高中数学专题复习数学归纳法的解题应用知识点例题精讲

高中数学专题复习数学归纳法的解题应用知识点例题精讲
高中数学专题复习数学归纳法的解题应用知识点例题精讲

数学归纳法的解题运用

【高考能力要求】

数学归纳法是证明与自然数有关的问题,在近年的高考题中,一般不作单独的考题,而是以应用为主,且常与数列、函数、不等式、导数等结合起来进行考查,主要考查归纳、猜想、证明的数学思想方法,若出现在押轴题中则往往难度较大,分值为7分左右。涉及的主要解题方法是先求出它的前几项,找出其规律、归纳出其共有形式(如问题的一般规律、结构特征等),才能作出正确的猜想,然后用数学归纳法加以证明.其解题模式是:归纳?猜想?证明。在用数学归纳法证明时,要注意正确掌握数学归纳法原理和证明步骤,特别在证明不等式时要注意结合不等式证明的放缩法、分析法等方法。 【例题精讲】

【例1】已知函数)(x f 满足1)1(),0,,()()(=≠∈+=f b R b a b x af x xf ,且使

x x f =)(成立的实数x 是唯一的。

(1) 求函数)(x f 的解析式、定义域、值域; (2) 如果数列{}n a 的前n 项和为n S ,且12)

(++=

n a f n

S n n ,试求此数列的通项公式。

分析:(1)由1)1(=f 及x x f =)(有唯一解建立关于b a ,的方程组,解出b a ,即可;(2)利用n n n S S a -=++11将已知条件转化为1+n a 与n a 的递推关系式,从而猜想出

n a 的表达式并用数学归纳法加以证明。

解:(1)a

x b

x f -=

)(,∵ b a f =-?=11)1( ① 由x x f =)(得 02=--b ax x 有唯一解,∴ 042=+=?b b ② 由①②得 1,2-==b a ,∴x

x f -=

21

)(,其定义域为{}2|≠x x ,值域为{}0|≠y y

(2)∵ 12)(++=

n a f n S n n ,x

x f -=21

)(,∴n n n na n n a n S -+=++-=)14(12)2(,

当1=n 时,2

5

5111=

?-=a a S 。 ∵n n na n S -+=)14(,∴11)1()54(+++-+=n n a n n S , 两式相减,得 2

4

24)1(111++

+=?+++-=-+++n a n n a na a n S S n n n n n n , ∴ 12

25

,61332=

=

a a ,猜想:)1(12++=n n a n ,下面用数学归纳法证明。 ① 当1=n 时,猜想成立;

② 假设当k n =时猜想成立,即)

1(1

2++

=k k a k ,

由当1+=k n 时,+++=+++++=+++=

+2

4224])1(12[22421k k k k k k k k a k k a k k ]

1)1)[(1(1

2)2)(1(1++++=++k k k k ,即1+=k n 时猜想成立。

由①②知)

1(1

2++

=n n a n 对*∈N n 成立。

说明:观察、归纳、猜想、证明是解决数列综合题的重要方法,也是考查数学能力的途径之一,本题体现了通过特殊情况的分析、归纳猜想出一般结论,再用数学归纳法证明的数学思维方法。

【例2】在x 轴上有点列{}*∈N n a A n n |)0,(,其中{}n a a ,00=为递增数列,以1+n n A A 为一边的正三角形的另一顶点n B 在曲线x y =上,求:(1)321,,a a a ;(2)归纳出n a 的通项公式并加以证明;

分析:由1+?n n n A B A 为正三角形的几何性质可建立1+n a 与n a 的递推关系式,从而求得321,,a a a ,然后猜想n a 的表达式并用数学归纳法加以证明。 解:设),(n n n y x B ,则由已知)(2

3

),(2111++-=+=

n n n n n n a a y a a x ,

3

11213)(21

)(23111+++=?+=-+++n n

n n n n n a a a a a a a , (1) 由00=a 得 3

12

,36,32321===a a a ; (2) 猜想3

)

1(+=

n n a n ,下面用数学归纳法证明: ①当1=n 时命题成立;

②假设当k n =时命题成立,即3

)

1(+=

k k a k ,则当1+=k n 时, 3

)

2)(1()23(31)1441(31]13)1(1213)1(3[3131

12132221++=

++=+++

++=++?+++?=+++=

+k k k k k k k k k k k k a a a k k k , 即当1+=k n 时,命题也成立。 ∴ 对*∈N n 都有 3

)

1(+=

n n a n 成立。 说明:本题结合几何条件建立递推关系,通过归纳、猜想、证明的解题方法加以解决,这是用数学归纳法解决以几何为背景的数列问题的常用策略。 【例3】(04辽宁)已知函数223)(x ax x f -

=的最大值不大于6

1

,又当 .81

)(,]21,41[≥∈x f x 时

(1)求a 的值; (2)设.1

1

.),(,21011+<∈=<

<++n a N n a f a a n n n 证明 分析:(1)由二次函数的性质可求出函数的最大值,再根据条件建立a 满足的条件组,从而可求出a 的值;(2)由函数)(x f 的解析式可得出数列{}n a 的递推关系式,然后用数学归纳法去证明所证不等式。

(1) 解:由于6)3(2323)(222a a x x ax x f +--=-=的最大值不大于,6

1

所以 .1,6

1

6)3(22≤≤=

a a a f 即 ①

又,81)(]21,41[≥∈x f x 时 所以 1.8

13234,81

832,81)41(,81)2

1(≥???????≥-≥-??????

?≥

≥a a a f f 解得即. ②

由①②得 .1=a

(2)证法一:(i )当n=1时,2101<

1

0+<

1

61)(0),32,0(,0)(12=<≤=<∈>n a f a x x f 故所以时不等式也成立.

