08实验八:随机信号分析应用在噪声抑制中

08实验八:随机信号分析应用在噪声抑制中
08实验八:随机信号分析应用在噪声抑制中

实验八:随机信号分析应用在噪声抑制中 ——噪声抑制与匹配滤波 【实验目的】

使学生通过对信号中加性噪声的平滑、加性噪声中信号的检测这样两个项目,对随机信号分析与系统的实践应用有感性的认识,激发其学习兴趣。

【实验环境】

1、 硬件实验平台:通用计算机

2、

软件实验平台:matlab6.5版本以上

【实验任务】

1)生成含有加性噪声的正弦信号,设计一阶低通滤波器,观察平滑后的正弦波形。

2)生成含有加性噪声的方波信号,用匹配滤波器进行检测。 3)撰写实验报告

【实验原理】

随机信号分析中的一个基本问题是在有噪声的情况下处理信号,研究最大化有用信号与最小化噪声影响的技术,以及在噪声背景中检测出微弱信号的技术。本实验介绍其中的几种方法,包括平滑、滤波与匹配滤波。

噪声平滑

应用中一种典型情况是:有用信号()s t 是确定的,它受到加性白噪声()N t 的污染,形成

()()()X t s t N t =+

(1)

我们接收到()X t 后,希望从中尽量恢复出()s t 。为此,我们设计LTI 系统()h t ,使()X t 经过它处理后的输出()Y t 接近()s t 。这一处理过程称为平滑(Smoothing ),如图1所示。

图1 噪声平滑

由于[][]()()()()E X t s t E N t s t =+=是时变的,因此()X t 是非平稳的,它通过系统后的输出为

()()()()()s N Y t X t h t y t Y t =*=+

(2)

其中, ()()()s y t s t h t =*是确定的,()()()N Y t N t h t =*是随机的。

()Y t 与()s t 的误差为

()[]()()()()()e s N Y t Y t s t y t s t Y t =-=-+ (3)

由于[]()0N E Y t =,因此

[]()()()

e s b E Y t y t s t ==-

(4)

[]2

22

Var ()()()4e N N Y t E Y t H j d σωω

π

+∞

-∞

??===

???

(5)

其中b 为偏差,2

σ为方差。方差是白噪声通过系统的输出噪声功率。 设计系统()h

t 就是要使b 和2

σ都尽量小,使得系统对信号的影响小而对噪声的抑制强。准确求取()h t 的最佳形状与参数是较困难的,但我们可以从频域进行一般分析。

图2 信号频谱及噪声功率谱

图2 是常见信号()s t 的频谱与噪声()N t 的功率谱示意图。容易看出()h t 的一个合理选择是对应于信号带宽的低通滤波器,在信号尽量完整通过的情况下,最大限度地滤除噪声,假定信号的带宽为/(2)B W π=Hz ,则()h t 以B Hz 为截至频

率,于是

200,

b N B σ==

如果信号是带通的,当然选择带通滤波器,并使其通带对准信号的通带。 实际应用中一种简单的方法是使用积分器,使

1()()2t T

t T

Y t X t dt

T

+-=

?

(6)

其冲激响应与频响曲线如下图3所示。

图3 积分器的冲激响应与频率响应

显然, T 很小时, ()s y t 相对于()s t 的畸变较小,但输出中的噪声很多,合适地选择T 要根据信号频谱的具体情况,在使信号充分通过的前提下应该尽量取大的T 。

由图3可见,积分器在频域里具有低通特性。所以,实际中可用常规的低通滤波器(如图4)逼近它,实现平滑功能。

图4 模拟低通滤波器

例如:假定随机信号X(t)由(确知)正弦信号s(t)与白噪声N(t)组成,即

)()cos()()()(0t N t a t N t s t X ++=+=θω

其中,a 、0ω与θ为确定量,N(t)的功率谱为0/2N 。讨论其通过图4所示的RC 低通电路前后的信噪比。

输入时,信号功率为2/2

a ,而噪声功率为

∞==

?∞

∞-ωπ

d N P N 2210

因此信噪比为

0=???

??in

N S

对于图4的电路,系统传输函数为()1(1)H j j RC ωω=+,正弦信号通过后的幅度为0()a H j ω,于是,输出信号功率为

])(1[22)

(202

2

02

RC a H a P S ωω+=

=

又20(2)(4)N N P RC N RC σ==;因此,输出信噪比为

])(1[22002RC N RC a P P N S N

S out ω+==

???

?? 对于给定的X(t)输入,可以调整电路的R 与C 使输出信噪比达到最大。上式的最大值在01RC =时达到,即031dB RC ωω==。对于给定的输入信号,当RC 电路的3dB 频点处对准它时,虽然信号本身被衰减了一倍,但这时电路对白噪声的总体衰减相对地达到了最大。 匹配滤波器

匹配滤波器是一种检测噪声中某个确定信号是否存在的最佳滤波方法,它是通信、雷达等应用中的重要技术。

有关的典型问题是:有一个已知的有限时长的确定信号()s t ,我们希望从接收信号()X t 中检测它是否出现。这里

()()()X t s t N t =+

其中()N t 是白噪声。

我们希望设计LTI 滤波器()h t ,使

()()()()()()()Y t X t h t s t h t N t h t =*=*+*

便于进行检测。现在我并不在乎()Y t 中的信号部分是否发生畸变,而只关心在某0t 时是否可由0()Y t 有效地判定()s t 的存在。为此我们将目标设定为:使0()Y t 中的信号与噪声之比最大化,这样在0()Y t 大于某个合适的门限时,我们有把握认为()Y t 中包含有()s t 。这一处理过程如图5所示,可见,在0t t =时刻,信号最

大限度地越过背景噪声。

图5 匹配滤波处理

由于()()()s y t s t h t =*是确定量而()()()N Y t N t h t =*是随机的,衡量0()Y t 的信噪比时,我们采用

202

0()()s out N y t S N E Y t ??

= ???????

(7)

2

22

0()()()4N N N E Y t E Y t H j d ωω

π

+∞

-∞

????==

?????

又令()s t 的傅里叶变换为()S j ω并借助反傅里叶变换形式,有

2

201

()()()2j t s y t E S j H j e

d ωωωωπ

+∞

-∞

??=?

????

(8)

利用许瓦兹不等式:2

2

2

()()()()u v d u d v d ωωωωωωω≤????,而且,该不等式在()()u cv ωω*=时取等号(其中,c 为任意非0实常数),即左端达到最大。因此,可令,

00()()()j t j t H j c S j e cS j e ωωωωω*

-*

??==??

使得20()s y t 取得最大值,从而使

2

2

2

2

2

00

1()()2()421()22out

s H j d H j d S N N H j d H j d N E N ωωωω

πωω

π

ωω

π+∞

+∞

-∞

-∞

+∞

-∞

+∞

-∞

??? ???

??=

???=?=

?

??

?

(9)

其中s E 是信号能量,并且,

2

2

2

1

1

()()()22s E s t dt S j d H j d ωωωω

π

π

+∞

+∞

+∞

-∞

-∞

-∞

==

=

?

