高抗硫酸盐混凝土配合比优化设计

高抗硫酸盐混凝土配合比优化设计
高抗硫酸盐混凝土配合比优化设计

高抗硫酸盐混凝土配合比优化设计

摘要:某工程引水隧洞地下水中SO42-总磷含量超标,对混凝土有强结晶型腐蚀和污染引水水体的风险。因此在混凝土施工前,对该引水隧洞混凝土进行抗硫酸盐侵蚀性试验。本文介绍了硫酸盐对混凝土的侵蚀影响,高抗硫酸盐混凝土原材料的选择,及通过掺粉煤灰的方式对高抗硫酸盐混凝土配合比进行优化设计。

关键词:配合比设计;抗腐蚀性;高抗硫酸盐混凝土

1.引言

某工程引水隧洞附近有一些化工企业,其中某集团磷石膏渣场距引水隧洞约1km,而该洞段位于岩溶极发育区域,存在有机物渗透对工程及水质带来较大危害的风险。根据对该区段地表和地下水体抽样检测,地下水中SO42-总磷等含量超标,因此对该区段采取有针对性的防渗和防腐处理措施。故进行混凝土抗硫酸盐侵蚀性试验,以确保工程质量。

2.混凝土受硫酸盐侵蚀的影响因素

硫酸盐对混凝土侵蚀作用非常复杂,其中包括物理方面和化学方面的侵蚀。受硫酸盐侵蚀的影响因素也有很多,主要体现在内部因素和外部因素。内部侵蚀是由于混凝土组分本身带有的硫酸盐引起,主要体现在混凝土自身的性质包括水泥、活性掺合料和水胶比,施工质量水平等;外部侵蚀是环境中的硫酸盐对混凝土的侵蚀,包括硫酸根离子浓度和环境PH值、混凝土的工作环境条件等。

3.原材料选用

3.1 水泥

水泥对混凝土的抗腐蚀性能起决定性的作用,混凝土中的硅酸三钙的含量过高,易于受到硫酸盐的侵蚀生成石膏。如果混凝土中铝酸三钙过多,则易于生成过多的钙矾石,在侵蚀环境下导致膨胀破坏。根据工程设计要求,结合高抗硫酸盐水泥的特性,本次试验混凝土选用P?HSR 42.5高抗硫酸盐水泥。

依据GB748标准要求,对高抗硫酸盐水泥进行标准稠度用水量、凝结时间、安定性、比表面积、密度、抗压强度、抗折强度、铝酸三钙(C3A)含量、抗硫酸盐性等指标检测,试验结果均满足标准要求,抗硫酸盐性14d≤0.04%。试验结果见表3.1。

4.混凝土配合比设计及试验方法

4.1 配合比基本参数选择试验

在配合比设计过程中充分利用粉煤灰对降低混凝土水化热和后期强度的贡献,以及对混凝土抗侵蚀的作用,选出粉煤灰的合理掺量,全面考虑合理的骨料级配对混凝土工作性和可泵性的影响和耐久性抗侵蚀能力。通过对减水剂不同掺量下的混凝土性能试验,泵送剂的最优掺量为1.0%、对石子级配组合进行容重试验,并结合工程经验,选用二级配粒径为

5mm~20mm:20mm~40mm比例为45:55。

4.2 水胶比与强度关系

当混凝土原材料、生产工艺以及工序既定的情况下,混凝土的性能主要取决于水胶比的大小。水胶比越大混凝土的强度越低,水胶比越小混凝土的强度越高,抗侵蚀能力就越强。配合比设计过程中首先进行基准用水量与砂率试验,然后进行水胶比与强度关系试验,对水胶比与强度统计计算回归方程,利用设计强度等级计算配制强度,将配制强度带入回归方程

c30P6抗渗混凝土配合比设计.doc

C30P6 混凝土配合比设计(夏季) 一、设计要求 1、泵送 C30P6 抗渗混凝土 2、坍落度 180 ±20mm 3、和易性良好,无泌水、无离析现象, 易泵送,易施工。 4、 28 天抗压强度符合强度评定标准 (GB/T50107-2010)。 二、原材料要求 水泥: P.O42.5 级; 砂:混合中砂,属Ⅱ区颗粒级配; 碎石贾峪 5~25mm连续粒级; 掺合料: II级粉煤灰; 掺合料: S95级。 外加剂:高效减水剂; 膨胀剂 : 水:地下饮用水。 三、计算步骤 1、确定混凝土配制强度(?cu ,0) 依据 JGJ55-2011 表 4.0.2 标准差σ质的规定, C30混凝土 5.0 MPa。则 C30混凝土的配制强度为: ?cu ,0= 30+1.645 5×.0 =38.2MPa 2、计算水胶比 (1)计算水泥 28 天胶砂抗压强度值 f ce = γ c f ce = 1.16×42.5 = 49.3MPa (2)计算胶凝材料 28 天胶砂抗压强度值 f b =γ f f ce = 0.74×1.0 ×49.3 = 36.48MPa ( 粉煤灰掺量 21%,矿 粉掺量 18%) (3)计算水胶比 W/B=αa f b/(f cu,0 +αaαb f b)=0.53x36.48/(38.2+0.53x0.20x36.48)=0.46

3、确定用水量( m wo)

依据 JGJ55-2011 第 5.2.1 条规定,用水量可依表 5.2.1-2 选取, 取用水量为 210kg 。由于高效减水剂减水剂率为 18%,则试验单方混凝土用 水量取 175kg 。 4、确定胶凝材料用量 m =175/0.46=380.4 3 取值 3 ㎏/m m =380 ㎏/m bo bo 5、确定掺合料用量( m fo ) 依据 JGJ55-2011 表 3.0.5-1 和 5.1.3 的规定粉煤灰掺量取 21%, 则每立方 m × ㎏ /m 3 取值 m fo =380 0.21=79.8 fo =80kg 依据 JGJ55-2011 表 3.0.5-1 和 5.1.3 的规定矿粉掺量取 18%, 则每立方 m × ㎏ /m 3 取值 m fo =70kg fo =380 0.18=68.4 6、确定水泥用量( m c ) m c =380-80-70=230 ㎏/m 3 7. 计算减水剂用量 选取掺量为 1.9%, 得: . m a1 = m b o ×0.019 =7.22 ㎏/m 3 8、计算膨胀剂用量 膨胀剂用量 = m bo β P =380×6%=23 ㎏ /m 3 9、 确定掺膨胀剂后胶凝材料用量 : m c o =230-230×0.06=216 kg /m 3 m fo =80-80×0.06=75 kg /m 3 m fo =70-70×0.06=66kg /m 3 10、确定砂率 依据 JGJ55-2011 第 5.4.2.3 的规定,因使用人工砂, 所以砂率取值为 45%。 11、 计算砂、石用量 采用质量法计算配合比,按下式计算: m c o + m fo +m 膨 + m go + m so + m wo + m a1= m cp m so βs = ― ×100% m go +m so 依据 JGJ55-2011 第 5.5.1 的规定,拌合物质量取 2400 ㎏/m 3 ,然后将以上已知数据代入上面两公式后得: m so = 830 ㎏/m 3;m go = 1015 ㎏/m 3 通过以上计算,得配合比如下:

