扫描电子显微镜原理SEM图形并茂讲解

11-2 JY T 010-1996分析型扫描电子显微镜方法通则

MV_RR_CNJ_0010分析型扫描电子显微镜方法通则 1.分析型扫描电子显微镜方法通则的说明 编号JY/T 010—1996 名称(中文)分析型扫描电子显微镜方法通则 (英文)General rules for analytical scanning electron microscopy 归口单位国家教育委员会 起草单位国家教育委员会 主要起草人林承毅 万德锐 批准日期 1997年1月22日 实施日期 1997年4月1日 替代规程号无 适用范围本通则适用于各种类型的扫描电子显微镜和X射线能谱仪。 定义 主要技术要求 1. 2. 方法原理 3. 仪器 4. 样品 5. 分析步骤 6. 分析结果表述 是否分级无 检定周期(年) 附录数目无 出版单位科学技术文献出版社 检定用标准物质 相关技术文件 备注 2.分析型扫描电子显微镜方法通则的摘要 本通则适用于各种类型的扫描电子显微镜和X射线能谱仪。 2 定义 2.1二次电子 secondary electron 在入射电子的作用下,从固体样品中出射的,能量小于50eV的电子,通常以SE表示。 2.2背散射电子 backscattered electron 被固体样品中的原子反射回来的入射电子,包括弹性背散射电子和非弹性背散射电子,通常以BSE表示。它又称为反射电子(Reflected Electron),以RE表示。其中弹性背散射电子完全改变了入射电子的运动方向,但基本上没有改变入射电子的能量;而非弹性背散射电子不仅改变了入射电子的运动方向,在不同程度上还损失了部分能量。 2.3 放大倍数 magnification 扫描电镜的放大倍数是指其图像的线性放大倍数,以M表示。如果样品上长度为L s直线

扫描电镜的基本结构和工作原理

扫描电镜的基本结构和工作原理 扫描电子显微镜利用细聚焦电子束在样品表面逐点扫描,与样品相互作用产行各种物理信号,这些信号经检测器接收、放大并转换成调制信号,最后在荧光屏上显示反映样品表面各种特征的图像。扫描电镜具有景深大、图像立体感强、放大倍数范围大、连续可调、分辨率高、样品室空间大且样品制备简单等特点,是进行样品表面研究的有效分析工具。 扫描电镜所需的加速电压比透射电镜要低得多,一般约在1~30kV,实验时可根据被分析样品的性质适当地选择,最常用的加速电压约在20kV左右。扫描电镜的图像放大倍数在一定范围内(几十倍到几十万倍)可以实现连续调整,放大倍数等于荧光屏上显示的图像横向长度与电子束在样品上横向扫描的实际长度之比。扫描电镜的电子光学系统与透射电镜有所不同,其作用仅仅是为了提供扫描电子束,作为使样品产生各种物理信号的激发源。扫描电镜最常使用的是二次电子信号和背散射电子信号,前者用于显示表面形貌衬度,后者用于显示原子序数衬度。 扫描电镜的基本结构可分为电子光学系统、扫描系统、信号检测放大系统、图像显示和记录系统、真空系统和电源及控制系统六大部分。这一部分的实验内容可参照教材第十二章,并结合实验室现有的扫描电镜进行,在此不作详细介绍。 三、扫描电镜图像衬度观察 1.样品制备 扫描电镜的优点之一是样品制备简单,对于新鲜的金属断口样品不需要做任何处理,可以直接进行观察。但在有些情况下需对样品进行必要的处理。 1) 样品表面附着有灰尘和油污,可用有机溶剂(乙醇或丙酮)在超声波清洗器中清洗。 2) 样品表面锈蚀或严重氧化,采用化学清洗或电解的方法处理。清洗时可能会失去一些表面形貌特征的细节,操作过程中应该注意。 3) 对于不导电的样品,观察前需在表面喷镀一层导电金属或碳,镀膜厚度控制在5-10nm 为宜。 2.表面形貌衬度观察 二次电子信号来自于样品表面层5~l0nm,信号的强度对样品微区表面相对于入射束的取向非常敏感,随着样品表面相对于入射束的倾角增大,二次电子的产额增多。因此,二次电子像适合于显示表面形貌衬度。 二次电子像的分辨率较高,一般约在3~6nm。其分辨率的高低主要取决于束斑直径,而实际上真正达到的分辨率与样品本身的性质、制备方法,以及电镜的操作条件如高匝、扫描速度、光强度、工作距离、样品的倾斜角等因素有关,在最理想的状态下,目前可达的最佳分辩率为lnm。 扫描电镜图像表面形貌衬度几乎可以用于显示任何样品表面的超微信息,其应用已渗透到许多科学研究领域,在失效分析、刑事案件侦破、病理诊断等技术部门也得到广泛应用。在材料科学研究领域,表面形貌衬度在断口分析等方面显示有突出的优越性。下面就以断口分析等方面的研究为例说明表面形貌衬度的应用。 利用试样或构件断口的二次电子像所显示的表面形貌特征,可以获得有关裂纹的起源、裂纹扩展的途径以及断裂方式等信息,根据断口的微观形貌特征可以分析裂纹萌生的原因、裂纹的扩展途径以及断裂机制。图实5-1是比较常见的金属断口形貌二次电子像。较典型的