?

?

(10)

可见,式(10)给出了这种期望下的最佳滤波器,容易看出它的冲激响应为

0()()h t cs t t =-

(11)

它实际上是信号的反转平移形式,如图5.中间一图。如果()s t 的时间持续期为0到T ,则通常取0t T =,这样()h t 的持续期间也为0到T ,它是物理可实现的。注意到这种滤波器根据信号而定,也因信号而异,所以我们说它与信号匹配,称为匹配滤波器(Match filter )。由图可见,匹配滤波器能将信号能量累积起来,使0t t =时输出中的信号成份达到最强。

*

图5 匹配滤波器输入、单位冲击响应及输出的时域波形

【实验项目1】

加性白噪声环境下,正弦波信号中噪声的平滑。

【实验方法】

理论上讲,连续时间的白噪声的自相关函数是一个冲击函数,其频谱密度函数是个常数。这在实践中是无法实现的,因为实际信号都是时限且能量有限的,所以其自相关函数只能对冲击函数在一定程度上逼近。在利用计算机仿真白噪声时,除了仿真序列足够长之外,每一点与其他点尤其是临近点的相关系数应该足够小。Matlab 提供了一系列可用来生仿真白噪声的命令及功能。如simulink 中的band-limited white noise 模块就是一个带限白噪声发生器。可用它来生成仿真白噪声信号。

平滑用积分器在频域上具有低通特性,可用常规低通滤波器逼近。

【实验步骤】

1)带有加性白噪声的正弦波信号的生成:

打开simulink 模块编辑器,从基本库的信号源库(source )中选取正弦波发生器(sinwave)、带限白噪声发生器(band-limited white noise )加入编辑器,从基本库中的数学运算库(math )中选取加法器加入编辑器中。

2)平滑处理。

如前分析,时域里对噪声的平滑对应于频域里的低通滤波。在simulink的信号处理库里提供了低通滤波器的设计模块。这个模块位于DSP blockset Filtering Filterdesign.该模块名字为Analog Filter Design,选中,将其拖入编辑器中,双击它,有参数编辑器弹出,可选参数包括滤波器类型、阶数和截止频率。

3)示波器建立

建立两个示波器,分别观察平滑处理前的信号与平滑处理后的信号。

【实验项目2】

匹配滤波器设计

【实验方法】

对于连续随机信号而言,任意相邻两点间有无穷多个点,每个点的幅度又是无限精度的,所以,无法用计算机来存储、处理这些无限多的数据。如果采用计算机来处理连续信号,必须对其采样,这就必须满足奈奎斯特采样定理。

为了用计算机仿真匹配滤波器的工作过程,须对信号与加性噪声同时采样,以离散信号仿真连续时间信号,采样率应满足奈奎斯特采样定理。本实验设定信号为一个单极性二进制信号“1”,噪声为加性白噪声。在“1”期间采样20点以上,另外构建离散匹配滤波器,对其进行匹配滤波,绘出滤波器输出图形,从图形上直观比较匹配匹配滤波前后的效果。整个实验用matlab m 文件编写。

【实验步骤】

1,含加性零均值白噪声的信号采样值仿真

1)构建信号样值。

设在信号“1”期间采样20点,那么在信号存续期间及消失之后的样值可用一矢量构成

2020()[1,,1,0,,0]s n =??????个1

个0

,用plot 命令将s 绘出。注意,这里的plot

命令是将s 的样值一阶内插以得到一个连续时间信号。 2)构建含噪信号

利用命令WGN 生成高斯噪声信号的样值:wgn(20,1,0); 那么含噪信号X (n )=s (n )+wgn(20,10)

用plot 命令绘出 sn 并与s 的时域波形相比较。 2.匹配滤波

1)仿真生成匹配滤波器的单位冲击响应。

根据【实验原理】中的公式(11)知,匹配滤波器的单位冲击响应应该是被检测信号的反褶并时移,因此,这里可以用1中的仿真信号s 的反褶时移来仿真匹配滤波器的单位冲击响应: 2020()(10)[0,,01,,1,]h n s n ↑

=-=??????个0

个1

用plot 命令绘出 h 并与s 的时域波形相比较 2)滤波

把加入噪声的信号sn 通过匹配滤波器,也就是将sn 与h 在时域相卷积,至此

得到匹配滤波后的输出:

=*=*+*

()()()()()()()

Y n X n h n s n h n N n h n

用plot命令绘出Y(n),考察其采样点的噪声幅度与信号幅度之比,并与X(n)中信号幅度与噪声幅度之比。

【思考题】

1)用平滑方法能滤除所有噪声吗?

2)如果加入的噪声不是白噪声,那会出现什么结果?

随机信号分析实验报告

一、实验名称 微弱信号的检测提取及分析方法 二、实验目的 1.了解随机信号分析理论如何在实践中应用 2.了解随机信号自身的特性,包括均值、方差、相关函数、频谱及功率谱密度等 3.掌握随机信号的检测及分析方法 三、实验原理 1.随机信号的分析方法 在信号与系统中,我们把信号分为确知信号和随机信号。其中随机信号无确定的变化规律,需要用统计特新进行分析。这里我们引入随机过程的概念,所谓随机过程就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。 随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,他们能够对随机过程作完整的描述。但由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。本实验中算法都是一种估算法,条件是N要足够大。 2.微弱随机信号的检测及提取方法 因为噪声总会影响信号检测的结果,所以信号检测是信号处理的重要内容之一,低信噪比下的信号检测是目前检测领域的热点,而强噪声背景下的微弱信号提取又是信号检测的难点。 噪声主要来自于检测系统本身的电子电路和系统外空间高频电磁场干扰等,通常从以下两种不同途径来解决 ①降低系统的噪声,使被测信号功率大于噪声功率。 ②采用相关接受技术,可以保证在信号功率小于噪声功率的情况下,人能检测出信号。 对微弱信号的检测与提取有很多方法,常用的方法有:自相关检测法、多重自相法、双谱估计理论及算法、时域方法、小波算法等。 对微弱信号检测与提取有很多方法,本实验采用多重自相关法。 多重自相关法是在传统自相关检测法的基础上,对信号的自相关函数再多次做自相关。即令: 式中,是和的叠加;是和的叠加。对比两式,尽管两者信号的幅度和相位不同,但频率却没有变化。信号经过相关运算后增加了信噪比,但其改变程度是有限的,因而限制了检测微弱信号的能力。多重相关法将 当作x(t),重复自相关函数检测方法步骤,自相关的次数越多,信噪比提高的越多,因此可检测出强噪声中的微弱信号。