沥青混凝土配合比优化设计

沥青混凝土配合比优化设计 摘要:随着公路建设的快速发展,有关部门制定了新的《公路沥青路面施工技术规范》,完善了沥青混合料配合比设计方法,本文根据新《规范》的要求,提出了沥青混合料配合比的优化设计,分别从三个方面进行:目标设计、生产设计和生产验证,分析了矿料间隙率对沥青混合料性能的影响规律,针对不同情况的空隙率和稳定度,提出了相应的调整方法,并通过马歇尔实验,来加以检验。关键词:沥青混合料配合比马歇尔试验生产配合比 一、前言 近年来,沥青混凝土路面应用越来越广泛,沥青混凝土配合比直接影响路面的质量,关系到路面的使用寿命。同时,还关系到行车舒适性和安全性。保证路面的质量,从施工的全过程加以控制管理,尤其对沥青混凝土配合比足够重视、认真对待、精心研究、优化设计,最终达到经济、科学、可行、便于施工。如何进行沥青混凝土配合比优化设计是道路技术人员亟待解决的难题。 二、沥青混合料配合比优化设计 《沥青混合料配合规范》规定采用三个阶段进行沥青混合料的配比设计,这三个阶段分别是:目标配合比设计;生产配合比设计和生产配合比的验证。该配比方法可以使配比过程程序化、深入化,有助于设计结果更符合生产需求,充分指导施工过程。 (一)目标配合比设计

目标配合比设计是整个过程的开始,结合施工文件要求,选择相应的材料,计算矿料级配比,选择最佳状态的配合比。在计算过程中,通常使试配结果尽量靠近级配范围的中间值,根据《规范》中推荐的,结合实践经验固定一个最佳沥青含量的范围,设计出不同油石比的配置的5到6组材料试件,每组间隔是0.5%,然后分别进行马歇尔稳定度、空隙率、试件密度、流值、沥青最佳沥青用量oac,然后再按最佳沥青用量oac制件,做水稳定性检验和高温稳定性检验。最后,判定实验结果,如果达不到设计文件要求则另选材料、调整配合比或者采用其他方法继续做试验,直到符合要求,确定理想的目标配合比。 在目标配合比设计过程中,必须重视两个重要指标:混合料空隙率和稳定度。沥青混合料的空隙率是反映沥青路面泛油、松散、裂纹、车辙等病害的最重要指标,矿料间隙率是综合反映沥青混合料质量状况的核心指标,对沥青混合料设计、生产的质量控制有重要作用。这两个指标对调整混合料稳定性和耐久性特别重要, 下面是对他们之间的关系的分析,并根据存在的不同的状态,提出了相应的处理措施。 (1)空隙率低,稳定度低。当空隙率低时,可以选择多种方法来增加空隙率:首先,调整矿料的级配,在规定允许的范围之内,适当增加粗集料的比例,同时减小细集料的比例;如果沥青混合料的油石比高于正常量,并且不能被矿料吸收时,可以适当的降低油

普通水泥混凝土配合比参考表

合比没有区分。 2、当掺和掺合料时,釆用内掺法可等量或超量取代,最大取代量应根据掺 合料性能进行强度对比实验结果而定。 3、配制流态性混凝土时,参考配比试验所采用的是减水率在15%以上的高效 减水剂。 4、参考配比试验所有砂石为丨丨区中砂,石子为5-31. 5mm的连续级配的碎 石。 水泥标号 百科名片 水泥的标号是水泥“强度”的指标。水泥的强度是表示单位面积受力的大小,是指水泥加水拌和后,经凝结、硬化后的坚实程度(水泥的强度与组成水泥的矿物成分、颗粒细度、硬化时的温度、湿度、以及水泥中加水的比例等因素有关)。水泥的强度是确定水泥标号的指标,也是选用水泥的主要依据。测定水泥强度的方法用前是“软练法”。目录 展开 基本信息 此法是将1: 3的水泥、(福建平潭白石英砂)及规定的水,按照规定的方法与

水泥拌制成软练胶砂,制成7. 07 X 7. 07 X 7. 07厘米的立方体抗压试块与8字形抗拉试块,在标准条件下进行养护,分别测定其3天、7天及28天的抗压强度和抗拉强度,以分组试块的28天平均抗压强度来确定水泥的标号,但3天、7天的技压强度也必须满足规定的要求。 目前我国生产的水泥一般有225#、325#、425#、525#等儿种标号。生产不同标号的水泥,是为了适应制做不同标号的混凝土的需要。 水泥的标号 标准 水泥的标号是水泥强度大小的标志,测定水泥标号的抗压强度,系指水泥砂浆硬结28d后的强度。例如检测得到28d后的抗压强度为310 kg∕cm2, 则水泥的标号定为300号。抗压强度为300-400 kg∕cm2者均算为300号。普通水泥有:200、250、300、400、500> 600六种标号。200号-300号的可用于一些房屋建筑。400号以上的可用于建筑较大的桥梁或厂房,以及一些重要路面和制造预制构件。 关于水泥标号的用法,其实并没有非常精细的规定,一般来说,设计图纸中会给出明确的规定。 在民用建筑工程中,一般用的比较多的是普通硅酸盐水泥和矿渣硅酸盐水泥。 标号一般常用的有,。 有325的和425的325的250元一300元425的360—450元品牌,地区不一样价格就不一样 关于水泥标号