扫描电子显微镜文献综述

扫描电子显微镜的应用及其发展 1前言 扫描电子显微镜SEM(Scanning Electron Microscopy)是应用最为广泛的微观 形貌观察工具。其观察结果真实可靠、变形性小、样品处理时的方便易行。其发展进步对材料的准确分析有着决定性作用。配备上X射线能量分辨装置EDS (Energy Dispersive Spectroscopy)后,就能在观察微观形貌的同时检测不同形貌特征处的元素成分差异,而背散射扫描电镜EBSD(Electron Backscattered Diffraction)也被广泛应用于物相鉴定等。 2扫描电镜的特点 形貌分析的各种技术中,扫描电镜的主要优势在于高的分辨率。现代先进的扫描电镜的分辨率已经达到1纳米左右;有较高的放大倍数,20-20万倍之间连续可调;有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构试样制备简单;配有X射线能谱仪装置,这样可以同时进行 显微组织性貌的观察和微区成分分析[1]。低加速电压、低真空、环境扫描电镜和电子背散射花样分析仪的使用,大大提高了扫描电子显微镜的综合、在线分析能力;试样制备简单。直接粘附在铜座上即可,必要时需蒸Au或是C。 扫描电镜也有其局限性,首先就是它的分辨率还不够高,也不能观察发光或高温样品。样品必须干净、干燥,有导电性。也不能用来显示样品的内部细节,最后它不能显示样品的颜色。 需要对扫描电镜进行技术改进,在提高分辨率方面主要采取降低透镜球像差系数, 以获得小束斑;增强照明源即提高电子枪亮度( 如采用LaB6 或场发射电子枪) ;提高真空度和检测系统的接收效率;尽可能减小外界振动干扰。 在扫描电镜成像过程中,影响图像质量的因素比较多,故需选择最佳条件。例如样品室内气氛控制、图像参数的选择、检测器的选择以及控制温度的选择,尽可能将样品原来的面貌保存下来得到高质量电镜照片[2]。

电子探针、扫描电镜显微分析2

图8-12 电子探针结构的方框图 2.4.1 电子光学系统 电子光学系统包括电子枪、电磁透镜、消像散器和扫描线圈等。其功能是产生一定能量的电子束、足够大的电子束流、尽可能小的电子束直径,产生一个稳定的X 射线激发源。 2.4.1.1 电子枪 电子枪是由阴极(灯丝)、栅极和阳极组成。它的主要作用是产生具有一定能量的细聚焦电子束(探针)。从加热的钨灯丝发射电子,由栅极聚焦和阳极加速后,形成一个10μm ~100μm 交叉点(Crossover),再经过二级会聚透镜和物镜的聚焦作用,在试样表面形成一个小于1μm 的电子探针。电子束直径和束流随电子枪的加速电压而改变, 加速电压可变范围一般为1kV ~30kV 。 2.4.1.2 电磁透镜 电磁透镜分会聚透镜和物镜,靠近电子枪的透镜称会聚透镜,会聚透镜一般分两级,是把电子枪形成的10μm -100μm 的交叉点缩小1-100倍后,进入样品上方的物镜,物镜可将电子束再缩小并聚焦到样品上。为了挡掉大散射角的杂散电子,使入射到样品的电子束直径尽可能小,会聚透镜和物镜下方都有光阑。 为了在物镜和样品之间安置更多的信号探测器,如二次电子探测器、能谱仪等,必须有一定的工作距离( 物镜底面和样品之间的距离)。工作距离加长必然会使球差系数增大,从而使电子束直径变大,如果电子束几何直径为dg, 由于球差系数的影响,最终形成的电子束 直径d 应为:d 2=dg 2+ds 2 ,ds 为最小弥散圆直径,它和球差系数Cs 的关系为: ds = 2 1Cs 2 α (8·2) α为探针在试样表面的半张角。因此,增加工作距离受到球差的限制。为了解决这一矛盾,设计了一种小物镜,是这类仪器的一项重要改进。小物镜可以在不增加工作距离的情况下,在物镜和样品之间安放更多的信号探测器,如JCXA -733电子探针,工作距离为11mm ,可同时安装四道波谱仪(WDS),一个能谱仪,一个二次电子探测器和一个背散射电子探测器,并使X 射线出射角增加到40°。高出射角减小了试样对X 射线的吸收和样品表面粗糙所造成的影响,但小物镜要获得足够的磁场必须在其线圈内通以大电流,为了解决散热问题要进行强制冷却,一般用油冷却。

扫描电镜SEM制样步骤

扫描电镜S E M制样步 骤 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

扫描电镜观察制样步骤 固定: 1、用灭菌镊子挑出少量的的样品(碳粒/碳毡),放入 5ml 的离心管中, 2、加入2.5%戊二醛, 加量为淹没碳粒/碳毡样品为宜,室温固定1小时 3、置于 4℃冰箱中固定12小时。 冲洗: 用 0.2mol pH 7.4的磷酸缓冲溶液冲洗 3 次,每次 10 分钟。每次冲洗时先用注射器缓慢吸走上一步骤的冲洗液。Or 离心 脱水: 分别用浓度为30%, 50%,75%,90%, 95%, 100% v/v 的乙醇进行脱水,每次10分钟, 干燥: 将样品放在离心管里,置入干燥器中干燥 12 小时。粘样:用双面胶将样品观察面向上粘贴在扫描电镜铜板上 预处理好的样品放入干净离心管中待检。 SEM上机测样--测定条件参数设置 分子克隆实验指南第三版,1568页: 25度下0.1mol/L磷酸钾缓冲液的配制; 先配0.1mol/L K2HPO4,0.1mol/L KH2PO4 配PH7.4,100ml磷酸钾缓冲液需: 0.1mol/L K2HPO4,80.2ml 0.1mol/L KH2PO4,19.8ml 混合即是,不用酸碱调PH。 参考文献: DOI:?10.1021/es902165y Microbial fuel cell?based on Klebsiella pneumoniae biofilm Selecting?anode-respiring bacteria based on?anode?potential: phylogenetic, electrochemical, and?microscopic?characterization A severe reduction in the cytochrome C content of?Geobacter sulfurreducens?eliminates its capacity for extracellular electron transfer 2