(ii )假设)2(≥=k k n 时,不等式1

1

0+<

因为223)(x x x f -=的对称轴为,31=x 知]31

,0[)(在x f 为增函数,

所以由31110≤+<

1

()(0+<

于是有

,2

1)2()1(24212121)1(1231102

21+<+++-+=+-+++?-+<

<+k k k k k k k k k a k 所以当n=k+1时,不等式也成立.

根据(i )(ii )可知,对任何*∈N n ,不等式1

1

+

101<

(ii )假设)1(≥=k k n 时不等式成立,即1

1

0+<

)2

3

1()2(21)231(1k k k k k a a k k a a a -?+?+=-=+

因,02

3

1,0)2(>->+k k a a k 所以

.1]2)21

(1[]2)232(1[)231()2(22<++=-++≤-?+k

k k k a k a k a a k 于是.2

1

01+<

<+k a k 因此当n=k+1时,不等式也成立. 根据(i )(ii )可知,对任何*∈N n ,不等式1

1

+

说明:本题主要考查二次函数的性质和用数学归纳法证明不等式的能力,属于中高档题。证法一充分结合了函数的单调性,证法二则是巧妙地利用了重要不等式,从而使问题得到快速解决,体现了较高的数学综合解题能力。 【例4】(04湖北)已知.,2,1,1

,}{,011 =+

==>+n a a a a a a a n

n n 满足数列 (1)已知数列}{n a 极限存在且大于零,求n n a A ∞

→=lim (将A 用a 表示);

(2)设;)

(:,,2,1,1A b A b b n A a b n n

n n n +-==-=+证明

(3)若 ,2,121

||=≤

n b n

n 对都成立,求a 的取值范围. 分析:(1)由递推关系式两边取极限即可;(2)通过代换转化为1+n b 与n b 的关系

式;(3)先考查特殊发情况21||1≤b ,得出一个必要条件2

3

≥a ,再用数学归纳法证明其充分性。

解:(1)由两边取极限得对且存在n

n n n n n a a a A a A a 1

),0(lim ,lim 1+

=>=+∞

→∞

.2

4

,0.24,122++=∴>+±=+=a a A A a a A A a A 又解得

(2).1

1,11A

b a A b a a a A b a n n n n n n ++=++

=+=++得由

都成立

对即 ,2,1)

(.)

(1

111

1=+-=+-=++-=++

-=∴++n A b A b b A b A b A b A A b A a b n n

n n n n n n

(3).2

1|)4(21|,21||21≤++-≤

a a a

b 得令 .

,2,12

1

||,23.2

3,14.2

1

|)4(21|

22都成立对时现证明当解得 =≤≥≥≤-+∴≤-+∴n b a a a a a a n n

(i )当n=1时结论成立(已验证).

(ii )假设当那么即时结论成立,21

||,)1(k

k b k k n ≤

≥=

k k k k k A b A A b A b b 2

1

||1|)(|||||1?+≤+=

+

故只须证明

.2

3

2||,21|

|1成立对即证≥≥+≤

+a A b A A b A k k .

21

2121||,23.

2||,12

1

2||||.

2,14,23

,

422

4

1122

2++=?≤≥≥+≥-≥-≥+∴≥∴≤-+≥-+=

++=k k k k k k k b a A b A b A A b A a a a a

a a a A 时故当即时而当由于

即n=k+1时结论成立.

根据(i )和(ii )可知结论对一切正整数都成立.

故).,23

[,2,121||+∞=≤

的取值范围为都成立的对a n b n

n

说明:本主要考查数列极限的概念、运算法则,换元法和猜想与归纳的方法,第(3)问实质上是要寻找“n n b 2

1

||≤

恒成立”的充要条件,通过特殊情况先找到一个必要条件,猜想其可能也是充分条件,最后用数学归纳法加以了证明,可见其能力要求较高、难度较大。

【例5】已知数列{}n a 的通项为2)1(+=n n a n ,问是否存在这样的等差数列{}n b ,使11b a n ?=n nb b b ++++ 3232对一切*∈N n 都成立,并证明你的结论. 分析 考查数学归纳法以及探索猜想、归纳、推理能力. 解: (1)令1=n ,则41,4)11(1111121=?=?==+?=b b b a a , 令2=n ,则22=a 72421,18)12(222122=?+=?+?==+?b b b b a 令3=n ,则1031832,48)13(333321323=?+=++==+=b b b b b a a 令4=n ,则13448432,100)14(4444321424=?+=+++==+=b b b b b b a a 猜想)(13*∈+=N n n b n

下面用数学归纳法证明

(1)当1=n 时,4,411==b a ,∴111b a ?=成立.

(2)假设当k n =时,猜想成立,即2)1(,13+=+=k k a k b k k 且,则当1+=k n 时,=+1k a )1(2)1()1(2)1(]1)1)[(1(222++++++++=+++k k k k k k k k k

]1)1(3)[1(21]1)1(3)[1()1(1212++++?+?+?=+++++=+k k b k b b k k k k k

若令1)1(31++=+k b k ,则1211)1(21++?+++?+?=k k b k b b a 成立,

∴当1+=k n 时,1)1(31++=+k b k ,且1211)1(21++?+++?+?=k k b k b b a 成立. 由(1)(2)可知,猜想正确,所以存在等差数列{}n b ,其通项为13+=n b n ,使

+?=11b a n n b n b ?++? 22对一切*∈N n 成立.

