新型碳材料及其应用

新型碳材料及其应用
新型碳材料及其应用

谈谈新型碳材料及其应用

谈谈新型碳材料及其应用

碳材料是一种古老而又年轻的材料,即有古老的产品也有现代科学技术进步所创新的产品,而新型碳材料就是由传统的碳材料经过一系列的加工工艺而制的一种新型材料。新型碳材料主要有活性炭、碳纤维、石墨烯、石墨、纳米碳管、金刚石、富勒烯、其他新型碳材料。新型碳材料具有密度小、强度大、刚性好、耐高温、抗化学腐蚀、抗辐射、抗疲劳、高导电、高导热、耐烧蚀、热膨胀小、生理相容性好登一系列优异的特性,是军民两用的新材料,被称为是第四类工业材料。应用于冶金、化工、机械、汽车、医疗、环保、建筑日常生活等领域。特别是航天和核工业部门不可缺少的工程结构材料。新型碳材料的发展和应用对提高军事实力和工业产品是竞争力都是至关重要的,已经成为衡量一个国家科技水平、军事和经济实力是标志之一。

活性炭是被其广泛使用的一种新型碳材料,其又称活性炭黑,是黑色粉末状或颗粒状的无定形碳,活性炭主成分除了碳以外还有氧、氢等元素,活性炭在结构上由于微晶碳是不规则排列,在交叉连接之间有细孔,在活化时会产生碳组织缺陷,因此它是一种多孔碳,堆积密度低,比表面积大。在石化行业,活性炭在无碱脱臭乙烯脱盐水工艺中起到了关键的作用;在电力行业,活性炭被用于电厂水质处理及保护;在化工行业活性炭用于化工催化剂及载体、气体净化、溶剂回收、及油脂等的脱色、精制过程中;在食品行业,它被用于饮料、酒类、味精母液及食品的精制、脱色、提纯、除臭,在黄金行业,在黄金提取和尾液回收起到至关重要的作用;环保行业,被用于污水处理、

废气及有害气体的治理、气体净化,总之活性炭被其广泛的用于各行各业中。

碳纤维是新型碳材料家族中的又一个典型代表,它不仅具有碳材料的固有本征特性,又兼具纺织纤维的柔软可加工性,是新一代增强纤维。不仅杨氏模量大,而且在有机溶剂、酸、碱中不溶不胀,耐蚀性也出类拔萃。碳纤维可加工成织物、毡、席、带、纸及其他材料。碳纤维作为增强材料加入到树脂、金属、陶瓷、混凝土等材料中,可以构成复合材料。碳纤维增强的复合材料可用作飞机结构材料、电磁屏蔽除电材料、人工韧带等身体代用材料以及用于制造火箭外壳、机动船、工业机器人、汽车板簧和驱动轴等。总之碳纤维是被广泛用于民用,军用,建筑,化工,工业,航天以及超级跑车领域的。

石墨烯是一种由碳原子构成的单层片状结构的新材料。是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。在纳电子器件方面,利用石墨烯加入电池电极材料中可以大大提高充电效率,并且提高电池容量;也可以应用于许多其他潜在的能源存储领域如超级电容器、电磁炮等。石墨烯可以代替硅生产超级计算机;在光子传感器、基因电子测序和隧穿势垒材料也有重要的用途。

纳米碳管,管状的纳米级石墨晶体,是单层或多层石墨片围绕中心轴按一定的螺旋角卷曲而成的无缝纳米级管,每层的C是sp2杂化,形成六边形平面的圆柱面。各国都加紧了碳纳米管的应用研究,研制出具备良好储氢性能的碳纳米管和具备初步显示功能的碳纳米管显

示器,并在利用其电子发射性能研制发光器件。但是由于纳米碳管提纯困难,使其没有得到普及,但是在将来其可以作为超级纤维材料、高性能场发射材料、超级电容器电极材料、储氢材料、催化剂材料被广泛应用。

富勒烯是由任何由碳一种元素组成,以球状,椭圆状,或管状结构存在的物质。富勒烯与石墨结构类似,但石墨的结构中只有六元环,而富勒烯中可能存在五元环。富勒烯是一种新发现的工业材质,在将来可以制成无金属电线、富勒烯(非金属)钢筋的建筑物、富勒烯防弹背心、富勒烯汽车壳等,它也是制成非线性光学器件、光导体、超导材料的重要材料,也可以制成抗癌药物的载体、高效催化剂和富勒烯氢化物电池等。

新型碳材料的应用是相当广泛的,我们相信新型碳材料在未来一定会被作为相当重要的材料应用于各行各业中,新型碳材料的发展前景也将是不可估量的,在未来,我们的生活应该是离不开新型碳材料。

材料化学第二版课后答案

第一章 1.什么是材料化学其主要特点是什么 答:材料化学是有关于材料的结构、性质、制备及应用的化学。 主要特点:跨学科性,实践性。 2.材料与试剂的主要区别是什么 答:试剂在使用过程中通常被消耗并转化为其他物质,而材料通常是可重复的、连续的,除了正常的消耗外,它不会不可逆地转化为其他物质。 3.观察一只灯泡,列举制造灯泡所需的材料。 4.材料按其组成和结构可以分为哪几类如果按功能和用途对材料分类,列举十种不同功能或用途的材料。 答:(1)金属材料,无机非金属材料,高分子材料,复合材料 (2)导电材料、绝缘材料、生物医用材料、航天航空材料、能源材料、电子信息材料、感光材料 5.简述材料化学的主要内容。 答:结构:原子和分子在不同层次彼此结合的形式、状态和空间分布。 特性:材料固有的化学、物理和力学特性。 制备:将原子和分子结合在一起,并最终将其转化为有用的产品应用。. 第二章1.原子间的结合键共有几种各自特点如何 特键形成晶体的特 高熔点、高强度、高硬度、低膨无饱和性、无方向性、高最系数、塑性较差、固态不导电、离子位数态离子导电高熔点、高强度、高硬度、低膨有饱和性、有方向性、低共价在熔态也不导电系数塑性较差位可以自由流动电子共有化塑性较好、有光泽、良好的导热较金属无饱和性、无方向性、配位导电性。数高范德华键无饱和性、无方向性最弱 有饱和性、有方向性氢键弱4RaaR?34??3计算体心立方及六方密堆的的堆积系数。3. (1)体心立方33RR??/(42(43)2/3)??0.68=?bcc3a3R)/(43 n = 2单位晶胞原子数 ca8?3aR2? (2)六方密堆33R?R?/36/3)6(4(4)??=?0.74hcp831RcaRaR)6(12?)?(3n=6322 4RaaR?24??2(3)面心立方

