2021量子力学考研与量子力学考点复习笔记

2021量子力学考研与量子力学考点复习笔记
2021量子力学考研与量子力学考点复习笔记

2021量子力学考研与量子力学考点复习笔

一、考研真题与解题的思路

43试求屏蔽库仑场的微分散射截面。[浙江大学2014研]

【解题的思路】

对于屏蔽库仑场,可以直接使用玻恩近似计算微分散射截面。

【解答】

由玻恩近似可得微分散射截面为

【知识储备】

玻恩近似法

①适用条件

(高能散射)

②微分散射截面

其中U (r )为粒子和散射中心相互作用的势能,K →=k →′-k →,k →′,k →

分别为粒子散射前后的波矢,并且,θ是散射角。

【拓展发散】

对于本题所给信息,也可以用分波法计算,并将计算结果与玻恩近似的结果比较。 44设算符A 和B 不对易,

,但A 和B 都与C 对易,即

,试证明:

(1),n 为正整数;

(2)

[厦门大学2012研]

【解题的思路】

根据所给条件,利用对易恒等式关系,推导出递推关系,即可得证。

【解答】

(1)因为

所以

(2)

【知识储备】

①e指数函数的展开式

②对易式中满足的基本恒等式

[A,B+C]=[A,B]+[A,C]

[A,BC]=B[A,C]+[A,B]C

[AB,C]=A[B,C]+[A,C]B

[A,[B,C]]+[B,[C,A]]+[C,[A,B]]=0 45粒子被束缚在半径为r的圆周上运动。

(1)设立路障进一步限制粒子在的一段圆弧上运动,即

求解粒子的能量本征值和本征函数。

(2)设粒子处于情形(1)的基态,求突然撤去路障后,粒子仍然处于最低能量态的几率是多少?

[南京大学2002研] 【解题的思路】

分析题意,这是不随时间改变的势场,所以可以直接使用定态薛定谔方程和波函数性质求解能量本征值和本征波函数。

【解答】

(1)当时,;当时,粒子的转动惯量为,

对应的哈密顿量为。

由定态薛定谔方程可得

求解得

由波函数的连续性可得,即,所以

,即,所以,因此

由波函数的归一化条件可得

(2)当撤去路障后,粒子的本征波函数和本征能量为

其中。

由本征波函数的完备性可得

由傅里叶变换可得

因此

所以粒子仍然处于最低能量态的几率是

【知识储备】

定态薛定谔方程

【拓展发散】

改变变化方式,缓慢撤去路障,求解粒子仍然处于最低能量态的几率,并且将结果和突然撤去路障的结果比较,区别这两种情形对量子态的影响。

46设算符,且。

证明:如果是的本征函数,对应的本征值为,则波函数也是N的本征函数,对应的本征值为;而也是N的本征函数,对应的本征值为。

[南京大学2002研] 【解题的思路】

利用本征方程的定义,以及升降算符的对易关系。

【解答】

根据题意,N的本征方程为。因为,所以

即波函数是N的本征函数,对应的本征值为;

即波函数是N的本征函数,对应的本征值为。

【知识储备】

①本征方程

②升算符(也称产生算符)

降算符(也称湮灭算符)

粒子湮灭算符满足

粒子产生算符满足

47三个自旋为1/2的粒子,它们的哈密顿量为,求其本征值和简并度。[北京大学2000研]

【解题的思路】

分析哈密顿量的表达式,这是对称的形式,可以通过三个自旋算符的和式平方转化而得,如此则可以比较方便的求解。

【解答】

分析题意,哈密顿量为

这是对称的形式,所以

总自旋为

因此

所以哈密顿量为

明显可知哈密顿量的本征态为

,本征值为

由角动量的合成可得,三个自旋为1/2的总自旋为1/2或者3/2。 所以

简并度为4;

简并度为4。 【知识储备】

S ⌒

在空间任意方向上的投影只能取两个数值

,满足

记S 2=s (s +1)?2,则s =1/2,称s 为自旋量子数。 【拓展发散】

三个自旋为1/2的粒子,它们的哈密顿量为,利用同样的对称思

想可以求其本征值和简并度。

48设有两个质量为m 的一维全同粒子,它们之间的相互作用为(a

>0),

(1)若粒子自旋为0,写出它们的相对运动的基态能量和波函数;

(2)若粒子自旋为,写出它们的相对运动的基态及第一激发态能量和波函数。

[北京大学2001研] 【解题的思路】

分析两个粒子的势能形式,与谐振子势相同,之后要考虑它们是全同粒子还是非全同粒子,根据它们对波函数的对称性要求,就可以通过构造波函数坐标部分和自旋部分各自的交换对称性来最终满足总波函数的对称性要求。

【解答】(1)对于两个粒子间的势场为,可以固定一个粒子,即令

其中,,。

若粒子自旋为0,总自旋s=0,则基态能量为

对应的波函数为

(2)若粒子自旋为,则它们都是费米子,总波函数满足交换反对称性。

基态:

能量为

波函数为

第一激发态:

能量为

波函数为

或者

或者

【知识储备】

①谐振子势能满足方程

本征值

振子的基态(n=0)能量,零点能

本征函数

其中

②自旋单态和三重态

若不考虑两电子自旋相互作用,两电子对称自旋波函数χS和反对称自旋波函数χA,分别写为

49简答题:

(1)在中心力场中,粒子处于定态,轨道角动量是否有确定值?