简述扫描电镜的构造及成像原理资料讲解

简述扫描电镜的构造及成像原理,试分析其与透射电镜在样品表征方面的异同 1、扫描电镜的构造 扫描电镜由电子光学系统、信号收集和图像显示系统、和真空系统三部分组成。 1.1 电子光学系统(镜筒) 电子光学系统包括电子枪、电磁透镜、扫描线圈和样品室。 1.1.1 电子枪扫描电子显微镜中的电子枪与透射电镜的电子枪相似,只是加速电压比透射电镜低。 1.1.2 电磁透镜扫描电子显微镜中各电磁透镜都不作成像透镜用,而是做聚光镜用,它们的功能只是把电子枪的束斑逐级聚焦缩小,使原来直径约为50um的束斑缩小成一个只有数个纳米的细小斑点,要达到这样的缩小倍数,必须用几个透镜来完成。扫描电子显微镜一般都有三个聚光镜,前两个聚光镜是强磁透镜,可把电子束光斑缩小,第三个聚光镜是弱磁透镜,具有较长的焦距。布置这个末级透镜(习惯上称之物镜)的目的在于使样品室和透镜之间留有一定空间,以便装入各种信号探测器。扫描电子显微镜中照射到样品上的电子束直径越小,就相当于成像单元的尺寸越小,相应的分辨率就越高。采用普通热阴极电子枪时,扫描电子束的束径可达到6nm左右。若采用六硼化镧阴极和场发射电子枪,电子束束径还可进一步缩小。

1.1.3 扫描线圈扫描线圈的作用是使电子束偏转,并在样品表面作有规则的扫动,电子束在样品上的扫描动作和显像管上的扫描动作保持严格同步,因为它们是由同一扫描发生器控制的。 1.1.4 样品室样品室内除放置样品外,还安置信号探测器。各种不同信号的收集和相应检测器的安放位置有很大关系,如果安置不当,则有可能收不到信号或收到的信号很弱,从而影响分析精度。样品台本身是一个复杂而精密的组件,它应能夹持一定尺寸的样品,并能使样品作平移、倾斜和转动等运动,以利于对样品上每一特定位置进行各种分析。新式扫描电子显微镜的样品室实际上是一个微型试验室,它带有许多附件,可使样品在样品台上加热、冷却和进行机械性能试验(如拉伸和疲劳)。 1.2 信号的收集和图像显示系统 二次电子、背散射电子和透射电子的信号都可采用闪烁计数器来检测。信号电子进入闪烁体后即引起电离,当离子和自由电子复合后就产生可见光。可见光信号通过光导管送入光电倍增器,光信号放大,即又转化成电流信号输出,电流信号经视频放大器放大后就成为调制信号。如前所述,由于镜筒中的电子束和显像管中电子束是同步扫描的,而荧光屏上每一点的亮度是根据样品上被激发出来的信号强度来调制的,因此样品上各点的状态各不相同,所以接收到的信号也不相同,于是就可以在显像管上看到一幅反映试样各点状态的扫描电子显微图像。 1.3 真空系统 为保证扫描电子显微镜电子光学系统的正常工作,对镜筒内的真空度有一定的要求。一般情况下,如果真空系统能提供1.33×10-2 -1.33×10-3 Pa的真空度时,就可防止样品的污染。如果真空度不足,除样品被严重污染外,还会出现灯丝寿命下降,极间放电等问题。 2、扫描电镜的成像原理 扫描电镜是由电子枪发射并经过聚焦的电子束在样品表面扫描,激发样品产生各种物理信号,经过检测、视频放大和信号处理,在荧光屏上获得能反映样品表面各种特征的扫描图像。 3、分析扫描电镜与透射电镜在样品表征方面的异同 3.1 结构差异 主要体现在样品在电子束光路中的位置不同,透射电镜的样品在电子束中间,电子源在样品上方发射电子,经过聚光镜,然后穿透样品后,有后续的电磁透镜继续放大电子光束,最后投影在荧光屏幕上;扫描电镜的样品在电子束末端,

扫描电子显微镜成像原理及基本操作

扫描电子显微镜成像原理及基本操作 一、基本结构组成: 1.电子光学系统:电子枪;聚光镜(第一、第二聚光镜和物镜);物镜光阑。 2.扫描系统:扫描信号发生器;扫描放大控制器;扫描偏转线圈。 3.信号探测放大系统:探测二次电子、背散射电子等电子信号。 4.图象显示和记录系统:SEM采用电脑系统进行图象显示和记录。 5.真空系统:常用机械真空泵、扩散泵、涡轮分子泵等使真空度高于10 -4 Torr 。 6.电源系统:高压发生装置、高压油箱。 二、扫描电子显微镜成像原理 扫描电镜是用聚焦电子束在试样表面逐点扫描成像。试样为块状或粉末颗粒,成像信号可以是二次电子、背散射电子或吸收电子。其中二次电子是最主要的成像信号。由电子枪发射的能量为 5 ~35keV 的电子,以其交叉斑作为电子源,经二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺序作栅网式扫描。聚焦电子束与试样相互作用,产生二次电子发射(以及其它物理信号),二次电子发射量随试样表面形貌而变化。二次电子信号被探测器收集转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的显像管亮度,得到反映试样表面形貌的二次电子像。三、扫描电镜具有以下的特点

(1) 制样方法简单,对试样的尺寸、形态等无严格要求,可以观察直径为的大块试样以及粉末等。 (2) 场深大,适用于粗糙表面和断口的分析观察;图像富有立体感、真实感、易于识别和解释。 (3) 放大倍数变化范围大,对于多相、多组成的非均匀材料便于低倍下的普查和高倍下的观察分析。 (4) 具有相当高的分辨率,可达到为3.5 ~6nm。 (5) 可以通过电子学方法有效地控制和改善图像的质量,如通过调制可改善图像反差的宽容度,使图像各部分亮暗适中。 (6) 可进行多种功能的分析。与X 射线谱仪配接,可在观察形貌的同时进行微区成分分析。 (7) 可使用,观察在不同环境条件下(加热、冷却和拉伸等样品台进行动态试验)的相变及形态变化等。 四、扫描电镜的用途 通过样品中的电子激发出的各种信号,扫描电镜可以做出电子图像分析,如可利用二次电子进行样品表面形貌及结构分析的分析;以两片探测器信号做积分运算,通过背散射电子可以分析样品表面成分像,以两片探测器信号做微分运算时,则可用于样品表面形貌像德分析;此外,通过透射电子则可对析晶体的内部结构及晶格信息进行分析。而且,其配上其它一些配套设备,还可做显微化学成份分析,显微晶体结构分析,显微阴极发光图像分析,这更加扩大的扫描电镜的广泛应用度。常见的扫描电镜配套设备主要有:x射线波谱仪、x射线能

