高考物理带电粒子在磁场中的运动真题汇编(含答案)及解析

高考物理带电粒子在磁场中的运动真题汇编(含答案)及解析
高考物理带电粒子在磁场中的运动真题汇编(含答案)及解析

高考物理带电粒子在磁场中的运动真题汇编(含答案)及解析

一、带电粒子在磁场中的运动专项训练

1.如图所示,虚线MN 沿竖直方向,其左侧区域内有匀强电场(图中未画出)和方向垂直纸面向里,磁感应强度为B 的匀强磁场,虚线MN 的右侧区域有方向水平向右的匀强电场.水平线段AP 与MN 相交于O 点.在A 点有一质量为m ,电量为+q 的带电质点,以大小为v 0的速度在左侧区域垂直磁场方向射入,恰好在左侧区域内做匀速圆周运动,已知A 与O 点间的距离为

03mv qB ,虚线MN 右侧电场强度为3mg

q

,重力加速度为g .求:

(1)MN 左侧区域内电场强度的大小和方向;

(2)带电质点在A 点的入射方向与AO 间的夹角为多大时,质点在磁场中刚好运动到O 点,并画出带电质点在磁场中运动的轨迹;

(3)带电质点从O 点进入虚线MN 右侧区域后运动到P 点时速度的大小v p .

【答案】(1)

mg

q

,方向竖直向上;(2);(3013v .

【解析】 【详解】

(1)质点在左侧区域受重力、电场力和洛伦兹力作用,根据质点做匀速圆周运动可得:重力和电场力等大反向,洛伦兹力做向心力;所以,电场力qE =mg ,方向竖直向上; 所以MN 左侧区域内电场强度mg

E q

左=

,方向竖直向上; (2)质点在左侧区域做匀速圆周运动,洛伦兹力做向心力,故有:20

0mv Bv q R

=,

所以轨道半径0

mv R qB

=

; 质点经过A 、O 两点,故质点在左侧区域做匀速圆周运动的圆心在AO 的垂直平分线上,且质点从A 运动到O 的过程O 点为最右侧;所以,粒子从A 到O 的运动轨迹为劣弧; 又有0

33AO mv d R =

=;根据几何关系可得:带电质点在A 点的入射方向与AO 间的夹

角1260AO

d arcsin R

θ==?

; 根据左手定则可得:质点做逆时针圆周运动,故带电质点在磁场中运动的轨迹如图所示:

(3)根据质点在左侧做匀速圆周运动,由几何关系可得:质点在O 点的竖直分速度

003

60y v v sin v =?=

,水平分速度001602x v v cos v =?=;

质点从O 运动到P 的过程受重力和电场力作用,故水平、竖直方向都做匀变速运动; 质点运动到P 点,故竖直位移为零,所以运动时间0

23y v v t g

=

=

; 所以质点在P 点的竖直分速度03

2

yP y v v v ==, 水平分速度00031

7322

xP x v qE v v t v g v m g =+

=+?=; 所以带电质点从O 点进入虚线MN 右侧区域后运动到P 点时速度

22

013P yP xP v v v v =+=;

2.如图,光滑水平桌面上有一个矩形区域abcd ,bc 长度为2L ,cd 长度为1.5L ,e 、f 分别为ad 、bc 的中点.efcd 区域存在竖直向下的匀强磁场,磁感应强度为B ;质量为m 、电荷量为+q 的绝缘小球A 静止在磁场中f 点.abfe 区域存在沿bf 方向的匀强电场,电场强度为

26qB L

m

;质量为km 的不带电绝缘小球P ,以大小为qBL m 的初速度沿bf 方向运动.P 与A

发生弹性正碰,A 的电量保持不变,P 、A 均可视为质点.

(1)求碰撞后A 球的速度大小;

(2)若A 从ed 边离开磁场,求k 的最大值;

(3)若A 从ed 边中点离开磁场,求k 的可能值和A 在磁场中运动的最长时间.

【答案】(1)A 21k qBL v k m =?+(2)1(3)57k =或13

k =;32m t qB π=

【解析】 【分析】 【详解】

(1)设P 、A 碰后的速度分别为v P 和v A ,P 碰前的速度为qBL v m

= 由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222

kmv kmv mv =+ 解得:A 21k qBL v k m

=

?+

(2)设A 在磁场中运动轨迹半径为R , 由牛顿第二定律得: 2

A A mv qv

B R

= 解得:21

k

R L k =

+ 由公式可得R 越大,k 值越大

如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 求得k 的最大值为1k =

(3)令z 点为ed 边的中点,分类讨论如下:

(I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有

222()(1.5)2

L

R L R =+-

解得:56

L R = 由21k R L k =

+可得:5

7

k =

(II )由图可知A 球能从z 点离开磁场要满足2

L

R ≥,则A 球在磁场中还可能经历一次半圆运动后回到电场,再被电场加速后又进入磁场,最终从z 点离开.