说明:本题是“是否存在”型问题,一般采用“先假定存在,再设法证明(或导出矛盾)”的方法解题,本题的困难在于n 为变量,故采用对n 取特殊值求出n b ,再就n 为任意值时进行论证的方法.在用数学归纳法证明的第二步中要考虑到

n n b a ,同时在变化,否则不能完成证明.

【能力演练】

1.用数学归纳法证明)1,(1112

1

2

≠∈--=++++*++a N n a

a a

a a n n 在验证1=n 成立时,左边的项应为 ( )

A.1

B.a +1

C. 21a a ++

D. 321a a a +++

2.设)(1

21

2111)(*∈++++++=

N n n n n n f ,

则=-+)()1(n f n f ( ) A.221+n B. 321221+++n n C. 11321+-+n n D. 2

21

321+-+n n

3. 用数学归纳法证明“)1,(121

31211>∈<-++++*n N n n n ”时,由)

1(>=k k n 不等式成立,推证1+=k n 时,左边应增加的项数是( ) A.12-k B. 12-k C. k 2 D. 12+k

4.某个命题与正整数n 有关,若k n =时,该命题成立,那么推得当1+=k n 时该命

题也成立.现已知当5=n 时该命题不成立,则有 ( )

A.当4=n 时该命题不成立

B. 当4=n 时该命题成立

C.当6=n 时该命题不成立

D. 当5=n 时该命题成立 5.已知)(1211)(*∈+++

=N n n n f ,用数学归纳法证明2

)2(n

f n >时,-+)2(1k f =)2(k f

6.若不等式

24

131312111a

n n n n >

++++++++ 对一切自然数n 都成立,自然数a 的最大值为

7.用数学归纳法证明)(12222112*-∈-=++++N n n n 的过程如下: (1)当1=n 时,左边=1,右边=121-=1,等式成立.

(2)假设k n =时等式成立,即12222112-=++++-k k ,则当1+=k n 时,

122

12122

22111

1

2

-=--=+++++++-k k k

k ,所以1+=k n 时等式成立.由此对任

何正自然数n 等式都成立.上述证明错误的是 8.(05辽宁)已知函数).1(1

3

)(-≠++=

x x x x f 设数列n a {}满足)(,111n n a f a a ==+,数列n b {}满足).(|,3|*21N n b b b S a b n n n n ∈+++=-=

(1)用数学归纳法证明1

2)13(--≤n n

n b ;

(2)证明.3

3

2

9.(05江西)已知数列:,}{且满足的各项都是正数n a

.),4(,2

1

,110N n a a a a n n n ∈-=

=+ (1)证明;,21N n a a n n ∈<<+ (2)求数列}{n a 的通项公式a n .

10.已知数列{}n a 满足 n

n a a a n n 1

2,211+=

=+. (1)求数列{}n a 的通项公式;

(2)设n n C Bn An b 2)(2?++=,试推断是否存在常数A 、B 、C ,使对一切*∈N n 都有n n n b b a -=+1成立?若存在,求出A 、B 、C 的值;若不存在,说明理由. (3)求证:22212)22(+?+-<+++n n n n a a a . 参考答案

1.C .【解析】当1=n 时,21=+n ,故应选C .

2.D .【提示】221

32111321221)()1(+-

+=+-+++=

-+n n n n n n f n f . 3.C .【提示】左边增加的项为1

21

121211

-+++++k k k 共有k 2项. 4.A .【提示】考虑逆否命题即可.

5.

1

21

221121++

++++k k k 【提示】由左边式子的结构易得。 6.25.【提示】令1=n ,左边2424261213413121a

>

==++=,猜想自然数a 的最大值为25,然后用数学归纳法证明。 7.则当1+=k n 时,122

12122

22111

1

2

-=--=+++++++-k k k

k .【提示】错误原

因是没有运用归纳假设,正确的应为:则当1+=k n 时,=+++++-k k 2222112 12-k

1221-=++k k ,即当1+=k n 时等式成立. 8.(1)证明:当.11

2

1)(,0≥++

=≥x x f x 时 因为a 1=1,所以*).(1N n a n ∈≥ 下面用数学归纳法证明不等式.2)13(1

--≤

n n

n b ①当n=1时,b 1=13-,不等式成立,

②假设当n=k 时,不等式成立,即.2

)13(1

--≤k k

k b 那么 k

k k k a a a b +--=

-=+-1|

3|)13(|3|11

.2

)13(2131

k k k b +-≤-≤

所以,当n=k+1时,不等也成立。

根据(1)和(2),可知不等式对任意n ∈N*都成立。

(Ⅱ)证明:由(Ⅰ)知, .2

)13(1

--≤n n

n b 所以 1

2212)13(2)13()13(--++-+-≤+++=n n

n n b b b S

2131)

213(

1)13(----?-=n

…………10分 .3322

1311)13(=--

?

-< 故对任意.33

2

,<

∈*n S N n 9.解:(1)方法一 用数学归纳法证明:

1°当n=1时,,2

3)4(21,10010=-=

=a a a a ∴210<

1

)4(21,1111k k k k k k a a a a a a k n ---=

-+=--+时 ).4)((2

1

)

)((2

1

)(211111k k k k k k k k k k a a a a a a a a a a ---=+---=-----

而.0,04.0111<-∴>--<----k k k k k k a a a a a a

又.2])2(4[2

1

)4(2121<--=-=

+k k k k a a a a ∴1+=k n 时命题正确.