(2)写出坐标的本征态在动量表象中的表示及动量的本征态在坐标表象中的表示。

(3)若在薛定谔绘景中,,试给出海森堡绘景中的。

[北京大学2001研] 【解题的思路】

①理解中心力场的对称性和轨道角动量的表达式;

②熟练运用傅里叶变换,了解对自由粒子在动量表象和坐标表象中的不同表达形式;

③了解三种不同绘景,以及薛定谔绘景、海森堡绘景和相互作用绘景之间的相互转换。

【解答】

(1)不一定;

(2)坐标的本征态在动量表象中的表示为

动量的本征态在坐标表象中的表示为

(3)

50自旋1/2的粒子处于磁场B中,该粒子绕磁场进动的角频率记为ω=γB。设t=0时粒子处于自旋朝下态,求t时刻粒子仍处于该态的几率。[中国科学院2006研]

【解题的思路】

①本题是典型的已知在一力场中运动的初始状态,要求解t时刻的波函数,从而了解粒子所处状态的几率问题;

②利用含时薛定谔方程来求解波函数,即

③对于自旋1/2的粒子处于磁场B中的哈密顿量为

.

【解答】

因为

所以

对于自旋1/2的粒子处于磁场B中的哈密顿量为

其中

因为

所以

因此

其中

所以

因此,可以从波函数得出t 时刻粒子仍处于自旋向下态的几率为

【知识储备】

①波函数随时间的变化规律由含时薛定谔方程给出

当U (r →

,t )与t 无关时,可以利用分离变量法,将时间部分的函数和空间部分的函数分开考虑, (r →

)满足定态薛定谔方程

此方程即是能量算符的本征方程。其中,整个定态波函数的形式为

一般情况下,若所求解能量的本征值是不连续的,则最后的波函数写成各个能量定态波函数的求和形式;如果能量是连续值,则相应的写成积分形式。 ②自旋算符

泡利算符σ∧

满足下列关系:

在σ∧z 表象中,σ∧x ,σ∧y ,σ∧

z 的表示矩阵分别为:

【拓展发散】

①粒子处于磁场B 中初始状态的自旋为1/2和-1/2的叠加态,如

,最后可以问粒子在t 时刻处在自旋为1/2或者-1/2的几

率;

②当粒子处于磁场B 中初始状态的自旋为1/2,也可以问粒子在t 时刻发生跃迁到自旋为-1/2的几率;

③类似于本题的粒子处在电磁场中的问题,也可以用来考查微扰的相关知识,比如定态非简并微扰和含时微扰,可用来解决跃迁等相关问题。

1概念证明:

(1)证明任意算符的平均值满足如下等式:

(2)若某哈密顿量H 的所有本征态非简并,并且算符f 满足,证明f

和H 可以同时对角化。

[华南理工大学2018研]

【解题的思路】

①对力学量的平均值求时间的导数,可以利用含时薛定谔方程带入计算,由此就可以得出要证明的关系式;

②对于两个互相对易的力学量算符,有共同的本征态。

【解答】(1)因为

并且

所以

(2)设为H的本征函数,则

因为

所以

因此,m≠n时,,则f和H可以同时对角化。

①含时薛定谔方程

②力学量的平均值公式

42设某二能级系统的能级分别为E1、E2(>E1),并有对应的两个无简并定态,在初始时刻系统处于基态,而后加入微扰作用V,试求以后任意时刻系统处于这两个定态的几率。[南京大学2014研]

【解题的思路】

分析题意,这是含时微扰,直接利用含时微扰理论公式带入已知条件即可求解。

【解答】在二能级系统中,加入微扰,可以利用含时微扰理论得

体系在微扰作用下由初态φ1跃迁到终态φ2态的概率幅为

所以相应的跃迁几率为

因此,在t时刻,系统处在φ2态的几率为

系统处在φ1态的几率为

含时微扰理论

含时微扰体系哈密顿量H ∧(t )=H ∧0+H ∧

′(t ),体系波函数ψ所满足的薛定谔方

程为

将ψ按H ∧

0的本征函数φn 展开得

则在t 时刻发现体系处于φm 态的概率是|a m (t )|2。若体系在

t =0时处于H ∧

0的

本征态φk ,则

体系在微扰作用下由初态φk 跃迁到终态φm 态的概率幅为

相应的跃迁概率为

其中

简述建立量子力学基本原理的思想方法

简述建立量子力学基本原理的思想方法 摘要:量子力学是大学物理专业的一门必修理论基础课程,它研究的对象是分子、原子和基本粒子。本文对建立量子力学基本原理的思想方法作一简单叙述,供学员在学习掌握量子力学的基本理论和方法时参考。 关键词:量子力学;力学量;电子;函数 作者简介 0引言 19世纪末,由于科学技术的发展,人们从宏观世界进入到微观领域,发现了一系列经典理论无法解释的现象,比较突出的是黑体辐射、光电效应和原子线光谱。普朗克于1900年引进量子概念后,上述问题才开始得到解决。爱凶斯坦提出了光具有微粒性,从而成功地解释了光电效应。 1量子力学 量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。 2玻尔的两条假设 玻尔在前人工作的基础上提出了两条假设,成功地解释了氢原子光谱,但对稍微复杂的原予(如氦原子)就无能为力。直到1924年德布罗意提出了微观粒子具有波粒二象性之后才得到完整解释。 1924年,德布罗意在普朗克和爱因斯坦假设的基础上提出了微观粒子具有波粒二象性的假设,即德布罗意关系。1927年,戴维孙和革末将电子作用于镍单晶,得到了与x射线相同的衍射现象,从而圆满地说明了电子具有波动性。 2.1自由粒子的波动性和粒子性 它的运动是最简单的一种运动,它充分地反映了自由粒子的波动性和粒子性,将波(平面波)粒( p,E) 二象性统一在其中。如果粒子不是自由的,而是在一个变化的力场中运动,德布罗意波则不能描写。我们将用一个能够充分反映二象性特点的