应用Matlab对含噪声语音信号进行频谱分析及滤波

应用Matlab对含噪声的语音信号进行频谱分析及滤波 一、实验内容 录制一段个人自己的语音信号,并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;在语音信号中增加正弦噪声信号(自己设置几个频率的正弦信号),对加入噪声信号后的语音信号进行频谱分析;给定滤波器的性能指标,采用窗函数法和双线性变换设计数字滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比试听,分析信号的变化。 二、实现步骤 1.语音信号的采集 利用Windows下的录音机,录制一段自己的话音,时间在1 s内。然后在Matlab软件平台下,利用函数wavread对语音信号进行采样,(可用默认的采样频率或者自己设定采样频率)。 2.语音信号的频谱分析 要求首先画出语音信号的时域波形;然后对语音号进行快速傅里叶变换,得到信号的频谱特性。 在采集得到的语音信号中加入正弦噪声信号,然后对加入噪声信号后的语音号进行快速傅里叶变换,得到信号的频谱特性。并利用sound试听前后语音信号的不同。

分别设计IIR和FIR滤波器,对加入噪声信号的语音信号进行去噪,画出并分析去噪后的语音信号的频谱,并进行前后试听对比。 3.数字滤波器设计 给出数字低通滤波器性能指标:如,通带截止频率fp=10000 Hz,阻带截止频率fs=12000 Hz(可根据自己所加入噪声信号的频率进行阻带截止频率设置),阻带最小衰减Rs=50 dB,通带最大衰减Rp=3 dB(也可自己设置),采样频率根据自己语音信号采样频率设定。

报告内容 一、实验原理 含噪声语音信号通过低通滤波器,高频的噪声信号会被过滤掉,得到清晰的无噪声语音信号。 二、实验内容 录制一段个人自己的语音信号,并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;在语音信号中增加正弦噪声信号(自己设置几个频率的正弦信号),对加入噪声信号后的语音信号进行频谱分析;给定滤波器的性能指标,采用窗函数法和双线性变换设计数字滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比试听,分析信号的变化。给出数字低通滤波器性能指标:如,通带截止频率fp=10000 Hz,阻带截止频率fs=12000 Hz (可根据自己所加入噪声信号的频率进行阻带截止频率设置),阻带最小衰减Rs=50 dB,通带最大衰减Rp=3 dB(也可自己设置),采样频率根据自己语音信号采样频率设定。 三、实验程序 1、原始信号采集和分析 clc;clear;close all; fs=10000; %语音信号采样频率为10000 x1=wavread('C:\Users\acer\Desktop\voice.wav'); %读取语音信号的数据,赋给x1 sound(x1,40000); %播放语音信号 y1=fft(x1,10240); %对信号做1024点FFT变换 f=fs*(0:1999)/1024; figure(1); plot(x1) %做原始语音信号的时域图形 title('原始语音信号'); xlabel('time n'); ylabel('fuzhi n'); figure(2); plot(f,abs(y1(1:2000))); %做原始语音信号的频谱图形 title('原始语音信号频谱') xlabel('Hz'); ylabel('fuzhi');

北理工随机信号分析实验报告

本科实验报告实验名称:随机信号分析实验

实验一 随机序列的产生及数字特征估计 一、实验目的 1、学习和掌握随机数的产生方法。 2、实现随机序列的数字特征估计。 二、实验原理 1、随机数的产生 随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。进行随机信号仿真分析时,需要模拟产生各种分布的随机数。 在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。 (0,1)均匀分布随机数是最最基本、最简单的随机数。(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即 U(0,1)。实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下: )(m od ,110N ky y y n n -= N y x n n /= 序列{}n x 为产生的(0,1)均匀分布随机数。 下面给出了上式的3组常用参数: 1、10 N 10,k 7==,周期7 510≈?; 2、(IBM 随机数发生器)31 16 N 2,k 23,==+周期8 510≈?; 3、(ran0)31 5 N 21,k 7,=-=周期9 210≈?; 由均匀分布随机数,可以利用反函数构造出任意分布的随机数。 定理 1.1 若随机变量 X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有 )(1R F X x -= 由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变

随机信号通过线性和非线性系统后地特性分析报告 实验报告材料

实验三 随机信号通过线性和非线性系统后的特性分析 一、实验目的 1、了解随机信号的均值、均方值、方差、自相关函数、互相关函数、概率密度、频谱及功率谱特性。 2、研究随机信号通过线性系统和非线性系统后的均值、均方值、方差、自相关函数、互相关函数、概率密度、频谱及功率谱有何变化,分析随机信号通过线性系统和非线性系统后的特性 二、实验仪器与软件平台 1、 微计算机 2、 Matlab 软件平台 三、实验步骤 1、 根据本实验内容和要求查阅有关资料,设计并撰写相关程序流程。 2、 选择matlab 仿真软件平台。 3、 测试程序是否达到设计要求。 4、 分析实验结果是否与理论概念相符 四、实验内容 1、 随机信号通过线性系统和非线性系统后的特性分析 (1)实验原理 ①随机信号的分析方法 在信号系统中,可以把信号分成两大类:确定信号和随机信号。确定信号具有一定的变化规律,二随机信号无一定的变化规律,需要用统计特性进行分析。在这里引入了一个随机过程的概念。所谓随机过程,就是随机变量的集合,每个随机变量都是随机过程的一个采样序列。随机过程可以分为平稳的和非平稳的,遍历的和非遍历的。如果随机信号的统计特性不随时间的推移而变化。则随机过程是平稳的。如果一个平稳的随机过程的任意一个样本都具有相同的统计特性。则随机过程是遍历的。下面讨论的随机过程都认为是平稳的遍历的随机过程,因此,可以随机取随机过程的一个样本值来描述随机过程中的统计特性。 随机过程的统计特性一般采用主要的几个平均统计特性函数来描述,包括、均方值、方差、自相关系数、互相关系数、概率密度、频谱及功率谱密度等。 a.随机过程的均值 均值E[x(t)]表示集合平均值或数学期望值。基于过程的各态历经行,可用时间间隔T 内的幅值平均值表示,即 ∑-==1 /)()]([N t N t x t x E 均值表达了信号变化的中心趋势,或称之为直流分量。

信号与噪声分析

第2章信号与噪声分析 知识点及层次 1. 确知信号时-频域分析 (1) 现代通信系统周期信号的傅氏级数表示和非周期信号的傅氏积分。 (2) 几个简单且常用的傅氏变换对及其互易性。 (3) 信号与系统特征-卷积相关-维钠-辛钦定理。 2. 随机过程统计特征 (1) 二维随机变量统计特征。 (2) 广义平稳特征、自相关函数与功率谱特点。 (3) 高斯过程的统计特征。 3. 高斯型白噪声统计特征 (1) 理想白噪声及限带高斯白噪声特征。 (2) 窄带高斯白噪声主要统计特征。 以上三个层次是一个层层深入的数学系统,最终旨在解决信号、系统及噪声性能分析,是全书各章的基本理论基础,也是系统分析的最主要的数学方法。 2.1信号与系统表示法 2.1.1通信系统常用信号类型 通信系统所指的信号在不加声明时,一般指随时间变化的信号。通常主要涉及以下几种不同类型的信号: 1.周期与非周期信号 周期信号满足下列条件: 全部时域 (2-1) ——的周期,是满足(2-1)式条件的最小时段。 因此,该也可表示为:

