直流电机闭环调速系统设计综述

直流电机闭环调速系统设计综述
直流电机闭环调速系统设计综述

《自动化系统综合实训》任务书

――――题目:直流电机闭环调速系统设计

一、实训的目的及任务

1.实训的目的

《自动化系统综合实训》作为自动化专业本科生的一门综合性实践性课程,应用已学的计算机、模拟数字电路、微控制器原理、传感器技术、可编程控制器技术、工业过程控制技术等知识,进行综合实践的训练,培养学生独立思考、独立解决问题的能力,努力开拓学生的知识面和创造力。

2.实训的任务

本实践环节主要以51、HCS12微控制器和PIC为主要应用对象,学习速度、位置等系统的实验制作方法,熟悉实验制作和程序过程,并能以动态的形式进行实时显示,以便能较快适应测控一体化的技术应用需求。

二、实训的内容与要求

学生独立的实验制作直流电机闭环调速系统,实现PWM调速、LED 显示设定速度和实际速度。

三、实训可提供的材料

包括:霍尔元件、直流电动机、、按键开关、电路基板电阻电容若干、焊锡、核心实验板、FREESCALE 实验器材及软件等其他耗材。

使用仪器:稳压电源,万用表,实验工具箱(创新或电工实验室可提供)。

四、实训模式

本课程为实训教学,以分组形式完成。教师分阶段提出问题、解答学生的疑问,检查学生的进度和完成情况

五、实训学时分配

地点:中原路校区2#楼207室、211室。

时间:第19、20周。

六、实训成绩评定

1.电路板制作及系统运行效果:70分

2.实训报告:30分。

七、参考资料

1 严隽永译.嵌入式微控制器.北京:机械工业出版社.2005

2 杨国田,白焰.68HC12微控制器原理、应用于开发技术.北京:电力出版社.2003

3何立民.微控制器应用系统设计.北京:北京航空航天大学出版

社.2002

4胡汉才.MCS-51单片机原理与应用.北京:北京清华大学出版社,

1997,7

5 常小玲.电气控制技术与可编程控制器.北京:机械工业出版社.2006,12

审查意见:领导签字:

2006年12月31日

摘要

直流电机在社会生产中有着广泛的应用,本文给出了一种基于摩托罗拉单片机的直流调速系统,HCS12是Motorola新推出的高性能16位微控制器,具有强大的功能。霍尔测速及简单控制系统就是以它为控制核心,利用它的定时器输入捕捉和实时时钟实现了对电机转速的检测和实时显示功能。本系统可以实现PWM调速,以动态的形式显示速度和实际速度,以便能较快适应测控一体化的技术应用需求。Motorola单片机功能丰富、速度高、功耗低、稳定性强,是全球单片机的主流产品,MC9S12DG128属于摩托罗拉公司M68HCS12系列单片机,HCS12是继HC12系列之后推出的16位MCU ,可以很好的满足需求。

关键词微控制器直流电机霍尔元件

目录

1 引言 (4)

2 系统总体设计方案 (4)

2.1 直流电机的基本结构 (5)

3 元器件的选择与说明 (5)

3.1 微控制器的选择 (5)

3.2 霍尔元件的选择 (6)

4 硬件电路设计 (7)

4.1 电机驱动电路和反馈电路设计 (7)

4.2 显示电路设计 (7)

5 系统软件设计 (8)

5.1 系统程序设计 (10)

6 系统调试 (10)

7 总结 (11)

8 参考文献 (12)

9 附录1 (13)

10 附录2 (16)

1 引言

直流电机应用广泛,具有宽广的调速范围,较强的过载能力和较大的起动转矩等特点,广泛应用于对起动和调速要求较高的生产机械,如电力机车、内燃机车、工矿机车、城市电车、电梯、轧钢机等的拖动电机。MC9S12DG128是美国MOTOROLA推出的一款中档16BIT嵌入式微控制器,以CPU12为核心,丰富的内部资源和外部接口资源可以满足各种ECU数据的处理以及发送和接收。可以很好的满足我们的要求。霍尔测速与简易控制系统利用HCS12处理核心和霍尔元件的对磁场敏感特性实现对电动机转速的测量与控制。速度是很多控制系统都要涉及到的重要参数,该系统硬件电路设计简单,利用C语言实现程序的设计,能满足很

多速度控制系统的要求。本设计主要是通过微控制器来实现直流电机的调速,以此加强动手能力,适应测控技术的快速发展。

2 系统总体设计方案

系统总体设计方框图如图1所示。

图1 系统总体设计方框图

系统工作原理:当电动机转动,靠近霍尔传感器,在霍尔效应的作用下产生霍尔脉冲,产生的输出脉冲作为单片机的输入脉冲信号送MCU的PT1口。MCU的PORTP口作为四位数码管的位码控制口,PORTA口作为四位数码管的段码控制口。在电动机上的转轴上粘贴上小磁块,霍尔开关固定在靠近转轴的位置。电机启动时转轴旋转,当磁块转过霍尔元件时,霍尔测速检测电路就会不断地产生脉冲输出信号输入到微控制器,经数据处理送八段数码管显示,再经过比较后,决定加速或减速。

2.1 直流电机的基本结构

直流电机由定子和转子两个基本部分组成。

定子主要由主磁极、换向磁极、机座、端盖和电刷装置等组成。(1)主磁极由磁极铁心和励磁绕组组成。a.磁极铁心:由l~1.5mm 厚的低碳钢板冲片叠压铆接而成。是磁路部分。b.励磁线圈:是磁路部分,产生主磁场。

(2)换向磁极也是由铁心和换向磁极绕组组成,位于两主磁极之间,是比较小的磁极。作用:是产生附加磁场,以改善电机的换向条件,减小电刷与换向片之间的火花。

(3)机座由铸钢或厚钢板制成。作用:来安装主磁极和换向磁极等部件和保护电机,它既是电机的固定部分,又是电机磁路的一部分。(4)端盖与电刷。作用:支持转子的转轴,固定电刷架。

转子(电枢)的组成:主要由电枢铁心、电枢绕组、换向器、转轴和风扇等组成。(1)铁心:由0.5㎜厚硅钢片叠压而成。作用:用来嵌放电枢绕组,是直流电机

磁路的一部分。

(2)电枢绕组:其作用是产生感应电动势和电磁转矩。

(3)换向器:换向器又称整流子,其作用是将直流电动机输人的直流电流转换成电枢绕组内的交变电流,进而产生恒定方向的电磁转矩,或是将直流发电机电枢绕组中的交变电动势转换成输出的直流电压。3.气隙是电机磁路的重要部分。转子要旋转,定子与转子之间必须要有气隙,称为工作气隙。气隙大小对电机性能有很大影响。