量子力学简明教程

量子力学教案 主讲周宙安 《量子力学》课程主要教材及参考书 1、教材: 周世勋,《量子力学教程》,高教出版社,1979 2、主要参考书: [1] 钱伯初,《量子力学》,电子工业出版社,1993 [2] 曾谨言,《量子力学》卷I,第三版,科学出版社,2000 [3] 曾谨言,《量子力学导论》,科学出版社,2003 [4] 钱伯初,《量子力学基本原理及计算方法》,甘肃人民出版社,1984 [5] 咯兴林,《高等量子力学》,高教出版社,1999 [6] L. I.希夫,《量子力学》,人民教育出版社 [7] 钱伯初、曾谨言,《量子力学习题精选与剖析》,上、下册,第二版,科学出版社,1999 [8] 曾谨言、钱伯初,《量子力学专题分析(上)》,高教出版社,1990 [9] 曾谨言,《量子力学专题分析(下)》,高教出版社,1999 [10] P.A.M.Dirac,The Principles of Quantum Mechanics (4th edition), Oxford University Press (Clarendon),Oxford,England,1958;(《量子力学原理》,科学出版社中译本,1979) [11]https://www.360docs.net/doc/4816614024.html,ndau and E.M.Lifshitz, Quantum Mechanics (Nonrelativistic Theory) (2nd edition),Addison-Wesley,Reading,Mass,1965;(《非相对论量子力学》,人民教育出版社中译本,1980)

第一章绪论 量子力学的研究对象: 量子力学是研究微观粒子运动规律的一种基本理论。它是上个世纪二十年代在总结大量实验事实和旧量子论的基础上建立起来的。它不仅在进到物理学中占有及其重要的位置,而且还被广泛地应用到化学、电子学、计算机、天体物理等其他资料。 §1.1经典物理学的困难 一、经典物理学是“最终理论”吗? 十九世纪末期,物理学理论在当时看来已经发展到相当完善的阶段。那时,一般物理现象都可以从相应的理论中得到说明: 机械运动(v<

量子力学教程第二版答案及补充练习

第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5 -?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλ λλρλ ρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λ h P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

《上帝掷骰子吗——量子力学史话》读书笔记

《上帝掷骰子吗——量子力学史话》 读书笔记 中学时学的是理科,还记得当时的自己对数学、物理尤为感兴趣,而对化学、生物就兴味索然了。也看过几本科普著作,《数学的语言》、《什么是数学》、《从一到无穷大》,还有加来道雄,阿西莫夫,张景中的系列等等,尤其是《什么是数学》一书,当时是高二快结束的时候,仿佛入了迷一般,从集合论到极限与微分,即便没有任何高数的基础,也看得如痴如醉,连章末习题都做了一遍,虽然拓扑那一章实在是看不懂。谁曾想,这样一个人,居然恍惚中来了财大,学习金融,既非自愿,也非不愿。 大学两年,似乎再没有接触科普著作了,直到近日看了曹天元的《上帝掷骰子吗——量子力学史话》。其内容于我而言,并没有太多的惊喜,毕竟作为科学史,内容上早有前人写过:像第十章《不等式》之前的内容我都看过两三个版本了,即便是最后三章的内容也在加来道雄的书中看过。就是在这样一个许多科普名家都涉猎过的领域中,居然能够开拓一片自留地来。在我眼中,这本书绝对称得上一部优秀的科普著作(尤其是在国内来讲)。之前看到作者简介是个八零后的时候着实有一丝惊讶,我还以为是哪位五六十岁的中年教授写的呢。接下来,言归正传,谈谈阅读体会吧。 首先,从科学性上讲,对我这种现代物理的门外汉而言,就算书中有科学错误,只要不是低级的逻辑错误,我也发现不了呀。但从作

者标注的引文,对一些理论的解释澄清看,是比较严谨的。这部分就只有略过了。 其次,作为科普这种通俗读物,文学性是非常,甚至是最重要的。而曹天元的文笔流畅,语言诙谐幽默,阅读感十足。一百多年的量子力学成长史:从法拉第的电磁实验,到多历史,多世界诠释的提出,数以百计的数学家,物理学家前仆后继,描绘出了一幅波澜壮阔的量子力学画卷。让人心襟荡漾,恨不能立即投入到理论物理的大海中去,寻觅璀璨的量子力学珍珠。同时,作者文风犀利,将物理学界的学术之争描写的如同武侠小说中的江湖帮派纷争一般,大大增加了该书的可读性,如“从黄金年代走来的老人,在革命浪潮中成长起来的反叛青年,经典体系的庄严守护者,新时代的冒险家,这次终于都要作一个最终了断。世纪大辩论的序幕即将拉开,像一场熊熊的大火燃烧不已,而量子论也将在这大火中接受最严苛的洗礼,煅烧出更加璀璨的光芒来。”(摘自第八章-《论战》)这个片段仿佛《倚天屠龙记》中群雄围剿光明顶一般,令人紧张不已。而玻尔与爱因斯坦的争论更是写的如同两位绝世高手过招,简直酣畅淋漓!单从文学性上讲,我觉得曹天元可以和伽莫夫媲美。 除了文学性,科学史的史学性也尤为重要。而本书除了人物对话之外(感觉像是作者自行脑补的),对史实的阐述在我看来是比较严谨的。一百多年的量子力学发家史写的清清楚楚,众多物理学者如走马灯般来来往往。而作者的历史叙事风格与《明朝那些事儿》颇有异曲同工之妙。

量子力学教程-周世勋-课程教案(轻松学量子力学)

量子力学讲义

一、量子力学是什么? 量子力学是反映微观粒子(分子、原子、原子核、基本粒子等)运动规律的理论。 研究对象:微观粒子,大致分子数量级,如分子、原子、原子核、基本粒子等。 二、量子力学的基础与逻辑框架 1.实验基础 ——微观粒子的波粒二象性: 光原本是波 ——现在发现它有粒子性; 电子等等原本是粒子 ——现在发现它有波动性。 2.(由实验得出的)基本图象 —— de Broglie 关系与波粒二象性 Einstein 关系(对波动):E h ν=,h p λ = de Broglie 关系(对粒子): E =ω, p k = 总之,),(),(k p E ω? 3.(派生出的)三大基本特征: 几率幅描述 ——(,)r t ψ 量子化现象 —— ,,,321E E E E = 不确定性关系 ——2 ≥ ???p x 4.(归纳为)逻辑结构 ——五大公设 (1)、第一公设 ——波函数公设:状态由波函数表示;波函数的概率诠释;对波函数性质的要求。 (2)、第二公设 ——算符公设 (3)、第三公设 ——测量公设 ?=r d r A r A )(?)(* ψψ (4)、第四公设 ——微观体系动力学演化公设,或薛定谔方程公设 (5)、第五公设 ——微观粒子全同性原理公设 三、作用 四、课程教学的基本要求 教 材:《量子力学教程》周世勋, 高等教育出版社 参考书:1. 《量子力学》,曾谨言,2. 《量子力学》苏汝铿, 复旦大学出版社 3. 《量子力学习题精选与剖析》钱伯初,曾谨言, 科学出版社