由1°、2°知,对一切n ∈N 时有.21<<+n n a a 方法二:用数学归纳法证明:

1°当n=1时,,2

3

)4(21,10010=-=

=a a a a ∴2010<<

1

)(x x x f -=

,)(x f 在[0,2]上单调递增,所以由假设 有:),2()()(1f a f a f k k <<-即),24(221

)4(21)4(2111-??<-<---k k k k a a a a

也即当n=k+1时 21<<+k k a a 成立,所以对一切2,1<<∈+k k a a N n 有

(2) 下面来求数列的通项:],4)2([2

1

)4(2121+--=-=+n n n n a a a a 所以 21)2()2(2--=-+n n a a ,

n

n b b b b b a b n n n n n n 2022121

22222112)2

1()21(21)21(2121,2-+++----==?-=--=-=-= 则令, 又b 0=-1,所以1212)2

1(22,)21(---=+=-=n

n n n n b a b 即。

10.解:(1)由已知得221212)1()11(2n a n a a n a n n n n ?=+?+=++,∴数列?

??

???2n a n 是以2

为公比的等比数列,首项为21=a ,∴22n a n n ?=.

(2)∵n n n C B A n B A An b b 2]22)4([21?+++++=-+,若n n n b b a -=+1恒成立,

则2222)4(n C B A n B A An =+++++,∴??

?

??=-==??????=++=+=641

0220

41C B A C B A B A A , ∴存在常数A 、B 、C 满足条件.

(3)①当1=n 时,21=a ,82)22(22=?+-+n n n ,不等式成立;

②假设当k n =时,不等式成立,即 22212)22(+?+-<+++k k k k a a a ,则当

1+=k n 时,

??+

012)1(4)1()22(22222>-+?+<+++-k k k k k k ,而N k k ∈≥,1,故上式成立,

即当1+=k n 时,原不等式成立.

∴由①②知 原不等式对一切*∈N n 都成立.

高中数学知识点精讲精析 不等关系

13.1 不等关系 (一)不等关系与不等式 1. 用数学符号“≠”、“>”、“<”、“≥”、“≤”连接两个数或代数式,以表示它们之间的不等关系,含有这些不等号的式子叫做不等式。 2. 数轴上的任意两点中,右边点对应的实数比左边点对应的实数大。 3. 对于任意两个实数a 和b ,在三种关系中有且只有一种关系成立。 4. 这组关系告诉我们比较两个实数的大小,可以通过判断它们的差 的符号来确定。 5. 若a 、b ∈R +,则 这组关系告诉我们比较两个正实数的大小,可以通 过判断它们的商与“1”的大小关系来确定。 (二)不等式的性质 不等式的性质是证明不等式和解不等式的基础,证明这些性质必须是严格的,不能盲目地乱用。保证每一步推理都有理论根据,否则可能导致推理错误。 1. 等式两边同乘以同一个数仍为等式,但不等式两边同乘以同一个数a (或代数式),结果有三种: (1)当a >0时,得同向不等式。 (2)当a =0时,得等式。 (3)当 a <0时,得异向不等式。 a b,a b,a b =><

2. 不等式性质,有同向不等式相加,得同向不等式,并无相减。若 或.这个结论常用,不妨记为:“大数减小数大于 小数减大数。” 3. 不等式性质,有均为正数的同向不等式相乘,得同向不等式,并无相除。若 ,这个结论也常用。不妨记为:“大正数除以小正 数大于小正数除以大正数。” 4. 不等式性质有 .不能忽略a 、b 均为正数 这个条件,即由 是不一定成立的。 5. 由 成立。但不一定成立。反过来也不一定成立。事实上。 (三)均值不等式 1. 对于任意实数a ,b 都有 ,当且仅当a = b 时等号成立。 2. 对于任意正实数a ,b ,当且仅当a = b 时等号成立。 3. 对于任意正实数a, b 都有 ,当且仅当a = b 时等号成立。 4. 的几何解释:如图,AB 是⊙O 的直径,C 是AB 上任意一点,DE 是过C 点垂直于AB 的弦。若AC =a, BC =b 则AB =a + b ,⊙O 的半径 , Rt △ACD ∽Rt △BCD ,,。 a b,c d a c b d >>?->- c b d a ->-a a b 0,c d 0d >>>>? >b c d c b a > 或n n a b 0a b (n N,n 1)>>?>∈>n n a b a b (n N,n 1)>?>∈>11a b 0a b >>? <11a b a b >?<11a b a b 11 a b ab 0a b >>? < 且22a b 2ab +≥a b 2+2 a b ab 2+??≤ ? ??a b 2+a b r 2+= 2 CD AC CB ab =?=CD =

(完整版)数学归纳法经典例题详解

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ. 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k Λ 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

高中数学知识点精讲极限和导数

第十二章 极限和导数 第十四章 极限与导数 一、基础知识 1.极限定义:(1)若数列{u n }满足,对任意给定的正数ε,总存在正数m ,当n>m 且n ∈N 时,恒有|u n -A|<ε成立(A 为常数),则称A 为数列u n 当n 趋向于无穷大时的极限,记为)(lim ),(lim x f x f x x -∞ →+∞ →, 另外)(lim 0 x f x x +→=A 表示x 大于x 0且趋向于x 0时f(x)极限为A ,称右极限。类似地)(lim 0 x f x x -→表示x 小 于x 0且趋向于x 0时f(x)的左极限。 2 极限的四则运算:如果0 lim x x →f(x)=a, 0 lim x x →g(x)=b ,那么0 lim x x →[f(x)±g(x)]=a ±b, lim x x →[f(x)?g(x)]=ab, 0 lim x x →).0()()(≠=b b a x g x f 3.连续:如果函数f(x)在x=x 0处有定义,且0 lim x x →f(x)存在,并且0 lim x x →f(x)=f(x 0),则称f(x)在x=x 0处连续。 4.最大值最小值定理:如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在[a,b]上有最大值和最小值。 5.导数:若函数f(x)在x0附近有定义,当自变量x 在x 0处取得一个增量Δx 时(Δx 充分小),因