(2-2) ——是在一个周期内的波形(形状)。 若对于某一信号,不存在能满足式(2-1)的任何大小的值,则不为周期信号(如随机信号)。从确知信号的角度出发,非周期信号一般多为有限持续时间的特定时间波形。 2.确知和随机信号 确知信号的特征是:无论是过去、现在和未来的任何时间,其取值总是唯一确定的。如一个正弦波形,当幅度、角频和初相均为确定值时,它就属于确知信号,因此它是一个完全确定的时间函数。 随机信号是指其全部或一个参量具有随机性的时间信号,亦即信号的某一个或更多参量具有不确定取值,因此在它未发生之前或未对它具体测量之前,这种取值是不可预测的。如上述正弦波中某一参量(比如相位)在其可能取值范围内没有固定值的情况,可将其表示为: (2-3) 其中和为确定值,可能是在(0,2π)内的随机取值。 3.能量与功率信号 在我们常用的电子通信系统中,信号以电压或电流(变化)值表示,它在电阻上的瞬时功率为: 或 (2-4) 功率正比于信号幅度的平方。其归一化瞬时功率或能量(=1Ω)表示式为: (2-5)

随机信号分析上机实验指导书

目录 实验1 离散随机变量的仿真与计算(验证性实验) (1) 实验2 离散随机信号的计算机仿真(验证性实验) (5) 实验3 随机信号平稳性分析(验证性实验) (8) 实验4 实验数据分析(综合性实验) (10) 实验5 窄带随机过程仿真分析 (验证性实验) (11) 实验6 高斯白噪声通过线性系统分析(综合实验) (13)

实验1 离散随机变量的仿真与计算(验证性实验) 一、实验目的 掌握均匀分布的随机变量产生的常用方法。 掌握由均匀分布的随机变量产生任意分布的随机变量的方法。 掌握高斯分布随机变量的仿真,并对其数字特征进行估计。 二、实验步骤 无论是系统数学模型的建立,还是原始实验数据的产生,最基本的需求就是产生一个所需分布的随机变量。比如在通信与信息处理领域中,电子设备的热噪声,通信信道的畸变,图像中的灰度失真等都是遵循某一分布的随机信号。在产生随机变量时候,虽然运算量很大,但是基本上都是简单的重复,利用计算机可以很方便的产生不同分布的随机变量。各种分布的随机变量的基础是均匀分布的随机变量。有了均匀分不得阿随机变量,就可以用函数变换等方法得到其他分布的随机变量。 1.均匀分布随机数的产生 利用混合同余法产生均匀分布的随机数,并显示所有的样本,如图1所示。 yn+1=ayn+c (mod M) xn+1=yn+1/M

2.高斯分布随机数的仿真 根据随机变量函数变换的原理,如果能将两个分布之间的函数关系用显式表达,那么就可以利用一种分布的随机变量通过变换得到另一种分布的随机变量。 若X 是分布函数为FX (x )的随机变量,且分布函数FX (x )为严格单调升函数,令Y=FX (x ),则Y 必是在[0,1]上均匀分布的随机变量。繁殖,若Y 是在[0,1]上均匀分布的随机变量,那么 X=F-1X(Y) (1.4.5) 就是分布函数为FX (x )的随机变量。这样,欲求某个分布的随机变量,先产生[0,1]区间上的均匀分布随机数,在经过(1.4.5)的变换,便可以求得所需要分布的随机数, 产生指数分布的随机数 fX(x)=ae-ax Y=FX(X)=1-e-aX X=-ln(1-Y)/a 利用函数变换法产生高斯分布的随机数的方法 : 图1-1生成均匀分布随机数的结果

随机信号实验报告

随机信号分析 实验报告 目录 随机信号分析 (1) 实验报告 (1) 理想白噪声和带限白噪声的产生与测试 (2) 一、摘要 (2) 二、实验的背景与目的 (2) 背景: (2) 实验目的: (2) 三、实验原理 (3) 四、实验的设计与结果 (4) 实验设计: (4) 实验结果: (5) 五、实验结论 (12) 六、参考文献 (13) 七、附件 (13) 1

理想白噪声和带限白噪声的产生与测试一、摘要 本文通过利用MATLAB软件仿真来对理想白噪声和带限白噪声进行研究。理想白噪声通过低通滤波器和带通滤波器分别得到低通带限白噪声和帯通带限白噪声。在仿真的过程中我们利用MATLAB工具箱中自带的一些函数来对理想白噪声和带限白噪声的均值、均方值、方差、功率谱密度、自相关函数、频谱以及概率密度进行研究,对对它们进行比较分析并讨论其物理意义。 关键词:理想白噪声带限白噪声均值均方值方差功率谱密度自相关函数、频谱以及概率密度 二、实验的背景与目的 背景: 在词典中噪声有两种定义:定义1:干扰人们休息、学习和工作的声音,引起人的心理和生理变化。定义2:不同频率、不同强度无规则地组合在一起的声音。如电噪声、机械噪声,可引伸为任何不希望有的干扰。第一种定义是人们在日常生活中可以感知的,从感性上很容易理解。而第二种定义则相对抽象一些,大部分应用于机械工程当中。在这一学期的好几门课程中我们都从不同的方面接触到噪声,如何的利用噪声,把噪声的危害减到最小是一个很热门的话题。为了加深对噪声的认识与了解,为后面的学习与工作做准备,我们对噪声进行了一些研究与测试。 实验目的: 了解理想白噪声和带限白噪声的基本概念并能够区分它们,掌握用MATLAB 或c/c++软件仿真和分析理想白噪声和带限白噪声的方法,掌握理想白噪声和带限白噪声的性质。