扫描电镜原理、方法及操作

一、分析测试步骤 开机 1、接通循环水(流速1.5~2.0L/min ) 2、打开主电源开关。 3、在主机上插入钥匙,旋至“Start ”位置。 松手后钥匙自动回到“on ”的位置,真空系统开始工作。 4、等待10秒钟,打开计算机运行。 5、点击桌面的开始程序。 6、点击[JEOL ·SEM ]及[JSM-5000主菜单]。 7、约20分钟仪器自动抽高真空,真空度达到后,电子枪自动加高压,进入工作状态。 8、通过计算机可以进行样品台的移动,改变放大倍数、聚焦、象散的调整, 直到获得满意的图像 9、对于满意的图像可以进行拍照、存盘和打印。 10、若需进行能谱分析,要提前1小时加入液氮,并使探测器进入工作状态。 11、打开能谱部分的计算机进行谱收集和相应的分析。 12、需观察背散射电子像时,工作距离调整为15mm ,然后插入背散射电子探测器,用完后 随时拔出。 更换样品 1、点击“HT on ”,出现“HT Ready ”。 2、点击“Sample ”,再点击“Vent ”。 3、50秒后拉出样品台,从样品台架上取出样品台. 4、更换样品后,关上样品室门,再点击“EVAC ”,真空系统开始工作,重复开机10.1.8、 10.1.9。 关机 1、点击[EXIT ],再点击[OK ],扫描电镜窗口关闭,回到视窗桌面上. 2、电击桌面上的[Start ]。 3、退出视窗,关闭计算机. 4、关闭控制面板上的电源开关. 5、等待15分钟后关掉循环水. 6、关掉总电源. 二. 方法原理 1、扫描电镜近况及其进展 扫描电子显微镜的设计思想和工作原理,早在1935年已经被提出来了,直到1956年才开始生产商品扫描电镜。商品扫描电镜的分辨率从第一台的25nm 提高到现在的0.8nm ,已经接近于透射电镜的分辨率,现在大多数扫描电镜都能同X 射线波谱仪、X 射线能谱仪和自动图像分析仪等组合,使得它是一种对表面微观世界能够进行全面分析的多功能的电子光学仪器。数十年来,扫描电镜已广泛地应用在材料学、冶金学、地矿学、生物学、医学以及地质勘探,机械制造、生产工艺控制、产品质量控制等学科和领域中,促进了各有关学科的发展。

TEM和SEM的异同比较分析以及环境扫描电镜场知识交流

TEM和SEM的异同比较分析以及环境扫描电镜,场发射电镜与传统电镜相比较的技术特点和应用 xrd是x射线衍射,可以分析物相,SEM是扫描电镜,主要是观察显微组织,TEM是透射电镜,主要观察超限微结构。AES 是指能谱,主要分析浓度分布。STM扫描隧道显微镜,也是观察超微结构的。AFM是原子力显微镜,主要是观察表面形貌用的。 TEM: 透射电子显微镜(英语:Transmission electron microscope,缩写TEM),简称透射电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像。通常,透射电子显微镜的分辨率为0.1~0.2nm,放大倍数为几万~百万倍,用于观察超微结构,即小于0.2μm、光学显微镜下无法看清的结构,又称“亚显微结构”。TEM是德国科学家Ruskahe和Knoll在前人Garbor和Busch的基础上于1932年发明的。 编辑本段成像原理透射电子显微镜的成像原理可分为三种情况:

吸收像:当电子射到质量、密度大的样品时,主要的成相作用是散射作用。样品上质量厚度大的地方对电子的散射角大,通过的电子较少,像的亮度较暗。早期的透射电子显微镜都是基于这种原理TEM透射电镜 。衍射像:电子束被样品衍射后,样品不同位置的衍射波振幅分布对应于样品中晶体各部分不同的衍射能力,当出现晶体缺陷时,缺陷部分的衍射能力与完整区域不同,从而使衍射钵的振幅分布不均匀,反映出晶体缺陷的分布。相位像:当样品薄至100A以下时,电子可以穿过样品,波的振幅变化可以忽略,成像来自于相位的变化。 编辑本段组件电子枪:发射电子,由阴极、栅极、阳极组成。阴极管发射的电子通过栅极上的小孔形成射线束,经阳极电压加速后射向聚光镜,起到对电子束加速、加压的作用。聚光镜:将电子束聚集,可用于控制照明强度和孔径角。样品室:放置待观察的样品,并装有倾转台,用以改变试样的角度,还有装配加热 、冷却等设备。物镜:为放大率很高的短距透镜,作用是放大电子像。物镜是决定透射电子显微镜分辨能力和成像质量的关键。中间镜:为可变倍的弱透镜,作用是对电子像进行二次放大。通过调节中间镜的电流,可选择物体的像或电子衍射图来进行放大。透射镜:为高倍的强透镜,用来放大中间像后在荧光屏上成像。此外还有二级真空泵来对样品室抽真空、照相装置用以记录影像。 编辑本段应用透射电子显微镜在材料科学、生物学上应用较多。由于电子易散射或被物体吸收,故穿透力低,样品的密度、厚度等都会影响到最后