3 元器件的选择与说明

本次设计直流电机有学校提供,型号为JOHNSON(5伏)。以下说

明微控制器和霍尔元件的选择。

3.1 微控制器的选择

根据以前的学习情况,本设计选用Motorola的16位单片机MC9S12DG128,下面简单地介绍一下MC9S12DG128。Motorola单片机功能丰富、速度高、功耗低、稳定性强,是全球单片机的主流产品,MC9S12DG128属于摩托罗拉公司M68HCS12系列单片机,HCS12是继HC12系列之后推出的16位MCU ,由标准的片内设备构成,包括8KB的RAM,128KB的FLASH EEPROM,2KB的EEPROM,两个同步串行通信接口(SCI),两个串行外设接口(SPI),一个8通道IC/OC捕获计时器,两个8通道、10位模数转换器(ADC),一个8通道脉宽调制器(PWM),89个离散数字I/O通道,20根数字I/O线,有中断和激活功能,两个CAN口,软件兼容模块(MSCAN12),和一个内部IC总线。

3.2 霍尔元件的选择

霍尔元件是一种基于霍尔效应的磁传感器,已发展成一个品种多样的磁传感器产品族,并已得到广泛的应用,本文简要作一介绍。

霍尔元件是应用霍尔效应的半导体,置于磁场中的静止载流导体,当它的电流方向与磁场方向不一致时,载流导体上平行于电流和磁场方向上的两个面之间产生电动势差,这种现象称霍尔效应。

霍尔元件应用的基本原理是霍尔效应。霍尔效应是一种磁敏效应,一般在半导体薄片的长度X方向上施加磁感应强度为B的磁场,则在宽度Y方向上会产生电动势UH,这种现象即称为霍尔效应。UH称为霍尔电

势,其大小可表示为:

UH=RH/d*IC*B (1)

式中,RH称为霍尔系数,由半导体材料的性质决定;d为半导体材料的

厚度。

设RH/d=K,则式(1)可写为:

UH=K*IC*B (2)

可见,霍尔电压与控制电流及磁感应强度的乘积成正比,K称为乘积灵敏度。K值越大,灵敏度就越高;元件厚度越小,输出电压也越大。在式(2)中,若控制电流IC,为常数,磁感应强度B与被测电流成正比,就可以做成霍尔电流传感器;另外,若仍固定IC为常数,B与被测电压成正比,又可制成霍尔电压传感器。霍尔传感器的基本结构如图2所示。

图2 霍尔传感器应用电路图

4 硬件电路设计

从功能上划分,硬件电路分为驱动电路、手动输入电路和显示电路三大部分,手动输入电路比较简单不再赘述。

4.1 电机驱动电路和反馈电路设计

电机驱动电路和反馈电路设计如图3所示。

图3 电机驱动和反馈电路

4.2 显示电路设计

数码管通常有共阴极和共阳极两种接法。限流电阻是外接的,一般共阳极数码管必须外接电阻,共阴极不一定外接电阻。要显示某字形就应使此字形的相应字段点亮,实际就是送一个用不同电平组合代表的数据至数码管。这种装入数码管中显示字形的数据称为字形码。七段式LED显示器有静态显示与动态扫描两种方式,动态显示需要耗费大量的CPU时间,且亮度不够;而静态亮度高,CPU负担很小,但所需硬件驱动芯片较多;二者各有优缺点,在实际应用中应根据系统的具体情况综合考虑。数据处理采用MCU实现,显示模块采用动态显示方式,考虑到日常需求,这里采用3位数码管显示,系统硬件接线图如图4所示。

图4 显示电路

5 系统软件设计

本程序可以实现PWM输出、调速,并以动态的形式显示速度和实际速度对霍尔传感器检测到的脉冲数计数。当贴有磁片的电机旋转经过霍尔元件时,霍尔电路将电平拉低,MCU的定时器模块的将会捕捉到这一变化,而产生中断,进入中断服务程序。中断服务程序将累计脉冲数,为

转速的测量提供数据。系统软件流程图如下页图5所示。

是否

图5 系统软件流程图

中断程序流程图如下页图6所示:

图6 中断程序流程图

5.1 系统程序设计

C语言作为高级语言,它更接近和体现人的设计思想,随着C语言编译技术的不断提高,用C语言编写的程序代码的质量和效率越来越接近

汇编代码,而且用C语言能实现各种复杂的算法。考虑到程序较为复杂,因此在本次设计中,大部分程序代码采用C语言编写,必要时用C语言和汇编混合编程,源程序请参考附录。

6 系统整机调试

将直流电机的驱动电路,数码管显示电路及按键电路,与最小系统板连接好后,下载调试好的程序到目标板上,然后运行,检查系统的运行状况,发现了许多问题,经过有关老师和同学得帮助,不断修正,反复调试,最终一一解决了遇到的问题,完成了系统设计的功能,达到了题目的要求。

总结

本次课程设计的主要内容是通过软件和硬件的结合利用霍尔元件实现对电动机转速的测量。设计中主要用到中断,利用中断程序检测脉冲个数,根据规定时间内监测到的脉冲数通过计算将结果用数码管显示。此次的课程设计,最关键的是对整个控制过程的熟悉和编程问题。此次实训中,由于某些原因和时间、条件的限制,电路的设计还不够完善,电路制作不够理想,系统功能还需进一步完善。两周的课程设计,除了感到时间紧迫

外,留给我印象最深的是要编写一段正确的程序,必须要有耐心,要有坚持的毅力。由于缺少相关的经验,刚拿到设计任务时没有一点思路,感觉相当困难,后来经过查阅资料,才有了一些思路。在整个系统的设计过程中,花费时间最多的是硬件的调试,调试时遇到了大量的错误,最后在老师和同学的帮助下终于调试通过,使整个电路可正常工作。通过不断的纠正错误,我深刻地体会到在设计过程中,需要反复实践,其过程很可能相当烦琐,有时还特别想放弃,此时更加需要静下心来,仔细查找原因。总体来说,这次实训使我受益匪浅,也为今后进一步学习相关知识打下了一定基础,在摸索该如何设计电路与软件使之实现所需功能的过程中,培养了我的设计思维,增加了实际操作能力,让我体会到了成功的喜悦和快乐。最后,在此向给与我帮助和指导的有关老师和同学表示衷心的感谢。

参考文献

1 严隽永译.嵌入式微控制器. 北京:机械工业出版社,2005年9月

2 杨国田,白焰.68HC12微控制器原理、应用与开发技术.北京:电力出版社,2003年07月

3 童诗白,华成英.模拟电子技术基础.北京:高等教育出版社,2001年1月

4 荣君雅. 数字电子技术. 北京:机械工业出版社,1995年6月

5 余家春.Protell99SE电路设计实用教程. 北京:中国铁道出版社,2003年1月

附录1:源程序

#include /* common defines and macros */

#include /* derivative information */ #pragma LINK_INFO DERIVATIVE "mc9s12dg128b"