如图3和如图4,由几何关系有:2

223()(3)22

L R R L =+-

解得:58L R =或2

L

R = 由21k R L k =

+可得:511k =或13

k = 球A 在电场中克服电场力做功的最大值为222

6m q B L W m

=

当511k =时,A 58qBL v m =,由于2222222

A 12521286q

B L q B L mv m m ?=>

当13k =时,A 2qBL v m =,由于2222222

A 1286q

B L q B L mv m m

?=<

综合(I )、(II )可得A 球能从z 点离开的k 的可能值为:57k =或1

3

k = A 球在磁场中运动周期为2m

T qB

π= 当13k =时,如图4,A 球在磁场中运动的最长时间34

t T = 即32m

t qB

π=

3.如图所示,在平面直角坐标系xOy 的第二、第三象限内有一垂直纸面向里、磁感应强度为B 的匀强磁场区域△ABC ,A 点坐标为(0,3a ),C 点坐标为(0,﹣3a ),B 点坐标为

(23a -,-3a ).在直角坐标系xOy 的第一象限内,加上方向沿y 轴正方向、场强大小为E=Bv 0的匀强电场,在x=3a 处垂直于x 轴放置一平面荧光屏,其与x 轴的交点为Q .粒子束以相同的速度v 0由O 、C 间的各位置垂直y 轴射入,已知从y 轴上y =﹣2a 的点射入磁场的粒子在磁场中的轨迹恰好经过O 点.忽略粒子间的相互作用,不计粒子的重力. (1)求粒子的比荷;

(2)求粒子束射入电场的纵坐标范围;

(3)从什么位置射入磁场的粒子打到荧光屏上距Q 点最远?求出最远距离.

【答案】(1)0v Ba

(2)0≤y≤2a (3)78y a =,94a

【解析】 【详解】

(1)由题意可知, 粒子在磁场中的轨迹半径为r =a 由牛顿第二定律得

Bqv 0=m 2

v r

故粒子的比荷

v q m Ba

= (2)能进入电场中且离O 点上方最远的粒子在磁场中的运动轨迹恰好与AB 边相切,设粒子运动轨迹的圆心为O ′点,如图所示.

由几何关系知

O ′A =r ·

AB

BC

=2a 则

OO ′=OA -O ′A =a

即粒子离开磁场进入电场时,离O 点上方最远距离为

OD =y m =2a

所以粒子束从y 轴射入电场的范围为0≤y ≤2a (3)假设粒子没有射出电场就打到荧光屏上,有

3a =v 0·t 0

2019

222

qE y t a a m =

=>, 所以,粒子应射出电场后打到荧光屏上

粒子在电场中做类平抛运动,设粒子在电场中的运动时间为t ,竖直方向位移为y ,水平方向位移为x ,则 水平方向有

x =v 0·t

竖直方向有

2

12qE y t m

=

代入数据得

x

设粒子最终打在荧光屏上的点距Q 点为H ,粒子射出电场时与x 轴的夹角为θ,则

00tan y x qE x v m v v v θ?

===

H =(3a -x )·tan θ

当=y =9

8

a 时,H 有最大值 由于

98

a <2a ,所以H 的最大值H max =9

4a ,粒子射入磁场的位置为

y =

98

a -2a =-78a

4.如图甲所示,在直角坐标系中的0≤x≤L 区域内有沿y 轴正方向的匀强电场,右侧有以点(2L ,0)为圆心、半径为L 的圆形区域,与x 轴的交点分别为M 、N ,在xOy 平面内,从电离室产生的质量为m 、带电荷量为e 的电子以几乎为零的初速度从P 点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q 点沿x 轴正方向进入匀强电场,已知O 、

Q 两点之间的距离为

2

L

,飞出电场后从M 点进入圆形区域,不考虑电子所受的重力。 (1)求0≤x≤L 区域内电场强度E 的大小和电子从M 点进入圆形区域时的速度v M ;

(2)若圆形区域内加一个垂直于纸面向外的匀强磁场,使电子穿出圆形区域时速度方向垂直于x 轴,求所加磁场磁感应强度B 的大小和电子在圆形区域内运动的时间t ; (3)若在电子从M 点进入磁场区域时,取t =0,在圆形区域内加如图乙所示变化的磁场(以垂直于纸面向外为正方向),最后电子从N 点飞出,速度方向与进入圆形磁场时方向相同,请写出磁场变化周期T 满足的关系表达式。