SEM(扫描电子显微镜)的原理

扫描电子显微镜(Scanning Electronic Microscopy, SEM) 扫描电镜(SEM)是介于透射电镜和光学显微镜之间的一种微观性貌观察手段,可直接利用样品表面材料的物质性能进行微观成像。扫描电镜的优点是,①有较高的放大倍数,20-20万倍之间连续可调;②有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;③试样制备简单。目前的扫描电镜都配有X射线能谱仪装置,这样可以同时进行显微组织性貌的观察和微区成分分析,因此它是当今十分有用的科学研究仪器。 电子束与固体样品的相互作用 扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得对是试样表面性貌的观察。 具有高能量的入射电子束与固体样品的原子核及核外电子发生作用后,可产生多种物理信号如下图所示。 电子束和固体样品表面作用时的物理现象 一、背射电子 背射电子是指被固体样品原子反射回来的一部分入射电子,其中包括弹性背反射电子和非弹性背反射电子。 弹性背反射电子是指倍样品中原子和反弹回来的,散射角大于90度的那些入射电子,其能量基本上没有变化(能量为数千到数万电子伏)。非弹性背反射电子是入射电子和核外电子撞击后产生非弹性散射,不仅能量变化,而且方向也发生变化。非弹性背反射电子的能量范围很宽,从数十电子伏到数千电子伏。 从数量上看,弹性背反射电子远比非弹性背反射电子所占的份额多。背反射电子的产生范围在100nm-1mm深度,如下图所示。 电子束在试样中的散射示意图 背反射电子产额和二次电子产额与原子序束的关系背反射电子束成像分辨率一般为50-200nm (与电子束斑直径相当)。背反射电子的产额随原子序数的增加而增加(右图),所以,利用背反射电子作为成像信号不仅能分析新貌特征,也可以用来显示原子序数衬度,定性进行成分分析。 二、二次电子 二次电子是指背入射电子轰击出来的核外电子。由于原子核和外层价电子间的结合能很小,当原子的核外电子从入射电子获得了大于相应的结合能的能量后,可脱离原子成为自由电子。如果这种散射过程发生在比较接近样品表层处,那些能量大于材料逸出功的自由电子可从样品表面逸出,变成真空中的自由电子,即二次电子。

扫描电镜成像原理

扫描电镜成像原理:用聚焦电子束在试样表面逐点扫描成像。成像信号可以是二次电子、背散射电子或吸收电子。其中二次电子是最主要的成像信号。由电子枪发射的电子,经过二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺序作栅网式扫描。聚焦电子束与试样相互作用,产生二次电子发射(以及其他物理信号),二次电子发射量随试样表面形貌而变化。二次电子信号被探测器收集转换成电信号,经视频放大后输入到显像管栅极,调制与入射电子同步扫描的显像管亮度,得到反映试样表面形貌的二次电子像。 四、色质联用技术 优点:结合了色谱分离和定量以及质谱定性分析的优点。近乎通用的响应,低检出限,化合物结构测定。 1、气相色谱质谱联用 气质联用仪是分析仪器中较早实现联用技术的仪器。在所有联用技术中气质联用GC-MS)发展最完善,应用最广泛。目前从事有机物分析的实验室几乎够把GCMS作为主要的定性确认手段之一。 气质联用与气相色谱的区别 ?GC-MS方法的定性参数增加,定性可靠。 ?GC-MS检测灵敏度远高于气相的其他检测器。 ?GC-MS可采用选择离子分离气相上不能分离的化合物,降低噪音提高信噪比。

?一般经验来说质谱仪器定量不如气相色谱。但是采用同位素稀释和内标等技术GC-MS可以达到较高精度的定量分析。 谱库检索技术 随着计算机的发展,人们将标准电离条件下(EI源,70eV)大量纯化合物的标准质谱图存在计算机内生成质谱谱库。实际工作中得到的未知物的质谱图可以和谱库中的质谱图按照一定的程序进行比较,将相似度高化合物检出。这大大优化和减少了人工的工作量。 2、液相色谱质谱联用 ?真空度匹配:现有商品化的液质联用仪器都设计增加了真空泵的抽速,并采用分段多级抽真空的方法来满足质谱的要求。 ?接口技术:HPLC的质量流量比常规质谱所能处理的流量高2-3个数量级如何在不分解的情况下蒸发非挥发性及热不稳定性的物质 3、色质联用技术的应用 气质联用(GC-MS)的应用领域:气质联用已经成为有机化合物常规检测中的必备工具。环保领域的有机污染物检测,特别是低浓度的有机污染物;药物研究生产质控的进出口环节;法庭科学中对燃烧爆炸现场调查,残留物检验;石油化工,食品安全领域;竞技体育中兴奋剂检测等领域。 质联用(LC-MS)的应用领域 液质联用技术已经在药物、化工、临床医学、分子生物学等许多领域得到了广泛的应用。对于有机合成中间体、药物代谢物、基因工程产品的大量分析结果为生产和科研提供了许多有价值的数据。液质联用

扫描电子显微镜(SEM)的应用

扫描电子显微镜的应用 1. 扫描电子显微镜概述 将电子束会聚成很小的探针在试样表面扫描,同时接收从试样表面发出的二次电子等信息,获得与入射电子探针位置同步的二维图像,这样的电子显微镜就称为扫描电子显微镜(SEM scanning electron microscope),这种观察方法扫描电子显微方法(scanning electron microscopy)。现在SEM大都与能谱(EDS)组合,可以进行成分分析。 图1扫描电子显微镜成像示意图 扫描电子显微镜主要特点: (1)分辨能力较高,可达100?以下。 (2)放大倍数连续调节的范围大(20至200000倍),而且在高放大倍数下能够得到亮度较大的清晰图像。则有效放大率40000倍,如果选择高于40000倍的放大倍率,不会增加图像细节,只是虚放。 (3)景深大,视野大,图像具有立体感。景深大的图像立体感强,对粗糙不平的断口样品观察需要大景深的SEM。长工作距离、小物镜光阑、低放大倍率能得到大景深图像。一般情况下,SEM景深比透射电镜TEM大10倍,比光学显微镜大100倍。 (4)试样制备简单。样品通常不需要作任何处理即可以直接进行观察,所以不会由于制样原因而产生假象。这对断口的失效分析很重要。 (5)可在同一试样上进行形貌观察、微区成分分析和晶体学分析。现在许多SEM具有图像处理和图像分析功能。有的SEM加入附件后,能进行加热、冷却、拉伸及弯曲等动态过程的观察。 2. 扫描电子显微镜的功能 (1)形貌分析:观察各种材料试样的微观形貌。 (2)结构分析:观察各种材料试样的晶粒、晶界及其相互关系。 (3)断口分析:确定金属材料的断裂性质。 (4)晶粒度分析:确定试样的晶粒尺寸、晶粒度。 (5)定性分析:确定试验中可检测的元素名称。 (6)定量分析:确定试验中可检测的元素含量。