//键盘各键值常量定义

#pragma LINK_INFO DERIVATIVE "mc9s12dg128b"

void display(uint); //数码管显示函数

void delay(uint); //延时函数

void PwmInit(void); //pwm初始化

void RTIInit(void);

void Accumulator(void); //输入捕捉初始化

uchar

MA[]={0XC0,0XF9,0XA4,0X60,0X99,0X92,0X82,0XF8,0X80,0X90}; uint Tempfreq;

uint OC0Cnt;

uint Freq;

void main(void) {

DDRA=0xFF; Freq=0;

DDRB=0XFF; DDRP=0XF0; Tempfreq=0;

OC0Cnt=0; PwmInit(); RTIInit(); Accumulator();

EnableInterrupts; while(1)

{

display(Freq*60);

if(TFLG1==0X01)

{

TFLG1=0X01;

Tempfreq++;

}

}

if(Freq

PWMDTY0++;

}

else if(Freq>dispvalue){

PWMDTY0--;

}

}

void PwmInit(void)

{

PWME = 0x00; //关通道

PWMCTL = 0x00; //通道不级联

PWMPRCLK = 0x66; //PCKA2:0=64

PWMSCLA = 0x7d; //Clock SA=Fbus/PWMPRCLK/(2*PWMSCLA)=12.5kHz

PWMSCLB = 0x7D;

PWMCLK = 0xff; //为各通道选择PWM 时,PCLKn=1,SA is source of ch 0

PWMPOL = 0xff; //高脉冲激发序列

PWMPER0 = 0xf0;

转速单闭环直流调速系统设计

郑州航空工业管理学院 电力拖动自动控制系统课程设计 07 级电气工程及其自动化专业 0706073 班级 题目转速单闭环的直流拖动系统 姓名 学号 指导教师孙标 二ОО十年月日

电力拖动自动控制系统课程设计 一、设计目的 加深对电力拖动自动控制系统理论知识的理解和对这些理论的实际应用能力,提高对实际问题的分析和解决能力,以达到理论学习的目的,并培养学生应用计算机辅助设计的能力。 二、设计任务 设计一个转速单闭环的直流拖动系统

题目:单闭环不可逆直流调速系统设计 1 技术指标 电动机参数:PN=3KW, n N=1500rpm, UN=220V,IN=17.5A,Ra=1.25 。主回路总电阻R=2.5,电磁时间常数Tl=0.017s,机电时间常数Tm=0.075s。三相桥式整流电路,Ks=40。测速反馈系数=0.07。调速指标:D=30,S=10%。 2 设计要求 (1)闭环系统稳定 (2)在给定和扰动信号作用下,稳态误差为零。 3 设计任务(1)绘制原系统的动态结构图; (2)调节器设计; (3)绘制校正后系统的动态结构图; (4)撰写、打印设计说明书。 4 设计说明书 设计说明书严格按**大学毕业设计格式书写,全部打印.另外,设计说明书应包括以下内容: (1)中文摘要 (2)英文摘要

目录 第一章中文摘要 ································································································ - 1 -第二章英文摘要 ············································································错误!未定义书签。第三章课程设计的目的和意义·············································································· - 1 -1.电力拖动简介 ··························································································· - 1 - 2.课程设计的目的和意义·················································································· - 2 -第四章课程设计内容·························································································· - 2 -第五章方案确定 ································································································ - 3 - 5.1方案比较的论证 ······················································································ - 3 - 5.1.1总体方案的论证比较········································································ - 3 - 5.1.2主电路方案的论证比较····································································· - 4 - 5.1.3控制电路方案的论证比较·································································· - 6 -第六章主电路设计····························································································· - 7 - 6.1主电路工作设备选择 ················································································ - 7 -第七章控制电路设计·························································································· - 8 -第八章结论 ·····································································································- 11 -第九章参考文献 ·······························································································- 11 -

直流电机双闭环调速系统设计.

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 目录 1 绪论 (1) 1.1课题研究背景 (1) 1.2研究双闭环直流调速系统的目的和意义 (1) 2 直流电机双闭环调速系统 (3) 2.1直流电动机的起动与调速 (3) 2.2直流调速系统的性能指标 (3) 2.2.1静态性能指标 (3) 2.2.2动态的性能指标 (4) 2.3双闭环直流调速系统的组成 (6) 3 双闭环直流调速系统的设计 (8) 3.1电流调节器的设计 (8) 3.2转速调节器的设计 (10) 3.3闭环动态结构框图设计 (12) 3.4设计实例 (12) 3.4.1设计电流调节器 (13) 3.4.2设计转速调节器 (15) 4.Matlab仿真 (17) 4.1仿真结果分析 (19) 5 结论 (20) 参考文献 (21)

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊1 绪论 1.1课题研究背景 直流调速是现代电力拖动自动控制系统中发展较早的技术。就目前而言,直流调速系统仍然是自动调速系统的主要形式,电机自动控制系统广泛应用于机械,钢铁,矿山,冶金,化工,石油,纺织,军工等行业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电机,提高其运行性能,对国民经济具有十分重要的现实意义。 以上等等需要高性能调速的场合得到广泛的应用。然而传统双闭环直流电动机调速系统多数采用结构比较简单、性能相对稳定的常规PID控制技术,在实际的拖动控制系统中,由于电机本身及拖动负载的参数(如转动惯量)并不像模型那样保持不变,而是在某些具体场合会随工况发生改变;与此同时,电机作为被控对象是非线性的,很多拖动负载含有间隙或弹性等非线性的因素。因此被控制对象的参数发生改变或非线性特性,使得线性的常参数的PID控制器往往顾此失彼,不能使得系统在各种工况下都保持与设计时一致的性能指标,常常使控制系统的鲁棒性较差,尤其对模型参数变化范围大且具的非线性环节较强的系统,常规PID调节器就很难满足精度高、响应快的控制指标,往往不能有效克服模型参数变化范围大及非线性因素的影响。 1.2研究双闭环直流调速系统的目的和意义 双闭环直流调速系统是性能很好,应用最广的直流调速系统。采用该系统可获得优良的静、动态调速特性。此系统的控制规律,性能特点和设计方法是各种交、直流电力拖动自动控制系统的重要基础。 20世纪90年代前的大约50年的时间里,直流电动机几乎是唯一的一种能实现高性能拖动控制的电动机,直流电动机的定子磁场和转子磁场相互独立并且正交,为控制提供了便捷的方式,使得电动机具有优良的起动,制动和调速性能。尽管近年来直流电动机不断受到交流电动机及其它电动机的挑战,但至今直流电动机仍然是大多数变速运动控制和闭环位置伺服控制首选。因为它具有良好的线性特性,优异的控制性能,高效率等优点。直流调速仍然是目前最可靠,精度最高的调速方法。 通过对转速、电流双闭环直流调速系统的了解,使我们能够更好的掌握调速系统的基本理论及相关内容,在对其各种性能加深了解的同时,能够发现其缺陷之处,通过对该系统不足之处的完善,可提高该系统的性能,使其能够适用于各种工作场合,提高其使用效率。并以此为基础,再对交流调速系统进行研究,最终掌握各种交、直流调速系统的原理,使之能够应用于国民经济各个