碳纤维及其复合材料的发展及应用_上官倩芡

第37卷第3期上海师范大学学报(自然科学版)Vol.37,N o.3 2008年6月J ou rnal of ShanghaiNor m alUn i versity(Natural S ci en ces)2008,J un 碳纤维及其复合材料的发展及应用 上官倩芡,蔡泖华 (上海师范大学机械与电子工程学院,上海201418) 摘要:叙述了碳纤维的结构形态、分类以及在力学、物理、化学方面的性能,介绍了碳纤维增强复合材料的特性,着重阐述了碳纤维增强树脂基复合材料中基体的分类、选择和应用,指出了碳纤维及其复合材料进一步发展的趋势. 关键词:碳纤维;复合材料 中图分类号:O636文献标识码:A文章编号:1000-5137(2008)03-0275-05 碳纤维作为一种高性能纤维,具有高比强度、高比模量、耐高温、抗化学腐蚀、耐辐射、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异性能.此外,还具有纤维的柔曲性和可编性[1~3].碳纤维既可用作结构材料承载负荷,又可作为功能材料发挥作用.因此碳纤维及其复合材料近几年发展十分迅速.本文作者就碳纤维的特性、分类及其在复合材料领域的应用等内容进行介绍. 1碳纤维特性、结构及分类 碳纤维是纤维状的碳材料,由有机纤维原丝在1000e以上的高温下碳化形成,且含碳量在90%以上的高性能纤维材料.碳纤维主要具备以下特性:1密度小、质量轻,碳纤维的密度为1.5~2g/c m3,相当于钢密度的1/4、铝合金密度的1/2;o强度、弹性模量高,其强度比钢大4~5倍,弹性回复为100%;?热膨胀系数小,导热率随温度升高而下降,耐骤冷、急热,即使从几千摄氏度的高温突然降到常温也不会炸裂;?摩擦系数小,并具有润滑性;?导电性好,25e时高模量碳纤维的比电阻为775L8/c m,高强度碳纤维则为1500L8/c m;?耐高温和低温性好,在3000e非氧化气氛下不熔化、不软化,在液氮温度下依旧很柔软,也不脆化;?耐酸性好,对酸呈惰性,能耐浓盐酸、磷酸、硫酸等侵蚀[4~7].除此之外,碳纤维还具有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性. 碳纤维的结构取决于原丝结构和碳化工艺,但无论用哪种材料,碳纤维中碳原子平面总是沿纤维轴平行取向.用X-射线、电子衍射和电子显微镜研究发现,真实的碳纤维结构并不是理想的石墨点阵结构,而是属于乱层石墨结构[8],如图1所示.构成此结构的基元是六角形碳原子的层晶格,由层晶格组成层平面.在层平面内的碳原子以强的共价键相连,其键长为0.1421n m;在层平面之间则由弱的范德华力相连,层间距在0.3360~0.3440n m之间;层与层之间碳原子没有规则的固定位置,因而层片边缘参差不齐.处于石墨层片边缘的碳原子和层面内部结构完整的基础碳原子不同.层面内部的基础碳原子所受的引力是对称的,键能高,反应活性低;处于表面边缘处的碳原子受力不对称,具有不成对电子,活性 收稿日期:2008-01-04 基金项目:上海市教委科研基金项目(06D Z034). 作者简介:上官倩芡(1974-),女,上海师范大学机械与电子工程学院副教授.

碳纳米管纳米复合材料的研究现状及问题(一)

碳纳米管纳米复合材料的研究现状及问题(一) 文章介绍了碳纳米管的结构和性能,综述了碳纳米管/聚合物复合材料的制备方法及其聚合物结构复合材料和聚合物功能复合材料中的应用研究情况,在此基础上,分析了碳纳米管在复合材料制备过程中的纯化、分散、损伤和界面等问题,并展望了今后碳纳米管/聚合物复合材料的发展趋势。 。碳纳米管的这些特性使其在复合材料领域成为理想的填料。聚合物容易加工并可制造成结构复杂的构件,采用传统的加工方法即可将聚合物/碳纳米管复合材料加工及制造成结构复杂的构件,并且在加工过程中不会破坏碳纳米管的结构,从而降低生产成本。因此,聚合物/碳纳米管复合材料被广泛地研究。 根据不同的应用目的,聚合物/碳纳米管复合材料可相应地分为结构复合材料和功能复合材料两大类。近几年,人们已经制备了各种各样的聚合物/碳纳米管复合材料,并对所制备的复合材料的力学性能、电性能、热性能、光性能等其它各种性能进行了广泛地研究,对这些研究结果分析表明:聚合物/碳纳米管复合材料的性能取决于多种因素,如碳纳米管的类型(单壁碳纳米管或多壁碳纳米管),形态和结构(直径、长度和手性)等。文章主要对聚合物/碳纳米管复合材料的研究现状进行综述,并对其所面临的挑战进行讨论。 1聚合物/碳纳米管复合材料的制备 聚合物/碳纳米管复合材料的制备方法主要有三种:液相共混、固相共融和原位聚合方法,其中以共混法较为普遍。 1.1溶液共混复合法 溶液法是利用机械搅拌、磁力搅拌或高能超声将团聚的碳纳米管剥离开来,均匀分散在聚合物溶液中,再将多余的溶剂除去后即可获得聚合物/碳纳米管复合材料。这种方法的优点是操作简单、方便快捷,主要用来制备膜材料。Xuetal8]和Lauetal.9]采用这种方法制备了CNT/环氧树脂复合材料,并报道了复合材料的性能。除了环氧树脂,其它聚合物(如聚苯乙烯、聚乙烯醇和聚氯乙烯等)也可采用这种方法制备复合材料。 1.2熔融共混复合法 熔融共混法是通过转子施加的剪切力将碳纳米管分散在聚合物熔体中。这种方法尤其适用于制备热塑性聚合物/碳纳米管复合材料。该方法的优点主要是可以避免溶剂或表面活性剂对复合材料的污染,复合物没有发现断裂和破损,但仅适用于耐高温、不易分解的聚合物中。Jinetal.10]采用这种方法制备了PMMA/MWNT复合材料,并研究其性能。结果表明碳纳米管均匀分散在聚合物基体中,没有明显的损坏。复合材料的储能模量显著提高。 1.3原位复合法 将碳纳米管分散在聚合物单体,加入引发剂,引发单体原位聚合生成高分子,得到聚合物/碳纳米管复合材料。这种方法被认为是提高碳纳米管分散及加强其与聚合物基体相互作用的最行之有效的方法。Jiaetal.11]采用原位聚合法制备了PMMA/SWNT复合材料。结果表明碳纳米管与聚合物基体间存在强烈代写论文的黏结作用。这主要是因为AIBN在引发过程中打开碳纳米管的π键使之参与到PMMA的聚合反应中。采用经表面修饰的碳纳米管制备PMMA/碳纳米管复合材料,不但可以提高碳纳米管在聚合物基体中的分散比例,复合材料的机械力学性能也可得到巨大的提高。 2聚合物/碳纳米管复合材料的研究现状 2.1聚合物/碳纳米管结构复合材料 碳纳米管因其超乎寻常的强度和刚度而被认为是制备新一代高性能结构复合材料的理想填料。近几年,科研人员针对聚合物/碳纳米管复合材料的机械力学性能展开了多方面的研究,其中,最令人印象深刻的是随着碳纳米管的加入,复合材料的弹性模量、抗张强度及断裂韧性的提高。