变量y 也随之取得增量Δy(Δy=f(x 0+Δx)-f(x 0)).若x y x ??→?0lim 存在,则称f(x)在x 0处可导,此极限 值称为f(x)在点x 0处的导数(或变化率),记作'f (x 0)或0'x x y =或 x dx dy ,即 00) ()(lim )('0 x x x f x f x f x x --=→。由定义知f(x)在点x 0连续是f(x)在x 0可导的必要条件。若f(x)在 区间I 上有定义,且在每一点可导,则称它在此敬意上可导。导数的几何意义是:f(x)在点x 0处导数'f (x 0)等于曲线y=f(x)在点P(x 0,f(x 0))处切线的斜率。 6.几个常用函数的导数:(1))'(c =0(c 为常数);(2)1 )'(-=a a ax x (a 为任意常数);(3) ;cos )'(sin x x =(4)x x sin )'(cos -=;(5)a a a x x ln )'(=;(6)x x e e =)'(;(7))'(log x a x x a log 1 = ;(8).1)'(ln x x = 7.导数的运算法则:若u(x),v(x)在x 处可导,且u(x)≠0,则 (1))(')(')]'()([x v x u x v x u ±=±;(2))(')()()(')]'()([x v x u x v x u x v x u +=;(3))(')]'([x u c x cu ?=(c 为常数);(4))()(']')(1[ 2x u x u x u -=;(5)) () ()(')(')(]')()([2 x u x v x u x v x u x u x u -=。 8.复合函数求导法:设函数y=f(u),u=?(x),已知?(x)在x 处可导,f(u)在对应的点u(u=?(x))处可导,则复合函数y=f[?(x)]在点x 处可导,且(f[?(x)])'=)(')](['x x f ??. 9.导数与函数的性质:(1)若f(x)在区间I 上可导,则f(x)在I 上连续;(2)若对一切x ∈(a,b)有0)('>x f ,则f(x)在(a,b)单调递增;(3)若对一切x ∈(a,b)有0)('x f ,则f(x)在x 0处取得极小值;(2)若0)(''0

数学归纳法典型例习题

欢迎阅读数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 四. ??? ??? (1 ??? (2()时命题成立,证明当时命题也成立。??? 开始的所有正整数 ??? 即只 称为数学归纳法,这两步各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 ? 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n=k+1时也成假设了,命题并没有得到证明。 ??? 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。

? 2、运用数学归纳法时易犯的错误 ??? (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。 ??? (2)没有利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就通不过去了。 ??? (3)关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”,是数学归纳法的关键一步,也是证明问题最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性。 ? 例1. 时,。 ,右边,左边 时等式成立,即有,则当时, 由①,②可知,对一切等式都成立。 的取值是否有关,由到时 (2 到 本题证明时若利用数列求和中的拆项相消法,即 ,则这不是归纳假设,这是套用数学归纳法的一种伪证。 (3)在步骤②的证明过程中,突出了两个凑字,一“凑”假设,二“凑”结论,关键是明确 时证明的目标,充分考虑由到时,命题形式之间的区别和联系。

(完整版)数学归纳法经典例题及答案(2)

数学归纳法(2016.4.21) 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ Λ. 那么当n =k +1时, 11 1 31 21 1++++++k k Λ 1 1 1211 2+++=++

数学归纳法经典例题及答案精品

【关键字】认识、问题、要点 数学归纳法( 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立. 题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 这就是说,当n =k +1时,不等式成立. 由①、②可知,原不等式对任意自然数n 都成立. 说明:这里要注意,当n =k +1时,要证的目标是 1211 1 31 21 1+<++++++k k k ,当代入归纳假设后,就是要证明:

1211 2+<++k k k . 认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题 例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *). (1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值. (2)设b n = a 22n -3,T n = b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3 . 解: (1)当n =5时, 原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5 令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243. (2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2 b n =a 22 n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2, 右边=2(2+1)(2-1)3 =2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立, 即T k =k (k +1)(k -1)3 成立 那么,当n =k +1时, 左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3 +k (k +1) =k (k +1)?? ??k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3 =右边. 故当n =k +1时,等式成立. 综上①②,当n ≥2时,T n =n (n +1)(n -1)3 .

导数典型例题(含答案)

导数典型例题 导数作为考试内容的考查力度逐年增大.考点涉及到了导数的所有内容,如导数的定义,导数的几何意义、物理意义,用导数研究函数的单调性,求函数的最(极)值等等,考查的题型有客观题(选择题、填空题)、主观题(解答题)、考查的形式具有综合性和多样性的特点.并且,导数与传统内容如二次函数、二次方程、三角函数、不等式等的综合考查成为新的热点. 一、与导数概念有关的问题 【例1】函数f (x )=x (x -1) (x -2)…(x -100)在x=0处的导数值为 .1002 C ! 解法一 f '(0)=x f x f x ?-?+→?) 0()0(lim = x x x x x ?--?-?-??→?0 )100()2)(1(lim 0 Λ =lim 0 →?x (Δx -1)(Δx -2)…(Δx -100)=(-1)(-2)…(-100)=100! ∴选D. 解法二 设f (x )=a 101x 101+ a 100x 100+…+ a 1x +a 0,则f '(0)= a 1,而a 1=(-1)(-2)…(-100)=100!. ∴选D. 点评 解法一是应用导数的定义直接求解,函数在某点的导数就是函数在这点平均变化率的极限.解法二是根据导数的四则运算求导法则使问题获解. 【例2】 已知函数f (x )=n n n k k n n n n x c n x c k x c x c c 11212210 ++++++ΛΛ,n ∈N *,则 x x f x f x ??--?+→?) 2()22(lim 0 = . 解 ∵ x x f x f x ??--?+→?) 2()22(lim 0 =2x f x f x ?-?+→?2) 2()22(lim + []x f x f x ?--?-+→?-) 2()(2lim 0 =2f '(2)+ f '(2)=3 f '(2), 又∵f '(x )=1 1 2 1 --+++++n n n k k n n n x c x c x c c ΛΛ, ∴f '(2)= 21(2n n n k n k n n c c c c 222221+++++ΛΛ)=21[(1+2)n -1]= 2 1(3n -1). 点评 导数定义中的“增量Δx ”有多种形式,可以为正也可以为负,如 x m x f x m x f x ?--?-→?-)()(000 lim ,且其定义形式可以是 x m x f x m x f x ?--?-→?) ()(000 lim ,也可以是 00 ) ()(lim x x x f x f x --→?(令Δx =x -x 0得到),本题是导数的定义与多项式函数求导及二项式定理有关 知识的综合题,连接交汇、自然,背景新颖. 【例3】 如圆的半径以2 cm/s 的等速度增加,则圆半径R =10 cm 时,圆面积增加的速度是 .