随机信号处理实验

随机信号处理实验 专业:电子信息科学与技术 班级: 学号: 学生姓名: 指导教师:钱楷

一、实验目的 1、熟悉GUI 格式的编程及使用。 2、掌握随机信号的简单分析方法 3、熟悉语音信号的播放、波形显示、均值等的分析方法及其编程 3、熟悉各种随机信号分析及处理方法。 4、掌握运用MATLAB 中的统计工具包和信号处理工具包绘制概率密度的方法 二、实验原理 1、语音的录入与打开 在MATLAB 中,[y,fs,bits]=wavread('Blip',[N1 N2]);用于读取语音,采样值放在向量y 中,fs 表示采样频率(Hz),bits 表示采样位数。[N1 N2]表示读取从N1点到N2点的值。 2、高斯白噪声 白噪声信号是一个均值为零的随机过程,任一时刻是均值为零的随机变量,而服从高斯分布的白噪声即称为高斯白噪声。在matlab 中,有x=rand (a ,b )产生均匀白噪声序列的函数,通过与语言信号的叠加来分析其特性。 3、均值 随机变量X 的均值也称为数学期望,它定义为:,对于离散型随机变量,假定随机变量X 有N 个可能取值,各个取值的概率为,则均值定义为E(X)=,离散型随机变量的均值等于随机变量的取值乘以取值的概率之和,如果取值是等概率的,那么均值就是取值的算术平均值,如果取值不是等概率的,那么均值就是概率加权和,所以,均值也称为统计平均值。 4、方差 定义为随机过程x(t)的方差。方差通常也记为 D[X (t )] ,随机过程的方差也是时间 t 的函数, 由方差的定义可以看出,方差是非负函数。 5、协方差 设两个随机变量X 和Y ,定义:为X 和Y 的协方差。其相关函数为: ?? +∞∞-+∞ ∞ -= =dxdy t t y x xyf t Y t X E t t R XY XY ),,,()}()({),(212121 由此可见协方差的相关性 与X 和Y 是密切相关的,表征两个函数变化的相似性。 5、协方差 设任意两个时刻1t , 2t ,定义: 为随机过程X (t )的自相关函数,简称为相关函数。自相关函数可正,可负,其绝对值越大表示相关性越强。 7、互相关 互相关函数定义为: 如果X (t )与Y (t )是相互独立的,则一定是不相关的。反之则不一定成立。它是两个随机过程联合统计特性中重要的数字特征。 8、平滑滤波 平滑滤波可以与中值滤波结合使用,对应的线性平滑器可以仅仅用低阶的低通滤波器(如果采用高阶的系统,则将抹掉信号中应该保存的不连续性)。 121212121212 (,)[()()](,,,)X R t t E X t X t x x f x x t t dx dx +∞+∞-∞ -∞ ==???? +∞∞-+∞ ∞ -==dxdy t t y x xyf t Y t X E t t R XY XY ),,,()}()({),(212121

语音信号的噪声分析及滤波的过程研究

电网络理论 课程设计与报告 题目:语音信号的噪声分析及滤波的过程研究

一、语音信号的噪声分析及滤除一般过程 选择一个语音信号作为分析的对象,或录制一段格式为 *.wav各人自己的语音信号,对其进行频谱分析;利用MATLAB中的随机函数产生噪声加入到语音信号中,模仿语音信号被污染,并对其进行频谱分析;设计数字滤波器,并对被噪声污染的语音信号进行滤波,分析滤波后信号的时域和频域特征,回放语音信号。其流程图如下所示: 二、音频信号、噪声的分析 (一)、音频信号分析 音频信号的频率范围在20Hz-20000Hz,是人耳可以听到的频率范围,超过这个范围的音频信号没有意义。语音的频率范围在30-1000Hz之间。 (二)、噪声的产生 噪声的来源一般有环境设备噪声和电气噪声。环境噪声一般指在录音时外界环境中的声音,设备噪声指麦克风、声卡等硬件产生的噪声,电气噪声有直流电中包含的交流声,三极管和集成电路中的无规则电子运动产生的噪声,滤波不良产生的噪声等。这些噪声虽然音量不大(因为在设备设计中已经尽可能减少噪声),但参杂在我们的语音中却感到很不悦耳,尤其中在我们语音的间断时间中,噪声更为明显。

三、A/D转换 A/D转换可分为4个阶段:即采样、保持、量化和编码。 采样就是将一个时间上连续变化的信号转换成时间上离散的信号,根据奈奎斯特采样定理fsZZfh,如果采样信号频率大于或等于2倍的最高频率成分,则可以从采样后的信号无失真地重建恢复原始信号。考虑到模数转换器件的非线性失真、量化噪声及接收机噪声等因素的影响,采样频率一般取2.5~3倍的最高频率成分。 要把一个采样信号准确地数字化,就需要将采样所得的瞬时模拟信号保持一段时间,这就是保持过程。保持是将时间离散、数值连续的信号变成时间连续、数值离散信号,虽然逻辑上保持器是一个独立的单元,但是,实际上保持器总是与采样器做在一起,两者合称采样保持器。图给出了A/D采样电路的采样时序图,采样输出的信号在保持期间即可进行量化和编码。 量化是将时间连续、数值离散的信号转换成时间离散、幅度离散的信号;编码是将量化后的信号编码成二进制代码输出。到此,也就完成了A/D转换,这些过程通常是合并进行的。例如,采样和保持就经常利用一个电路连续完成,量化和编码也是在保持过程中实现的。 四、通用串行总线 (一)、USB总线的分析 USB标准采用NRZI方式(翻转不归零制)对数据进行编码。翻转不归零制(non-return to zero,inverted),电平保持时传送逻辑1,电平翻转时传送逻辑0。USB 接头提供一组5伏特的电压,可作为相连接USB设备的电源。实际上,设备接收到的电源可能会低于5V,只略高于4V。USB规范要求在任何情形下,电压均不能超过5.25V;在最坏情形下(经由USB供电HUB所连接的LOW POWER 设备)电压均不能低于4.375V,一般情形电压会接近5V。

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告 ——基于MATLAB语言 姓名: _ 班级: _ 学号: 专业:

目录 实验一随机序列的产生及数字特征估计 (2) 实验目的 (2) 实验原理 (2) 实验内容及实验结果 (3) 实验小结 (6) 实验二随机过程的模拟与数字特征 (7) 实验目的 (7) 实验原理 (7) 实验内容及实验结果 (8) 实验小结 (11) 实验三随机过程通过线性系统的分析 (12) 实验目的 (12) 实验原理 (12) 实验内容及实验结果 (13) 实验小结 (17) 实验四窄带随机过程的产生及其性能测试 (18) 实验目的 (18) 实验原理 (18) 实验内容及实验结果 (18) 实验小结 (23) 实验总结 (23)

实验一随机序列的产生及数字特征估计 实验目的 1.学习和掌握随机数的产生方法。 2.实现随机序列的数字特征估计。 实验原理 1.随机数的产生 随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。进行随机信号仿真分析时,需要模拟产生各种分布的随机数。 在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。 (0,1)均匀分布随机数是最最基本、最简单的随机数。(0,1)均匀分布指的是在[0,1]区间上的均匀分布, U(0,1)。即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下: y0=1,y n=ky n(mod N) ? x n=y n N 序列{x n}为产生的(0,1)均匀分布随机数。 定理1.1若随机变量X 具有连续分布函数F x(x),而R 为(0,1)均匀分布随机变量,则有 X=F x?1(R) 2.MATLAB中产生随机序列的函数 (1)(0,1)均匀分布的随机序列函数:rand 用法:x = rand(m,n) 功能:产生m×n 的均匀分布随机数矩阵。 (2)正态分布的随机序列 函数:randn 用法:x = randn(m,n) 功能:产生m×n 的标准正态分布随机数矩阵。 如果要产生服从N(μ,σ2)分布的随机序列,则可以由标准正态随机序列产生。 (3)其他分布的随机序列 分布函数分布函数 二项分布binornd 指数分布exprnd 泊松分布poissrnd 正态分布normrnd 离散均匀分布unidrnd 瑞利分布raylrnd 均匀分布unifrnd X2分布chi2rnd 3.随机序列的数字特征估计 对于遍历过程,可以通过随机序列的一条样本函数来获得该过程的统计特征。这里我们假定随机序列X(n)为遍历过程,样本函数为x(n),其中n=0,1,2,……N-1。那么,