《化学材料的发展与应用》

《化学与人类文明》课程论文 化学材料的发展与应用 学院:机械学院 专业:机械制造及其自动化 班级:机制101 学号: 学生姓名: 电子信箱: 2012年12月12日

化学材料的发展与应用 摘要:随着现代科学技术的飞跃发展,以前传统的材料早已不能满足我们人类的需求和发展,为了获得更多满足人类工业和日常生活中所需要的具有特定性能的材料,化学材料先如今得到了很大的发展,化学材料不仅获得了传统材料的有点,还具备了一些特殊的功能,极大的满足了工业生产和生活所需。本文章分析了一些常见的化学材料的应用和发展状况,并提出了未来材料化学的发展趋势的一些简单看法。 关键词:材料化学;化学材料;性能;应用;发展 化学与材料息息相关,面对传统的材料不能满足工业生产、日常生活的时候,世界上各国都已开始把目光看向了材料化学,材料化学的发现和使用,使之研发出一系列的新材料,材料化学在原子和分子的水准上设计新材料的战略意义有着广阔的应用前景。然而,材料化学在发挥巨大作用的同时也不短的推动自身理论与技术水平的提高,并且为材料工程的发展带来了新的活力和更加广阔的发展空间。 1材料化学简介 材料化学是材料科学的一个重要分支,也是材料科学的核心部分,在新材料的发现和合成,制备和修饰工艺的发展以及表征方法的革新等领域所作出了的独到贡献。材料是具有使其能够用于机械、结构、设备和产品的性质的物质,是人们利用化合物的某些功能来制作物件时用的化学物质。而化学是在原子、分子水平上研究物质的组成、结构、件能、反应和应用的学科。材料与化学试剂不同,后者在使用过程中通常被消耗并转化成别的物质,而材料则一般可重复持续使用,除了正常消耗以外,它不会不可逆的转变为别的物质。化学则是关于物质的组成,结构和性质以及物质相互转变的研究。显然,材料科学和化学的对象都是物质,前者注重的是宏观方面,而后者则关注原子和分子水平的相互作用。材料化学正是这两者结合的产物,它是关于材料的结构、性能,制备和应用的化学。2化学材料的分类、功能及应用 材料一般按其化学组成,结构进行分类。通常可把材料分成金属材料,无机非金属材料,聚合物材料和复合材料四大类。此外,随着材料科学的迅猛发展,

碳碳复合材料论文

碳/碳复合材料 概述 C/C复合材料是指以碳纤维作为增强体,以碳作为基体的一类复合材料。作为增强体的碳纤维可用多种形式和种类,既可以用短切纤维,也可以用连续长纤维及编织物。各种类型的碳纤维都可用于C/C复合材料的增强体。碳基体可以是通过化学气相沉积制备的热解碳,也可以是高分子材料热解形成的固体碳。C/C 复合材料作为碳纤维复合材料家族的一个重要成员,具有密度低、高比强度比模量、高热传导性、低热膨胀系数、断裂韧性好、耐磨、耐烧蚀等特点,尤其是其强度随着温度的升高,不仅不会降低反而还可能升高,它是所有已知材料中耐高温性最好的材料。因而它广泛地应用于航天、航空、核能、化工、医用等各个领域。 C/C复合材料的致密化工艺 C/C复合材料的制备工艺主要有两种方法:化学气相法(CVD 或CVl)和液相浸渍一碳化法。前者是以有机低分子气体为前驱体,后者是以热塑性树脂(石油沥青、煤沥青、中间相沥青)或热固性树脂(呋喃、糠醛、酚醛树脂)为基体前驱体,这些原料在高温下发生一系列复杂化学变化而转化为基体碳。为了得到更好的致密化效果,通常将化学气相法和液相浸渍一碳化法进行复合致密化,得到具有理想密度的C/C复合材料。 1、化学气相法