高中数学知识点精讲精析 数学符号

3 数学符号 1.数学符号的来历 例如加号曾经有好几种,现在通用“+”号。 “+”号是由拉丁文“et”(“和”的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文“plu”(加的意思)的第一个字母表示加,草为“μ”最后都变成了“+”号。 “-”号是从拉丁文“minus”(“减”的意思)演变来的,简写m,再省略掉字母,就成了“-”了。 也有人说,卖酒的商人用“-”表示酒桶里的酒卖了多少。以后,当把新酒灌入大桶的时候,就在“-”上加一竖,意思是把原线条勾销,这样就成了个“+”号。 到了十五世纪,德国数学家魏德美正式确定:“+”用作加号,“-”用作减号。 乘号曾经用过十几种,现在通用两种。一个是“×”,最早是英国数学家奥屈特1631年提出的;一个是“·”,最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:“×”号象拉丁字母“X”,加以反对,而赞成用“·”号。他自己还提出用“п”表示相乘。可是这个符号现在应用到集合论中去了。 到了十八世纪,美国数学家欧德莱确定,把“×”作为乘号。他认为“×”是“+”斜起来写,是另一种表示增加的符号。 “÷”最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用“:”表示除或比,另外有人用“-”(除线)表示除。后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将“÷”作为除号。 平方根号曾经用拉丁文“Radix”(根)的首尾两个字母合并起来表示,十七世纪初叶,法国数学家笛卡儿在他的《几何学》中,第一次用“√”表示根号。“√”是由拉丁字线“r”变,“——”是括线。 十六世纪法国数学家维叶特用“=”表示两个量的差别。可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号“=”就从1540年开始使用起来。 1591年,法国数学家韦达在菱形中大量使用这个符号,才逐渐为人们接受。十

实用文库汇编之数学归纳法经典例题及答案

*实用文库汇编之数学归纳法(2016.4.21)* 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 11 1 31 21 1++++++k k 1 1 1211 2+++=++

矩阵典型习题解析

2 矩阵 矩阵是学好线性代数这门课程的基础,而对于初学者来讲,对于矩阵的理解是尤为的重要;许多学生在最初的学习过程中感觉矩阵很难,这也是因为对矩阵所表示的内涵模糊的缘故。其实当我们把矩阵与我们的实际生产经济活动相联系的时候,我们才会发现,原来用矩阵来表示这些“繁琐”的事物来是多么的奇妙!于是当我们对矩阵产生无比的兴奋时,那么一切问题都会变得那么的简单! 2.1 知识要点解析 2.1.1 矩阵的概念 1.矩阵的定义 由m×n个数a ij(i 1,2, ,m; j 1,2, , n)组成的m行n 列的矩形数表 a11 a12 a1n a2n a m1 a m2 a mn 称为m×n矩阵,记为 A (a ij )m n 2.特殊矩阵 (1)方阵:行数与列数相等的矩阵; (2)上(下)三角阵:主对角线以下(上)的元素全为零的方阵称为上(下)三角阵; (3)对角阵:主对角线以外的元素全为零的方阵; (4)数量矩阵:主对角线上元素相同的对角阵; (5)单位矩阵:主对角线上元素全是 1 的对角阵,记为E; (6)零矩阵:元素全为零的矩阵。 3.矩阵的相等 设 A (a ij )mn; B (b ij )mn 若a ij b ij(i 1,2, ,m; j 1,2, ,n),则称 A 与B相等,记为A=B 2.1.2 矩阵的运算

1.加法 (1)定义:设 A (A ij )mn ,B (b ij ) mn ,则 C A B (a ij b ij )mn (2) 运算规律 ① A+B=B+A ; ②( A+B )+C=A+(B+C ) ③ A+O=A ④ A+(-A ) =0, –A 是 A 的负矩阵 2.数与矩阵的乘法 (1)定义:设 A (a ij ) mn , k 为常数,则 kA (ka ij )mn (2)运算规律 ①K (A+B) =KA+KB , ② (K+L )A=KA+LA , ③ (KL) A= K (LA) 3.矩阵的乘法 (1)定义:设 A (a ij )mn ,B (b ij )np .则 n AB C (C ij )mp ,其中 C ij a ik b kj k1 (2) 运算规律 ① (AB)C A (BC) ;② A(B C) AB AC ③ (B C)A BA CA 3)方阵的幂 ①定义:A (a ij ) n ,则 A k A K A ②运算规律: A m A n A m n (A m )n A (4)矩阵乘法与幂运算与数的运算不同之处。 ① AB BA ② AB 0, 不能推出 A 0或B 0; ③ (AB)k A k B k 4.矩阵的转置 (1) 定义:设矩阵 A=(a ij )mn ,将 A 的行与列的元素位置交换,称为矩阵 A 的转置,记为 A T (a ji )nm , (2) 运算规律 ①(A T )T A; ②(A B)T A T B T ; ③(kA)T KA T ; ④ (AB)T B T A T 。

