒退、转弯等功能。 2.小车循迹的原理 这里的循迹是指小车在白色地板上循黑线行走,通常采取的方法是红外探测法。 红外探测法,即利用红外线在不同颜色的物体表面具有不同的反射性质的特点,在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色纸质地板时发生漫反射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,小车上的接收管接收不到红外光。单片机就是否收到反射回来的红外光为依据来确定黑线的位置和小车的行走路线。红外探测器探测距离有限,一般最大不应超过15cm。对于发射和接收红外线的红外探头,可以自己制作或直接采用集成式红外探头。 (1)自制红外探头电路如图1所示,红外光的发送接收选用型号为ST168的对管。当小车在白色地面行驶时,装在车下的红外发射管发射红外线信号,经白色反射后,被接收管接收,一旦接收管接收到信号,那么图中光敏三极管将导通,比较器输出为低电平;当小车行驶到黑色引导线时,红外线信号被黑色吸收后,光敏三极管截止,比较器输出高电平,从而实现了通过红外线检测信号的功能。将检测到的信号送到单片机I/O口,当I/O口检测到的信号为高电平时,表明红外光被地上的黑色引导线吸收了,表明小车处在黑色的引导线上;同理,当I/O口检测到的信号为低电平时,表明小车行驶在白色地面上。此种方法简单,价格便宜,灵敏度可调,但是容易受到周围环境的影响,特别是在图1较强的日光灯下,对检测到的信号有一定的影响。 (2)集成式红外探头可以采用型号为E3F-DS10C4集成断续式光电开关探测器,它具有简单、可靠的工作性能,只要调节探头上的一个旋钮就可以控制探头的灵敏度。该探头输出端只有三根线(电源线、地线、信号线),只要将信号线接在单片机的I/O 口,然后不停地对该I/O口进行扫描检测,当其为高电平时则检测到白纸,当为低电平时则检测到黑线。此种探头还能有效地防止普通光源(如日光灯等)的干扰。其缺点则是体积比较大,占用了小车有限的空间。 3.红外探头的安装 在小车具体的循迹行走过程中,为了能精确测定黑线位置并确定小车行走的方向,需要同时在底盘装设4个红外探测头,进行两级方向纠正控制,提高其循迹的可靠性。这4个红外探头的具体位置如图2所示。图中循迹传感器共安装4个,全部在一条直线上。其中InfraredMR与InfraredML 为第一级方向控制传感器,InfraredSR 与InfraredSL 为第二级方向控制传感器。小车行走时,始终保持黑线(如图2 中所示的行走轨迹黑线)在InfraredMR和InfraredML这两个第一级传感器之间,当小车偏离黑线时,第一级探测器一旦探测到有黑线,单片机就会按照预先编定的程序发送指令给小车的控制系统,控制系统再对小车路径予以纠正。若小车回到了轨道上,即4个探测器都只检测到白纸,则小车会继续行走;若小车由于惯性过大依旧偏离轨道,越出了第一级两个探测器的探测范围,这时第二级动作,再次对小车的运动进行纠正,使之回到正确轨道上去。可以看出,第二级方向探测器实际是第一级的后备保护,从而提高了小车循迹的可靠性。 4.软件控制 其程序控制框图如图3。小车进入循迹模式后,即开始不停地扫描与探测器连接的单片机I/O口,一旦检测到某个I/O口

PWM调速+循迹__智能小车程序

//T0产生双路PWM信号,L298N为直流电机调速,接L298N时相应的管脚上最好接上10K 的上拉电阻。 /* 晶振采用12M,产生的PWM的频率约为100Hz */ #include #include #define uchar unsigned char #define uint unsigned int sbit en1=P3^4; /* L298的Enable A */ sbit en2=P3^5; /* L298的Enable B */ sbit s1=P1^0; /* L298的Input 1 */ sbit s2=P1^1; /* L298的Input 2 */ sbit s3=P1^3; /* L298的Input 3 */ sbit s4=P1^2; /* L298的Input 4 */ sbit R=P2^0; sbit C=P2^1; sbit L=P2^2; sbit key=P1^4; uchar t=0; /* 中断计数器*/ uchar m1=0; /* 电机1速度值*/ uchar m2=0; /* 电机2速度值*/ uchar tmp1,tmp2; /* 电机当前速度值*/ /* 电机控制函数index-电机号(1,2); speed-电机速度(0-100) */ void motor(uchar index, char speed) { if(speed<=100) { if(index==1) /* 电机1的处理*/ { m1=abs(speed); /* 取速度的绝对值*/ s1=1; s2=0; } if(index==2) /* 电机2的处理*/ { m2=abs(speed); /* 电机2的速度控制*/ s3=1; s4=0; } } } void Back(void) {