化学气相法(cVD或cVI)是直接在坯体孔内沉积碳,以达到填孔和增密的目的。沉碳易石墨化,且与纤维之间的物理兼容性好,而且不会像浸渍法那样在再碳化时产生收缩,而这种方法的物理机械陛能比较好。但在cVD过程中,如果碳在坯体表面沉积就会阻止气体向内部孔的扩散。对于表面沉积的碳应用机械的方法除去,再进行新一轮沉积。对于厚制品,CVD法也存在着一定的困难,而且这种方法的周期也很长。 2、液相浸渍法一碳化法 液相浸渍法相对而言设备比较简单,而且这种方法适用性也比较广泛,所以液相浸渍法是制备C/C复合材料的一个重要方法。它是将碳纤维制成的预成型体浸入液态的浸渍剂中,通过加压使浸渍剂充分渗入到预成型体的空隙中,再通过固化、碳化、石墨化等一系列过程的循环,最终得到C/C复合材料。它的缺点是要经过反复多次浸渍、碳化的循环才能达到密度要求。液相浸渍法中浸渍剂的组成和结构十分重要,它不仅影响致密化效率,而且也影响制品的机械性能和物理性能。提高浸渍剂碳化收率,降低浸渍剂的黏度一直是液相浸渍法制备C/C复合材料所要解 决的重点课题之一。浸渍剂的高黏度和低碳化收率是目前C/C 复合材料成本较高的重要原因之一。提高浸渍剂的性能不仅能提高C/C复合材料的生产效率,降低其成本,也可提高C/C复合材料的各种性能。C/C复合材料的抗氧化处理碳纤维在空气中,于360℃开始氧化,石墨纤维要略好于碳纤维,其开始氧化的温度

碳纳米管的性质与应用

碳纳米管的性质与应用 【摘要】 本文主要介绍了碳纳米管的结构特点,制备方法,特殊性质,由于碳纳米管独特性质而产生的广泛应用,并对其前景进行展望。 【关键词】 碳纳米管场发射复合材料优良性能 【前言】 自日本NEC科学家Lijima发现碳纳米管以来,碳纳米管研究一直是国际新材料领域研究的热点。由于碳纳米管具有特殊的导电性能、力学性质及物理化学性质等,故其在许多领域具有其广阔的应用前景,自问世以来即引起广泛关注。目前,国内外有许多科学家对碳纳米管进行研究,科研成果颇丰,尤其是碳纳米管在复合材料、储氢及催化等领域的应用。 【正文】 一、碳纳米管的结构 碳纳米管中碳原子以sp2杂化为主,同时六角型网格结构存在一定程度的弯曲,形成空间拓扑结构,其中可形成一定的sp3杂化键,即形成的化学键同时具有sp2和sp3混合杂化状态,而这些p 轨道彼此交叠在碳纳米管石墨烯片层外形成高度离域化的大π 键,碳纳米管外表面的大π 键是碳纳米管与一些具有共轭性能的大分子以非共价键复合的化学基础[1]。 对多壁碳纳米管的光电子能谱研究结果表明,不论单壁碳纳米管还是多壁碳纳米管,其表面都结合有一定的官能基团,而且不同制备方法获得的碳纳米管由于制备方法各异,后处理过程不同而具有不同的表面结构。一般来讲,单壁碳纳米管具有较高的化学惰性,其表面要纯净一些,而多壁碳纳米管表面要活泼得多,结合有大量的表面基团,如羧基等。以变角X 光电子能谱对碳纳米管的表面检测结果表明,单壁碳纳米管表面具有化学惰性,化学结构比较简单,而且随着碳纳米管管壁层数的增加,缺陷和化学反应性增强,表面化学结构趋向复杂化。内层碳原子的化学结构比较单一,外层碳原子的化学组成比较复杂,而且外层碳原子上往往沉积有大量的无定形碳。由于具有物理结构和化学结构的不均匀性,碳

碳纤维及其复合材料的发展和应用(精)

·开发与创新· Development and Applications of Carbon Fiber and Its Composites GAO Bo ,XU Zi-Li (Wuhan Textile University ,Wuhan Hubei 430073,China Abstract:This paper introduces performance and features of carbon fiber,briefly overviews the history,including both foreign and domestic.And analyses the properties and applications of carbon fiber composite material,emphasizes the related performance that carbon fiber adds to the metal matrix composites and points out its research prospects.Key words:carbon fiber ;composite ;metal matrix 0引言 碳纤维是含碳量高于90%的无机高分子纤维,是由有机母体纤维(聚丙烯睛、粘胶丝或沥青等采用高温分解法在1000~3000℃高温的惰性气体下碳化制成的。它是一种力学性能优异的新材料,比重不到钢的1/4,能像铜那样导电,比不锈钢还耐腐蚀,而其复合材料抗拉强度一般都在3500Mpa 以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa ,也高于钢。碳纤维按其原料可分为三类:聚丙烯腈基(PAN 碳纤维、石油沥青基碳纤维和人造丝碳纤维三类。其中聚丙烯腈基碳纤维用途最广,需求也最大[1]。 1碳纤维的发展史 1.1国外碳纤维的发展历史 20世纪50年代美国开始研究粘胶基碳纤维,1959 年生产出了粘胶基纤维Thormel-25,这是最早的碳纤维产品。同一年,日本发明了用聚丙烯腈基(PAN 原丝

碳纳米管纳米复合材料的分析现状及问题

碳纳米管纳米复合材料的分析现状及问题 [摘要]文章介绍了碳纳米管的结构和性能,综述了碳纳米管/聚合物复合材料的制备方法及其聚合物结构复合材料和聚合物功能复合材料中的应用研究情况,在此基础上,分析了碳纳米管在复合材料制备过程中的纯化、分散、损伤和界面等问题,并展望了今后碳纳米管/聚合物复合材料的发展趋势。 [关键词]碳纳米管;复合材料;结构;性能 自从1991 年日本筑波NEC 实验室的物理学家饭岛澄男(Sumio Iijima)[1]首次报道了碳纳米管以来,其独特的原子结构与性能引起了科学工作者的极大兴趣。按石墨层数的不同碳纳米管可以分为单壁碳纳米管(SWNTs) 和多壁碳纳米管(MWNTs)。碳纳米管具有极高的比表面积、力学性能(碳纳米管理论上的轴向弹性模量与抗张强度分别为1~2 TPa 和200Gpa)、卓越的热性能与电性能(碳纳米管在真空下的耐热温度可达2800 ℃,导热率是金刚石的 2 倍,电子载流容量是铜导线的1000 倍)[2-7]。碳纳米管的这些特性使其在复合材料领域成为理想的填料。聚合物容易加工并可制造成结构复杂的构件,采用传统的加工方法即可将聚合物/碳纳米管复合材料加工及制造成结构复杂的构件,并且在加工过程中不会破坏碳纳米管的结构,从而降低生产成本。因此,聚合物/碳纳米管复合材料被广泛地研究。 根据不同的应用目的,聚合物/碳纳米管复合材料可相应地分为结构复合材料和功能复合材料两大类。近几年,人们已经制备了各种各样的聚合物/碳纳米管复合材料,并对所制备的复合材料的力学性能、电性能、热性能、光性能等其它各种性能进行了广泛地研究,对这些研究结果分析表明:聚合物/碳纳米管复合材料的性能取决于多种因素,如碳纳米管的类型(单壁碳纳米管或多壁碳纳米管),形态和结构(直径、长度和手性)等。文章主要对聚合物/碳纳米管复合材料的研究现状进行综述,并对其所面临的挑战进行讨论。 1 聚合物/碳纳米管复合材料的制备 聚合物/碳纳米管复合材料的制备方法主要有三种:液相共混、固相共融和原位聚合方法,其中以共混法较为普遍。