第一章 绪论 §1.1 辐射的微粒性 1.黑体辐射 所有落到(或照射到)某物体上的辐射完全被吸收,则称该物体为黑体。G. Kirchhoff (基尔霍夫)证明,对任何一个物体,辐射本领)T ,(E ν与吸收率)T ,(A ν之比是一个与组成物体的物质无关的普适函数,即 )T ,(f )T ,(A )T ,(E ν=νν (f 与物质无关)。 辐射本领:单位时间内从辐射体表面的单位面积上发射出的辐射能量的频率分布,以)T ,(E ν表示。在t ?时间,从s ?面积上发射出频率在 ν?+ν-ν 范围内的能量为: ν???νs t )T ,(E )T ,(E ν的单位为2 /米焦耳;可以证明,辐射本领与辐射体的能量密度分布的关系为 )T ,(u 4 c )T ,(E ν=ν ()T ,(u ν单位为秒米 焦耳3 ) 吸收率:照到物体上的辐射能量分布被吸收的份额。由于黑体的吸收率为1,所以它的辐射本领 )T ,(f )T ,(E ν=ν 就等于普适函数(与物质无关)。所以黑体辐射本领研究清楚了,就把普适函数(对物质而言)弄清楚了。我们也可以以)T ,(E λ来描述。 ????λ λ ν=λλλν=λλ νν=ννd c )T ,(E d d c d ) T ,(E d d d ) T ,(E d )T ,(E 2 )T ,(E c )T ,(E 2 νν = λ (秒米焦耳?3 ) A. 黑体的辐射本领 实验测得黑体辐射本领 T ,(E λ与λ的变化关系在理论上, ① 维恩(Wein )根据热力学第二定律及用一模型可得出辐射本领 h 32 e c h 2)T ,(E ν-νπ= ν ?? ?=π=k h c c h 2c 22 1(k 为Boltzmann 常数:K 1038.123 焦耳-?)

量子力学基础

《大学物理》作业 No .8量子力学基础 班级 ________ 学号 ________ 姓名 _________ 成绩 _______ 一、选择题:(注意:题目中可能有一个或几个答案正确。) 1. 静止质量不为零的微观粒子作高速运动,这时粒子物质波的波长λ与速度v 有如下关系: [ C ] (A) v ∝λ (B) v 1 ∝λ (C) 2211c v -∝ λ (D) 22v c -∝λ 解:由德布罗意公式和相对论质 — 速公式 2 201 1c v m mv h p -= == λ 得2 20 1 1c v m h - =λ,即2211c v -∝λ 2. 不确定关系式 ≥???x p x 表示在x 方向上 [ D ] (A) 粒子位置不能确定 (B) 粒子动量不能确定 (C) 粒子位置和动量都不能确定 (D) 粒子位置和动量不能同时确定 3. 将波函数在空间各点的振幅同时增大D 倍,则粒子在空间的分布概率将 [ D ] (A) 增大2 D 倍。 (B) 增大2D 倍。 (C) 增大D 倍。 (D) 不变。 4. 已知粒子在一维矩形无限深势阱中运动,其波函数为: )(23cos 1)(a x a a x a x ≤≤-= πψ 那么粒子在6 5a x =处出现的概率密度为 [ A ] a 21(A ) a 1 (B) a 21(C) a 1(D) 解:概率密度 )23(cos 1)(22 a x a x πψ=

将65a x =代入上式,得 a a a a x 21)6523(cos 1)(22=?=πψ 5. 波长 λ = 5000 ?的光沿x 轴正方向传播,若光的波长的不确定量?λ=103-?,则利用不确定关系h p x x ≥???可得光子的x 坐标的不确定量至少为: [ C ] (A) 25cm (B )50cm (C) 250cm (D) 500cm 解:由公式p = λh 知: △322105000 -?-=?-=h h p λλ 利用不确定关系h p x x ≥???,可得光子的x 坐标满足 91025?=?≥ ?x p h x ?=250cm 二、填空题 1. 低速运动的质子和α粒子,若它们的德布罗意波长相同,则它们的动量之比=αP :p p 1:1 ;动能之比=αP :E E 4:1 。 解:由p = λ h 知,动量只与λ有关,所以1:1:αP =p p ; 由非相对论动能公式m p E 22 k =,且αp p p =,所以1:4:αP ==p m m E E α 2. 在B = 1.25×10 2 -T 的匀强磁场中沿半径为R =1.66cm 的圆轨道运动的α粒子的德布罗 意波长是 0.1 ? 。(普朗克常量h = 6.63×10-34J·s ,基本电荷e = 1.6×10-19 C) 解:由牛顿第二定律= evB 2R mv 2得eBR mv p 2==,又由λ h p =得 1.0(m)10998.010 66.11025.1106.121063.62112 21934 ≈?=???????===-----eBR h p h λ? 3. 若令c m h e c = λ (称为电子的康普顿波长,其中m e 为电子静止质量,c 为光速,h 为普

量子力学教程周世勋_课后答案

量子力学课后习题详解 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5 -?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλ λλρλ ρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 '=???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλπρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=,经过验证,此解正是所要求的,这样则有 xk hc T m = λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λ h P = 如果所考虑的粒子是非相对论性的电子(2 c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 6 1051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