高中数学知识点精讲精析 独立性

2.3独立性 1.相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响.这样的两个事件叫做相互独立事件。 独立重复试验:若n 次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n 次试验是独立的。 2.公式 (1)两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P (A·B )=P (A )·P (B ); 推广:若事件A 1,A 2,…,A n 相互独立,则P(A 1·A 2…A n )=P(A 1)·P(A 2)·…·P(n )。 (2)如果在一次试验中某事件发生的概率为P,那么在n 次独立重复试验中这个事件恰好发生k 次的概率:P n (k)=C P k (1-P)n-k 。 1. 设有一个均匀的正四面体,第一,二,三面分别涂上红,黄,兰一种颜色,第四面涂上红,黄,兰三种颜色。现以A,B,C 分别记投一次四面体底面出现红,黄,兰颜色的事件,问A ,B ,C 事件相互独立吗? 【解析】 所以A,B,C 两两独立,但 因而A,B,C 不相互独立。 2. 设有四张形状,大小,质量完全一样的卡片,上面分别标有数字112,121,211,222,现从四张卡片中任抽一张,以随机变量X,Y ,Z 分别表示抽到卡片上的第一,二,三位数字,问X ,Y ,Z 事件相互独立吗? 【解析】 k n 41)()()(,21)()()(==== ==BC P AC P AB P C P B P A P )()()(8141)(C P B P A P ABC P =≠=

所以X,Y ,Z 两两独立,但 因而X,Y ,Z 不相互独立。 41 )1,1()1,1()1,1(2 1 )1()1()1(= ==============Z Y P Z X P Y X P Z P Y P X P )1()1()1(810)1,1,1(====≠====Z P Y P X P Z Y X P

高中数学知识点精讲精析 对数

3.4对数 3·4·1 对数及其运算 1.对数及其运算: ①对数:一般地,如果的b 次幂等于N ,即,那么数b 就叫作以a 为底的N 的对数,记作: 其中a 叫作对数的底数,N 叫作真数. 通常将以10为底的对数称为常用对数,N 的常用对数记作:lgN ; 将以自然常数e=2.71828…… 为底的对数称为自然对数,N 的自然对数记作:lnN. ②对数的运算性质: 如果则 1) ; 2) ; 3) 2 3. 重要公式: ⑴负数与零没有对数; ⑵01log =a ,1log =a a ⑶对数恒等式N a N a =log 例1 计算 (1)5log 25, (2)4.0log 1, (3)2log (74×5 2), (4)lg 5100 解:(1)5log 25= 5log 25(2)4.0log (3)2log (74×25)= 2log 74+ 2log 5 2 (0,1)a a a >≠N a b =b N log a =0,1,0,0,a a N M >≠>>()log log log a a a MN M N =+)(log log R n M n M a n a ∈?=log log log a a a M M N N ?? =- ???

= 2log 7 22 ?+ 2log 5 2 = 2× (4)lg 5100= 5 2lg1052log10512==例2 用x a log ,y a log ,z a log 表示下列各式: 3 2log )2(; (1)log z y x z xy a a 解:(1)z xy a log =a log (xy )-a log z=a log x+a log y- a log z (2)3 2log z y x a =a log (2 x 3log )z y a - = a log 2 x +a log 3log z y a -=2a log x+z y a a log 3 1log 2 1-例4计算: (1)lg14-2lg 37+lg7-lg18 (2)9lg 243lg (3)2 .1lg 10 lg 38lg 27lg -+ 说明:此例题可讲练结合. (1)解法一:lg14-2lg 3 7 +lg7-lg18 =lg(2×7)-2(lg7-lg3)+lg7-lg(2 3×2) 解法二: lg14-2lg 37+lg7-lg18=lg14-lg 2 )3 7(+lg7-lg18 =lg 01lg 18)3 7(7 142 ==??评述:此题体现了对数运算性质的灵活运用,运算性质的逆用常被学生所忽视. 253lg 23lg 53 lg 3lg 9lg 243lg )2(2 5===10 23lg ) 10lg(32lg )3lg(2.1lg 10lg 38lg 27lg ) 3(2 2 13 2 13 ?=+= -+2 3 12lg 23lg ) 12lg 23(lg 23 =-+-+=

数学归纳法典型例题

实用文档 文案大全数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 数学归纳法的原理及应用 四. 知识分析 【知识梳理】 数学归纳法是证明关于正整数n的命题的一种方法,在高等数学中有着重要的用途,因而成为高考的热点之一。近几年的高考试题,不但要求能用数学归纳法去证明现代的结论,而且加强了对于不完全归纳法应用的考查,既要求归纳发现结论,又要求能证明结论的正确性,因此,初步形成“观察—-归纳—-猜想—-证明”的思维模式,就显得特别重要。 一般地,证明一个与正整数n有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n取第一个值n = n0时命题成立; (2)(归纳递推)假设n= k()时命题成立,

证明当时命题也成立。 只要完成这两个步骤,就可以断定命题对从开始的所有正整数n 都成立。上述证明方法叫做数学归纳法。 数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递性的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步 实用文档 文案大全各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n =k+1时也成假设了,命题并没有得到证明。 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。 2、运用数学归纳法时易犯的错误 (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。

数学归纳法经典例题及答案

数学归纳法(2016.4.21) 令狐采学 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点:两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: 证明:①n=1时,左边31311=?= ,右边3 1121=+=,左边=右边,等式成立. ②假设n=k 时,等式成立,即: ()()1212121751531311+=+-++?+?+?k k k k . 当n=k+1时. 这就说明,当n=k+1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立. 题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n=1时,左边=1,右边=2.