抗渗混凝土配合比设计

6、混凝土配合比设计 6.1、一般规定 6.1.1桥面铺装混凝土的配合比设计应根据桥面铺装特点,确定合理的工作性能、体积稳定性能、耐久性能和合格的强度等级,同时,应具有较好的抗疲劳性能及耐磨耗性能。 6.1.2耐久性设计应针对桥面铺装所处外部环境中劣化因素的作用,在设计使用年限内不超过容许劣化状态。 6.2、设计指标 (1)、工作性能初始坍落度120~140mm,1h坍落度100~120mm,浇注时坍落度大于100mm;初凝时间一般应大于3小时。 (2)、力学性能桥面铺装混凝土等级一般宜采用C40,力学性能指标应满足以下要求: ①混凝土28d试配抗压强度≥48MPa; ②对于不加铺沥青混凝土面层的桥面铺装层,纤维增强混凝土28d抗折强度≥7.0Mpa;28d劈裂抗拉强度≥5.0MPa; ③对于加铺沥青混凝土面层的桥面铺装层,纤维增强混凝土28d抗折强度≥5.5Mpa;28d劈裂抗拉强度≥4.0MPa。 (3)、体积变形性能混凝土28d收缩率≤2.5×10-4。 (4)、抗渗等级要求

①、对于不加铺沥青混凝土面层的桥面铺装层,28天抗渗等级为W12; ②、对于需加铺沥青混凝土面层的桥面铺装层,28天抗渗等级为W10。 6.3配合比设计桥面铺装层混凝土,可采用密实骨架堆积法、《普通混凝土配合比设计规范》JGJ55-2000规定的绝对体积法和假定容重法进行配合比设计,该指南以密实骨架堆积法为配合比设计基础。 6.3.1 配合比设计原理 (1)、原理桥面混凝土配合比设计采用密实骨架堆积法,其设计原理是是通过寻求混凝土中的粗细集料的最大容重来寻找最小空隙率,通过曲线拟合可以得出骨料间的最佳比例,使得制备出的混凝土有较好的工作性、优良的耐久性和经济性。 (2)、原则粉煤灰等矿物掺合料的密度和细度均比砂小,从材料堆积理论上讲,密度小的材料填充密度大的材料,其曲线会表现为具有峰值的抛物线形式。按四分法取料,进行最密容重测定,将实验数据通过曲线拟合得出致密堆积系数α、β,获得最大堆积密度 U。 w (3)、方法密实骨架堆积法首先将不同比例的粉煤灰

高强混凝土配合比设计方法及例题

高强(C60)混凝土配合比设计方法[1] 基本特点: 1)每立方米混凝土胶凝材料质量480±20kg; 2)水泥用量不低于42.5级,每立方米水泥质量不超过400kg; 3)砂率0.38~0.40,砂率尽量选小些,以降低粘度; 4)使用掺合料取代部分水泥,宜矿渣(10%~20%)与粉煤灰(10%~15%)复掺; 5)优先选用聚羧酸减水剂,并复配有相容性良好缓凝剂与消泡剂; 6)粗骨料粒径不应大于31.5mm,如果强度等级大于C60,其最大粒径不应大于25mm;7)粗骨料的针片状含量不宜大于5.0%; 8)粗骨料的含泥量不应大于0.5%,泥块含量不宜大于0.2%; 9)细骨料的细度模数宜大于2.6; 10)细骨料含泥量不应大于2.0%,泥块含量不应大于0.5%。

3 基本规定 3.0.1混凝土配合比设计应满足混凝土配制强度、拌合物性能、力学性能和耐久性能的设计要求。混凝土拌合物性能、力学性能和耐久性能的试验方法应分别符合现行国家标准《普通混凝土拌合物性能试验方法标准》GB/T50080、《普通混凝土力学性能试验方法标准》GB/T50081和《普通混凝土长期性能和耐久性能试验方法标准》GB/T50082的规定。3.0.2 混凝土配合比设计应采用工程实际使用的原材料,并应满足国家现行标准的有关要求;配合比设计应以干燥状态骨料为基准,细骨料含水率应小于0.5%,粗骨料含水率应小于0.2%。 3.0.3 混凝土的最大水胶比应符合《混凝土结构设计规范》GB50010的规定。 3.0.4 混凝土的最小胶凝材料用量应符合表3.0.4的规定,配制C15及其以下强度等级的混凝土,可不受表3.0.4的限制。 表3.0.4 混凝土的最小胶凝材料用量 3.0.5矿物掺合料在混凝土中的掺量应通过试验确定。钢筋混凝土中矿物掺合料最大掺量宜符合表3.0.5-1的规定;预应力钢筋混凝土中矿物掺合料最大掺量宜符合表3.0.5-2的规定。 表3.0.5-1钢筋混凝土中矿物掺合料最大掺量 注:①采用硅酸盐水泥和普通硅酸盐水泥之外的通用硅酸盐水泥时,混凝土中水泥混合材和矿物掺合料用量之和应不大于按普通硅酸盐水泥用量20%计算混合材和矿物掺合料用量之和; ②对基础大体积混凝土,粉煤灰、粒化高炉矿渣粉和复合掺合料的最大掺量可增加5%; ③复合掺合料中各组分的掺量不宜超过任一组分单掺时的最大掺量。 表3.0.5-2 预应力钢筋混凝土中矿物掺合料最大掺量

隧道二次衬砌混凝土配合比的优化设计

隧道二次衬砌混凝土配合比的优化设计 摘要:介绍了采用粉煤灰和高效减水剂,同时运用正交试验设计方法,并利用正交试验结果,采用综合平衡法分析水泥混凝土各组成材料用量对混凝土各项指标的影响。分析了掺粉煤灰和高效减水剂的大流动度泵送砼的社会效益和经济效益。 关键词:大流动度泵送砼,粉煤灰,正交试验设计 大流动度砼以其优越的流动性和良好的和易性,被广泛的用于泵送施工,在泉州晋石高速隧道二次衬砌中应用大流动度防水砼,最初设计的防水砼配合比为:水泥325 kg、水178 kg、砂767 kg、石1059 kg、粉煤灰71 kg、外加剂7.92 kg(萘系)。由于材料消耗量大,从而造成施工成本上升,减少企业利润空间。经过研究,决定采用掺粉煤灰和高效减水剂(聚羧酸)的技术对混凝土配合比进行优化设计。 1原材料选用和技术性能 1)粉煤灰:厦门华金龙建材有限公司F类II级粉煤灰。 2)水泥:选用漳平红狮水泥有限公司生产的P.O42.5普通硅酸盐水泥。 3)粗集料:选用当地华表山隧道洞渣加工的4.75~31.5mm合成级配碎石。经计算,掺配比例为16~31.5mm占30%、9.5~16mm占60%、4.75~9.5mm占10%,其中针片状含量5.9%、含泥量0.8%、压碎值10.8%。 4)细集料:选用华山砂场天然河砂。细度模数2.68,中砂,Ⅱ区级配。含泥量1.6%。 5)外加剂:为提高混凝土和易性.提高密实度和早期强度,选用湖北强达有限公司生产的QD高效减水剂,减水率≥ 25%。 2 试验方案 影响混凝土性能的因素较多,如混凝土的水胶比、粉煤灰掺率、水泥用量、粗集料的最大粒径、砂率、以及混凝土搅拌工艺和浇筑方法等。 2.1 因素与水平表 大流动度防水混凝土配合比设计应满足设计要求的抗压强度和施工要求的均匀性、和易性及抗渗等级。 根据工程的要求和材料现状.经过初步分析计算,选择粉煤灰掺率、砂率及