随机信号分析实验报告二 2

《随机信号分析》实验报告二 班级: 学号: 姓名:

实验二高斯噪声的产生和性能测试 1.实验目的 (1)掌握加入高斯噪声的随机混合信号的分析方法。 (2)研究随机过程的均值、相关函数、协方差函数和方差。 ⒉实验原理 (1)利用随机过程的积分统计特性,给出随机过程的均值、相关函数、协方差函数和方差。 (2)随机信号均值、方差、相关函数的计算公式,以及相应的图形。 ⒊实验报告要求 (1)简述实验目的及实验原理。 (2)采用幅度为1,频率为25HZ的正弦信号错误!未找到引用源。为原信号,在其中加入均值为2,方差为0.04的高斯噪声得到混合随机信号X(t)。 试求随机过程 的均值、相关函数、协方差函数和方差。用MATLAB进行仿真,给出测试的随机过程的均值、相关函数、协方差函数和方差图形,与计算的结果作比较,并加以解释。 (3)分别给出原信号与混合信号的概率密度和概率分布曲线,并以图形形式分别给出原信号与混合信号均值、方差、相关函数的对比。 (4)读入任意一幅彩色图像,在该图像中加入均值为0,方差为0.01的高斯噪声,请给出加噪声前、后的图像。 (5)读入一副wav格式的音频文件,在该音频中加入均值为2,方差为0.04的高斯噪声,得到混合随机信号X(t),请给出混合信号X(t)的均值、相关函数、协方差函数和方差,频谱及功率谱密度图形。 4、源程序及功能注释 (2)源程序: clear all; clc; t=0:320; %t=0:320 x=sin(2*pi*t/25); %x=sin(2*p1*t/25) x1=wgn(1,321,0); %产生一个一行32列的高斯白噪声矩阵,输出的噪声强度为0dbw

《随机信号分析与处理》实验报告完整版(GUI)内附完整函数代码

随机信号分析与处理》 实验报告 指导教师: 班级:学号:姓名:

实验一熟悉MATLAB勺随机信号处理相关命令 一、实验目的 1、熟悉GUI格式的编程及使用。 2、掌握随机信号的简单分析方法 3、熟悉语音信号的播放、波形显示、均值等的分析方法及其编程 二、实验原理 1、语音的录入与打开 在MATLAB^, [y,fs,bits]=wavread('Blip',[N1 N2]); 用于读取语音,采样值放在向量y中,fs表示采 样频率(Hz),bits表示采样位数。[N1 N2]表示读取从N1点到N2点的值。 2、均匀分布白噪声 在matlab中,有x=rand (a,b)产生均匀白噪声序列的函数,通过与语言信号的叠加来分析其特性。 3、均值 随机变量X的均值也称为数学期望,它定义为 e+oc 对于离散型随机变量,假定随机变量X有N个可能取值,各个取值的概率为- p y --1则均值定义为 £(X) = £.r fPf /=1 上式表明,离散型随机变量的均值等于随机变量的取值乘以取值的概率之和,如果取值是等概率的,那么均值就是取值的算术平均值,如果取值不是等概率的,那么均值就是概率加权和,所以,均值也称为统计平均值。 4、方差 定义 为随机过程<r >的方差。方差通常也记为D【X(t)】,随机过程的方差也是时间t的函数,由方差的定义可以看岀,方差是非负函数。 5、自相关函数 设任意两个时刻t1,t2,定义:::: R X (叩2)= E[X(tJX(t2)] = Jq JX1X2 f (X1, X2,t1,t2)dX1dX2 为随机过程X(t)的自相关函数,简称为相关函数。自相关函数可正,可负,其绝对值越大表示相关性越强。 6. 哈明(hamming)窗 0.54+0.46 (10.100) 0,

随机信号分析实验报告

H a r b i n I n s t i t u t e o f T e c h n o l o g y 实验报告 课程名称:随机信号分析 院系:电子与信息工程学院班级: 姓名: 学号: 指导教师: 实验时间: 实验一、各种分布随机数的产生

(一)实验原理 1.均匀分布随机数的产生原理 产生伪随机数的一种实用方法是同余法,它利用同余运算递推产生伪随机数序列。最简单的方法是加同余法 )(mod 1M c y y n n +=+ M y x n n 1 1++= 为了保证产生的伪随机数能在[0,1]内均匀分布,需要M 为正整数,此外常数c 和初值y0亦为正整数。加同余法虽然简单,但产生的伪随机数效果不好。另一种同余法为乘同余法,它需要两次乘法才能产生一个[0,1]上均匀分布的随机数 )(mod 1M ay y n n =+ M y x n n 1 1++= 式中,a 为正整数。用加法和乘法完成递推运算的称为混合同余法,即 )(mod 1M c ay y n n +=+ M y x n n 1 1++= 用混合同余法产生的伪随机数具有较好的特性,一些程序库中都有成熟的程序供选择。 常用的计算语言如Basic 、C 和Matlab 都有产生均匀分布随机数的函数可以调用,只是用各种编程语言对应的函数产生的均匀分布随机数的范围不同,有的函数可能还需要提供种子或初始化。 Matlab 提供的函数rand()可以产生一个在[0,1]区间分布的随机数, rand(2,4)则可以产生一个在[0,1]区间分布的随机数矩阵,矩阵为2行4列。Matlab 提供的另一个产生随机数的函数是random('unif',a,b,N,M),unif 表示均匀分布,a 和b 是均匀分布区间的上下界,N 和M 分别是矩阵的行和列。 2.随机变量的仿真 根据随机变量函数变换的原理,如果能将两个分布之间的函数关系用显式表达,那么就可以利用一种分布的随机变量通过变换得到另一种分布的随机变量。 若X 是分布函数为F(x)的随机变量,且分布函数F(x)为严格单调升函数,令Y=F(X),则Y 必为在[0,1]上均匀分布的随机变量。反之,若Y 是在[0,1]上 均匀分布的随机变量,那么)(1 Y F X X -= 即是分布函数为FX(x)的随机变量。式中F X -?1 ()为F X ()?的反函数。这样,欲求某个分布的随机变量,先产生在[0,1]区间上的均匀分布随机数,再经上式变 换,便可求得所需分布的随机数。 3.高斯分布随机数的仿真 广泛应用的有两种产生高斯随机数的方法,一种是变换法,一种是近似法。 如果X1,X2是两个互相独立的均匀分布随机数,那么下式给出的Y1,Y2