【答案】(1)2U E L =

,M eU

v m

=v M 的方向与x 轴的夹角为θ,θ=45°;(2)2M mv mv B eR L e ==,3

348M R L m t v eU

ππ==3)T 的表达式为22T n emU =(n =1,2,3,…) 【解析】 【详解】

(1)在加速电场中,从P 点到Q 点由动能定理得:2

012

eU mv = 可得02eU

v m

=

电子从Q 点到M 点,做类平抛运动, x 轴方向做匀速直线运动,02L m t L v eU

==y 轴方向做匀加速直线运动,2122L eE t m

=? 由以上各式可得:2U E L

=

电子运动至M 点时:22

0(

)M Ee v v t m

=+即:M eU

v m

=设v M 的方向与x 轴的夹角为θ,

2

cos

2

M

v

v

θ==

解得:θ=45°。

(2)如图甲所示,电子从M点到A点,做匀速圆周运动,因O2M=O2A,O1M=O1A,且O2A∥MO1,所以四边形MO1AO2为菱形,即R=L

由洛伦兹力提供向心力可得:

2

M

M

v

ev B m

R

=

2

M

mv mv

B

eR L e

==

3

3

4

8

M

R L m

t

v eU

ππ

==。

(3)电子在磁场中运动最简单的情景如图乙所示,在磁场变化的半个周期内,粒子的偏转角为90°,根据几何知识,在磁场变化的半个周期内,电子在x轴方向上的位移恰好等于轨道半径2R',即222

R L

'=

因电子在磁场中的运动具有周期性,如图丙所示,电子到达N点且速度符合要求的空间条件为:22)2

n R L

'=(n=1,2,3,…)

电子在磁场中做圆周运动的轨道半径

M

mv

R

eB

'=

解得:

22

n emU

B

eL

=(n=1,2,3,…)

电子在磁场变化的半个周期内恰好转过1

4

圆周,同时在

MN间的运动时间是磁场变化周期

的整数倍时,可使粒子到达N点且速度满足题设要求,应满足的时间条件是

1

42

T

T=

又0

2m

T

eB

π

=

则T的表达式为

22

T

n emU

=(n=1,2,3,…)。

5.核聚变是能源的圣杯,但需要在极高温度下才能实现,最大难题是没有任何容器能够承受如此高温。托卡马克采用磁约束的方式,把高温条件下高速运动的离子约束在小范围内巧妙实现核聚变。相当于给反应物制作一个无形的容器。2018年11月12日我国宣布“东方超环”(我国设计的全世界唯一一个全超导托卡马克)首次实现一亿度运行,令世界震惊,使我国成为可控核聚变研究的领军者。

(1)2018年11月16日,国际计量大会利用玻尔兹曼常量将热力学温度重新定义。玻尔兹曼常量k可以将微观粒子的平均动能与温度定量联系起来,其关系式为

3

2

k

E kT

=,其中k=1.380649×10-23J/K。请你估算温度为一亿度时微观粒子的平均动能(保留一位有效数字)。

(2)假设质量为m、电量为q的微观粒子,在温度为T0时垂直进入磁感应强度为B的匀强磁场,求粒子运动的轨道半径。

(3)东方超环的磁约束原理可简化如图。在两个同心圆环之间有很强的匀强磁场,两圆半径分别为r1、r2,环状匀强磁场围成中空区域,中空区域内的带电粒子只要速度不是很大都不会穿出磁场的外边缘,而被约束在该区域内。已知带电粒子质量为m、电量为q、速度为v,速度方向如图所示。要使粒子不从大圆中射出,求环中磁场的磁感应强度最小值。

【答案】(1)15

210J

k

E-

≈? (2)0

3kmT

(3)()

2

22

21

2r mv

q r r

-

【解析】

【详解】

(1)微观粒子的平均动能:15

3

210

2

k

E kT-

=≈?J

(2

2031

kT mv

22

= 解得: 0

3kT v m

=

由2

v Bqv m R

= 03kmT R Bq

=

(3)磁场最小时粒子轨迹恰好与大圆相切,如图所示

设粒子轨迹半径为r ,由几何关系得:()2

2221r r r r -=+

解得22

212

:r 2r r r -=

由牛顿第二定律 2

qvB m v r

=

解得:()

222212B r mv

q r r =

-

6.在水平桌面上有一个边长为L 的正方形框架,内嵌一个表面光滑的绝缘圆盘,圆盘所在区域存在垂直圆盘向上的匀强磁场.一带电小球从圆盘上的P 点(P 为正方形框架对角线AC 与圆盘的交点)以初速度v 0水平射入磁场区,小球刚好以平行于BC 边的速度从圆盘上的Q 点离开该磁场区(图中Q 点未画出),如图甲所示.现撤去磁场,小球仍从P 点以相同的初速度v 0水平入射,为使其仍从Q 点离开,可将整个装置以CD 边为轴向上抬起一定高度,如图乙所示,忽略小球运动过程中的空气阻力,已知重力加速度为g .求:

(1)小球两次在圆盘上运动的时间之比; (2)框架以CD 为轴抬起后,AB 边距桌面的高度.