纳米碳材料及其应用

纳米碳材料及其应用材料科学与工程学院

单质碳的存在形式1. 金刚石(Diamond) 2. 石墨(Graphite) 3. 富勒烯(Fullarene) 4. 无定形碳(Amorphous) 5. 碳纳米管(Carbon nanotube) 6. 六方金刚石(Lonsdaleite) 8. 纤维碳(Filamentous carbon) 9. 碳气凝胶(Carbon aerogels) 10. 碳纳米泡沫(Carbon nanofoam)…… 最为坚固的一种碳结构,其中的碳原子以晶体结构的形式排列,每一个碳原子与另外四个碳原子紧密键合,最终形成了一种硬度大,活性差的固体。 金刚石的熔点超过350℃,相当于某些恒星的表面温度。 石墨中碳原子以平面层状结构键合在 一起,层与层之间键和比较脆弱,因 此层与层之间容易被滑动而分开。 7. 赵石墨(Chaoite)石墨与陨石碰撞时产生,具有 六边形图案的原子排列。

富勒烯的结构?哈罗德·克罗托(Harold W Kroto)受建筑学家理查德·巴克明斯特(Richard Buckminster Fuller, 1895年7月12日~1983年7月1日)设计的美国万 国博览馆球形圆顶薄壳建筑的启发,认为C60可 能具有类似球体的结构,因此将其命名为 buckminster fullerene(巴克明斯特·富勒烯,简 称富勒烯) ?富勒烯是一系列纯碳组成的原子簇的总称。它们是由非平面的五元环、六元环等构成的封闭 式空心球形或椭球形结构的共轭烯。现已分离 得到其中的几种,如C60和C70等。在若干可能 的富勒烯结构中C60,C240,C540的直径比为 1:2:3。 ?C60的分子结构的确为球形32面体,它是由60个碳原子以20个六元环和12个五元环连接而成的 足球状空心对称分子,所以,富勒烯也被称为 足球烯

碳纳米复合材料

碳纳米管及其复合材料 2007-4-3 14:18:08 【文章字体:大中小]打印收藏关闭 纳米技术是21世纪的前沿科学技术,碳纳米管技术则是该领域中一个强有力的生长点。碳纳米管问世十三年来,日益引起了人们极大的兴趣,其独特的性能正在被认识并加以利用,如何降低成本,大量生产有特定结构的碳纳米管依然是人们的努力方向,含碳纳米管的聚合物复合材料蕴含着巨大的发展潜力。 高聚物/碳纳米管复合材料 碳纳米管于1991年由s.iijima 发现,其直径比碳纤维小数千倍,其性能远优于现今普遍使用的玻璃纤维。其主要用途之一是作为聚合物复合材料的增强材料。 碳纳米管基本上可分为单壁型和多壁型两类。虽然他们乍看起来非常相似,但其制作方法和性能不尽相同。纳米管的结构决定它们是具有金属性还是具有半导体性质。大约三分之二的单壁纳米管属于半导体型,三分之一属金属型。至于多壁纳米管,由于各层壳的性能的叠加,难以做出明显区别,但大体上是金属型。单壁型碳纳米管外径一般为1到2nm多壁型纳米管直 径则在8到12nm之间,它的典型长度一般为10微米,最长可达100微米, 长径比至少可达1000: 1。 美国国内纳米管的生产商有Hyperion Catalysis (产品是多壁纤维纳米管)和新登陆的Zyvex Corp (产品有单壁和多壁纳米管)。这两家厂商提供的母料中都含有15%到20%的纳米管。 碳纳米管的力学性能相当突出。现已测出多壁纳米管的平均弹性模量为 1.8TPa。碳纳米管的拉伸强度实验值约为200GPa是钢的100倍,碳纤维的20倍。碳纳米管弯曲强度为14.2GPa,尽管碳纳米管的拉伸强度如此之高,但它们的脆性不象碳纤维那样高。碳纤维在约1^变形时就会断裂,而碳纳米管要到约18%变形时才会断裂。碳纳米管的层间剪切强度高达500MPa比传 统碳纤维增强环氧树脂复合材料高一个数量级。 在电性能方面,碳纳米管用作聚合物的填料具有独特的优势。加入少量碳纳米管即可大幅度提高材料的导电性。与以往为提高导电性而向树脂中加 入的碳黑相比,碳纳米管有高的长径比,因此,其体积含量可比球状碳黑减少很多。多壁碳纳米管的平均长径比约为1000;同时,由于纳米管的本身长度极短而且柔曲性好,它们填入聚合物基体时不会断裂,因而能保持其高长径比。爱尔兰都柏林trinity 学院进行的研究表明,在塑料中含2%-3%勺多壁碳纳米管使电导率提高了14个数量级,从10-12s/m提高到了102s/m。

化工原理第二版答案(2020年10月整理).pdf

第四章 习题 2. 燃烧炉的内层为460mm 厚的耐火砖, 外层为230mm 厚的绝缘砖。若炉的内表 面温度t 1为1400℃,外表面温度t 3为 100℃。试求导热的热通量及两砖间的界 面温度。设两层砖接触良好,已知耐火砖 的导热系数为t 0007.09.01+=λ,绝缘砖的导 热系数为t 0003.03.02+=λ。两式中t 可分别 取为各层材料的平均温度,单位为℃,λ 单位为W/(m·℃)。 解:设两砖之间的界面温度为2t ,由 23121212t t t t b b λλ??=,得 2223312 23140010094946010/(0.90.000723010/(0.30.0003)22t t t C t t t t ????=?=++?+? ?+?热通量 212 1689/14009490.40/0.970.00072t t q W m ?==+??+? ???