单闭环直流调速系统

第十七单元 晶闸管直流调速系统 第二节 单闭环直流调速系统 一、转速负反馈直流调速系统 转速负反馈直流调速系统的原理如图l7-40所示。 转速负反馈直流调速系统由转速给定、转速调节器ASR 、触发器CF 、晶闸管变流器U 、测速发电机TG 等组成。 直流测速发电机输出电压与电动机转速成正比。经分压器分压取出与转速n 成正比的转速反馈电压Ufn 。 转速给定电压Ugn 与Ufn 比较,其偏差电压ΔU=Ugn-Ufn 送转速调节器ASR 输入端。 ASR 输出电压作为触发器移相控制电压Uc ,从而控制晶闸管变流器输出电压Ud 。 本闭环调速系统只有一个转速反馈环,故称为单闭环调速系统。 1.转速负反馈调速系统工作原理及其静特性 设系统在负载T L 时,电动机以给定转速n1稳定运行,此时电枢电流为Id1,对应转速反馈电压为Ufn1,晶闸管变流器输出电压为Udl 。 n n I C R R C U C R R I U n d e d e d e d d d ?+=+-=+-=0)(φ φφ 当电动机负载T L 增加时,电枢电流Id 也增加,电枢回路压降增加,电动机转速下降,则Ufn 也相应下降, 而转速给定电压Ugn 不变,ΔU=Ugn-Ufn 增加。 转速调节器ASR 输出电压Uc 增加,使控制角α减小,晶闸管整流装置输出电压Ud 增加,于是电动机转速便相应自动回升,其调节过程可简述为: T L ↑→Id ↑→Id(R ∑+Rd)↑→n ↓→Ufn ↓→△U ↑→Uc ↑→α↓→Ud ↑→n ↑。 图17-41所示为闭环系统静特性和开环机械特性的关系。

图中①②③④曲线是不同Ud之下的开环机械特性。 假设当负载电流为Id1时,电动机运行在曲线①机械特性的A点上。 当负载电流增加为Id2时,在开环系统中由于Ugn不变,晶闸管变流器输出电压Ud 也不会变,但由于电枢电流Id增加,电枢回路压降增加,电动机转速将由A点沿着曲线①机械特性下降至B’点,转速只能相应下降。 但在闭环系统中有转速反馈装置,转速稍有降落,转速反馈电压Ufn就相应减小,使偏差电压△U增加,通过转速调节器ASR自动调节,提高晶闸管变流器的输出电压Ud0由Ud01变为Ud02,使系统工作在随线②机械特性上,使电动机转速有所回升,最后稳定在曲线②机械特性的B点上。 同理随着负载电流增加为Id3,Id4,经过转速负反馈闭环系统自动调节作用,相应工作在曲线③④机械特性上,稳定在曲线③④机械特性的C,D点上。 将A,B,C,D点连接起来的ABCD直线就是闭环系统的静特性。 由图可见,静特性的硬度比开环机械特性硬,转速降Δn要小。闭环系统静特性和开环机械特性虽然都表示电动机的转速-电流(或转矩)关系,但两者是不同的,闭环静特性是表示闭环系统电动机转速与电流(或转矩)的静态关系,它只是闭环系统调节作用的结果,是在每条机械特性上取一个相应的工作点,只能表示静态关系,不能反映动态过程。 当负载突然增加时,如图所示由Idl突增到Id2时,转速n先从A点沿着①曲线开环机械特性下降,然后随着Ud01升高为Ud02,转速n再回升到B点稳定运行,整个动态过程不是沿着静特性AB直线变化的。 2.转速负反馈有静差调速系统及其静特性分析 对调速系统来说,转速给定电压不变时,除了上面分析负载变化所引起的电动机转速变化外,还有其他许多扰动会引起电动机转速的变化,例如交流电源电压的变化、电动机励磁电流的变化等,所有这些扰动和负载变化一样都会影响到转速变化。对于转速负反馈调速系统来说,可以被转速检测装置检测出来,再通过闭环反馈控制减小它们对转速的影响。也就是说在闭环系统中,对包围在系统前向通道中的各种扰动(如负载变化、交流电压波动、电动机励磁电流的变化等)对被调量(如转速)的影响都有强烈的抑制作用。但是对于转速负反馈调速系统来说,转速给定电压Ugn的波动和测速发电机的励磁变化引起的转速反馈电压Ufn变化,闭环系统对这种给定量和检测装置的扰动将无能为力。为了使系统有较高的调速精度,必须提高转速给定电源和转速检测装置的精度。

直流电机PWM调速与控制设计报告

综合设计报告 单位:自动化学院 学生姓名: 专业:测控技术与仪器 班级:0820801 学号: 指导老师: 成绩: 设计时间:2011 年12 月 重庆邮电大学自动化学院制

一、题目 直流电机调速与控制系统设计。 二、技术要求 设计直流电机调速与控制系统,要求如下: 1、学习直流电机调速与控制的基本原理; 2、了解直流电机速度脉冲检测原理; 3、利用51单片机和合适的电机驱动芯片设计控制器及速度检测电路; 4、使用C语言编写控制程序,通过实时串口能够完成和上位机的通信; 5、选择合适控制平台,绘制系统的组建结构图,给出完整的设计流程图。 6、要求电机能实现正反转控制; 7、系统具有实时显示电机速度功能; 8、电机的设定速度由电位器输入; 9、电机的速度调节误差应在允许的误差范围内。 三、给定条件 1、《直流电机驱动原理》,《单片机原理及接口技术》等参考资料; 2、电阻、电容等各种分离元件、IC、直流电机、电源等; 3、STC12C5A60S2单片机、LM298以及PC机; 四、设计 1. 确定总体方案; 2. 画出系统结构图; 3. 选择以电机控制芯片和单片机及速度检测电路,设计硬件电路; 4. 设计串口及通信程序,完成和上位机的通信; 5. 画出程序流程图并编写调试代码,完成报告;