扫描电镜在材料表面形貌观察及成分分析中应用

扫描电镜在材料表面形貌观察及成分分析中的应用 一、实验目的 1)了解扫描电镜的基本结构和工作原理,掌握扫描电镜的功能和用途; 2)了解能谱仪的基本结构、原理和用途; 3)了解扫描电镜对样品的要求以及如何制备样品。 二、实验原理 (一)扫描电镜的工作原理和结构 1. 扫描电镜的工作原理 扫描电镜是对样品表面形态进行测试的一种大型仪器。当具有一定能量的入射电子束轰击样品表面时,电子与元素的原子核及外层电子发生单次或多次弹性与非弹性碰撞,一些电子被反射出样品表面,而其余的电子则渗入样品中,逐渐失去其动能,最后停止运动,并被样品吸收。在此过程中有99%以上的入射电子能量转变成样品热能,而其余约1%的入射电子能量从样品中激发出各种信号。如图1所示,这些信号主要包括二次电子、背散射电子、吸收电子、透射电子、俄歇电子、电子电动势、阴极发光、X射线等。扫描电镜设备就是通过这些信号得到讯息,从而对样品进行分析的。 图1 入射电子束轰击样品产生的信息示意图

从结构上看,扫描电镜主要由七大系统组成,即电子光学系统、探测、信号处理、显示系统、图像记录系统、样品室、真空系统、冷却循环水系统、电源供给系统。 由图2我们可以看出,从灯丝发射出来的热电子,受2-30KV电压加速,经两个聚光镜和一个物镜聚焦后,形成一个具有一定能量,强度和斑点直径的入射电子束,在扫描线圈产生的磁场作用下,入射电子束按一定时间、空间顺序做光栅式扫描。由于入射电子与样品之间的相互作用,从样品中激发出的二次电子通过收集极的收集,可将向各个方向发射的二次电子收集起来。这些二次电子经加速并射到闪烁体上,使二次电子信息转变成光信号,经过光导管进入光电倍增管,使光信号再转变成电信号。这个电信号又经视频放大器放大,并将其输入到显像管的栅极中,调制荧光屏的亮度,在荧光屏上就会出现与试样上一一对应的相同图像。入射电子束在样品表面上扫描时,因二次电子发射量随样品表面起伏程度(形貌)变化而变化。 故视频放大器放大的二次电子信号是一个交流信号,用这个交流信号调制显像管栅极电,其结果在显像管荧光屏上呈现的是一幅亮暗程度不同的,并反映样品表面起伏程度(形貌)的二次电子像。应该特别指出的是:入射电子束在样品表面上扫描和在荧光屏上的扫描必须是“同步”,即必须用同一个扫描发生器来控制,这样就能保证样品上任一“物点”样品A点,在显像管荧光屏上的电子束恰好在A’点即“物点”A与“像点” A’在时间上和空间上一一对应。通常称“像点”A’为图像单元。显然,一幅图像是由很多图像单元构成的。 扫描电镜除能检测二次电子图像以外,还能检测背散射电子、透射电子、特征x射线、阴极发光等信号图像。其成像原理与二次电子像相同。 在进行扫描电镜观察前,要对样品作相应的处理。扫描电镜样品制备的主要要求是:尽可能使样品的表面结构保存好,没有变形和污染,样品干燥并且有良好导电性能。

S-4800日立扫描电子显微镜(SEM)简易操作指南(通用版) (1)

S-4800日立扫描电子显微镜(SEM)简易操作指南 一、开机前准备 1.1制备样品(带口罩与手套进行) SEM样品制备相对简单,原则上只要能放入样品室的样品,都可进行观察。但需注意以下事项: a)样品在物理上和化学上必须要保持稳定,在真空中和电子束轰击下不挥发或变形, 没有腐蚀性和放射性。(通常是干燥固体。) b)由于光源是电子,样品必须导电,非导电样品可喷镀金膜。金膜在一定程度上会影 响样品原有形貌。(若样品本身导电,衬底不导电,如蓝宝石上的ZnO,只需用导 电胶把样品表面连到样品台。) c)由于物镜有强磁性,带有磁性的样品制样必须非常小心,防止在强磁场中样品被吸 入物镜或分散在样品室中。通常磁性样品必须退磁,且工作距离(WD)须大于8mm。 具体操作过程: (1) 按待测样品数量选择样品台,(支持直径d=5mm,15mm,1 inch,2 inch等规格,若要观测截面可选择带角度的样品台)。 (2) 剪一小段导电胶,粘到样品台上。若样品为粉末,则把粉末撒到导电胶上,用吸耳球或高压氮气吹扫掉导电胶上未粘紧的粉末;若是块状样品,则把样品牢牢粘到导电胶上,用手轻轻推,样品不会左右晃动。(为观测时方便定位,将样品排列成行(或列),并在行下方(或列左侧)标上数字编号。) (3) 样品粘贴完成后,用吸耳球或高压氮气吹扫掉样品台上的粉末、灰尘、水珠、唾沫等(会影响照片质量,甚至使真空度下降而无法加高压,推荐认真执行。) 1.2查看真空度 打开前面板盖,点击MODE按钮直至IP1指示灯闪,在登记表记下MULT INDICATOR数码显示管的读数,同理读取IP2,IP3并记录。确认IP1<2E-7,IP2<2E-6,IP3<5E-5。(通常情况都是IP1显示0E-8,IP2显示0E-8,IP3显示0E-8或aE-7,1