2021量子力学考研与量子力学考点复习笔记

2021量子力学考研与量子力学考点复习笔 记 一、考研真题与解题的思路 43试求屏蔽库仑场的微分散射截面。[浙江大学2014研] 【解题的思路】 对于屏蔽库仑场,可以直接使用玻恩近似计算微分散射截面。 【解答】 由玻恩近似可得微分散射截面为 【知识储备】 玻恩近似法 ①适用条件 (高能散射) ②微分散射截面

其中U (r )为粒子和散射中心相互作用的势能,K →=k →′-k →,k →′,k → 分别为粒子散射前后的波矢,并且,θ是散射角。 【拓展发散】 对于本题所给信息,也可以用分波法计算,并将计算结果与玻恩近似的结果比较。 44设算符A 和B 不对易, ,但A 和B 都与C 对易,即 , ,试证明: (1),n 为正整数; (2) [厦门大学2012研] 【解题的思路】 根据所给条件,利用对易恒等式关系,推导出递推关系,即可得证。 【解答】 (1)因为 所以

(2) 【知识储备】 ①e指数函数的展开式 ②对易式中满足的基本恒等式 [A,B+C]=[A,B]+[A,C] [A,BC]=B[A,C]+[A,B]C [AB,C]=A[B,C]+[A,C]B [A,[B,C]]+[B,[C,A]]+[C,[A,B]]=0 45粒子被束缚在半径为r的圆周上运动。 (1)设立路障进一步限制粒子在的一段圆弧上运动,即

求解粒子的能量本征值和本征函数。 (2)设粒子处于情形(1)的基态,求突然撤去路障后,粒子仍然处于最低能量态的几率是多少? [南京大学2002研] 【解题的思路】 分析题意,这是不随时间改变的势场,所以可以直接使用定态薛定谔方程和波函数性质求解能量本征值和本征波函数。 【解答】 (1)当时,;当时,粒子的转动惯量为, 对应的哈密顿量为。 由定态薛定谔方程可得 即 令 求解得 由波函数的连续性可得,即,所以

量子力学基础

量子力学基础 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

第一章量子力学基础 一、教案目的: 通过本章学习,掌握微观粒子运动的特征、量子力学的基本假设,并初步学习运用薛定谔方程去分析和计算势箱中粒子运动的有关问题:b5E2RGbCAP 二、教案内容: 1、微观粒子的运动特征 黑体辐射和能量量子化;光电效应和光子学说;实物粒子的波粒二相性;不确定关系; 2、量子力学基本假设 波函数和微观粒子的状态;物理量和算符;本征态、本征值和薛定谔方程;态叠加原理;泡利原理; 3、箱中粒子的薛定谔方程及其解 三、教案重点 微观粒子运动的特征、量子力学的基本假设 四、教案难点: 量子力学的基本假设 五、教案方法及手段 课堂教案 六、课时分配: 微观粒子的运动特征 2学时 量子力学基本假设 4学时

箱中粒子的薛定谔方程及其解 2学时 七、课外作业 课本p20~21 八、自学内容 1-1微观粒子的运动特征 1900年以前,物理学的发展处于经典物理学阶段<由Newton的经典力学,Maxwell的的电磁场理论,Gibbs的热力学和Boltzmann的统计物理学),这些理论构成一个相当完善的体系,对当时常见的物理现象都可以从中得到说明。p1EanqFDPw 在经典物理学取得上述成就的同时,通过实验又发现了一些新现象,它们是经典物理学无法解释的。如黑体辐射、光电效应、电子波性等实验现象,说明微观粒子具有其不同于宏观物体的运动特征。DXDiTa9E3d 电子、原子、分子和光子等微观粒子,它们表现的行为在一些场合显示粒性,在另一些场合又显示波性,即具有波粒二象性的运动特征。人们对这种波粒二象性的认识是和本世纪物理学的发展密切联系的,是二十世纪初期二十多年自然科学发展的集中体现。RTCrpUDGiT 1.1.1黑体辐射和能量量子化——普朗克< planck)的量子假 说:量子说的起源 黑体是一种能全部吸收照射到它上面的各种波长的光,同时也能在同样条件下发射最大量各种波长光的物体。 带有一个微孔的空心金属球,非常接近于黑体,进入金属球小孔的辐射,经过多次吸收、反射,使射入的辐射全部被吸收。当空腔受热时,空腔壁会发出辐射,极小部分通过小孔逸出。5PCzVD7HxA

周世勋《量子力学教程》(第2版)-量子力学若干进展笔记和课后习题(含考研真题)详解(圣才出品)

第8章量子力学若干进展 8.1复习笔记 一、朗道能级 1.能级推导 电子在均匀外磁场B(沿z 方向)中,取朗道规范后,得定态薛定谔方程: ψψψE p p y B e p m H z y x =????????++???? ??-=22221 鉴于力学量(,,)x z H p p 互相对易,得相应本征态为: )(),,(/)(y e z y x z p x p i z x χψ +=其中,()y χ满足谐振子能量本征值方程(平衡位置在0y ): )()2()()()(2)(22202222y m p E y y y mc eB m y dy d m z χχχ-=-+- 其中,0||x cp y e B =。由此可得出朗道能级:2,1()22 z z p n c p E n m ω=++ 。2.结果讨论 (1)从经典观点出发:电子沿磁场方向做螺旋运动。 从量子观点出发:电子沿磁场方向做自由运动,在垂直磁场方向绕z 轴旋转。(2)磁场对能量贡献1||(2z e n B B mc μ+=- ,0z μ<称为朗道抗磁性,与电荷正负无关,是自由带电粒子在磁场中的一种量子效应。