直流电机调速与控制 摘要:当今社会,电动机作为最主要的机电能量转换装置,其应用范围已遍及国民经济的各个领域和人们的日常生活。无论是在工农业生产,交通运输,国防,航空航天,医疗卫生,商务和办公设备中,还是在日常生活的家用电器和消费电子产品(如电冰箱,空调,DVD等)中,都大量使用着各种各样的电动机。据资料显示,在所有动力资源中,百分之九十以上来自电动机。同样,我国生产的电能中有百分之六十是用于电动机的。电动机与人的生活息息相关,密不可分。电气时代,电动机的调速控制一般采用模拟法、PID控制等,对电动机的简单控制应用比较多。简单控制是指对电动机进行启动,制动,正反转控制和顺序控制。这类控制可通过继电器,光耦、可编程控制器和开关元件来实现。还有一类控制叫复杂控制,是指对电动机的转速,转角,转矩,电压,电流,功率等物理量进行控制。 本电机控制系统基于51内核的单片机设计,采用LM298直流电机驱动器,利用PWM 脉宽调制控制电机,并通过光耦管测速,经单片机I/O口定时采样,最后通过闭环反馈控制系统实现电机转速的精确控制,其中电机的设定速度由电位器经A/D通过输入,系统的状显示与控制由上位机实现。经过设计和调试,本控制系统能实现电机转速较小误差的控制,系统具有上位机显示转速和控制电机开启、停止和正反转等功能。具有一定的实际应用意义。关键字:直流电机、反馈控制、51内核、PWM脉宽调制、LM298 一、系统原理及功能概述 1、系统设计原理 本电机控制系统采用基于51内核的单片机设计,主要用于电机的测速与转速控制,硬件方面设计有可调电源模块,串口电路模块、电机测速模块、速度脉冲信号调理电路模块、直流电机驱动模块等电路;软件方面采用基于C语言的编程语言,能实现系统与上位机的通信,并实时显示电机的转速和控制电机的运行状态,如开启、停止、正反转等。 单片机选用了51升级系列的STC12c5a60s2作为主控制器,该芯片完全兼容之前较低版本的所有51指令,同时它还自带2路PWM控制器、2个定时器、2个串行口支持独立的波特率发生器、3路可编程时钟输出、8路10位AD转换器、一个SPI接口等,

转速单闭环调速系统设计

目录 第1章概述 (1) 1.1 转速单闭环调速系统设计意义 (1) 1.2 转速单闭环调速系统的设计要求 (1) 第2章原系统的动态结构图及稳定性的分析 (2) 2.1 原系统的工作原理 (2) 2.2 原系统的动态结构图 (3) 2.3 闭环系统的开环放大系数的判断 (3) 2.4 相角稳定裕度γ的判断 (4) 第3章调节器的设计及仿真 (5) 3.1 调节器的选择 (5) 3.2 PI调节器的设计 (5) 3.3 校正后系统的动态结构图 (8) 3.4 系统的仿真结构图及测试结果 (8) 第4章课程设计总结 (9) 参考文献 (1)

转速单闭环调速系统设计 1、概述 1.1 转速单闭环调速系统设计意义 为了提高直流调速系统的动静态性能指标,通常采用闭环控制系统(包括单闭环系统和多闭环系统)。对调速指标要求不高的场合,采用单闭环系统,而对调速指标较高的则采用多闭环系统。按反馈的方式不同可分为转速反馈,电流反馈,电压反馈等。在单闭环系统中,转速单闭环使用较多。在对调速性能有较高要求的领域常利用直流电动机作动力,但直流电动机开环系统稳态性能不能满足要求,可利用速度负反馈提高稳态精度,而采用比例调节器的负反馈调速系统仍是有静差的,为了消除系统的静差,可用积分调节器代替比例调节器. 反馈控制系统的规律是要想维持系统中的某个物理量基本不变,就引用该量的负 反馈信号去与恒值给定相比较,构成闭环系统。对调速系统来说,若想提高静态指标, 就得提高静特性硬度,也就是希望转速在负载电流变化时或受到扰动时基本不变。要 想维持转速这一物理量不变,最直接和有效的方发就是采用转速负反馈构成转速闭环 调节系统。 1.2 转速单闭环调速系统的设计要求

#直流电机调速系统分析与设计

第一部分并励直流电动机的工作原理 并励直流电机的励磁绕组和电枢绕组相并联,作为并励发电机来说,是电机本身发出来的端电压为励磁绕组供电;作为并励电动机来说,励磁绕组和电枢共用同一电源,从性能上讲和他励直流电动机相同。 导体受力的方向用左手定则确定。这一对电磁力形成了作用于电枢一个力矩,这个力矩在旋转电机里称为电磁转矩,转矩的方向是逆时针方向,企图使电枢逆时针方向转动。如果此电磁转矩能够克服电枢上的阻转矩(例如由摩擦引起的阻转矩以及其它负载转矩),电枢就能按逆时针方向旋转起来。 当电枢转了180°后,导体 cd转到 N极下,导体ab转到S极下时,由于直流电源供给的电流方向不变,仍从电刷 A流入,经导体cd 、ab 后,从电刷B流出。这时导体cd 受力方向变为从右向左,导体ab 受力方向是从左向右,产生的电磁转矩的方向仍为逆时针方向。 因此,电枢一经转动,由于换向器配合电刷对电流的换向作用,直流电流交替地由导体 ab和cd 流入,使线圈边只要处于N 极下,其中通过电流的方向总是由电刷A 流入的方向,而在S 极下时,总是从电刷 B流出的方向。这就保证了每个极下线圈边中的电流始终是一个方向,从而形成一种方向不变的转矩,使电动机能连续地旋转。这就是直流电动机的工作原理。 转速电流双闭环原理 转速、电流双闭环直流调速系统的组成,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。 从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。 这就形成了转速、电流双闭环调速系统。 限幅的作用: 转速调节器ASR的输出限幅电压U*im --电流给定电压的最大值,即限制了最大电流; τ电流调节器ACR的输出限幅电压Ucm --Uc的最大值,即限制了电力电子变换器的最大输出电压Udm。 第二部分 PID算法的基本原理 PID调节器各校正环节的作用 1、比例环节:即时成比例地反应控制系统的偏差信号e(t),偏差一旦产生,调节 器立即产生控制作用以减小偏差。 2、积分环节:主要用于消除静差,提高系统的无差度。积分作用的强弱取决于积分 时间常数TI,TI越大,积分作用越弱,反之则越强。 3、微分环节:能反应偏差信号的变化趋势(变化速率),并能在偏差信号的值变得太 大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减 小调节时间。 下面对控制点所采用的PID控制算法进行说明。

直流电动机闭环调速试验

. University of South China 电气传动技术 实验报告1 实验名称直流电动机闭环调速实验 学院名称电气工程学院 指导教师 班级电力 学号 学生姓名 文档Word . 一预习报告

目的:1了解并掌握典型环节模拟电路构成方法。 2 熟悉各典型线性环节阶跃响应曲线。 3 了解参数变化对典型环节动态性能影响。内容: 1比例积分控制的无静差直流调速系统的仿真模型 2电流环调速系统的仿真模型 3转速环调速系统的仿真模型