【答案】(1)小球两次在圆盘上运动的时间之比为:π:2;(2)框架以CD 为轴抬起

后,AB

边距桌面的高度为

2

22

v

g

【解析】

【分析】

【详解】

(1)小球在磁场中做匀速圆周运动,

由几何知识得:r2+r2=L2,

解得:r=

2

2

L,

小球在磁场中做圆周运的周期:T=

2r

v

π

小球在磁场中的运动时间:t1=

1

4

T=

2L

π

小球在斜面上做类平抛运动,

水平方向:x=r=v0t2,

运动时间:t2=

2

2

L

v

则:t1:t2=π:2;

(2)小球在斜面上做类平抛运动,沿斜面方向做初速度为零的匀加速直线运动,

位移:r=2

2

1

2

at,解得,加速度:a=

2

22v

L

对小球,由牛顿第二定律得:a=

mgsin

m

θ

=g sinθ,

AB 边距离桌面的高度:h =L sinθ=2

22v g

7.如图所示,在平面直角坐标系xOy 平面内,直角三角形abc 的直角边ab 长为6d ,与y 轴重合,∠bac=30°,中位线OM 与x 轴重合,三角形内有垂直纸面向里的匀强磁场.在笫一象限内,有方向沿y 轴正向的匀强电场,场强大小E 与匀强磁场磁感应强度B 的大小间满足E=v 0B .在x=3d 的N 点处,垂直于x 轴放置一平面荧光屏.电子束以相同的初速度v 0从y 轴上-3d≤y≤0的范围内垂直于y 轴向左射入磁场,其中从y 轴上y=-2d 处射入的电子,经磁场偏转后,恰好经过O 点.电子质量为m,电量为e,电子间的相互作用及重力不计.求 (1)匀强磁杨的磁感应强度B

(2)电子束从y 轴正半轴上射入电场时的纵坐标y 的范围; (3)荧光屏上发光点距N 点的最远距离L

【答案】(1)0mv ed ; (2)02y d ≤≤;(3)9

4

d ; 【解析】

(1)设电子在磁场中做圆周运动的半径为r ; 由几何关系可得r =d

电子在磁场中做匀速圆周运动洛伦兹力提供向心力,由牛顿第二定律得:2

0v ev B m r

=

解得:0

mv B ed

=

(2)当电子在磁场中运动的圆轨迹与ac 边相切时,电子从+ y 轴射入电场的位置距O 点最远,如图甲所示.

设此时的圆心位置为O ',有:sin 30r

O a '=

?

3OO d O a ='-' 解得OO d '=

即从O 点进入磁场的电子射出磁场时的位置距O 点最远 所以22m y r d ==

电子束从y 轴正半轴上射入电场时的纵坐标y 的范围为02y d ≤≤

设电子从02y d ≤≤范围内某一位置射入电场时的纵坐标为y ,从ON 间射出电场时的位置横坐标为x ,速度方向与x 轴间夹角为θ,在电场中运动的时间为t ,电子打到荧光屏上产生的发光点距N 点的距离为L ,如图乙所示:

根据运动学公式有:0x v t =

212eE y t m

=

? y eE v t m

=

tan y v v θ=

tan 3L

d x

θ=

- 解得:(32)2L d y y =即9

8

y d =

时,L 有最大值 解得:94

L d =

当322d y y

【点睛】本题属于带电粒子在组合场中的运动,粒子在磁场中做匀速圆周运动,要求能正确的画出运动轨迹,并根据几何关系确定某些物理量之间的关系;粒子在电场中的偏转经常用化曲为直的方法,求极值的问题一定要先找出临界的轨迹,注重数学方法在物理中的应用.

8.在平面直角坐标系x0y 中,第I 象限内存在垂直于坐标平面向里的匀强磁场,在A (L ,0)点有一粒子源,沿y 轴正向发射出速率分别为υ、5υ、9υ的同种带电粒子,粒子质量为m ,电荷量为q .在B (0,L )、C (0,3L )、D (0,5L )放一个粒子接收器,B 点的接收器只能吸收来自y 轴右侧到达该点的粒子,C 、D 两点的接收器可以吸收沿任意方向到达该点的粒子.已知速率为υ的粒子恰好到达B 点并被吸收,不计粒子重力.