(3)二维电子气的朗道能级简并度是外磁场?中含元磁通量子(0||hc e ?= )数目。二、阿哈罗诺夫-玻姆效应 在经典电动力学中,场的基本物理量是电场强度E 和电磁感应强度B,势ψ和A 是为了方便引入的,并不是真实的物理量。但在量子力学中,势ψ和A 具有可观测意义。 图8-1 1.实验及其现象 如图8-1,从电子枪S 出射的电子束流经双缝和两条路径21,P P 到达屏上,在两条路径中放置一个很长的电流螺线管,垂直纸面,管内磁场强度B 垂直纸面向外(取为z 轴)。当螺线管通以电流时,屏上出现的干涉条纹产生了移动。 2.现象讨论 (1)因螺线管的外部并不存在磁场,所以经典电动力学中,磁场的物理效应不能完全用B 来进行描述。 (2)当螺线管内有磁通?时,电子经过的外部空间B=0,但0≠A 时,因为对包围螺 线管的任一闭合回路路径积分有?=?φl d A ,矢势A 可以对电子发生相互作用。因此,A-B 效应表明矢势A 具有可测量的物理效应。它可以影响电子束的相位,从而使干涉条纹发生

《费曼讲物理入门》个人笔记

《费曼讲物理:入门》个人笔记 1918-1988.2.15 《费曼讲物理:入门》是从著名的费曼《物理学讲义》节选的六节物理课。内容包括“运动着的原子”、“基础物理学”、“物理学与其他学科的关系”、“能量守恒”、“万有引力理论”、“量子行为”六部分。 费曼:物理学与其他学科的关系

?“理解某种事情”指的是? 组成这个“世界”的运动物体的复杂排列似乎有点像是天神们所下的一盘伟大的国际象棋,我们则是这盘棋的观众….当我们观看了足够长的时间,总能看出几条规则来,而弈棋规则就是我们所说的基础物理。 但是,即使我们知道了每条规则,仍然可能不理解为什么下棋时要走这一步,这仅仅是因为情况太复杂了,而我们的智力确实有限的。 除了我们还在知道所有规则以外,我们真正能用已知规则来解释的事情也非常有限,因为几乎所有的情况都是极其复杂的,我们不能领会这盘棋中应用这些规则的走法,更无法预言下一步将要怎样。 所以,如果我们知道了这些规则,就认为“理解”了世界。 ?实验是任何观念的正确性的唯一试金石。 ?如果一件事情不是科学,这并不意味着其中有什么错误的地方,它只是意味着其它不是科学而已。 1. 化学:受到物理学影响最深; ①理论化学最深刻的部分必定会归结到量子力学;

②统计力学; ③有机化学→生物化学→生物学(无机化学:物理化学,量子化学)

2. 生物学:生物过程中有很多物理现象,比如神经放电 3. 天文学 4. 地质学 5. 心理学 如果我们微不足道的有限智力为了某种方便将这个宇宙分为几个部分:物理,化学,生物,地理,天文,心理等,那么记住,大自然并不知道这一切。

量子力学

Chapter 1 1.Find the de Broglie wavelength for each of the following cases: (a)a 70kg man traveling at 60 km/h; Solution: λ===0.568m; (b)a 1kg stone traveling at 10 m/s; Solution: λ==m=6.63m; (c)a g particle of dust moving at 1 m/s; Solution: λ==m=6.63m; (d)an electron with 3 eV energy; Solution: ===m=0.709m (e)a helium with kinetic energy of E=KT(K is the Boltzmann constant) at T=1.0K. Solution: ===m=m=

1.265m; 2.A pare of positron and electron can be produced by two photons under certain conditions .If the two photons have the same energy ,please find out the maximum wavelength of the photons in order to produce a pare of positron and electron? Solution: When both positron and electron are stationary ,the wavelength of photons is maximum So 2h2 h h λ==2.43nm =2.43nm 3.A particle with mass m moves in the field V(x).Please verify the probability conservation law of +=0. Here and are probability density and current density ,respectively. Solution:

《量子力学简明教程》授课教案

《量子力学》电子教案 杨子元编 宝鸡文理学院物理系

一、简单介绍《量子力学》在物理学中的地位与作用 1.物理学课程体系中,分为基础课与专业课 基础课包括力、热、光、电、原子物理 专业课——四大力学:理论、热统、电动、量子力学 2.大学四年中所学所有课程大多为经典物理(即十八、九世纪物理) 只有在量子力学中才涉及近代物理的内容 3.量子力学是从事物理教学及其研究中的一门基础专业学科(讲授意义) 二、学习中应注意的几个问题 1.关于“概念”问题; 量子力学中物理概念距离我们的生活越来越远,因此更加抽象。例“波函数” 概念(与经典概念比较,例“力”概念) 2.克服经典物理思想的束缚,防止用经典物理方法解决量子力学问题。 例:①轨道概念在量子力学已抛弃;②K P E E E +=不再成立,而用 P K E E E +=表示 3.必要的数学知识:偏微分方程,勒让德多项式,贝塞尔函数,矩阵(尤其是矩阵的对角化),厄米多项式,傅里叶变换。 三、教材与参考书 1.张怿慈 《量子力学简明教程》 人民教育出版社 2.曾谨言 《量子力学》上、下册 科学出版社 3.蔡建华 《量子力学》上、下册 人民教育出版社 4.梁昆淼 《物学物理方法》 人民教育出版社 5.[美]玻姆 量子理论 商务印书馆 6.大学物理(93.9—95.4) 《量子力学自学辅导》

第一章 绪 论 量子力学是反映微观粒子(分子、原子、原子核、基本核子等)运动规律的基础理论,它是本世纪二十年代总结大量事实和旧量子的基础上建立起来的,它不仅是近代物理学的基础,而且被广泛的应用于化学和电子学等领域。 在介绍量子力学之前,首先回顾一下量子力学产生的历史过程。 §1.1 经典物理学的困难 一、困难 1687年,牛顿的划时代巨著《自然哲学的教学原理》在伦敦出现。当时,自然科学没有完全从哲学分划出来,而用了哲学这个名称。 牛顿经典力学的主要内容是它的三大定律,到了十九世纪末,二十世纪初牛顿建立的力学大厦远远超出了这三条定律,可以说整个经典物理的大厦已竣工。 机械运动——牛顿力学 电磁现象——麦氏方程 光 学——波动理论 热 学——完整热力学和玻耳兹曼和吉布斯建立的统计物理学 当时物理学家非常自豪和得意,因为当时几乎所有的新发现都能很好地套进现有的模子中。然而正当经典物理大厦逐渐升高时,它庞大的躯体却产生了两大裂痕。 其一是迈克尔逊——莫雷关于地球相对于以太漂移速度零的结果。 经典力学相对原理表明,力学规律在不同参照系中应有相同形式 S 系 a m F = S/ 系 a m F '=' 也就是说对一切力学现象而言,一切惯性系都是等价的。 麦氏电磁理论中,有一光速C (常数),在伽利略变换下,由麦氏方程推出的波动