文档Word . 二实验报告 直流电动机:额定电压U=220N,额定电流I=55A,额定转速 dNN n=1000r/min,电动机电动势系数C=0.192V·min/r。假定晶闸管整流eN装置输出电流可逆,装置的放大系数Ks=44,滞后的时间常数 T=0.00167s。电枢回路总电阻R=1.0Ω,电枢回路电磁时间常数 s T=0.00167s,电力拖动系统机电时间常数T=0.075s。转速反馈系数ml*U。对应额定转速时的给定电压·α=0.01Vmin/r=10V。双闭环调速系统中Ks=40,T=0.0017s,T=0.18s,T=0.03s,T=0.002s,T=0.01s,R=0onlmsoi Ω,C=0.132V·min/r,α=0.00666V·min/r,β=0.05V·min/r。e一比例积分控制的无静差直流调速系统中PI调节器的值为: K=0.56,1/τ=11.34 P 文档Word .

无静差调速系统输出(Scope图像1) 输出波形比例部分(Scope1图像2) 对比图1和图2可以发现,只应用比例控制的话,系统响应速度快,但是静差率大,而添加积分环节后,系统既保留了比例环节的快速响应性,又具有了积分环节的无静差调速特性,使调速系统稳定性相对更高,动态响应速度也快。 文档Word .

单闭环直流调速系统的设计与仿真实验报告

比例积分控制的单闭环直流调速系统仿真 一、实验目的 1.熟练使用MATLAB 下的SIMULINK 仿真软件。 2.通过改变比例系数K P 以及积分时间常数τ的值来研究K P 和τ对比例积分控制的直流调速系统的影响。 二、实验内容 1.调节器的工程设计 2.仿真模型建立 3.系统仿真分析 三、实验要求 建立仿真模型,对参数进行调整,从示波器观察仿真曲线,对比分析参数变化对系统稳定性,快速性等的影响。 四、实验原理 图4-1 带转速反馈的闭环直流调速系统原理图 调速范围和静差率是一对互相制约的性能指标,如果既要提高调速范围,又要降低静差率,唯一的方法采用反馈控制技术,构成转速闭环的控制系统。转速闭环控制可以减小转速降落,降低静差率,扩大调速范围。在直流调速系统中,将转速作为反馈量引进系统,与给定量进行比较,用比较后的偏差值进行系统控制,可以有效的抑制甚至消除扰动造成的影响。 当t=0时突加输入U in 时,由于比例部分的作用,输出量立即响应,突跳到U ex (t )=K P U in ,实现了快速响应;随后U ex (t )按积分规律增长,U ex (t )=K P U in +(t/τ)U in 。在t =t 1时,输入突降为0,U in =0,U ex (t )=(t 1/τ)U in ,使电力电子变换器的稳态输出电压足以克服负载电流压降,实现稳态转速无静差。 五、实验各环节的参数及K P 和1/τ的参数的确定 5.1各环节的参数: 直流电动机:额定电压U N =220V ,额定电流I dN =55A,额定转速n N =1000r/min,电动机电动势系数C e =0.192V ? min/r 。 假定晶闸管整流装置输出电流可逆,装置的放大系数K s =44,滞后时间常数T s =0.00167s 。

三相异步电机闭环调速设计

《控制系统设计》课程设计报告 学院:信息工程学院 姓名: 班级:11自动化 学号: 题目:三相异步电动机闭环调速系统设计与实践指导老师: 完成时间:2014年6月20日

目录 摘要............................................................... I 1概述.. (1) 1.1三相异步电动机的调速方法 (2) 1.2调压调速的简介 (3) 1.3课程设计的要求 (5) 2三相异步电动机调压调速系统的组成 (5) 3三相异步电动机调压调速系统的设计和实现 (8) 3.1三相异步电动机调压调速系统的电路 (8) 3.2闭环调速结构图 (10) 3.3 系统各部分参数的计算 (10) 4三相异步电动机调压调速系统的仿真 (13) 4.1MATLAB仿真的介绍 (13) 4.2电路的建模和参数设置........................ 错误!未定义书签。 4.3异步电机调压调速系统仿真模型................ 错误!未定义书签。 4.4仿真效果图 (17) 总结 (22) 参考文献 (23)

摘要 异步电动机具有结构简单、制造容易、维修工作量小等优点,早期多用于不可拖动。随着电力电子技术的发展,静止式变频器的诞生,异步电动机在可拖动中逐渐得到广泛的应用。实现电机调速有不少方法。研究电机调速,找出符合实际的调速方法能最大限度的节约能源,所以研究调压调速就显得很有必要。异步电机调压调速控制系统是一种比较简单实用的调速系统,该系统具有良好的运行、控制及经济性能,显示出巨大的发展潜力。 本课程设计介绍了异步电动机调压调速系统的几大组成部分,并着重讲述了三相异步电动机(M)、测速发电机(TG)、晶闸管交流调压器(TVC)的简单的工作原理。在了解异步电动机调压调速的基本原理的基础上,设计了异步电动机单闭环调压调速系统的结构原理图。还将调压调速与其他的调速方法相比,所具有的优点以及不足之处。 以转速单闭环调压调速系统为例,电机调速开环控制系统调速范围较小,采用速度作为负反馈的闭环控制系统解决了这个问题,使调速性能得到改善。 最后,经过理论分析建立模型后,基于Matlab语言开发仿真软件,并进行仿真实验,并且对仿真结果进行了一定的分析及改进。 关键词: 调压调速MATLAB三相异步电动机转速调节器

双闭环直流电机调速系统设计参考案例

《运动控制系统》课程设计指导书 一、课程设计的主要任务 (一)系统各环节选型 1、主回路方案确定。 2、控制回路选择:给定器、调节放大器、触发器、稳压电源、电流截止环节,调节器锁零电路、电流、电压检测环节、同步变压器接线方式(须对以上环节画出线路图,说明其原理)。 (二)主要电气设备的计算和选择 1、整流变压器计算:变压器原副方电压、电流、容量以及联接组别选择。 2、晶闸管整流元件:电压定额、电流定额计算及定额选择。 3、系统各主要保护环节的设计:快速熔断器计算选择、阻容保护计算选择计算。 4、平波电抗器选择计算。 (三)系统参数计算 1、电流调节器ACR 中i i R C 、 计算。