(1)求第I 象限内磁场的磁感应强度B 1;

(2)计算说明速率为5v 、9v 的粒子能否到达接收器;

(3)若在第Ⅱ象限内加上垂直于坐标平面的匀强磁场,使所有粒子均到达接收器,求所加磁场的磁感应强度B 2的大小和方向. 【答案】(1)1mv

B qL

=(2)故速率为v 5的粒子被吸收,速率为9v 的粒子不能被吸收(3)2217'(173)m B qL

=

-2(17317)'4mv

B qL +=),垂直坐标平面向外

【解析】 【详解】

(1)由几何关系知,速率为v 的粒子在第Ⅰ象限内运动的半径为R L =①

由牛顿运动定律得2

1v qvB m R

=②

得1mv B qL

=

③ (2)由(1)中关系式可得速率为v 5、9v 的粒子在磁场中的半径分别为5L 、9L . 设粒子与y 轴的交点到O 的距离为y ,将5R L =和9R L =分别代入下式

222()R L y R -+=④

得这两种粒子在y 轴上的交点到O 的距离分别为3L 17L ⑤ 故速率为v 5的粒子被吸收,速率为9v 的粒子不能被吸收.⑥

(3)若速度为9v 的粒子能到达D 点的接收器,则所加磁场应垂直坐标平面向外⑦ 设离子在所加磁场中的运动半径为1R ,由几何关系有

15172917L L R L L

-= 又221

(9)9v q vB m R ?=⑨

解得2217(517)mv B qL

=

-(或2(51717)4mv

B qL =)⑩

若粒子到达C 点的接收器,所加磁场应垂直于坐标平面向里

同理:21732917L L

R L L

-=

2

22

(9)9'v q vB m R ?=

解得2217'(173)m B qL

=

-2(17317)'mv

B +=)

9.如图所示,荧光屏MN 与x 轴垂直放置,与x 轴相交于Q 点,Q 点的横坐标

06x cm =,在第一象限y 轴和MN 之间有沿y 轴负方向的匀强电场,电场强度

51.610/E N C =?,在第二象限有半径5R cm =的圆形磁场,磁感应强度0.8B T =,方

向垂直xOy 平面向外.磁场的边界和x 轴相切于P 点.在P 点有一个粒子源,可以向x 轴

上方180°范围内的各个方向发射比荷为

81.010/q

C kg m

=?的带正电的粒子,已知粒子的发射速率6

0 4.010/v m s =?.不考虑粒子的重力、粒子间的相互作用.求:

(1)带电粒子在磁场中运动的轨迹半径; (2)粒子从y 轴正半轴上射入电场的纵坐标范围; (3)带电粒子打到荧光屏上的位置与Q 点间的最远距离. 【答案】(1)5cm (2)010y cm ≤≤ (3)9cm 【解析】 【详解】

(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动

2

0v qv B m r

=

解得:0

5mv r cm qB

=

= (2)由(1)问中可知r R =,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示,由几何关系可知四边形1PO FO '为菱形,所以1//FO O P ',又O P '垂直于x 轴,粒子出射的速度方向与轨迹半径1FO 垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为010y cm ≤≤.

(3)假设粒子没有射出电场就打到荧光屏上,有

000x v t =

2

012

h at =

qE a m

=

解得:18210h cm R cm =>=,

说明粒子离开电场后才打到荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x 轴方向的位移为x ,则

0x v t =

212

y at =

代入数据解得2x y =

设粒子最终到达荧光屏的位置与Q 点的最远距离为H ,粒子射出的电场时速度方向与x 轴正方向间的夹角为θ,

000

tan 2y qE x v m v y

v v θ===,

所以()()

00tan 22H x x x y y θ=-=-,

由数学知识可知,当()

022x y y -=时,即 4.5y cm =时H 有最大值,

所以max 9H cm =

10.如图所示,在直角坐标系xOy 平面内有两个同心圆,圆心在坐标原点O,小圆内部(I 区)和两圆之间的环形区域(Ⅱ区)存在方向均垂直xOy 平面向里的匀强磁场(图中未画出),I 、Ⅱ区域磁场磁感应强度大小分别为B 、2B 。a 、b 两带正电粒子从O 点同时分别沿y 轴正向、负向运动,已知粒子a 质量为m 、电量为q 、速度大小为v,粒子b 质量为2m 、电量为2q 、速度大小为v /2,粒子b 恰好不穿出1区域,粒子a 不穿出大圆区域,不计粒子重力,不计粒子间相互作用力。求:

(1)小圆半径R 1; (2)大圆半径最小值

(3)a 、b 两粒子从O 点出发到在x 轴相遇所经过的最短时间t (不考虑a 、b 在其它位置相遇)。

【答案】(1)1mv R qB = (2)2min (31)2mv

R qB

= (3)14m qB π

【解析】 【详解】

解:(1)粒子b 在Ⅰ区域做匀速圆周运动,设其半径为b r

根据洛伦磁力提供向心力有:2

2()222b

v m v q B r =

由粒子b 恰好不穿出Ⅰ区域:12b R r = 解得:1mv

R qB

=

(2)设a 在Ⅰ区域做匀速圆周运动的半径为1a r ,

根据洛伦磁力提供向心力有:2

1

a mv qvB r =

解得: 11a mv

r R qB

=

= 设a 在Ⅱ区域做匀速圆周运动的半径为2a r ,

根据洛伦磁力提供向心力有:2

2

2a mv qv B r ?=

解得: 211

22

a mv r R qB =

= 设大圆半径为2R

,由几何关系得:12112

R R R ≥+ 所以,大圆半径最小值为:

2min 1)2qB

R mv

(3)粒子a 在Ⅰ区域的周期为12a m T qB π=

,Ⅱ区域的周期为2a m

T qB

π=

粒子a 从O 点出发回到O 点所经过的最短时间为:1121

13

2

a a a t T T =+ 解得:176a m

t qB

π=

粒子b 在Ⅰ区域的周期为:2b m

T qB

π=

讨论:①如果a 、b 两粒子在O 点相遇,粒子a 经过时间:176a a n m

t nt qB

π== n=1,2,3… 粒子b 经过时间:2b b k m

t kT qB

π==

k=1,2,3… a b t t =时,解得:

726

n

k = 当7k =,12n =时,有最短时间:114m

t qB

π=

②设粒子b 轨迹与小圆相切于P 点,如果a 粒子在射出小圆时与b 粒子在P 点相遇

则有:1215(218)663a a a a n m t T T n t qB

π+=

++= n=1,2,3… 粒子b 经过时间: (21)(21)2b b k T k m

t qB π--=

= k=1,2,3… a b t t =时,解得:218

213

n k +-=

ab 不能相遇

③如果a 粒子在射入小圆时与b 粒子在P 点相遇 则有:1217(2113)2663a a a a n m t T T n t qB

π+=

++= n=1,2,3… 粒子b 经过时间:(21)(21)2b b k T k m

t qB

π--=

= k=1,2,3… a b t t =时,解得:2113

213

n k +-=

ab 不能相遇

a 、

b 两粒子从O 点出发到在x 轴相遇所经过的最短时间为14m

qB

π

11.如图为一装放射源氡的盒子,静止的氡核经过一次α衰变成钋Po ,新核Po 的速率约为2×105m/s .衰变后的α粒子从小孔P 进入正交的电磁场区域Ⅰ,且恰好可沿中心线匀速通过,磁感应强度B =0.1T .之后经过A 孔进入电场加速区域Ⅱ,加速电压U =3×106V .从区域Ⅱ射出的α粒子随后又进入半径为r =

3

m 的圆形匀强磁场区域Ⅲ,该区域磁感应强度B 0=0.4T 、方向垂直纸面向里.圆形磁场右边有一竖直荧光屏与之相切,荧光屏的中心点M 和圆形磁场的圆心O 、电磁场区域Ⅰ的中线在同一条直线上,α粒子的比荷为

q

m

=5×107C/kg .

(1)请写出衰变方程,并求出α粒子的速率(保留一位有效数字); (2)求电磁场区域Ⅰ的电场强度大小; (3)粒子在圆形磁场区域Ⅲ的运动时间多长? (4)求出粒子打在荧光屏上的位置.

【答案】(1)

2222184

86

842Rn Po He →

+ 1×107 m/s

(2)1×106V/m (3)

6

π

×10-7s (4)打在荧光屏上的M 点上方1 m 处 【解析】 【分析】

(1)根据质量数守恒和电荷数守恒写出方程,根据动量守恒求解速度; (2)根据速度选择器的原理求解电场强度的大小;

(3)粒子在磁场中匀速圆周运动,并结合几何知识进行求解即可; 【详解】

(1)根据质量数守恒和电荷数守恒,则衰变方程为:

2222184

86

842Rn Po He →

+ ①

设α粒子的速度为0v ,则衰变过程动量守恒:100Po He m v m v =- ②

联立①②可得:7

0110/v m s =? ③

(2)α粒子匀速通过电磁场区域Ⅰ:0qE qv B =④ 联立③④可得:6110/E V m =? ⑤ (3)α粒子在区域Ⅱ被电场加速:2201122

qU mv mv =- 所以得到:7210/v m s =?⑥

α粒子在区域Ⅲ中做匀速圆周运动: 2v qvB m R

= 所以轨道半径为:1R m =⑦ 而且:2R

T v

π=

⑧ 由图根据几何关系可知:α粒子在磁场中偏转角60θ=?,所以α粒子在磁场中的运动时

间1

6

t T =

⑨ 联立⑧⑨可得:7106

t s π

=

?-;

(4)α粒子的入射速度过圆心,由几何关系可知,出射速度方向也必然过圆心O ,几何关系如图: 60x

tan r

?=

,所以1x m =,α粒子打在荧光屏上的M 点上方1m 处.