周世勋《量子力学教程》(第2版)笔记和课后习题考研真题资料

周世勋《量子力学教程》(第2版)笔记和课后习题(含考研真题)详解完整版>精研学习?>无偿试用20%资料 全国547所院校视频及题库资料 考研全套>视频资料>课后答案>往年真题>职称考试 试读(部分内容) 隐藏 第1章绪论 1.1复习笔记 在十九世纪末、二十世纪初,经典物理取得了巨大的成功,牛顿定律、麦克斯韦方程、热力学和统计力学相继建立并成功应用于物理学研究和工程,但在物理大厦落成的同时,物理学家中的有识之士也意识到了天空中漂浮的乌云。黑体辐射、光电效应和固体的比热等一系类问题是经典物理无法解释的。之后的旧量子论包括玻尔理论、爱因斯坦的光量子和德布罗意波粒二象性假说给物理学的发展带来了希望,它们也为量子力学的发展奠定了基础。 现代物理学中的两大支柱(量子力学、相对论)逐步验证并解释物理实验中的现象的同时,量子力学自身也在不断完善,并发展出了电磁

场量子化理论、解释光子原子相互作用的量子电动力学、应用于原子中核子相互作用的量子色动力学理论,以及当下试图对引力场解释的超弦理论。所以,不论是为了备考还是为了将来的物理学科研,学习好量子力学是十分重要的。量子力学是现代物理学的基石,也是物理科研必备的工具。 【本章重难点】 1.了解经典物理的成功和所面临的危机,以及量子力学的发展历史; 2.掌握德布罗意波粒二象性关系; 3.熟练运用玻尔-索末菲量子化条件。 一、波粒二象性(见表1-1-1) 表1-1-1波粒二象性相关概念

图1-1-1康普顿散射 二、原子结构的玻尔理论 1经典理论在解释原子结构上的困难 (1)经典理论不能建立一个稳定的原子模型(运动的带电粒子发射电磁场); (2)经典理论得出的频率是连续分布的,而实验中的原子光谱是分立的。 2玻尔假设 表1-1-2玻尔假设 3索末菲量子化条件的推广

曾谨言《量子力学教程》(第3版)笔记和课后习题复习答案考研资料

曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解完整版>精研学习网>免费在线试用20%资料 全国547所院校视频及题库资料 考研全套>视频资料>课后答案>往年真题>职称考试 目录 隐藏 第1章波函数与Schr?dinger方程 1.1复习笔记 1.2课后习题详解 1.3名校考研真题详解 第2章一维势场中的粒子 2.1复习笔记 2.2课后习题详解 2.3名校考研真题详解 第3章力学量用算符表达 3.1复习笔记 3.2课后习题详解 3.3名校考研真题详解 第4章力学量随时间的演化与对称性 4.1复习笔记 4.2课后习题详解 4.3名校考研真题详解

第5章中心力场 5.1复习笔记 5.2课后习题详解 5.3名校考研真题详解 第6章电磁场中粒子的运动 6.1复习笔记 6.2课后习题详解 6.3名校考研真题详解 第7章量子力学的矩阵形式与表象变换7.1复习笔记 7.2课后习题详解 7.3名校考研真题详解 第8章自旋 8.1复习笔记 8.2课后习题详解 8.3名校考研真题详解 第9章力学量本征值问题的代数解法9.1复习笔记 9.2课后习题详解 9.3名校考研真题详解 第10章微扰论 10.1复习笔记

10.2课后习题详解 10.3名校考研真题详解 第11章量子跃迁 11.1复习笔记 11.2课后习题详解 11.3名校考研真题详解 第12章其他近似方法 12.1复习笔记 12.2课后习题详解 12.3名校考研真题详解 内容简介 隐藏 本书是曾谨言主编的《量子力学教程》(第3版)的学习辅导书,主要包括以下内容: (1)梳理知识脉络,浓缩学科精华。本书每章的复习笔记均对该章的重难点进行了整理,并参考了国内名校名师讲授该教材的课堂笔记。因此,本书的内容几乎浓缩了该教材的所有知识精华。 (2)详解课后习题,巩固重点难点。本书参考大量相关辅导资料,对曾谨言主编的《量子力学教程》(第3版)的课后思考题进行了详

量子力学基础简答题(经典)