智能小车的结构与设计

智能小车俯视图结构说明: 本产品是由一个语音模块、一个+5V的辅助电源(LM7805数字压控电路)、一个电机驱动模块、四个电机、一块IAP单片机,一对无线发送接收模块。 功能与使用: 这辆语音控制智能小车通过语音识别来判断我们人所说的指令来行走的,给不同的指令就会按不同的指令来行走。可以根据我们说的去执行,更加人性化,同时也能起到人车交流的效果,操作简单,易于使用。 图2:智能小车全景图 平台选型说明 单片机开发板(以STC15F2K61S2芯片为控制核心) 设计说明 设计原理图如下:

3 设计原理图 设计方案: 语音控制智能小车,主控电路是由单片机开发板(以IAP15F2K61S2芯片为控制核心)来控制小车,主要是由语音控制模块通过无线模块发送信号来控制小车的前进、后退、左右转等功能。 语音模块主要是由LD3320 ASR非特定语音识别芯片组成的,通过识别人的语言,从从而实现轻松的语控制。我们采用锂电池通过7085稳压输出5V的直流电,方便携带,轻巧灵活,设计合理。通过对单片机开发板编写系统程序,调试出合适的程序,才能很好地处理信号和控制小车,以及各种电器。 作品特色 先进性: 传统玩具的市场比重正在逐步缩水,高科技含量的电子玩具则蒸蒸日上。高科技含量的电子互动式玩具已经成为玩具行业发展的主流。本文设计一个具有语音识别功能的智能遥控小车。本文还在小车的控制系统中采用语音识别系统,使控制者可以用语音对小车进行控制,产生相应的动作,而且小车和控制者还具有一定的交互功能,体现出了现代科技想智能化发展的潮流。 实用性: 当我们的技术成熟的时候我们可以向机动车改装,这样的话手脚残疾人也能开车了,还有就是该技术可以应用到智能家居中,让我们能够更加轻松地控制家里面的用电设备,使我们的住所更加人性化。

智能循迹小车 设计报告

智能循迹小车设计 专业:自动化 班级: 0804班 姓名: 指导老师: 2010年8月——2010年10月 摘要:

本课题是基于AT89C52单片机的智能小车的设计与实现,小车完成的主要功能是能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。小车系统以 AT89S52 单片机为系统控制处理器;采用红外传感获取赛道的信息,来对小车的方向和速度进行控制。此外,对整个控制软件进行设计和程序的编制以及程序的调试,并最终完成软件和硬件的融合,实现小车的预期功能。 引言

当今世界,传感器技术和自动控制技术正在飞速发展,机械、电气和电子信息已经不再明显分家,自动控制在工业领域中的地位已经越来越重要,“智能”这个词也已经成为了热门词汇。现在国外的自动控制和传感器技术已经达到了很高的水平,特别是日本,比如日本本田制作的机器人,其仿人双足行走已经做得十分逼真,而且具有一定的学习能力,还据说其智商已达到6岁儿童的水平。 作为机械行业的代表产品—汽车,其与电子信息产业的融合速度也显著提高,呈现出两个明显的特点:一是电子装置占汽车整车(特别是轿车)的价值量比例逐步提高,汽车将由以机械产品为主向高级的机电一体化方向发展,汽车电子产业也很有可能成为依托整车制造业和用车提升配置而快速成为新的增长点;二是汽车开始向电子化、多媒体化和智能化方向发展,使其不仅作为一种代步工具、同时能具有交通、娱乐、办公和通讯等多种功能。 无容置疑,机电一体化人才的培养不论是在国外还是国内,都开始重视起来,主要表现在大学生的各种大型的创新比赛,比如:亚洲广播电视联盟亚太地区机器人大赛(ABU ROBCON)、全国大学生“飞思卡尔”杯智能汽车竞赛等众多重要竞赛都能很好的培养大学生对于机电一体化的兴趣与强化机电一体化的相关知识。但很现实的状况是,国内不论是在机械还是电气领域,与国外的差距还是很明显的,所以作为机电一体化学生,必须加倍努力,为逐步赶上国外先进水平并超过之而努力。 为了适应机电一体化的发展在汽车智能化方向的发展要求,提出简易智能小车的构想,目的在于:通过独立设计并制作一辆具有简单智能化的简易小车,获得项目整体设计的能力,并掌握多通道多样化传感器综合控制的方法。所以立“智能循迹小车”一题作为尝试。 此项设计是在以杨老师提供的小车为基础上,采用AT89C52单片机作为控制核心,实现能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。