工程信号处理MATLAB实验指导书v1p0_2008完全版

工程信号处理——MATLAB实验指导书—— 伍星机电工程学院KUST-HMI联合实验室 2008.02

目录 1信号分析基础 (3) 1.1实验1典型时间信号的波形图 (3) 1.2实验2信号数据文件的读取与显示 (4) 2确定信号的频谱分析 (4) 2.1实验3周期信号的傅立叶级数三角函数展开式 (4) 2.2实验4非周期信号的傅立叶变换 (4) 2.3实验5时域有限信号的周期延拓 (5) 3时域分析 (5) 3.1实验6自相关和互相关分析 (5) 4随机信号分析 (5) 4.1实验7随机信号的数字特征 (5) 4.2实验8随机信号的功率谱分析 (6) 5系统分析概述 (6) 5.1实验9线性系统的主要性质 (6) 5.2实验10测定系统特性参数的方法 (7) 6模拟信号的离散化 (7) 6.1实验11时域采样定理 (7) 6.2实验12时域截断与泄露 (7) 7离散傅立叶变换 (7) 7.1实验13离散傅立叶变换 (7) 7.2实验14用X K计算信号的频谱 (8) 8快速傅立叶变换及其工程应用 (8) 8.1实验15快速傅立叶变换 (8) 8.2实验16快速傅立叶变换的应用 (9)

【预备知识】 机械工程测试技术、机械控制工程、MATLAB、虚拟仪器技术等。 【资料检索方法】 1.校图书馆相关书籍。 2.校图书馆数据库:维普中文科技期刊全文数据库,万方会议论文全文库, 万方硕博论文全文库,Elsevier外文期刊数据库,国外免费学位论文全文 数据库,超星电子图书系统。 3.互联网搜索引擎:https://www.360docs.net/doc/4812395450.html,,https://www.360docs.net/doc/4812395450.html,,https://www.360docs.net/doc/4812395450.html,。1信号分析基础 1.1实验1典型时间信号的波形图 【实验目的】 (1)熟悉MATLAB环境,掌握与信号处理相关的常用MATLAB语句和命令; (2)熟悉MATLAB生成典型信号的方法; (3)掌握MATLAB绘制信号波形图的方法; (4)掌握M脚本文件和函数文件的编制方法。 【实验内容】 (1)熟悉各种典型信号生成的关键参数,对于大多数的连续时间信号,两个 关键要素是信号的起止时间、信号的幅值、频率等; (2)编制确定信号和随机信号的M自定义函数文件,包括的典型信号如下: z确定信号 周期信号:正弦信号(MySin),三角波信号(MyTri),方波信号(MySquare)。 非周期信号:准周期信号(MyStdPeriod),矩形脉冲信号(MyImpulse),指数衰减正弦信号(MyExpSin)。 z随机信号:白噪声信号(MyWhiteNoise) (3)使用上述M函数产生如下信号: z幅值为5,频率为10Hz的正弦信号; z幅值为1,频率为8Hz的三角波信号; z幅值为2.5,频率为20Hz,占空比为50%的方波信号; z使用两个幅值为1的正弦信号构成一个准周期信号; z幅值为10,脉宽为1,时间范围0~6s的矩形脉冲信号; z幅值为5,频率为20Hz,衰减系数为-10的指数衰减正弦信号; z幅值范围为-3~3的白噪声信号。

示波器FFT功能之电源噪声分析

示波器FFT功能之电源噪声分析 一提到电源噪声,相信就会引起很多电子工程师的共鸣。我们平时所说的电源噪声到底是什么呢?它等同于电源纹波吗?事实上,电源噪声不同于电源纹波,它是出现在输出端子间的纹波以外的一种高频成分。而纹波是出现输出端子间的一种与输入频率、开关频率同步的成分,是叠加在稳定直流信号上的交流干扰信号。 在电源噪声的分析过程中,比较经典的方法是使用示波器观察电源噪声波形并测量其幅值,据此判断电源噪声的来源。但是随着数字器件的电压逐步降低、电流逐步升高,电源设计难度增大,在观察时域波形无法定位故障时,可以通过FFT(快速傅立叶变换)方法进行时频转换,将时域电源噪声波形转换到频域进行分析。电路调试时,从时域和频域两个角度分别来查看信号特征,可以有效地加速调试进程。 示波器的频域分析功能是通过傅立叶变换实现的,傅立叶变换的实质是任何时域的序列都可以表示为不同频率的正弦波信号的无限叠加。我们分析这些正弦波的频率、幅值和相位信息,就是将时域信号切换到频域的分析方法。数字示波器采样到的序列是离散序列,所以我们在分析中最常用的是快速傅立叶变换(FFT)。FFT算法是对离散傅立叶变换(DFT)算法优化而来,运算量减少了几个数量级,并且需要运算的点数越多,运算量节约越大。 示波器捕获的噪声波形进行FFT变换,有几个关键点需要注意: 1、根据耐奎斯特抽样定律,变换之后的频谱展宽(Span)对应与原始信号的采样率的1/2,如果原始信号的采样率为1GS/s,则FFT之后的频谱展宽最多是500MHz; 2、变换之后的频率分辨率(RBW Resolution Bandwidth)对应于采样时间的倒数,如果采样时间为10mS,则对应的频率分辨率为100Hz; 3、频谱泄漏,即信号频谱中各谱线之间相互干扰,能量较低的谱线容易被临近的高能量谱线的泄漏所淹没。避免频谱泄漏可以尽量采集速率与信号频率同步,延长采集信号时间及使用适当的窗函数。

什么是信噪比详解

信噪比详解 定义 信噪比,即SNR(Signal to Noise Ratio)又称为讯噪比,狭义来讲是指放大器的输出信号的电压与同时输出的噪声电压的比,常常用分贝数表示。设备的信噪比越高表明它产生的杂音越少。一般来说,信噪比越大,说明混在信号里的噪声越小,声音回放的音质量越高,否则相反。信噪比一般不应该低于70dB,高保真音箱的信噪比应达到110dB以上。 解析 信噪比是音箱回放的正常声音信号与无信号时噪声信号(功率)的比值。用dB表示。例如,某音箱的信噪比为80dB,即输出信号功率是噪音功率的10^8倍,输出信号标准差则是噪音标准差的10^4倍。信噪比数值越高,噪音越小。 “噪声”的简单定义就是:“在处理过程中设备自行产生的信号”,这些信号与输入信号无关。对于M P3播放器来说,信噪比都是一个比较重要的参数,它指音源产生最大不失真声音信号强度与同时发出噪音强度之间的比率称为信号噪声比,简称信噪比(Signal/Noise),通常以S/N表示,单位为分贝(d B)。对于播放器来说,该值当然越大越好。 目前MP3播放器的信噪比有60dB、65dB、85dB、90dB、95dB等等,我们在选择MP3的时候,一般都选择60dB以上的,但即使这一参数达到了要求,也不一定表示机子好,毕竟它只是MP3性能参数中要考虑的参数之一。 指在规定输入电压下的输出信号电压与输入电压切断时,输出所残留之杂音电压之比,也可看成是最大不失真声音信号强度与同时发出的噪音强度之间的比率,通常以S/N表示。一般用分贝(dB)为单位,信噪比越高表示音频产品越好,常见产品都选择60dB以上。 国际电工委员会对信噪比的最低要求是前置放大器大于等于63dB,后级放大器大于等于86dB,合并式放大器大于等于63dB。合并式放大器信噪比的最佳值应大于90dB,CD机的信噪比可达90dB 以上,高档的更可达110dB以上。信噪比低时,小信号输入时噪音严重,整个音域的声音明显感觉是混浊不清,所以信噪比低于80dB的音箱不建议购买,而低音炮70dB的低音炮同样原因不建议购买。用途 另外,信噪比可以是车载功放;光端机;影碟机;数字语音室;家庭影院套装;网络摄像机;音箱……等等,这里所说明的是MP3播放器的信噪比。 以dB计算的信号最大保真输出与不可避免的电子噪音的比率。该值越大越好。低于75dB这个指标,噪音在寂静时有可能被发现。AWE64 Gold声卡的信噪比是80dB,较为合理。SBLIVE更是宣称超过120dB的顶级信噪比。总的说来,由于电脑里的高频干扰太大,所以声卡的信噪比往往不令人满意。