抗渗混凝土配合比设计样本

C30P6 混凝土配合比设计( 夏季) 一、设计要求 1、泵送C30P6抗渗混凝土 2、坍落度180±20mm 3、和易性良好, 无泌水、无离析现象,易泵送, 易施工。 4、28天抗压强度符合强度评定标准(GB/T50107- )。 二、原材料要求 水泥: P.O42.5级; 砂: 混合中砂, 属Ⅱ区颗粒级配; 碎石贾峪5~25mm连续粒级; 掺合料: II级粉煤灰; 掺合料: S95级。 外加剂: 高效减水剂; 膨胀剂: 水: 地下饮用水。 三、计算步骤 1、确定混凝土配制强度( ?cu ,0) 依据JGJ55- 表4.0.2标准差σ质的规定, C30混凝土5.0 MPa。则C30混凝土

的配制强度为: ?cu ,0 = 30+1.645×5.0 =38.2MPa 2、计算水胶比 ( 1) 计算水泥28天胶砂抗压强度值 fce =γcfce = 1.16 × 42.5 = 49.3MPa (2)计算胶凝材料28天胶砂抗压强度值 fb = γf fce = 0.74×1.0×49.3 = 36.48MPa(粉煤灰掺量21%, 矿粉掺量18%) (3)计算水胶比 W/B=αafb/(fcu,0+αaαbfb)=0.53x36.48/(38.2+0.53x0.20x36.48)=0.46 3、确定用水量( m wo) 依据JGJ55- 第5.2.1条规定, 用水量可依表5.2.1-2选取, 取用水量为210kg。由于高效减水剂减水剂率为18%, 则试验单方混凝土用水量取175kg。 4、确定胶凝材料用量 mbo =175/0.46=380.4㎏/m3 取值mbo =380㎏/m3 5、确定掺合料用量( m fo) 依据JGJ55- 表3.0.5-1和5.1.3的规定粉煤灰掺量取21%, 则每立方m fo =380×0.21=79.8㎏/m3 取值m fo=80kg 依据JGJ55- 表3.0.5-1和5.1.3的规定矿粉掺量取18%, 则每立方m fo =380×0.18=68.4㎏/m3取值m fo=70kg 6、确定水泥用量( m c)

高抗硫酸盐混凝土配合比优化设计

高抗硫酸盐混凝土配合比优化设计 摘要:某工程引水隧洞地下水中SO42-总磷含量超标,对混凝土有强结晶型腐蚀和污染引水水体的风险。因此在混凝土施工前,对该引水隧洞混凝土进行抗硫酸盐侵蚀性试验。本文介绍了硫酸盐对混凝土的侵蚀影响,高抗硫酸盐混凝土原材料的选择,及通过掺粉煤灰的方式对高抗硫酸盐混凝土配合比进行优化设计。 关键词:配合比设计;抗腐蚀性;高抗硫酸盐混凝土 1.引言 某工程引水隧洞附近有一些化工企业,其中某集团磷石膏渣场距引水隧洞约1km,而该洞段位于岩溶极发育区域,存在有机物渗透对工程及水质带来较大危害的风险。根据对该区段地表和地下水体抽样检测,地下水中SO42-总磷等含量超标,因此对该区段采取有针对性的防渗和防腐处理措施。故进行混凝土抗硫酸盐侵蚀性试验,以确保工程质量。 2.混凝土受硫酸盐侵蚀的影响因素 硫酸盐对混凝土侵蚀作用非常复杂,其中包括物理方面和化学方面的侵蚀。受硫酸盐侵蚀的影响因素也有很多,主要体现在内部因素和外部因素。内部侵蚀是由于混凝土组分本身带有的硫酸盐引起,主要体现在混凝土自身的性质包括水泥、活性掺合料和水胶比,施工质量水平等;外部侵蚀是环境中的硫酸盐对混凝土的侵蚀,包括硫酸根离子浓度和环境PH值、混凝土的工作环境条件等。 3.原材料选用 3.1 水泥 水泥对混凝土的抗腐蚀性能起决定性的作用,混凝土中的硅酸三钙的含量过高,易于受到硫酸盐的侵蚀生成石膏。如果混凝土中铝酸三钙过多,则易于生成过多的钙矾石,在侵蚀环境下导致膨胀破坏。根据工程设计要求,结合高抗硫酸盐水泥的特性,本次试验混凝土选用P?HSR 42.5高抗硫酸盐水泥。 依据GB748标准要求,对高抗硫酸盐水泥进行标准稠度用水量、凝结时间、安定性、比表面积、密度、抗压强度、抗折强度、铝酸三钙(C3A)含量、抗硫酸盐性等指标检测,试验结果均满足标准要求,抗硫酸盐性14d≤0.04%。试验结果见表3.1。 4.混凝土配合比设计及试验方法 4.1 配合比基本参数选择试验 在配合比设计过程中充分利用粉煤灰对降低混凝土水化热和后期强度的贡献,以及对混凝土抗侵蚀的作用,选出粉煤灰的合理掺量,全面考虑合理的骨料级配对混凝土工作性和可泵性的影响和耐久性抗侵蚀能力。通过对减水剂不同掺量下的混凝土性能试验,泵送剂的最优掺量为1.0%、对石子级配组合进行容重试验,并结合工程经验,选用二级配粒径为 5mm~20mm:20mm~40mm比例为45:55。 4.2 水胶比与强度关系 当混凝土原材料、生产工艺以及工序既定的情况下,混凝土的性能主要取决于水胶比的大小。水胶比越大混凝土的强度越低,水胶比越小混凝土的强度越高,抗侵蚀能力就越强。配合比设计过程中首先进行基准用水量与砂率试验,然后进行水胶比与强度关系试验,对水胶比与强度统计计算回归方程,利用设计强度等级计算配制强度,将配制强度带入回归方程