智能小车系统设计(循迹超声波遥控)

<<计算机控制技术综合训练>>任务书

附录: 电信学院课程设计报告要求 1、设计题目; 2、目录; 3、本设计的基本原理; 4、简要说明本设计内容、用途及特点; 5、本设计达到的性能指标; 6、设计方案的选择; 7、写出各部分设计过程、工作原理、元器件选择; 8、绘制图纸(手绘2号图纸); 9、设计参考文献; 10、附录; 11、设计总结体会; 12、设计说明书不得少于10000字。

智能小车运行图 显示速度,距离,超声波探测距离

经过调试,小车完美实现了如下功能 1.小车具有无线遥控功能,小车可完成前进、后退、左转、右转等动作,并且可以正确显示当前的速度及行进位移。 2.小车具有循迹及避障功能,实现了舵机转动下的超声波壁障功能,并且可以正确有序显示小车位移、速度及与前方障碍物距离。 3.与其它组的小车模型配合可以完成交替领跑任务。 4.小车所有模式切换均由遥控器控制。 流程图

硬件原理图

附件一:智能小车系统程序 #include #include sbit AA=P3^0; sbit DD=P3^1; sbit BB=P3^2; sbit CC=P2^2; sbit LCM_RW=P2^4; //定义LCD引脚 sbit LCM_RS=P2^3; #define RX P2_0 #define TX P2_1 #define LCM_E P2_5 #define Sevro_moto_pwm P2_7 //接舵机信号端输入PWM信号调节速度#define LCM_Data P0 #define Busy 0x80 //用于检测LCM状态字中的Busy标识 #define Left_1_led P3_7 //P3_7接四路寻迹模块接口第一路输出信号即中控板上面标记为OUT1 #define XUNJI_left_led P3_6 //P3_6接四路寻迹模块接口第二路输出信号即中控板上面标记为OUT2 #define XUNJI_right_led P3_5 //P3_5接四路寻迹模块接口第三路输出信号即中控板上面标记为OUT3 #define Right_2_led P3_4 //P3_4接四路寻迹模块接口第四路输出信号即中控板上面标记为OUT4 #define Left_moto_go {P1_4=1,P1_5=0,P1_6=1,P1_7=0;} //左边两个电机向前走 #define Left_moto_back {P1_4=0,P1_5=1,P1_6=0,P1_7=1;} //左边两个电机向后转 #define Left_moto_Stop {P1_4=0,P1_5=0,P1_6=0,P1_7=0;} //左边两个电机停转 #define Right_moto_go {P1_0=1,P1_1=0,P1_2=1,P1_3=0;} //右边两个电机向前走 #define Right_moto_back {P1_0=0,P1_1=1,P1_2=0,P1_3=1;} //右边两个电机向后走 #define Right_moto_Stop {P1_0=0,P1_1=0,P1_2=0,P1_3=0;} //右边两个电机停转 void LCMInit(void); //LCD初始化函数 void DisplayOneChar(unsigned char X, unsigned char Y, unsigned char DData); //LCD显示一个字符函数 void DisplayListChar(unsigned char X, unsigned char Y, unsigned char code *DData);//LCD显示一个字符串函数 void Delay5Ms(void); //延时5毫秒函数