3.直径为mm mm 360?φ,钢管用30mm 厚 的软木包扎,其外又用100mm 厚的保温灰 包扎,以作为绝热层。现测得钢管外壁面 温度为-110℃,绝热层外表面温度10℃。 已知软木和保温灰的导热系数分别为 0.043和0.07W/(m ·℃),试求每米管长 的冷量损失量。 解:每半管长的热损失,可由通过两层 圆筒壁的传热速率方程求出: 13 32112211ln ln 22t t Q r r L r r πλπλ?=+ 1100101601160ln ln 2 3.140.043302 3.140.000760 ??=+???? 25/W m =? 负号表示由外界向体系传递的热量,即 为冷量损失。

碳纳米材料的性能及应用作业.

碳纳米材料的性能及应用 Z09016114 蔡排枝 摘要:纳米材料被誉为21世纪的重要材料,而作为新型纳米材料的碳纳米材料因其本身所拥有的潜在优越性,在化学、物理学及材料学领域具有广阔的应用前景。本文依据目前碳纳米材料的研究发展现状,阐述了碳纳米材料碳60、碳纳米管及石墨烯的结构性能,并对其应用特性进行了初步探讨和分析。 一.引言 碳纳米材料是指材料微观结构在0-3维内其长度不超过100nm;由碳原子组成,材料中至少有一维处于纳米尺度范围0-100nm;具有纳米结构。它有四种基本类型:a.纳米粒子原子团如C 60 (零维 b. 碳纳米纤维和碳纳米管(1维 c. 碳纳米层或膜材料石墨烯(2维 d.块体纳米材料如金刚石(3维。 由于碳纳米材料的独特结构,使其具有不同于常规材料和单个分子的性质如量子尺寸效应、表面效应、宏观量子隧道效应等,从而导致了碳纳米材料的力学性能、电磁性能、光学性能、热学性能等的改变,并使之在电子学、光学、化工陶瓷、生物、医药、日化诸多方面有重要价值,得到广泛的应用。由于石墨,金刚石并不是常用的碳纳米材料。 碳纳米材料中,目前应用最成熟的就是碳纳米管。碳纳米管是一种具有独特结构的一维量子材料,由石碳原子层卷曲而成,管直径一般为几纳米到几十纳米,管厚度仅为几纳米,长度可达数微米。由于拥有潜在的优越能,碳纳米管无论在物理、化学还是在材料科学领域都将有大发展前景。比如在材料科学领域,碳纳米管的长度是直的几千倍,被称为“超级纤维”,其性质随直径和螺旋角的同有明显变化。近年来,美国、日本、德国和中国等国家相成立了纳米材料研究机构,使碳纳米管的研究进展随之加快并在制备及应用方面取得了突破性进展。 二.碳纳米材料的性能

碳纤维复合材料在航空航天领域的应用

碳纤维复合材料在航空航天领域的应用林德春潘鼎高健陈尚开 (上海市复合材料学会)(东华大学)(连云港鹰游纺机集团公司) 碳纤维是纤维状的碳素材料,含碳量在90%以上。具有十分优异的力学性能,与其它高性能纤维相比具有最高比强度和最高比模量。特别是在2000℃以上高温惰性环境中,是唯一强度不下降的物质。此外,其还兼具其他多种得天独厚的优良性能:低密度、高升华热、耐高温、耐腐蚀、耐摩擦、抗疲劳、高震动衰减性、低热膨胀系数、导电导热性、电磁屏蔽性,纺织加工性均优良等。因此,碳纤维复合材料也同样具有其它复合材料无法比拟的优良性能,被应用于军事及民用工业的各个领域,在航空航天领域的光辉业绩,尤为世人所瞩目。 可以明显看出,在航空航天领域碳纤维的用量有大幅度增加,2006年比2001年增长约40%,2008年增长约76%,2010年和2001年相比增长超过100%。 本文将介绍碳纤维增强树脂基复合材料(CFRP)在航空航天领域应用的新进展。 1 航空领域应用的新进展 T300 碳纤维/树脂基复合材料已经在飞行器上广泛作为结构材料使用,目前应用较多的 为拉伸强度达到5.5GPa,断裂应变高出T300 碳纤维的30%的高强度中模量碳纤维T800H 纤维。 (1)军品 碳纤维增强树脂基复合材料是生产武器装备的重要材料。在战斗机和直升机上,碳纤维复合材料应用于战机主结构、次结构件和战机特殊部位的特种功能部件。国外将碳纤维/环氧和碳纤维/双马复合材料应用在战机机身、主翼、垂尾翼、平尾翼及蒙皮等部位,起到了明显的减重作用,大大提高了抗疲劳、耐腐蚀等性能,数据显示采用复合材料结构的前机身段,可比金属结构减轻质量31.5%,减少零件61.5%,减少紧固件61.3%;复合材料垂直安定面可减轻质量32.24%。用军机战术技术性能的重要指标——结构重量系数来衡量,国外第四代军机的结构重量系数已达到27~28%。未来以F-22为目标的背景机复合材料用量比例需求为35%左右,其中碳纤维复合材料将成为主体材料。国外一些轻型飞机和无人驾驶飞机,已实现了结构的复合材料化。目前主要使用的是T300级和T700级小丝束碳纤维增强的复合材。 美国在歼击机和战斗机上大量使用复合材料:F-22的结构重量系数为27.8%,先进复合材料的用量已达到25%以上,军用直升机用量达到50%以上。八十年代初美国生产的单人

有关碳纳米管复合材料的探讨(doc 9页)

有关碳纳米管复合材料的探讨(doc 9页)