普通水泥混凝土配合比参考表

普通水泥混凝土配合比参考表

水泥标号 水泥的标号是水泥“强度”的指标。水泥的强度是表示单位面积受力的大小,是指水泥加水拌和后,经凝结、硬化后的坚实程度(水泥的强度与组成水泥的矿物成分、颗粒细度、硬化时的温度、湿度、以及水泥中加水的比例等因素有关)。水泥的强度是确定水泥标号的指标,也是选用水泥的主要依据。测定水泥强度的方法用前是“软练法”。 目录

此法是将1:3的水泥、标准砂(福建平潭白石英砂)及规定的水,按照规定的方法与水泥拌制成软练胶砂,制成7.07 X 7.07 X 7.07厘米的立方体抗压试块与8字形抗拉试块,在标准条件下进行养护,分别测定其3天、7天及28天的抗压强度和抗拉强度,以分组试块的28天平均抗压强度来确定水泥的标号,但3天、7天的技压强度也必须满足规定的要求。 目前我国生产的水泥一般有225#、325#、425#、525#等几种标号。生产不同标号的水泥,是为了适应制做不同标号的混凝土的需要。 标准 水泥的标号是水泥强度大小的标志,测定水泥标号的抗压强度,系指水泥砂浆硬结28d后的强度。例如检测得到28d后的抗压强度为310 kg/cm2,则水泥的标号定为300号。抗压强度为300-400 kg/cm2者均算为300号。普通水泥有:200、250、300、400、500、600六种标号。200号-300号的可用于一些房屋建筑。400号以上的可用于建筑较大的桥梁或厂房,以及一些重要路面和制造预制构件。 关于水泥标号的用法,其实并没有非常精细的规定,一般来说,设计图纸中会给出明确的规定。 在民用建筑工程中,一般用的比较多的是普通硅酸盐水泥和矿渣硅酸盐水泥。 标号一般常用的有P.O 32.5/42.5,P.S 32.5/42.5。 有325的和425的 325的250元--300元 425的360--450元品牌,地区不一样价格就不一样 关于水泥标号 通用水泥新标准是:GB175-1999《硅酸盐水泥、普通硅酸盐水泥》、GB1344-1999《矿渣硅酸盐水泥、火山灰硅酸盐水泥及粉煤灰硅酸盐水泥》、GB12958-1999《复合硅酸盐水泥》。从2001年4月1日起正式实施。 与旧标准的区别 (1)六大水泥产品标准均引用GB/T17671-1999方法为该标准的强度检验方法,不再采用GB177-85方法。 (2)水泥标号改为强度等级

9《水工混凝土试验规程》附录5.7 (水工混凝土配合比设计方法)

附录A 水工混凝土配合比设计方法 A.1 基本原则 A.1.1水工混凝土配合比设计,应满足设计与施工要求,确保混凝土工程质量且经济合理。 A.1.2 混凝土配合比设计要求做到: 1应根据工程要求,结构型式,施工条件和原材料状况,配制出既满足工作性、强度及耐久性等要求,又经济合理的混凝土,确定各组成材料的用量; 2 在满足工作性要求的前提下,宜选用较小的用水量; 3 在满足强度、耐久性及其他要求的前提下,选用合适的水胶比; 4宜选取最优砂率,即在保证混凝土拌和物具有良好的粘聚性并达到要求的工作性时用水量最小的砂率; 5 宜选用最大粒径较大的骨料及最佳级配。 A.1.3 混凝土配合比设计的主要步骤: 1 根据设计要求的强度和耐久性选定水胶比; 2 根据施工要求的工作度和石子最大粒径等选定用水量和砂率,用水量除以选定的水胶比计算出水泥用量; 3 根据体积法或质量法计算砂、石用量; 4 通过试验和必要的调整,确定每立方米混凝土材料用量和配合比。 A.1.4进行混凝土配合比设计时,应收集有关原材料的资料,并按有关标准对水泥、掺和料、外加剂、砂石骨料等的性能进行试验。 1 水泥的品种、品质、强度等级、密度等; 2 石料岩性、种类、级配、表观密度、吸水率等; 3 砂料岩性、种类、级配、表观密度、细度模数、吸水率等; 4 外加剂种类、品质等; 5 掺合料的品种、品质等; 6 拌和用水品质。 A.1.5 进行混凝土配合比设计时,应收集相关工程设计资料,明确设计要求: 1 混凝土强度及保证率; 2 混凝土的抗渗等级、抗冻等级等; 3 混凝土的工作性; 4 骨料最大粒径。

A.1.6 进行混凝土配合比设计时,应根据原材料的性能及混凝土的技术要求进行配合比计算,并通过试验室试配、调整后确定。室内试验确定的配合比尚应根据现场情况进行必要的调整。 A.1.7 进行混凝土配合比设计时,除应遵守本标准的规定外,还应符合国家现行有关标准的规定。 A.2 混凝土配制强度的确定 A.2.1 目前水工混凝土设计龄期立方体抗压强度标准值采用两种方式。一种以强度等级“C ”表示,与国际标准ISO3892接轨,龄期28d ,强度保证率为95%,如C20;另一种是惯用的强度标号“R ”表示,龄期90d 或180d ,强度保证率为80%,如R 9015或R 18015。不论哪种方式表示,混凝土设计龄期立方体抗压强度标准值系指按照标准方法制作养护的边长为150mm 的立方体试件,在设计龄期用标准试验方法测得的具有设计保证率的抗压强度,以MPa 计。 A.2.2 混凝土配制强度按公式(A.2.2-1)或公式(A.2.2-2)计算: σt f f k cu cu +=,0, (A.2.2-1) v k cu cu tc f f -= 1,0, (A.2.2-2) 式中 f cu,0——混凝土配制强度,MPa ; f cu,k ——混凝土设计龄期立方体抗压强度标准值,MPa ; t ——概率度系数,由给定的保证率P 选定,其值按表A.2.2选用; σ——混凝土立方体抗压强度标准差,MPa ; c v ——变异系数。 表A.2.2 保证率和概率度系数关系 A.2.3 混凝土抗压强度标准差σ 和变异系数c v ,宜按同品种混凝土抗压强度统计资料确定。 1 统计时,混凝土抗压强度试件总数应不少于30组; 2 根据近期相同抗压强度、生产工艺和配合比基本相同的混凝土抗压强度资料,混凝土抗压强度标准差σ按公式(A.2.3-1)计算:

(完整版)C80高强混凝土配比

C80高强混凝土配比 C80混凝土强度高对材料要求也高: 水泥:优质52.5水泥; 粉煤灰:I级优质粉煤灰; 矿粉:不低于S95级,最好是S105级优质矿渣粉; 砂:级配合理的优质中砂; 石子:5-20mm级配良好的石子,针片状颗粒含量不超过5%或尽量小; 高性能减水剂:正常掺量范围内最大减水率不小于35%; 如果有其它性能要求尚需要复掺其它外加剂; 配合比范围:水泥 380kg,矿粉:120kg,粉煤灰:70kg,水:148kg,砂:720kg,石:992kg,外加剂:约8-10kg,只是一个大致的数,不作为工程应用依据。 如果有硅粉,水胶比、水泥、矿粉、粉煤灰均要做相应调整。施工条件,如泵送与否,也要做相应调整。如果需要根据实际材料确定确切的配合比可以再研究。 1)粗集料除进行压碎指标试验外,对碎石尚应进行岩石立方体抗压强度试验, 其结果不应小于要求配制的混凝土抗压强度标准值R的1.5倍。 2)高强混凝土宜采用中砂,其细度模数宜大于2.6,含泥量不应大于2.0%,泥 块含量不应大于0、5%。 3)高强混凝土的配合比应符合规范规定。当无可靠的强度统计数据及标准差数 值时,混凝土的施工配制强度(平均值)对于C50~C60应不低于强度等级的1.15倍,对于C70~C80应不低于强度等级值的1.12倍。 4)高强混凝土所用砂率及所采用外加剂和矿物掺合料的品种、掺量应通过试验 确定。 5)高强混凝土的水泥用量不宜大于500kg/m^3,水泥和混合材料的总量不超过 550~600kg/m3,粉煤灰掺量不宜超过胶结料质量的30%,沸石粉不宜超过10%,硅粉不宜超过8%~10%。各种混合料的掺用种类及数量,必须通过试验

低水泥用量混凝土配合比优化设计

低水泥用量混凝土配合比优化设计 摘要:混凝土配合比是现场混凝土质量控制的关键因素,它直接影响着混凝土工 程的实体和外观质量及混凝土成本,因此对混凝土的配合比如何进行优化调整就显 得尤为必要。结合本人多年的混凝土配比经验总结,提出混凝土配合比在性能和 经济方面的优化,效果较好。 关键词:水泥;混凝土;配合比设计;优化 1原材料的选用及试验方法 以下是根据公司实际情况,以普通C30混凝土的试验结果进行分析,在保证 质量的基础上,大比例掺加矿粉和粉煤灰,以降低水泥用量,节约生产成本和改 善混凝土性能。 1.1原材料 水泥采用普通硅酸盐水泥P.O42.5,性能指标见表1; 粉煤灰:粉煤灰采用南宁电厂生产的F类Ⅱ级粉煤灰,所检指标分别符合 JTG/TF50-2011《公路桥涵技术规范》,性能指标见表2; 矿渣粉:格润S95级矿渣粉,性能指标见表3; 细集料:Ⅱ区中砂,细度模数3.0,堆积密度为1520kg/m3; 粗集料:碎石,5~25mm连续级配,堆积密度为1450kg/m3; 外加剂:萘系高效减水剂,减水率为18%~25%; 拌合水:饮用水。 表1 水泥性能指标 表2 粉煤灰性能指标 表3 矿粉性能指标 1.2配合比及试验结果 1.2.1用不同掺量的矿渣粉等量取代水泥与全部使用水泥的混凝土性能对比试 验 试验采用的胶凝材料用量370kg/m3,水胶比固定为0.486,砂率固定为46%, 减水剂掺量占胶凝材料总量的0.25%,控制所有试配坍落度一致达到180±30mm,具体混凝土配合比见表4,试验结果对比见表5。 表4 基准配合比及掺矿粉混凝土配合比 表5 试验结果对比 1.2.2煤灰和矿渣粉按不同比例双掺时的混凝土性能对比试验(见表6、表7) 表6 双掺及单掺粉煤灰、矿粉混凝土配合比 表7 试验结果对比 2.试验结果分析 2.1矿渣粉可以改善混凝土的和易性 与未掺矿粉的混凝土相比,掺入矿粉能改善混凝土的和易性与工作性,而这 种改善与表面特性和比表面积有关。这种表面特性使得水泥浆体之间形成光滑的

混凝土配合比设计 继续教育答案

混凝土配合比设计 第1题 抗冻混凝土应掺()外加剂。 A.缓凝剂 B.早强剂 C.引气剂 D.膨胀剂 答案:C 您的答案:C 题目分数:2 此题得分:2.0 批注: 第2题 一般地,混凝土强度的标准值为保证率为()的强度值。 A.50% B.85% C.95% D.100% 答案:C 您的答案:C 题目分数:2 此题得分:2.0 批注: 第3题 进行混凝土配合比配置强度计算时,根据统计资料计算的标准差,一般有()的限制。 A.最大值 B.最小值 C.最大值和最小值 D.以上均不对 答案:B 您的答案:B 题目分数:2 此题得分:2.0 批注: 第4题 在混凝土掺加粉煤灰主要为改善混凝土和易性时,应采用()。 A.外加法

B.等量取代法 C.超量取代法 D.减量取代法 答案:A 您的答案:A 题目分数:2 此题得分:2.0 批注: 第5题 进行水下混凝土配合比设计时,配制强度应比相对应的陆上混凝土()。 A.高 B.低 C.相同 D.以上均不对 答案:A 您的答案:A 题目分数:2 此题得分:2.0 批注: 第6题 大体积混凝土中,一定不能加入的外加剂为()。 A.减水剂 B.引气剂 C.早强剂 D.膨胀剂 答案:C 您的答案:C 题目分数:2 此题得分:2.0 批注: 第7题 在配制混凝土时,对于砂石的选择下列说法正确的是()。 A.采用的砂粒较粗时,混凝土保水性差,宜适当降低砂率,确保混凝土不离析 B.采用的砂粒较细时,混凝土保水性好,使用时宜适当提高砂率,以提高拌合物和易性 C.在保证混凝土不离析的情况下可选择中断级配的粗骨料