量子力学基础简答题 1、简述波函数的统计解释; 2、对“轨道”和“电子云”的概念,量子力学的解释是什么? 3、力学量G ?在自身表象中的矩阵表示有何特点? 4、简述能量的测不准关系; 5、电子在位置和自旋z S ?表象下,波函数??? ? ??=ψ),,(),,(21z y x z y x ψψ如何归一化?解释各项的几率意义。 6、何为束缚态? 7、当体系处于归一化波函数ψ(,)?r t 所描述的状态时,简述在ψ(,)? r t 状态中测量力学量F 的可能值及其几率的方法。 8、设粒子在位置表象中处于态),(t r ? ψ,采用Dirac 符号时,若将ψ(,)? r t 改写为ψ(,) ? r t 有何 不妥?采用Dirac 符号时,位置表象中的波函数应如何表示? 9、简述定态微扰理论。 10、Stern —Gerlach 实验证实了什么? 11、一个物理体系存在束缚态的条件是什么? 12、两个对易的力学量是否一定同时确定?为什么? 13、测不准关系是否与表象有关? 14、在简并定态微扰论中,如?() H 0的某一能级) 0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…, f ),为什么一般地i φ不能直接作为()H H H '+=???0的零级近似波函数? 15、在自旋态χ 1 2 ()s z 中,?S x 和?S y 的测不准关系(?)(?)??S S x y 22?是多少? 16、在定态问题中,不同能量所对应的态的迭加是否为定态Schrodinger &&方程的解?同一能量对应的各简并态的迭加是否仍为定态Schrodinger &&方程的解? 17、两个不对易的算符所表示的力学量是否一定不能同时确定?举例说明。 18说明厄米矩阵的对角元素是实的,关于对角线对称的元素互相共轭。 19何谓选择定则。 20、能否由Schrodinger &&方程直接导出自旋? 21、叙述量子力学的态迭加原理。 22、厄米算符是如何定义的? 23、据[a ?,+ a ?]=1,a a N ???+=,n n n N =?,证明:1?-=n n n a 。 24、非简并定态微扰论的计算公式是什么?写出其适用条件。

福师结构化学量子力学基础和原子结构课堂笔记

福师《结构化学》第一章量子力学基础和原子结构课堂笔记 ◆主要知识点掌握程度 了解测不准关系,掌握和的物理意义;掌握一维势箱模型Schrodinger方程的求解以及该模型在共轭分子体系中的应用;理解量子数n,l,m的取值及物理意义;掌握波函数和电子云的径向分布图,原子轨道等值线图和原子轨道轮廓图;难点是薛定谔方程的求解。 ◆知识点整理 一、波粒二象性和薛定谔方程 1.物质波的证明 德布罗意假设:光和微观实物粒子(电子、原子、分子、中子、质子等)都具有波动性和微粒性两重性质,即波粒二象性,其基本公式为: 对于低速运动,质量为m的粒子: 其中能量E和动量P反映光和微粒的粒性,而频率ν和波长λ反映光和微粒的波性,它们之间通过Plank 常数h联系起来,普朗克常数焦尔·秒。 实物微粒运动时产生物质波波长λ可由粒子的质量m和运动度ν按如下公式计算。 λ=h/P=h/mν 量子化是指物质运动时,它的某些物理量数值的变化是不连续的,只能为某些特定的数值。如微观体系的能量和角动量等物理量就是量子化的,能量的改变为E=hν的整数倍。 2.测不准关系: 内容:海森保指出:具有波粒二象性的微观离子(如电子、中子、质子等),不能同时具有确定的坐标和动量,它们遵循“测不准关系”: (y、z方向上的分量也有同样关系式) ΔX是物质位置不确定度,ΔPx为动量不确定度。该关系是微观粒子波动性的必然结果,亦是宏观物体和微观物体的判别标准。对于可以把h看作O的体系,表示可同时具有确定的坐标和动量,是可用牛顿力学描述的宏观物体,对于h不能看作O的微观粒子,没有同时确定的坐标和动量,需要用量子力学来处理。 3.波函数的物理意义——几率波 实物微粒具有波动性,其运动状态可用一个坐标和时间的函数来描述,称为波函数或状态函数。 1926年波恩对波函数的物理意义提出了统计解释:由电子衍射实验证明,电子的波动性是和微粒的行为的统计性联系在一起的,波函数正是反映了微粒行为的统计规律。这规律表明:对大量电子而言,在衍射强度大 的地方,电子出现的数目多,强度小的地方电子出现的数目少,即波函数的模的平方与电子在空间分布的密度成正比。

量子力学基础知识

第四章量子力学基础知识 量子力学是研究微观粒子(如电子,原子和分子等)运动规律的学科 量子力学的建立经历了由经典物理学到旧量子论,再由旧量子论到量子力学两个历史发展阶段。 4.1 微观粒子运动的特征 4.1.1 几个代表性的实验 经典物理学发展到19世纪末,在理论上已相当完善,对当时发现的各种物理现象都能加以理论上的说明。它们主要由牛顿的经典力学,麦克斯韦的电、磁和光的电磁波理论,玻耳兹曼和吉布斯等建立的统计物理学组成。19世纪末,人们通过实验发现了一些新的现象,它们无法用经典物理学解释,这些具有代表性的实验有以下3个。 (1)黑体辐射 黑体是指能全部吸收各种波长辐射的物体,它是一种理想的吸收体,同时在加热它时,又能最大程度地辐射出各种波长的电磁波。 绝热的开有一个小孔的金属空腔就是一种良好的黑体模型。进入小孔的辐射,经多次吸收和反射,可使射入的辐射实际上全部被吸收,当空腔受热时,空腔会发出辐射,称为黑体辐射。 实验发现,黑体辐射能量与波长的关系主要与温度有关,而与空腔的形状和制作空腔的材料无关。在不同温度下,黑体辐射的能量(亦称辐射强度)与波长的关系如图所示。许多物理学家试图用经典热力学和统计力学方法解释黑体辐射现象。瑞利(Rayleigh J W)和金斯(Jeans J H)把分子物理学中能量按自由度均分的原理用于电磁辐射理论,得到的辐射能量公式在长波处接近实验结果,在短波处和实验明显不符。特别是瑞利-金斯的理论预示在短波区域包括紫外以至x射线、γ射线将有越来越高的辐射强度,完全与事实不符,这就是物理学上所谓的“紫外灾难”。维恩(Wien W)假设辐射按波长分布类似于麦克斯韦的分子速度分布,得到的公式在短波处和实验结果接近,在长波处相差很大。 1900年普朗克(Planck M)在深入研究了实验数据,并在经典力学计算的基础上首先提出了“能量量子化”的假设,他认为黑体中原子或分子辐射能量时做简谐振动,这种振 子的能量只能采取某一最小能量单位ε 0的整数倍数值。ε=nε , n=1,2,3,... n称量子数。并且ε =hν

相关文档
最新文档