有关碳纳米管复合材料的研究 摘要:自从上个世纪末纳米技术的出现,纳米材料的独特性能引起人们的广泛关注。把纳米材料与高分子材料复合,制备高性能和功能化的复合材料成为高分子材料领域的热点之一。作为纳米材料领域之一的碳纳米管(CNTs)具有独特的物理性能,是一种具有纳米直径的管状碳纤维,它具有超强的韧性和强度以及优异的导电性能。通过不同的复合方法可制备出增强、导电和电磁屏蔽的优异性能的材料,具有广泛的应用前景。 本论文通过不同的方法制备了不同高分子基碳纳米管复合材料,研究了CNTs在基体中分散状况和复合材料的力学、热学和导电性能,并探讨了CNTs对复合材料的结构和性能的影响。 关键词:纳米材料碳纳米管复合材料 前言:由于高分子材料来源丰富、制造方便、加工容易、节省能源和投资、效益显著、品种繁多、用途广泛,因而在材料领域占有的比重越来越大。但是随着科学技术的发展以及人们生活水平的提高,对高分子材料不断提出各种各样的新要求,使高分子材料科学的发展呈现出高性能化、功能化、复合化、精细化和智能化的趋势。而纳米技术的出现则为材料科学的发展带来革命性的变化,为高性能、功能化的材料开创了新的领域。因而世界上许多国家把纳米材料的开发放在了特别重要的位置,并形成一股纳米复合材料的热潮[1]。 纳米材料是指平均粒径在纳米级(1-100nm)范围内的固体材料的总称。而作为其中重要的一个部分则是聚合物/无机纳米粒子复合材料,一般是指以有机高分子聚合物为连续相与纳米粒子进行复合而得到的复合材料。这种材料能够充分的结合高分子材料以及纳米粒子所具有的特性,大大的扩展了高分子材料的应用领域,而成为纳米材料里的研究热门。 1、纳米材料的特性 1992年国际纳米材料会议对纳米材料定义如下:一相任一维的尺寸达到 100nm以下的材料为纳米材料[2]。由此可知,纳米材料的几何形状既可以是粒径小于100nm的零维纳米粉末,也可以是径向尺寸小于100nm的一维纳米纤维或二维纳米膜、三维纳米块体等。纳米材料的材质可以是金属或非金属;相结构可以是单相或多相;原子排列可以是晶态或非晶态。当物质进入纳米级后,其在催化、光、电、热力学等方面都出现特异化,这种现象被称为“纳米效应”。具体表现在以下几个方面: (1)表面效应

【免费下载】材料化学第二版 李奇 李光巨主编课后习题答案精选

材料化学第一章 5.试叙述划分正当点阵单位所依据的原则。平面点阵有哪几种类型与型式? 请 论证其中只有矩形单位有带心不带心的两种型式,而其它三种类型只有不带心的型式?答:划分正当点阵单位所依据的原则是:在照顾对称性的条件下,尽量选取含点阵点少的单位作正当点阵单位。平面点阵可划分为四种类型,五种形式的正当平面格子:正方,六方,矩形,带心矩形,平行四边形。(a )(b ) (c )(d )(a )若划分为六方格子中心带点,破坏六重轴的对称性,实际上该点阵的对称性属于矩形格子。(b )(c )分别划分为正方带心和平行四边形带心格子时,还可以划分成更小的格子。(d )如果将矩形带心格子继续划分,将破坏直角的规则性, 故矩形带心格子为正当格子。 6.什么叫晶胞,什么叫正当晶胞,区别是什么?答:晶胞即为空间格子将晶体结构截成的一个个大小,形状相等,包含等同内容的基本单位。在照顾对称性的条件下,尽量选取含点阵点少的单位作正当点阵单位,相应的晶胞叫正当晶胞。、管路敷设技术通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

碳纤维复合材料应用研究报告Word版

碳纤维复合材料应用研究报告 摘要:本文对碳纤维复合材料的应用进行了综述,介绍了目前碳纤维复合材料的优异性能、国内外发展现状及趋势及在其所应用领域中的发展前景。同时,也指出了碳纤维复合材料在应用和发展中所存在的问题,并给出了解决这些问题的对策及建议。 关键字:碳纤维,复合材料,应用前景 1 前言 碳纤维复合材料是以碳纤维为增强体与树脂、陶瓷及金属等基体复合而成的结构材料。碳纤维是纤维状的碳素材料,含碳量在90% 以上。它是利用各种有机纤维在惰性气体中、高温状态下碳化而制得。碳纤维除了具有十分优异的力学性能外,碳纤维还具有低密度、耐高温、耐腐蚀、耐摩擦、抗疲劳、震动衰减性高、电及热传导性高、热膨胀系数低、穿透性高等优良性能[1]。基于此,到目前为止,用碳纤维与其他基体复合而成的先进基复合材料是目前用得最多,也是最重要的一种结构复合材料。 碳纤维复合材料与金属材料或其他工程材料相比有许多优良的性能,如表1-1所示[2]: 表1-1 各材料性能比较 通过比较可知,(1)碳纤维复合材料比强度是钢SAE1010(冷轧)的近20倍,是铝6061-T6 的近10倍;其比模量则超过这些钢和铝材的3倍。因此其具有高的比强度和比模量。(2)大多数碳纤维复合材料可通过设计增强纤维的取向及用量来对结构材料的性能实行剪裁,达到性能最佳。(3)碳纤维复合材料密度低,质量轻,能有效减轻构件重量。除此之外,碳纤维复合材料还有多选择性成型工艺、良好的耐疲劳性能及良好的抗腐蚀性等。

由于碳纤维复合材料具有优于其他材料的性能,世界各国都在大力发展碳纤维复合材料。2013年碳纤维复合材料总产值147亿美元,其中CFRP产值94亿美元,约占64%。碳纤维复合材料的需求7.2万t,2020年预计需求量将达14.6万t(图1-1),2010—2020年全球碳纤维复合材料年均增长率都将超过11%[3][4]。 2016、2020年的需求量为预测值。 图1-1 2011—2020年全球碳纤维和碳纤维复合材料的需求量 其中,欧洲的碳纤维复合材料需求占全球市场的40 %,美国占25 %,中国占20 %,其他国家与地区的碳纤维复合材料占市场份额在15 %上下。其中中国市场对碳纤维的需求每年也在逐步增加,中国碳纤维复合材料市场需求如图1-2所示: 图1-2 中国碳纤维复合材料市场需求 2015年,碳纤维制造商日本帝人公司扩大碳纤维复合材料合作领域,其目标是将他们