三硫化二砷纳米微球的扫描电镜观察和图像分析

三硫化二砷纳米微球的扫描电镜观察和图像 分析 【摘要】目的:对制备的砷类中药雌黄(三硫化二砷)纳米微球进行表征,为进一步探索纳米雌黄的抗癌机理提供实验基础。方法:(1)以砒霜、硫代乙酰胺、盐酸为原料,采用化学法制备雌黄纳米微球;(2)用扫描电镜、X射线能谱、图像分析系统对雌黄纳米微球进行分析表征。结果:实验制备的雌黄纳米微球电镜下呈圆形或椭圆形,分散性较好,图像分析系统示平均粒径为440 nm。结论:采用化学法可制备雌黄纳米微球。 【关键词】雌黄纳米微球表征 砷制剂对肿瘤的治疗是近年来的研究热点,特别是对白血病的治疗为人们所关注。近年来,国内外学者在砷剂抗癌研究方面取得了可喜的成就[13],大量的临床实践和基础研究已证明含砷类中药在肿瘤治疗方面有广阔的应用前景。但传统砷制剂的临床应用目前仍存在不少问题,如毒副作用大、颗粒偏大、生物利用度较低等。本研究采用化学合成法制备三硫化二砷(As2S3,雌黄)纳米微球,并对其相关特性进行扫描电镜观察、能谱和图像分析。 1 材料与方法 1.1 主要试剂与仪器 As2O3(Sigma公司);传统As2S3粉末(上海化学试剂采购公司,纯度为97%);硫代乙酰胺(TAA,国药集团化学试剂有限公司,分析纯);37%盐酸(南京化学试剂一厂,分析纯);无水乙醇(上海宏图化

学试剂厂,分析纯);扫描电镜(JEOL JSM6360LV,日本);能谱仪(Thermo NORAN,vantage,美国);CMIAS98A图像分析系统(北京航空航天大学)。 1.2 As2S3 纳米微球制备 配制一定浓度的As2O3盐酸溶液。量取一个体积去离子水,在磁力搅拌下分别向其中加入等量的上述As2O3盐酸溶液。精确称取配方量的TAA,使之溶于适量的水中,在磁力搅拌下取TAA溶液滴加至上述反应体系中,滴加完毕后继续搅拌数分钟,分别水浴至溶液变浑浊。次日滴铜网1张后离心,弃上清,去离子水洗涤,适当温度烘干。 1.3 As2S3 纳米微球的电镜形态学观察和能谱表征 取出少量自行研制的As2S3纳米粒胶体溶液,滴有膜铜网,晾干,制得电镜样品,在JEM2010扫描电镜下随机选几个视野观察拍照,同时用X射线能谱仪(EDS)对自制的As2S3纳米粒进行元素成分及其含量分析,以检测As2S3纳米粒的组成。检测条件为Accelerating voltage: 200 keV; Take off angle: 3.94519°; Live time:174 seconds; Dead time: 66.23 seconds。同时对传统的雌黄粉末进行观察比对。 1.4 As2S3 纳米微球平均粒径的图像分析 制备的As2S3纳米微球经无水乙醇超声分散后用扫描电镜拍照,而后将照片用图像扫描仪扫描并输入计算机中,CMIAS98A图像分析系统进行图像分析,计算平均粒径和圆度等指标。 2 结果 传统的As2S3粉末在扫描电镜下呈多边形或不规则晶体状,直径

扫描电镜成像原理

扫描电镜成像原理 扫描成像原理如下图所示,电子枪1(钨丝枪或LaB6枪或场发射枪等)发射一束电子,这就是电子源,其最少截面的直径为d0,对钨丝枪而言大约为20~50μm (场发射枪大约为10~20nm ) ,这个小束斑经3 和5 两级聚光镜进一步缩小几百倍,最后再经物镜缩小并聚焦在样品面上,这时束斑10 直径最小可到3~6nm (约小于扫描电镜的分辨本领),电子束打在样品上,就产生上节所述的各种信号。二次电子和背散射电子信号是最常用的两种信号,尤其是二次电子。信号由接收器取出,经光电倍增器和电子放大器放大后,作为视频信号去调制高分辨显示器的亮度,因此显示器上这一点的亮度与电子束打在样品上那一点的二次电子发射强度相对应。由于样品上各点形貌等各异,其二次电子发射强度不同,因此显示器屏上对应的点的亮度也不同。用同一个扫描发生器产生帧扫和行扫信号,同时去控制显示的偏转器和镜筒中的电子束扫描偏转器,使电子束在样品表面上与显示器中电子束在荧光屏上同步进行帧扫和行扫,产生相似于电视机上的扫描光栅。这两个光栅的尺寸比就是扫描电镜的放倍数。在显示器屏幕光栅上的图像就是电子束在样品上所扫描区域的放大形貌像。图像中亮点对应于样品表面上突起部分,暗点表示凹的部分或背向接收器的阴影部分。由于显示器屏幕上扫描尺寸是固定的,如14in(1in= 25.4mm)显示器的扫描面积是267×200mm2,在放大倍数为十万倍时样品面上的扫描面积为2.67×2 μm2如放大倍数为20 倍时,则为13.35×10mm2。因此改变电子束扫描偏转器的电流大小,就可改变电子束在样品上的扫描尺寸,从而改变扫描电镜的放大倍数。 扫描电镜的分辨本领一般指的是二次电子像的空间分辨本领,它是在高放大倍数下,人们能从照片中分清两相邻物像的最小距离。通常是用两物像边缘的最小距离来计算。但照片放大近十万倍后,边缘轮廓往往不十分清晰敏锐,难以测量准确。现在多数人喜欢用两个亮点(或黑点)之间的中心距离来表示,像透射电镜的分辨本领测试一样,这种方法比较严格可靠。 二次电子像和背散射电子像是最常用的两种成像模式。二次电子像是用二次电子探头取出二次电子信号而成的样品表面形貌像,这是扫描电镜的最主要和最基本工作模式,它的分辨率高、图像立体感强。背散射电子像是用背散射电子探头取出背散射电子信号而成的像,它的分辨率和像的质量虽不如二次电子像,立体感也差,但它可以得到样品中大致的成分分布值化、、二值图滤波以及二值图运算。 图像二值化,是把灰度图像转化成为二值图像,即只有黑,白两种灰度的图像。设定一个灰度值作阀值,图像中任何一个像素的灰度大于此值的则用白色(255)代替其灰度,小于则用黑色(0)代替。若经二值分割出的二值图不够理想则可用二值图滤波进行再处理。二值图滤波有①填洞。对整幅图像进行处理,把画面上一些孤立点滤掉。②腐蚀滤波。去掉一些与提取特征不相关联的部分。先设定一个一定小如3×3 的矩阵,令此矩阵在图像的每个像素上移动,若矩阵的中心点在物体内,则一切不变;若矩阵中心点在背叉斑成像在物镜的前焦平面上,经物镜后电子束接近平行束并射到样品面上,它的发射角只侠定于双聚细境