2、转速调节器ASR 中n n R C 、 计算。 3、动态性能指标计算。 (四)画出双闭环调速系统电气原理图。 使用A1或A2图纸,并画出动态框图和波德图(在设计说明书中)。 二、基本要求 1、使学生进一步熟悉和掌握单、双闭环直流调速系统工作原理,了解工程设计的基本方法和步骤。 2、熟练掌握主电路结构选择方法,主电路元器件的选型计算方法。 3、熟练掌握过电压、过电流保护方式的配置及其整定计算。 4、掌握触发电路的选型、设计方法。 5、掌握同步电压相位的选择方法。 6、掌握速度调节器、电流调节器的典型设计方法。 7、掌握电气系统线路图绘制方法。 8、掌握撰写课程设计报告的方法。 三、 课程设计原始数据

有以下四个设计课题可供选用: A 组: 直流他励电动机:功率P e =1.1KW ,额定电流I e =6.7A ,磁极对数P=1, n e =1500r/min,励磁电压220V,电枢绕组电阻R a =2.34Ω,主电路总电阻R =7Ω,L ∑=246.25Mh(电枢电感、平波电感和变压器电感之和),K s =58.4,机电时间常数 T m =116.2ms ,滤波时间常数T on =T oi =0.00235s ,过载倍数λ=1.5,电流给定最大值 10V U im =*,速度给定最大值 10V U n =* B 组: 直流他励电动机:功率P e =22KW ,额定电压U e =220V ,额定电流I e =116A,磁极对 数P=2,n e =1500r/min,励磁电压220V,电枢绕组电阻R a =0.112Ω,主电路总电阻R = 0.32Ω,L ∑=37.22mH(电枢电感、平波电感和变压器电感之和),电磁系数 C e =0.138 Vmin /r ,K s =22,电磁时间常数T L =0.116ms ,机电时间常数T m =0.157ms , 滤波时间常数T on =T oi =0.00235s ,过载倍数λ=1.5,电流给定最大值 10V U im =*,速度给定最大值 10V U n =* C 组: 直流他励电动机:功率Pe =145KW ,额定电压Ue=220V ,额定电流Ie=733A,磁极对数P=2,ne=430r/min,励磁电压220V,电枢绕组电阻Ra=0.0015Ω,主电路总电阻R =0.036Ω,Ks=41.5,电磁时间常数TL=0.0734ms ,机电时间常数

课程设计——单闭环不可逆直流调速系统设计

单闭环不可逆直流调速系统设计 目录 第一章中文摘要 ································································································ - 1 -第二章英文摘要 ··········································································错误!未定义书签。第三章课程设计的目的和意义·············································································· - 1 -1.电力拖动简介 ··························································································· - 1 - 2.课程设计的目的和意义·················································································· - 2 -第四章课程设计内容·························································································· - 2 -第五章方案确定 ································································································ - 3 - 5.1方案比较的论证 ······················································································ - 3 - 5.1.1总体方案的论证比较········································································ - 3 - 5.1.2主电路方案的论证比较····································································· - 4 - 5.1.3控制电路方案的论证比较·································································· - 6 -第六章主电路设计····························································································· - 7 - 6.1主电路工作设备选择 ················································································ - 7 -第七章控制电路设计·························································································· - 8 -第八章结论 ·····································································································- 11 -第九章参考文献 ·······························································································- 11 -

微机原理课程设计—直流电机闭环调速控制系统

实验课题:直流电机调速控制 实验内容: 本实验完成的是一个实现对直流电机转速调节的应用。 编写实验程序,用ADC0809完成模拟信号到数字信号的转换。输入模拟信号有A/D转换单元可调电位器提供的0~5V,将其转换后的数字信号读入累加器,做为控制电机的给定转速。用8255的B口作为直流电机的控制信号输出口,通过对电机转速反馈量的运算,调节控制信号,达到控制电机匀速转动的的作用。并将累加器中给定的转速和当前测量转速显示在屏幕上。再通过LED灯显示出转速的大小变化。 实验目的: (1)学习掌握模/数信号转换的基本原理。 (2)掌握的ADC0809、8255芯片的使用方法。 (3)学习PC系统中扩展简单I/O接口的方法。 (4)了解实现直流电机转速调节的基本方法。 实验要求: 利用微机接口实验系统的硬件资源,运用汇编语言设计实现直流电机的调速控制功能。 基本功能要求:1、利用A/D转换方式实现模拟量给定信号的采样;2、实现PWM方式直流电机速度调节;3、LED灯显示当前直流电机速度状态。 实验设备: (1)硬件要求: PC微机一台、TD-PIT实验系统一套 (2)软件要求:唐都编程软件,tdpit编程软件,“轻松编程”软件 实验原理: 各芯片的功能简介: (1)8255的基本输出接口电路: 并行接口是以数据的字节为单位与I/O设备或被控制对象之间传递信息,CPU 和接口之间的数据传递总是并行的,即可以同时进行传递8位,16位,32位等。8255可编程外围接口芯片是具有A、B、C三个并行接口,+5V单电源供电,能在以下三种方式下工作:方式0—基本输入/出方式、方式1—选通输入/出方式、方式2—双向选通工作方式。

单闭环直流电机速度控制系统研究报告

一.实验原理 直流电机在应用中有多种控制方式,在直流电机的调速控制系统中,主要采用电枢电压控制电机的转速与方向。 功率放大器是电机调速系统中的重要部件,它的性能及价格对系统都有重要的影响。过去的功率放大器是采用磁放大器、交磁放大机或可控硅<晶闸管)。现在基本上采用晶体管功率放大器。PWM功率放大器与线性功率放大器相比,有功耗低、效率高,有利于克服直流电机的静摩擦等优点。 PWM调制与晶体管功率放大器的工作原理: 1.PWM的工作原理 图1-1PWM的控制电路 上图所示为SG3525为核心的控制电路,SG3525是美国Silicon General公司生产的专用。 PWM控制集成芯片,其内部电路结构及各引脚如图1-2所示,它采用恒频脉宽调制控制方案,其内部包含有精密基准源、锯齿波振荡器、误差放大器、比较器、分频器和保护电路等。调节Ur的大小,在A、B两端可输出两个幅度相等、频率相等、相位相互错开180度、占空比可调的矩形波<即PWM信号)。它适用于各开关电源、斩波器的控制。 2.功放电路 直流电机PWM输出的信号一般比较小,不能直接去驱动直流电机,它必须经过功放后再接到直流电机的两端。该实验装置中采用直流15V的直流电压功放电路驱动。 3.反馈接口 在直流电机控制系统中,在直流电机的轴上贴有一块小磁钢,电机转动带动磁钢转动。磁钢的下面中有一个霍尔元件,当磁钢转到时霍尔元件感应输出。