左边<右边,不等式成立. ②假设n=k 时,不等式成立,即 k k 21 31 21 1<++++ . 那么当n=k+1时, 这就是说,当n=k+1时,不等式成立. 由①、②可知,原不等式对任意自然数n 都成立. 说明:这里要注意,当n=k+1时,要证的目标是 1211 1 31 21 1+<++++++k k k ,当代入归纳假设后,就是 要证明: 1211 2+<++k k k . 认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题 例3 (x +1)n =a0+a1(x -1)+a2(x -1)2+a3(x -1)3+…+an(x -1)n(n ≥2,n ∈N*). (1)当n =5时,求a0+a1+a2+a3+a4+a5的值. (2)设bn =a2 2n -3,Tn =b2+b3+b4+…+bn.试用数学归纳法 证明:当n ≥2时,Tn =n(n +1)(n -1)3. 解:(1)当n =5时, 原等式变为(x +1)5=a0+a1(x -1)+a2(x -1)2+a3(x -1)3+

高考数学题型全归纳:数列要点讲解(含答案)

数列 一、高考要求 1.理解数列的有关概念,了解递推公式是给出数列的一种方法, 并能根据递推公式写出数列 的前n 项. 2.理解等差(比)数列的概念,掌握等差(比)数列的通项公式与前 n 项和的公式. 并能运用这些知识来解决一些实际问题. 3.了解数学归纳法原理,掌握数学归纳法这一证题方法,掌握“归纳—猜想—证明”这一思想方法. 二、热点分析 1.数列在历年高考中都占有较重要的地位,一般情况下都是一个客观性试题加一个解答题,分值占整个试卷的10%左右.客观性试题主要考查等差、等比数列的概念、性质、通项公式、前n 项和公式、极限的四则运算法则、无穷递缩等比数列所有项和等内容,对基本的计算技能要求比较高,解答题大多以考查数列内容为主,并涉及到函数、方程、不等式知识的综合性试题,在解题过程中通常用到等价转化,分类讨论等数学思想方法,是属于中高档难度的题目. 2.有关数列题的命题趋势(1)数列是特殊的函数,而不等式则是深刻认识函数和数列的重要工具,三者的综合求解题是对基础和能力的双重检验,而三者的求证题所显现出的 代数推理是近年来高考命题的新热点(2)数列推理题是新出现的命题热点.以往高考常 使用主体几何题来考查逻辑推理能力,近两年在数列题中也加强了推理能力的考查。 (3)加强了数列与极限的综合考查题 3.熟练掌握、灵活运用等差、等比数列的性质。等差、等比数列的有关性质在解决数列问题时应用非常广泛,且十分灵活,主动发现题目中隐含的相关性质,往往使运算简洁优美.如2435 46225a a a a a a ,可以利用等比数列的性质进行转化:从而有2 23355225a a a a ,即235()25a a . 4.对客观题,应注意寻求简捷方法 解答历年有关数列的客观题,就会发现,除了常规方法外,还可以用更简捷的方法求解.现介绍如下:①借助特殊数列. ②灵活运用等差数列、等比数列的有关性质,可更加准确、快速地解题,这种思路在解客观题时表现得更为突出,很多数列客观题都有灵活、简捷的解法 5.在数列的学习中加强能力训练数列问题对能力要求较高,特别是运算能力、归纳猜

高中数学知识点精讲精析 微积分

3 微积分 积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。 一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。 其中:[F(x) + C]' = f(x) 一个实变函数在区间[a,b]上的定积分,是一个实数。它等于该函数的一个原函数在b的值减去在a的值。 积分integral 从不同的问题抽象出来的两个数学概念。定积分和不定积分的统称。不定积分是为解决求导和微分的逆运算而提出的。例如:已知定义在区间I上的函数f(x),求一条曲线y=F(x),x∈I,使得它在每一点的切线斜率为F′(x)=f (x)。函数f(x)的不定积分是f(x)的全体原函数(见原函数),记作。如果F(x)是f(x)的一个原函数,则,其中C为任意常数。例如,定积分是以平面图形的面积问题引出的。y=f(x)为定义在[a,b]上的函数,为求由x=a,x=b ,y=0和y =f(x)所围图形的面积S,采用古希腊人的穷竭法,先在小范围内以直代曲,求出S的近似值,再取极限得到所求面积S,为此,先将[a,b]分成n等分:a=x0<x1<…<xn=b,取ζi∈[xi-1,xi],记Δxi=xi-xi-1,,则pn为S的近似值,当n→+∞时,pn的极限应可作为面积S。把这一类问题的思想方法抽象出来,便得定积分的概念:对于定义在[a,b]上的函数y=f(x),作分划a=x0<x1<…<xn=b,若存在一个与分划及ζi∈[xi-1,xi]的取法都无关的常数I,使得,其中则称I为f(x)在[a,b]上的定积分,表为即称[a,b]为积分区间,f(x)为被积函数,a,b分别称为积分的上限和下限。当f(x)的原函数存在时,定积分的计算可转化为求f(x)的不定积分:这是c牛顿莱布尼兹公式。

相关文档
最新文档