随机信号分析上机实验指导书(金科院新版)

目录 实验1 随机信号的计算机仿真(验证性实验) (1) 实验2 随机信号平稳性分析(验证性实验) (5) 实验3 高斯白噪声通过线性系统分析(综合实验) (6) 实验4 窄带随机过程仿真分析 (验证性实验) (13)

实验1 随机信号的计算机仿真(验证性实验) 一、实验目的 (1)掌握均匀分布随机信号产生的常用方法。 (2)掌握高斯分布随机信号的仿真,并对其数字特征进行估计。 (3)了解随机过程特征估计的基本概念和方法,学会运用 Matlab 函数对随机过程进行特征估计,并且通过实验了解不同估计方法所估计出来结果之间的差异。 二、实验原理 无论是系统数学模型的建立,还是原始实验数据的产生,最基本的需求就是产生一个所需分布的随机变量。各种分布的随机变量的基础是均匀分布的随机变量。有了均匀分布的随机变量,就可以用函数变换等方法得到其他分布的随机变量。 1.均匀分布随机信号的产生 利用混合同余法产生均匀分布的随机数,并显示所有的样本。 (mod )n n y ay c M =+ 11n n x y M +=+ 2.高斯分布随机信号的仿真 若X 是分布函数为F(x)的随机变量,且分布函数F(x)为严格单调升函数,令Y=F(x),则Y 必是在[0,1]上均匀分布的随机变量。反之,若Y 是在[0,1]上均匀分布的随机变量,那么 1()X F Y -= (1) 就是分布函数为F(x)的随机变量。这样,欲求某个分布的随机变量,先产生[0,1]区间上的均匀分布随机数,在经过(1)的变换,便可以求得所需要分布的随机数。

利用函数变换法产生高斯分布的随机数的方法: 如果X1、X2是两个互相独立的均匀分布随机数,那么下式给出的Y1、Y2就是数学期望为m ,方差为2s 的高斯分布随机数 m X X Y +-=)2cos(ln 2211πσ m X X Y +-=)2s i n (ln 2212πσ 3.均值的估计 1 1?N x n n m x N -==? 4.方差的估计 方差估计有两种情况,如果均值x m 已知,则 ()12 20 1?N x n x n x m N s -==-? 如果均值未知,那么 ()12 20 1??1N x n x n x m N s -==--? 5. 相关函数估计 1 1?()N m x n m n n R m x x N m --+==-? 6. 功率谱估计 功率谱的估计有几种方法,此处介绍自相关法: 先求相关函数的估计, 1 1?()N m x n m n n R m x x N m --+==-? 然后对估计的相关函数做傅立叶变换, 1 (1) ?()()N jm x x m N G R m e w w +- =--=?

随机信号处理模实验报告

随机信号分析与处理实验报告院系:信息工程学院 专业:电子信息科学与技术 姓名: 方静 学号:030941209 指导老师:廖红华

实验一 熟悉MATLAB 的随机信号处理相关命令 一、实验目的 1、利用Matlab 对随机熟悉各种随机信号函数的用法 2、掌握随机信号的简单分析方法 二、实验原理 1、语音的录入与打开 在MATLAB 中,wavread 函数用于读取语音信号,采样值放在向量y 中,s f 表示采样频率(Hz),bits 表示 采样位数。[N1 N2]表示读取从N1点到N2点的值。 2、语音信号的频域分析 FFT 即为快速傅氏变换,是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。在Matlab 信号处理工具箱中,语音信号的频域分析就是对信号进行傅里叶变换后的分析。 4、方差 定义22)]}()({[t t m t X E X X -=)(δ 为随机过程的方差。方差通常也记为DX (t ) ,随机过程的方差也是时间 t 的函数, 由方差的 定义可以看出,方差是非负函数。 5、自相关与互相关 自相关和互相关分别表示的是两个时间序列之间和同一个时间序列在任意两个不同时刻的取值之间的相关程度,即互相关函数是描述随机信号x(t),y(t)在任意两个不同时刻t1,t2的取值之间的相关程度,自相关函数是描述随机信号x(t)在任意两个不同时刻t1,t2的取值之间的相关程度。 互相关函数给出了在频域内两个信号是否相关的一个判断指标,把两测点之间信号的互谱与各自的自谱联系了起来。它能用来确定输出信号有多大程度来自输入信号,对修正测量中接入噪声源而产生的误差非常有效. 事实上,在图象处理中,自相关和互相关函数的定义如下:设原函数是f(t),则自相关函数定义为R(u)=f(t)*f(-t),其中*表示卷积;设两个函数分别是f(t)和g(t),则互相关函数定义为R(u)=f(t)*g(-t),它反映的是两个函数在不同的相对位置上互相匹配的程度。 6. 短时过零率与短时能量 语音一般分为无声段,清音段和浊音段。由于语音信号是一个非平稳过程,不能用处理平稳信号的信号处理技术对其进行分析处理。但由于语音信号本身的特点,在10-30ms 的短时间范围内,其特性可以看作是一个准稳态过程,具有短时性,因此采用短时能量和过零率来对语音进行端点检测是可行的。 信号的短时能量定义为:设语音波形时域信号为x(t),加窗分帧处理后得到第n 帧语音信号为xn(m),则定义的短时能量函数如下: ) ()()(x m n x m w m n +=,10-≤≤ N m ,,0)(),1(~0,1)(=-==n w N m m w m 为其他值,其中n=0,1T,2T……并且N 为帧长,T 为帧移长度。 短时过零率表示一帧语音中语音信号的波形穿过横轴的零电平的次数,他可以用来区分清音和浊音,因为语音信号中高音段有高的过零率,低音段有低的过零率,短时能量大的地方过零率小,短时能量小的地方过零率大。 过零率可以反映信号的频谱特性。当离散时间信号相邻两个样点的正负号相异时,我们称之为“过零”,即此时信号的时间波形穿过了零电平的横轴。统计单位时间内样点值改变符号的次数具可以得到平均过零

相关文档
最新文档