智能寻迹小车以及程序

寻迹小车 在历届全国大学生电子设计竞赛中多次出现了集光、机、电于一体的简易智能小车题目。笔者通过论证、比较、实验之后,制作出了简易小车的寻迹电路系统。整个系统基于普通玩具小车的机械结构,并利用了小车的底盘、前后轮电机及其自动复原装置,能够平稳跟踪路面黑色轨迹运行。 总体方案 整个电路系统分为检测、控制、驱动三个模块。首先利用光电对管对路面信号进行检测,经过比较器处理之后,送给软件控制模块进行实时控制,输出相应的信号给驱动芯片驱动电机转动,从而控制整个小车的运动。系统方案方框图如图1所示。 图1 智能小车寻迹系统框图 传感检测单元 小车循迹原理 该智能小车在画有黑线的白纸“路面”上行驶,由于黑线和白纸对光线的反射系数不同,可根据接收到的反射光的强弱来判断“道路”—黑线。笔者在该模块中利用了简单、应用也比较普遍的检测方法——红外探测法。 红外探测法,即利用红外线在不同颜色的物理表面具有不同的反射性质的特点。在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色地面时发生漫发射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,则小车上的接收管接收不到信号。 传感器的选择 市场上用于红外探测法的器件较多,可以利用反射式传感器外接简单电路自制探头,也可以使用结构简单、工作性能可靠的集成式红外探头。ST系列集成红外探头价格便宜、体积小、使用方便、性能可靠、用途广泛,所以该系统中最终选择了ST168反射传感器作为红外光的发射和接收器件,其内部结构和外接电路均较为简单,如图2所示:

图2 ST168检测电路 ST168采用高发射功率红外光、电二极管和高灵敏光电晶体管组成,采用非接触式检测方式。ST168的检测距离很小,一般为8~15毫米,因为8毫米以下是它的检测盲区,而大于15毫米则很容易受干扰。笔者经过多次测试、比较,发现把传感器安装在距离检测物表面10毫米时,检测效果最好。 R1限制发射二极管的电流,发射管的电流和发射功率成正比,但受其极限输入正向电流50mA的影响,用R1=150的电阻作为限流电阻,Vcc=5V作为电源电压,测试发现发射功率完全能满足检测需要;可变电阻R2可限制接收电路的电流,一方面保护接收红外管;另一方面可调节检测电路的灵敏度。因为传感器输出端得到的是模拟电压信号,所以在输出端增加了比较器,先将ST168输出电压与2.5V进行比较,再送给单片机处理和控制。 传感器的安装 正确选择检测方法和传感器件是决定循迹效果的重要因素,而且正确的器件安装方法也是循迹电路好坏的一个重要因素。从简单、方便、可靠等角度出发,同时在底盘装设4个红外探测头,进行两级方向纠正控制,将大大提高其循迹的可靠性,具体位置分布如图3所示。

循迹避障小车设计报告材料

项目名称:智能小车 系别:信息工程系 专业:11电气工程及其自动化:亮、占闯、康 指导老师:王蕾

目录 摘要: ............................................................................................ ...3关键词: ............................................................................................ .3 绪论: ............................................................................................ (3) 一、系统设 计 (4) 1.1、任务及要求 (4) 1.2车体方案认证与选择 (4) 二、硬件设计及说 明 (5) 2.1循迹+避障模块 (5) 2.2主控模块 (6) 2.3电机驱动模块 (6) 2.4机械模块 (7) 2.5 电源模块 (7)

三、自动循迹避障小车总体设计 (7) 四、软件设计及说 明 (8) 4.1系统软件流程图 (9) 4.2系统程序 (9) 五、系统测试过 程 (12) 六、总 结 (13) 七、附录:系统元器 件 (13) 摘要 本设计主要有三个模块包括信号检测模块、主控模块、电机驱动模块。信号检测模块采用红外光对管,用以对有无障碍与黑线进行检测。主控电路采用宏晶公司的8051核心的STC89C52单片机为控制芯片。电机驱动模块采用意法半导体的L298N专用电机驱动芯片,单片控制与传统分立元件电路相比,使整个系统有很好的稳定性。信号检测模块将采集到的路况信号传入STC89C52单片机,经单片机处理过后对L298N发出指令进行相应的调整。通过有无光线接收来控制电动小车的转向,从而实现自动循迹避障的功能。 关键词:智能循迹避障小车,STC89C52单片机,L298N驱动芯片,