D.采用粗细搭配的集料可使混凝土中集料的总表面积变大,减少水泥用量,且混凝土密实 答案:C 您的答案:C 题目分数:2 此题得分:2.0 批注: 第8题 抗冻混凝土中必须添加的外加剂为()。 A.减水剂 B.膨胀剂 C.防冻剂 D.引气剂 答案:D 您的答案:D 题目分数:2 此题得分:2.0 批注: 第9题 高性能混凝土中水泥熟料中铝酸三钙含量限制在6%~12%的原因是()。 A.铝酸三钙含量高造成强度降低 B.铝酸三钙容易造成闪凝 C.铝酸三钙含量高易造成混凝土凝结硬化快 D.铝酸三钙含量高易造成体积安定性不良 答案:C 您的答案:C 题目分数:2 此题得分:2.0 批注: 第10题 抗渗混凝土中必须添加的外加剂为()。 A.减水剂 B.膨胀剂 C.早强剂 D.引气剂 答案:B 您的答案:B

普通混凝土配合比设计(最新规范)

6.1.5 普通混凝土配合比设计 混凝土配合比设计就是根据工程要求、结构形式和施工条件来确定各组成材料数量之间的比例关系。常用的表示方法有两种: 一种是以1m3混凝土中各项材料的质量表示,如某配合比:水泥240kg,水180kg,砂630kg,石子1280kg,矿物掺合料160kg,该混凝土1m3总质量为2490kg; 另一种是以各项材料相互间的质量比来表示(以水泥质量为1),将上例换算成质量比为:水泥∶砂∶石∶掺合料=1∶2.63∶5.33∶0.67,水胶比=0.45。 1.混凝土配合比的设计基本要求 市政工程中所使用的混凝土须满足以下五项基本要求: (1)满足施工规定所需的和易性要求; (2)满足设计的强度要求; (3)满足与使用环境相适应的耐久性要求; (4)满足业主或施工单位渴望的经济性要求; (5)满足可持续发展所必需的生态性要求。 2.混凝土配合比设计的三个参数 混凝土配合比设计,实质上就是确定胶凝材料、水、砂和石子这四种组成材料用量之间的三个比例关

系: (1)水与胶凝材料之间的比例关系,常用水胶比表示; (2)砂与石子之间的比例关系,常用砂率表示; (3)胶凝材料与集料之间的比例关系,常用单位用水量(1m3混凝土的用水量)来表示。 3.混凝土配合比设计步骤 混凝土配合比设计步骤包括配合比计算、试配和调整、施工配合比的确定等。 (1)初步配合比计算 1)计算配制强度(f cu,o)。根据《普通混凝土配合比设计规程》(JGJ 55—2011)规定,混凝土配制强度应按下列规定确定: ①当混凝土的设计强度小于C60时,配制强度应按下式确定: f cu,o≥f cu,k+1.645σ 式中f cu,o——混凝土配制强度,MPa; f cu,k——混凝土立方体抗压强度标准值,这里取混凝土的设计强度等级值,MPa; σ——混凝土强度标准差,MPa。 ②当混凝土的设计强度不小于C60时,配制强度应按下式确定:

C40抗渗混凝土配合比设计计算过程

C40抗渗混凝土配合比设计计算过程 一、计算配合比—摘录自《小奋斗视频》 1)确定混凝土配制强度(f cu,o) 根据设计要求混凝土强度f cu,k=40M Pa,无历史统计资料查表得,标准差σ=6.0Mpa,按下列公式计算混凝土配制强度: f cu,o=f cu,k+1.645×σ=40+1.645×6=49.9Mpa 2)计算水灰比(W/C)--摘录自《小奋斗视频》 (1)按强度要求计算水灰比 ○1计算水泥实际强度 根据要求采用42.5级普通硅酸盐水泥,f ce,k =42.5Mpa,水泥富余系数r c=1.08则水泥实际强度公式计算: f ce=f ce,k×r c=42.5×1.08=45.9Mpa ○2计算水灰比--摘录自《小奋斗视频》 根据表碎石选A=0.46,B=0.07按公式计算水灰比: W/C=(Af ce)/(f cu,o+ABf ce)=(0.46×45.9)/(49.9+0.46×0.07×45.9)=0.41 3)确定单位用水量(m wo) --摘录自《小奋斗视频》 根据桥面铺装混凝土的施工要求,混凝土拌和物坍落度为70-90mm,碎石最大粒径为31.5mm,确定混凝土单位用水量为:m wo=205kg/m3,在保证混凝土工作性的条件下掺加6%高效抗渗防水剂,起到抗渗的效果,其减水率为12%,所以用水量为: m wo=205×(1-12%)=180kg/m3

4)计算单位水泥用量(m co) 混凝土单位用水量m wo=180kg/m3,水灰比W/C=0.41计算混凝土单位用灰量: 每立方米单位水泥用量根据m co=m wo/(w/c)=180/0.41=439kg/m3 每立方米单位外加剂用量,439×6%=26.3Kg/m3 5)确定砂率:--摘录自《小奋斗视频》 根据碎石最大料径31.5mm,且水灰比为0.41,又根据抗渗混凝土对砂率的要求选定混凝土砂率为:S p=35% 6)计算粗、细集料单位用量(m go、m so) (1)采用质量法 根据式:m co+m go+m so+m wo=P h m so/(m go+m so)× 100%=S p 且已知:m co=439kg/m3;m wo=180kg/m3;S p=35%;假定P h=2450kg/m3 代入公式可得:439+m go+m so+180=2450 m so/(m go+m so) ×100%=35% 解之得:m so=641kg/m3;m go=1190kg/m3 按质量法得混凝土初步配合比为: m co:m so:m go:m wo:m jo=439:641:1190:180:26.3 =1:1.46:2.71:0.41:0.06 二、试拌调整,提出基准配合比--摘录自《小奋斗视频》 (1)计算试拌材料用量 按计算初步配合比试拌15L混凝土拌合物,各种材料用量为: 水泥:439×0.015=6.59kg