高中高考物理试卷试题分类汇编.doc

2019年高考物理试题分类汇编(热学部分) 全国卷 I 33. [物理—选修 3–3]( 15 分) (1)( 5 分)某容器中的空气被光滑活塞封住,容器和活塞绝热性能良好,空气可视 为理想气体。初始时容器中空气的温度与外界相同,压强大于外界。现使活塞缓慢移动,直 至容器中的空气压强与外界相同。此时,容器中空气的温度__________ (填“高于”“低于”或“等于”)外界温度,容器中空气的密度__________ (填“大于”“小于”或“等于”)外界空气 的密度。 (2)( 10分)热等静压设备广泛用于材料加工中。该设备工作时,先在室温下把惰性 气体用压缩机压入到一个预抽真空的炉腔中,然后炉腔升温,利用高温高气压环境对放入炉腔 中的材料加工处理,改善其性能。一台热等静压设备的炉腔中某次放入固体材料后剩余的 容积为 m3,炉腔抽真空后,在室温下用压缩机将10瓶氩气压入到炉腔中。已知每瓶氩气的 容积为×10-2 m3,使用前瓶中气体压强为×107Pa,使用后瓶中剩余气体压强为×106Pa;室温温度为 27 ℃。氩气可视为理想气体。 (i)求压入氩气后炉腔中气体在室温下的压强; (i i )将压入氩气后的炉腔加热到 1 227 ℃,求此时炉腔中气体的压强。 全国卷 II 33. [ 物理—选修 3-3] ( 15 分) (1)( 5分)如 p-V 图所示, 1、2、 3三个点代表某容器中一定量理想气体的三个不同 状态,对应的温度分别是 T1、T2、 T3。用 N1、N2、N3分别表示这三个状态下气体分子在单位 时间内撞击容器壁上单位面积的次数,则N1______N2, T1______T3, N2 ______N3。(填“大于”“小于”或“等于”)

2014年全国高考物理真题汇编(12套)

2014新课标全国理综Ⅰ物理 14.(2014新课标全国理综Ⅰ)在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是( D ) A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化 B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化 C.将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化 D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化 解析:绕在磁铁上的线圈没有和磁铁相对运动,因此并没有引起穿过闭合线圈磁通量的变化,故无感应电流,A选项错误.同理,B选项错误;C选项中虽然可产生感应电流,但时间很短,因此再到另一房间是无法及时观察到感应电流的,选项C错误.在给线圈通、断电瞬间,将在另一线圈中引起磁通量变化,可产生感应电流,D选项正确. 15.(2014新课标全国理综Ⅰ)关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是( B ) A.安培力的方向可以不垂直于直导线 B.安培力的方向总是垂直于磁场的方向 C.安培力的大小与通电直导线和磁场方向的夹角无关 D.将直导线从中点折成直角,安培力的大小一定变为原来的一半 解析:安培力总是垂直于磁场与电流所决定的平面,因此,安培力总与磁场和电流的方向垂直,A项错误,B项正确;安培力F=BILsin θ,其中θ是导线与磁场方向的夹角,所以C项错误;以直导线与磁场垂直放置为例,将直导线从中点折成直角,导线受到安培力的有效长度变为原来的,安培力变为原来的,D项错误. 16.(2014新课标全国理综Ⅰ)如图,MN为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场(未画出).一带电粒子从紧贴铝板上表面的P点垂直于铝板向上射出,从Q点穿越铝板后到达PQ的中点O.已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变.不计重力.铝板上方和下方的磁感应强度大小之比为( D ) A.2 B. C.1 D. 解析:根据qvB=,=·,穿过铝板后动能减半,则=,穿过铝板后半径减半,则=,因此=,D项正确.

高中物理运动学经典习题30道 带答案

一.选择题(共28小题) 1.(2014?陆丰市校级学业考试)某一做匀加速直线运动的物体,加速度是2m/s2,下列关于该物体加速度的理解 D 9.(2015?沈阳校级模拟)一物体从H高处自由下落,经时间t落地,则当它下落时,离地的高度为() D 者抓住,直尺下落的距离h,受测者的反应时间为t,则下列结论正确的是()

∝ ∝ 光照射下,可观察到一个下落的水滴,缓缓调节水滴下落的时间间隔到适当情况,可以看到一种奇特的现象,水滴似乎不再下落,而是像固定在图中的A、B、C、D四个位置不动,一般要出现这种现象,照明光源应该满足(g=10m/s2)() 地时的速度之比是 15.(2013秋?忻府区校级期末)一观察者发现,每隔一定时间有一滴水自8m高的屋檐落下,而且看到第五滴水 D