智能循迹小车实训报告

实训报告课程名称:单片机实训 完成日期:2014 年 7 月 10 日

任务书 实训(习)题目: 智能小车的功能设计与实现 实训(习)目的: (1)、巩固、加深和扩大单片机应用的知识面,提高综合及灵活运用所学知识解决工业控制的能力; (2)培养针对课程需要。锻炼学生查阅有关手册、图标及文献资料的自学能力,提高组成系统、编程、调试的动手能力; (3)对课程的方案分析、选择、比较、熟悉单片机系统开发、研制的过程,软硬件设计的方法、内容及步骤。 实训(习)内容: 安装智能小车及相关功能设计、调试 实训(习)要求: 1. 本实训要求由一个团队完成,团队人员不超过8个人。 2. 通过所学知识并利用智能小车、计算机、 keil软件、烧写软件等完成实训项目,并拟定实训报告。 3. 能正确组装和调试智能小车。 4. 实训完成后,根据实训内容撰写实训报告书一份。 实训报告应包括的主要内容(参考) 1 系统硬件组成与工作原理 1.1 控制器与最小系统 1.2 显示模块与按键模块 1.3 报警模块 1.4 电机与驱动模块的工作原理与接口 1.5循迹模块的工作原理与接口 1.6 避障模块的工作原理与接口 2 功能方案及软件设计 2.1 功能设计 2.2 软件设计 (结合某一赛道、障碍设置说明程序设计思路,给出流程图、程序代码) 3功能调试与总结 3.1 功能调试 排版要求:正文小4宋体;段首缩进2字,行间距固定值18磅。内容展开可以

按3级标题形式,如:按1 ……、1.1 ……、1.1.1 形式(如果需要)。每个1级标题另起一页,1级标题三号黑体居中,题序和标题之间空两个空格,不加标点,段前、段后均为1行,固定值22磅。2级标题:四号黑体左起,四号黑体,段前、段后均为12磅。三级标题:小四号黑体左起,段前、段后均为6磅。 图名、表名五号黑体,英文、数字字体为Times New Roman 页边距:上、下、左3厘米,右2厘米,A4纸打印。 1系统硬件组成与工作原理 1.1.1控制器与最小系统 最小系统:要使一块单片机芯片工作起来最简陋的接线方式就是单片机的

智能小车原理

一、前言 设计背景: 在科学探索和紧急抢险中经常会遇到对与一些危险或人类不能直接到达的地域的探测,这些就需要用机器人来完成。而在机器人在复杂地形中行进时自动避障是一项必不可少也是最基本的功能。因此,自动避障系统的研发就应运而生。我们的自动避障小车就是基于这一系统开发而成的。意义随着科技的发展,对于未知空间和人类所不能直接到达的地域的探索逐步成为热门,这就使机器人的自动避障有了重大的意义。我们的自动避障小车就是自动避障机器人中的一类。自动避障小车可以作为地域探索机器人和紧急抢险机器人的运动系统,让机器人在行进中自动避过障碍物。成员情况本组三位成员均为2005级基地班学生,都选修过数字电路课程。二、总体方案设计 1、设计要求 小车从无障碍地区启动前进,感应前进路线上的障碍物后,根据障碍物的位置选择下一步行进方向。并可通过两个独立按键对小车进行控速。 2、小车自动避障的原理 小车车头处装有三个光电开关,中间一个光电开关对向正前方,两侧的光电开关向两边各分开30度,(如右图所示)。小车在行进过程中由光电开关向前方发射出红外线,当红外线遇到障碍物时发生漫反射,反射光被光电开关接收。小车根据三个光电开关接受信号的情况来判断前方障碍物的分布并做出相应的动作。光电开关的平均探测距离为30cm。 3、模块方案比较及论证 根据设计要求,我们的自动避障小车主要由六个模块构成:车体框架、电源

及稳压模块、主控模块、逻辑模块、探测模块、电机驱动模块组成。各模块分述如下: 3.1车体框架 在设计车体框架时,我们有两套起始方案,自己制作和直接购买玩具电动车。方案一:自己设计制作车架自己制作小车底盘,用两个直流减速电机作为主动轮,利用两电机的转速差完成直行、左转、右转、左后转、右后转、倒车等动作。减速电机扭矩大,转速较慢,易于控制和调速,符合避障小车的要求。而且自己制作小车框架,可以根据电路板及传感器安装需求设计空间,使得车体美观紧凑。但自己制作小车设计制作周期较长,且费用较高,因而我们放弃这一方案。方案二:购买玩具电动车 玩具电动车价格低廉,有完整的驱动、传动和控制单元,其中传动装置是我们所需的,缩短了开发周期。但玩具电动车采用普通直流电机驱动,带负载能力差,调速方面对程序要求较高。同时,玩具电动车转向 依靠前轮电机带动前轮转向完成,精度低。 考虑到利用玩具电动小车做车架开发周期短,可留够充分的时间用于系统调试,且硬件上的不足我们有信心用优良的算法来弥补,故我们选择方案二。

相关文档
最新文档