C50混凝土配合比设计注意事项

C50混凝土配合比设计注意事项

C50混凝土配合比设计注意事项 在桥梁的上部结构中,如梁板等混凝土的设计强度基本上采用C50混凝土或大于C50的混凝土。所以对C50以上混凝土的原材料的选择、配合比的设计、混凝土的施工是至关重要的。下面就对C50以上混凝土的原材料选择、配合比的设计、混凝土的施工需注意的事项,结合本人多年来对桥梁上预应力C50预制25m、30m组合箱梁、预制45mT型梁、现浇箱梁及悬浇箱梁配合比的设计及原材的选择注意要点作如下简述。 1、原材料 1.1 集料 混凝土中集料体积大约占混凝土体积的3/4,由于所占的体积相当大,所以集料的质量对混凝土的技术性能和生产成本均产生一定的影响,在配制C50混凝土时,对集料的强度、级配、表面特征、颗粒形状、杂质的含量、吸水率等,必须认真检验,严格选材。这样才能配制出满足技术性能要求的C50混凝土,同时又能降低混凝土的生产成本。

1.1.1 细集料 砂材质的好坏,对C50以上混凝土的拌和物和易性的影响比粗集料要大。优先选取级配良好的江砂或河砂。因为江砂或河砂比较干净,含泥量少,砂中石英颗粒含量较多,级配一般都能符合要求。山砂一般不能使用,山砂中含泥量较大且含有较多的风化软弱颗粒。砂的细度模数宜控制在2.6以上,细度模数小于2.5时,拌制的混凝土拌和物显得太粘稠,施工中难于振捣,且由于砂细,在满足相同和易性要求时,增大水泥用量。这样不但增加了混凝土的成本,而且影响混凝土的技术性能,如混凝土的耐久性、收缩裂缝等。砂也不宜太粗,细度模数在3.3以上时,容易引起新拌混凝土的运输浇筑过程中离析及保水性能差,从而影响混凝土的内在质量及外观质量。C50泵送混凝土细度模数控制在2.6~2.8之间最佳,普通混凝土控制在3.3以下。另外还要注意砂中杂质的含量,比如云母、泥的含量过高,不但影响混凝土拌和物的和易性,而且影响混凝土的强度、耐久性,引起混凝土的收缩裂缝等其他性能。含泥量不超过2%,云母含量小于1%。

混凝土配合比优化设计要求

湖北省谷竹高速公路混凝土配合比优化设计的要求 一、原材料选用与技术要求 混凝土原材料除满足《公路桥涵施工技术规范》(JTG/T F50-2011)相应技术要求外,还应满足下列要求: 1.1水泥 (1)桥梁工程用水泥:除桥梁基础混凝土(≦C30)可采用32.5级的符合硅酸盐水泥(P.C)配置以及现浇预应力连续箱梁混凝土(C55及以上)可采用 52.5级普通硅酸盐水泥(P.O)、42.5级Ⅱ型硅酸盐水泥(P. Ⅱ)配置外, 桥梁其他部位的混凝土(含C50预制T梁)均宜使用42.5级P.O水泥进行 配置。 (2)隧道工程用水泥:除隧道二次衬砌防水混凝土可使用32.5级P.C水泥外,隧道初喷支护、隧道路面混凝土均应使用42.5级P.O水泥。 1.2骨料 (1)粗骨料:桥涵、隧道工程混凝土用粗骨料一般采用5-10mm、5-20mm和5-25mm 三种公称粒级均可满足要求,对应粗骨料最大粒径(方孔筛筛孔边长尺寸)分别为13.2mm、26.5mm和31.5mm。本工程所需碎石应采用4.75-9.5mm、9.5-19mm和19-26.5mm三种规格进行分级生产、采购、储存、掺配使用,合成级配应符合表1-1的要求。不得使用不分级的统料。 其中: 5-10mm碎石适用于隧道初喷支护混凝土 5-20mm碎石由4.75-9.5mm和9.5-19mm二种规格掺配,适用于预制T梁、预 制空心梁板、预应力连续箱梁等部位混凝土; 5-25mm碎石由4.75-9.5mm、9.5-19mm、19-26.5mm(方孔筛,没有特殊说明, 以下类同)三种规格掺配,适用于桥涵工程的灌注桩、承台、墩柱、盖梁、桥 台、桥面铺装、护栏、通道、涵洞等部位混凝土及隧道路面、二次衬砌等混凝 土。 为统一碎石生产规格,保证碎石生产质量,碎石料场初次生产或进行生产调整时,建议上述三种规格的碎石生产振动筛的配置宜分别为4mm、12mm、24mm、30mm(方孔筛晒孔边长)。最终晒网尺寸应以实际生产的碎石是否符合表1-2规格要求为准。

各种型号水泥混凝土配合比

各种型号水泥混凝土配合比

常规C10、C15、C20、C25、C30混凝土配合比混凝土按强度分成若干强度等级,混凝土的强度等级是按立方体抗压强度标准值fcu,k划分的。立方体抗压强度标准值是立方抗压强度总体分布中的一个值,强度低于该值得百分率不超过5%,即有95%的保证率。混凝土的强度分为C7.5、C10、C15、C20、C25、C30、C35、C40、C45、C50、C55、C60等十二个等级。 混凝土配合比是指混凝土中各组成材料(水泥、水、砂、石)之间的比例关系。有两种表示方法:一种是以1立方米混凝土中各种材料用量,如水泥300千克,水180千克,砂690千克,石子1260千克;另一种是用单位质量的水泥与各种材料用量的比值及混凝土的水灰比来表示,例如前例可写成: C:S:G=1:2.3:4.2,W/C=0.6。 常用等级 C25 水:175kg水泥:398kg 砂:566kg 石子:1261kg 配合比为:0.44:1:1.42:3.17 C30 水:175kg水泥:461kg 砂:512kg 石子:1252kg 配合比为:0.38:1:1.11:2.72

C20 水:175kg水泥:343kg 砂:621kg 石子:1261kg 配合比为:0.51:1:1.81:3.68 . . . 普通混凝土配合比参考: 水泥 品种混凝土等级配比 (单位)Kng 塌落度mm 抗压强度 N/mm2 水泥砂石水 7天 28天 P.C32.5 C20 300 734 1236 195 35 21.0 29.0 1 2.45 4.1 2 0.65 C25 320 768 1153 208 45 19.6 32.1 1 2.40 3.60 0.65 C30 370 721 1127 207 45 29.5 35.2 1 1.95 3.05 0.56 C35 430 642 1094 172 44 32.8 44.1 1 1.49 2.54 0.40 C40 480 572 1111 202 50 34.6 50.7 1 1.19 2.31 0.42 P.O 32.5 C20 295 707 1203 195 30 20.2 29.1

相关文档
最新文档