4.直流电机控制系统如图1-3所示,由霍耳传感器将电机的速度转换成电信号,经数据采集卡变换成数字量后送到计算机与给定值比较,所得的差值按照一定的规律<通常为PID)运算,然后经数据采集卡输出控制量,供执行器来控制电机的转速和方向。 图1-2 SG3525内部结构 图1-3 直流电机控制系统 5.PID原理 过程控制的基本概念 过程控制――对生产过程的某一或某些物理参数进行的自动控制。 1.模拟控制系统 图1-4 基本模拟反馈控制回路 被控量的值由传感器或变送器来检测,这个值与给定值进行比较,得到偏差,模拟调节器依一定控制规律使操作变量变化,以使偏差趋近于零,其输出通过执行器作用于过程。 控制规律用对应的模拟硬件来实现,控制规律的修改需要更换模拟硬件。 2.微机过程控制系统

带电流截止负反馈转速单闭环直流调速系统设计

目录 摘要 (2) 1主电路的设计 (2) 1.1变压器参数的设计与计算 (2) 1.2平波电抗器参数的设计与计算 (3) 1.3晶闸管元件参数的计算 (3) 1.4保护电路的设计 (4) 2反馈调速及控制系统 (4) 2.1闭环调速控制系统 (4) 2.2带电流截止负反馈闭环控制系统 (5) 2.3调节器设定 (8) 2.4控制及驱动电路设计 (9) 3参数计算 (10) 3.1基本参数计算 (10) 3.2电流截止负反馈环节参数计算与设计 (12) 3.3调节器的参数设计与计算 (12) 3.4调节器串联校正设计 (15) 4总电气图 (16) 5心得体会 (18) 参考资料 (18)

带电流截止负反馈转速单闭环直流调速 系统设计 摘要 直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,并且直流调速系统在理论和实践上都比较成熟,是研究其它调速系统的基础。在直流电动机中,带电流截止负反馈直流调速系统应用也最为广泛,其广泛应用于轧钢机、冶金、印刷、金属切割机床等很多领域的自动控制。本次课设就带电流截止负反馈转速单闭环直流调速系统进行参数的设计。 1主电路的设计 1.1变压器参数的设计与计算 变压器副边电压采用如下公式进行计算: ??? ? ?? -+= N sh T d I I CU A nU U U 2min max cos αβ V U C I I U A n V U V U N sh T d 110) 105.05.09848.0(9.034.21 22205 .0105 .0109 .034 .22 1,220222 min max =??-??+==========则取已知αβ 因此变压器的变比近似为:45.3110 3802 1===U U K 一次侧和二次侧电流I 1和I 2的计算 I 1=1.05×287×0.861/3.45=75A I 2=0.861×287=247A

直流电机双闭环系统设计

直流电机双闭环系统设计 院系:机电工程学院 班级:电气自动化一班 姓名: 学号: 1 1 0 2 0 3 0 1 4 2 指导教师: 目录

1引言 2调速系统的性能指标 2.1调速系统的稳态指标 2.2调速系统的动态性能指标 2.3系统结构选择 3数字直流电机调速系统的数字PID控制3.1基于单片机控制的直流电机双闭环调速系统3.2 PID调节器的基本原理 4总结与展望 4.1工作总结 4.2研究展 参考文献 直流电机双闭环系统设计摘要

近年来,自动化控制系统在各行业中得到了广泛的应用和发展,而直流调速系统作为电力拖动系统的主要方式之一,在现代化生产中起着十分重要的作用。随着微电子技术的不断发展,计算机在调速系统中的应用使控制系统得到简化,体积减小,可靠性提高,而且各种经典和智能算法也都分别在调速系统中得到了灵活。 以单片机为控制核心的数字直流调速系统有着许多优点:由于速度给定和测速采用了数字化,能够在很宽的范围内高精度测速,所以扩大了调速的范围,提高了测速控制系统的精度;由于硬件的高度集成化,所以使得零部件数量大大减少;由于很多功能都是由软件实现的,使硬件得以简化,因此故障率小;单片机以数字信号工作,控制方法灵活便捷,抗干扰能力较强。 关键词:直流电动机;调速;双闭环 1引言 按照拖动的电动机的类型来划分,自动调速系统可以分为直流调速系统和交流调速系统两大类。由于直流电动机的电压、电流和磁通的耦合较弱,使直流电动机具有良好的运行性能和控制特性,能够在大范围内平滑调速,启动、制动性能良好,其在20世纪70年代以来一直在高精度,大调速范围的传动领域内占据主导地位。在要求高起、制动转矩,快速响应和较宽速度调节范围的电气传动领域中,采用直流电动机作为调速系统的执行电机。由于直流电动机具有良好的机械特性和调速特性,调速平滑,方便,易于在大范围内进行平滑调速,过载能力较大,能够承受频繁的冲击负载,可

直流电机闭环调速课程设计

课程设计报告 课程名称:计算机控制系统 设计题目:直流电机闭环调速 院系:电气信息学院 班级: 姓名: 学号: 姓名: 学号: 姓名: 学号: 指导教师: 设计时间:

摘要 在电气时代的今天,电动机在工农业生产、人们日常生活中起着十分重要的作用。直流电机是最常见的一种电机,在各领域中得到广泛的应用。研究直流电机的控制和测量方法,对提高控制精度和响应速度、节约能源等都具有重要意义。电机调速问题一直是自动化领域中比较重要的问题之一。不同领域对于电机的调速性能有着不同的要求,因此,不同的调速方法有着不同的应用场合。 为了提高直流调速系统的动态、静态性能,通常采用闭环控制系统(主要包括单闭环、双闭环)。而在对调速指标要求不高的场合,采用单闭环即可。闭环系统较之开环系统能自动侦测把输出信号的一部分拉回到输入端,与输入信号相比较,其差值作为实际的输入信号;能自动调节输入量,能提高系统稳定性。在对调速系统性能有较高要求的领域常利用直流电动机,但直流电动机开环系统稳定性不能满足要求,可利用转速单闭环提高稳态精度。 本次课程设计利用软件定时方式采用Intel 8255A可编程外设接口芯片唐都TD-PITC 实验系统上模拟直流电动机闭环调速系统,A/D转换器实现模拟信号到数字信号的转换,设置电机转速的给定值,通过PWM方式可实现电机转速的调节,LED灯显示电机转速的大小状态。 关键字:闭环调速、inter 8255A、A/D转换器、PWM、LED

目录 摘要 1 控制系统总体设计方案 (3) 2 系统的组成及工作原理 (4) 2.1 8255工作原理 (4) 2.2 转速调节原理 (5) 2.3 A/D转换原理 (5) 2.4 LED灯的工作原理 (6) 2.5 实现两位十进制数的显示 (6) 3 硬件设计 (7) 3.1 接线图 (7) 4 软件设计 (8) 4.1 转速调节程序设计框图 (8) 4.2 主程序流程图 (9) 4.3 程序清单 (10) 5 调试及结果 (21) 5.1 调试步骤 (21) 5.2结果分析 (21) 5.2结论 (21) 参考文献 (22)

相关文档
最新文档