几种碳纳米材料的制备及其应用研究

几种碳纳米材料的制备及其应用研究 碳基纳米材料是指分散相至少有一维小于100 nm的碳材料。分散相可以由碳原子组成,也可以由其它原子(非碳原子)组成。 到目前为止,发现的碳基纳米材料有富勒烯、碳纳米管、石墨烯、荧光碳点及其复合材料。碳基纳米材料在硬度、耐热性、光学特性、耐辐射特性、电绝缘性、导电性、耐化学药品特性、表面与界面特性等方面都比其它材料优异,可以说碳基纳米材料几乎包括了地球上所有物质所具有的特性,如最硬—最软,全吸光—全透光,绝缘体—半导体—良导体,绝热—良导热等,因此具有广泛的用途。 发展制备这些材料的新方法、新技术,研究这些材料不同的纳米结构对性质的影响,不仅有重要的理论价值,而且对能源和生命分析领域的快速发展也具有重要的实际意义。在本论文工作中,以碳基纳米材料为主体,以微波水热、溶剂热等液相合成策略为手段,从探索纳米材料的结构、表面性质与其性能的关系出发,构建功能化碳基纳米材料,以满足在能源和生命分析应用中的要求。 本论文研究工作主要包括以下几方面的内容:1.微波辅助原位合成石墨烯/聚3,4-乙烯二氧噻吩复合物及其在超级电容器中的应用本工作中我们报道了一个新颖的微波辅助原位合成石墨烯/聚3,4-乙烯二氧噻吩复合物的新方法。首先,石墨烯氧化物(GO)和3,4-乙烯二氧噻吩单体(EDOT)通过两者间的吸附作用形成GO/EDOT复合物。 然后,在微波加热条件下,GO表面吸附的EDOT单体被GO氧化聚合为聚3,4-乙烯二氧噻吩,同时GO转化为石墨烯,进而形成石墨烯/聚3,4-乙烯二氧噻吩(G/PEDOT)复合物。产物中不含过量的EDOT或GO,从而保证了复合物的纯度。 本研究还对该复合物的结构进行了表征,利用循环伏安和恒电流充放电技术

碳纤维增强复合材料概述

碳纤维增强复合材料概述 摘要:本文对碳纤维增强复合材料进行了介绍,详细介绍了其优点和应用。并对碳纤维复合材料存在的问题提出建议。 关键字:碳纤维,复合材料,应用 Abstract: In this paper, the carbon fiber reinforced composite materials are introduced, its advantages and application was introduced in detail. And puts forward Suggestions on the problems existing in the carbon fiber composite materials. Key words: carbon fiber, composite materials, applications 1.碳纤维增强复合材料介绍 复合材料是将两种或两种以上不同品质的材料通过专门的成型工艺和制造方法复合而成的一种高性能新材料,按使用要求可分为结构复合材料和功能复合材料,到目前为止,主要的发展方向是结构复合材料,但现在也正在发展集结构和功能一体化的复合材料。通常将组成复合材料的材料或原材料称之为组分材料(constituent materials),它们可以是金属陶瓷或高聚物材料。对结构复合材料而言,组分材料包括基体和增强体,基体是复合材料中的连续相,其作用是将增强体固结在一起并在增强体之间传递载荷;增强体是复合材料中承载的主体,包括纤维、颗粒、晶须或片状物等的增强体,其中纤维可分为连续纤维、长纤维和短切纤维,按纤维材料又可分为金属纤维、陶瓷纤维和聚合物纤维,而目前用得最多的和最重要的是碳纤维[1]。 碳纤维是一种直径极细的连续细丝材料,直径范围在6~8 μm 内,是近几十年发展起来的一种新型材料。目前用在复合材料中的碳纤维主要有两大类:聚丙烯腈基碳纤维和沥青基碳纤维,分别用聚丙烯腈原丝(称之为前驱体)、沥青原丝通过专门而又复杂的碳化工艺制备而得。通过碳化工艺,使纤维中的氢、

材料化学第二版(曾兆华版)课后答案解析

第一章 1.什么是材料化学?其主要特点是什么? 答:材料化学是有关于材料的结构、性质、制备及应用的化学。 主要特点:跨学科性,实践性。 2.材料与试剂的主要区别是什么? 答:试剂在使用过程中通常被消耗并转化为其他物质,而材料通常是可重复的、连续的,除了正常的消耗外,它不会不可逆地转化为其他物质。 3.观察一只灯泡,列举制造灯泡所需的材料。 4.材料按其组成和结构可以分为哪几类?如果按功能和用途对材料分类,列举十种不同功 能或用途的材料。 答:(1)金属材料,无机非金属材料,高分子材料,复合材料 (2)导电材料、绝缘材料、生物医用材料、航天航空材料、能源材料、电子信息材料、感光材料 5.简述材料化学的主要内容。

答:结构:原子和分子在不同层次彼此结合的形式、状态和空间分布。特性:材料固有的化学、物理和力学特性。 制备:将原子和分子结合在一起,并最终将其转化为有用的产品应用。

第二章1.原子间的结合键共有几种?各自特点如何? (1)体心立方 单位晶胞原子数n = 2 (2)六方密堆

n=6 (3)面心立方 n=4 10. 单质Mn有一种同素异构体为立方结构,其晶胞参数为0.6326nm,密度= 7.26 g cm-3,原子半径r = 0.112nm,计算Mn晶胞中有几个原子,其堆积系数 为多少? 74 . ) 3 ( 3 8 12 )3 / 4 (6 ) 2 3 2 1 ( 6 )3 / 4 (6 = 3 3 hcp= ? = ?R R R R a a c Rπ π ξ R a a R 2 4 2 4= ? = 74 . ) 2 / 4 ( )3 / 4 (4 )3 / 4 (4 = 3 3 3 3 fcc= = R R a Rπ π ξ

相关文档
最新文档