简述扫描电镜的构造及成像原理

试分析其简述扫描电镜的构造及成像原理,与透射电镜在样品表征方面的异同 1、扫描电镜的构造和真空系统三部分组扫描电镜由电子光学系统、信号收集和图像显示系统、成。 电子光学系统(镜筒)1.1 电子光学系统包括电子枪、电磁透镜、扫描线圈和样品室。 1.1.1 电子枪扫描电子显微镜中的电子枪与透射电镜的电子枪相似,只是加速电压比透射电镜低。 1.1.2 电磁透镜扫描电子显微镜中各电磁透镜都不作成像透镜用,而是做聚光镜用,它们的功能只是把电子枪的束斑逐级聚焦缩小,使原来直径约为50um的束斑缩小成一个只有数个纳米的细小斑点,要达到这样的缩小倍数,必须用几个透镜来完成。扫描电子显微镜一般都有三个聚光镜,前两个聚光镜是强磁透镜,可把电子束光斑缩小,第三个聚光镜是弱磁透镜,具有较长的焦距。布置这个末级透镜(习惯上称之物镜)的目的在于使样品室和透镜之间留有一定空间,以便装入各种信号探测器。扫描电子显微镜中照射到样品上的电子束直径越小,就相当于成像单元的尺寸越小,相应的分辨率就越高。采用普通热阴极电子枪时,扫描电子束的束径可达到6nm左右。若采用六硼化镧阴极和场发射电子枪,电子束束径还可进一步缩小。. 1.1.3 扫描线圈扫描线圈的作用是使电子束偏转,并在样品表面作有规则的扫动,电子束在样品上的扫描动作和显像管上的扫描动作保持严格同步,因为它们是由同一扫描发生器控制的。 1.1.4 样品室样品室内除放置样品外,还安置信号探测器。各种不同信号的收集和相应检测器的安放位置有很大关系,如果安置不当,则有可能收不到信号或收到的信号很弱,从而影响分析精度。样品台本身是一个复杂而精密的组件,它

应能夹持一定尺寸的样品,并能使样品作平移、倾斜和转动等运动,以利于对样品上每一特定位置进行各种分析。新式扫描电子显微镜的样品室实际上是一个微型试验室,它带有许多附件,可使样品在样品台上加热、冷却和进行机械性能试验(如拉伸和疲劳)。 1.2 信号的收集和图像显示系统 二次电子、背散射电子和透射电子的信号都可采用闪烁计数器来检测。信号电子进入闪烁体后即引起电离,当离子和自由电子复合后就产生可见光。可见光信号通过光导管送入光电倍增器,光信号放大,即又转化成电流信号输出,电流信号经视频放大器放大后就成为调制信号。如前所述,由于镜筒中的电子束和显像管中电子束是同步扫描的,而荧光屏上每一点的亮度是根据样品上被激发出来的信号强度来调制的,因此样品上各点的状态各不相同,所以接收到的信号也不相同,于是就可以在显像管上看到一幅反映试样各点状态的扫描电子显微图像。 1.3 真空系统 为保证扫描电子显微镜电子光学系统的正常工作,对镜筒内的真空度有一定-2 -3 Pa10-1.33×的要求。一般情况下,如果真空系统能提供1.33×10的真空度时,就可防止样品的污染。如果真空度不足,除样品被严重污染外,还会出现灯丝寿命下降,极间放电等问题。 2、扫描电镜的成像原理 扫描电镜是由电子枪发射并经过聚焦的电子束在样品表面扫描,激发样品产生各种物理信号,经过检测、视频放大和信号处理,在荧光屏上获得能反映样品表面各种特征的扫描图像。 3、分析扫描电镜与透射电镜在样品表征方面的异同 3.1 结构差异 主要体现在样品在电子束光路中的位置不同,透射电镜的样品在电子束中间,电子源在样品上方发射电子,经过聚光镜,然后穿透样品后,有后续的电磁扫描电镜的样品在电子束末端,最后投影在荧光屏幕上;透镜继续放大电子光束, 电子源在样品上方发射的电子束,经过几级电磁透镜缩小,到达样品。当然后续的信号探测处理系统的结构也会不同,但从基本物理原理上讲没什么实质性差别。 相同之处:都是电真空设备,使用绝大部分部件原理相同,例如电子枪,磁透镜,各种控制原理,消象散,合轴等。 3.2 基本工作原理 透射电镜:电子束在穿过样品时,会和样品中的原子发生散射,样品上某一点同时穿过的电子方向是不同,这样品上的这一点在物镜1-2倍焦距之间,这些电子通过过物镜放大后重新汇聚,形成该点一个放大的实像,这个和凸透镜成像原理相同。这里边有个反差形成机制理论比较深就不讲,但可以这么想象,如果样品内部是绝对均匀的物质,没有晶界,没有原子晶格结构,那么放大的图像也不会有任何反差,事实上这种物质不存在,所以才会有这种牛逼仪器存在的理由。经过物镜放大的像进一步经过几级中间磁透镜的放大,最后投影在荧光屏上成像。

相关文档
最新文档