17.(2014秋?成都期末)如图所示,将一小球从竖直砖墙的某位置由静止释放.用频闪照相机在同一底片上多次曝光,得到了图中1、2、3…所示的小球运动过程中每次曝光的位置.已知连续两次曝光的时间间隔均为T,每块砖的厚度均为d.根据图中的信息,下列判断正确的是() 小球下落的加速度为 的速度为 :2 D: 2 D O点向上抛小球又落至原处的时间为T2在小球运动过程中经过比O点高H的P点,小球离开P点至又回到P 23.(2014春?金山区校级期末)一只气球以10m/s的速度匀速上升,某时刻在气球正下方距气球6m处有一小石 2

v0v0D 27.(2013?洪泽县校级模拟)一个从地面竖直上抛的物体,它两次经过同一较低a点的时间间隔为T a,两次经 g(T a2﹣T b2)g(T a2﹣T b2)g(T a2﹣T b2)D g(T a﹣T b) 28.(2013秋?平江县校级月考)在以速度V上升的电梯内竖直向上抛出一球,电梯内观者看见小球经t秒后到 h=

物理高考题分类汇编

2019高考物理题分类汇编 一、直线运动 18.(卷一)如图,篮球架下的运动员原地垂直起跳扣篮,离地后重心上升的最大高 度为H 。上升第一个4H 所用的时间为t 1,第四个4H 所用的时间为t 2。不计空气阻力,则21 t t 满足() A .1<21t t <2 B .2<21 t t <3 C .3<21t t <4 D .4<21t t <5 25. (卷二)(2)汽车以某一速度在平直公路上匀速行驶司机忽然发现前方有一警示牌立即刹车。从刹车系统稳定工作开始计时,已知汽车第1s 内的位移为24m ,第4s 内的位移为1m 。求汽车刹车系统稳定工开始计时的速度大小及此后的加速度大小。 二、力与平衡 16.(卷二)物块在轻绳的拉动下沿倾角为30°的固定斜面向上匀速运动,轻绳与斜面平行。已知物块与斜面之间的动摩擦因数为3,重力加速度取10m/s 2。若轻绳能承受的最大张力为1500N ,则物块的质量最大为() A .150kg B .1003kg C .200kg D .2003kg 16.(卷三)用卡车运输质量为m 的匀质圆筒状工件,为使工件保持固定,将其置于 两光滑斜面之间,如图所示。两斜面I 、Ⅱ固定在车上,倾角分别为30°和60°。重力加速度为g 。当卡车沿平直公路匀速行驶时,圆筒对斜面I 、Ⅱ压力的大小分别为F 1、F 2,则() A .1233= =F mg F mg , B .1233==F mg F mg , C .121 3== 2F mg F mg , D .1231==2 F mg F mg ,

19.(卷一)如图,一粗糙斜面固定在地面上,斜面顶端装有一光滑定滑轮。一细绳跨过滑轮,其一端悬挂物块N。另一端与斜面上的物 块M相连,系统处于静止状态。现用水平向左的拉力 缓慢拉动N,直至悬挂N的细绳与竖直方向成45°。已 知M始终保持静止,则在此过程中() A.水平拉力的大小可能保持不变 B.M所受细绳的拉力大小一定一直增加 C.M所受斜面的摩擦力大小一定一直增加 D.M所受斜面的摩擦力大小可能先减小后增加 三、牛顿运动定律 20.(卷三)如图(a),物块和木板叠放在实验台上,木板与实验台之间的摩擦可以忽略。物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平。t=0时,木板开始受到水平外力F的作用,在t=4s时 撤去外力。细绳对物块的拉力f随时间t变化的关 系如图(b)所示,木板的速度v与时间t的关系如 图(c)所示。重力加速度取g=10m/s2。由题给数 据可以得出() A.木板的质量为1kgB.2s~4s内,力F的大小为 C.0~2s内,力F的大小保持不变D.物块与木板之间的动摩擦因数为 四、曲线与天体 19.(卷二)如图(a),在跳台滑雪比赛中,运动员在空中滑翔时身体的姿态会影响其下落的速度和滑翔的距离。某运动员先后两次从同一跳台 起跳,每次都从离开跳台开始计时,用v表示他在竖直方向 的速度,其v-t图像如图(b)所示,t1和t2是他落在倾斜雪 道上的时刻。() A.第二次滑翔过程中在竖直方向上的位移比第一次的小 B.第二次滑翔过程中在水平方向上的位移比第一次的大 C.第一次滑翔过程中在竖直方向上的平均加速度比第一次 的大 D.竖直方向速度大小为v1时,第二次滑翔在竖直方向上所受阻力比第一次的大

2020高考物理运动学专题练习

直线运动规律及追及问题 一 、 例题 例题1.一物体做匀变速直线运动,某时刻速度大小为4m/s ,1s 后速度的大小变为10m/s ,在这1s 内该物体的 ( ) A.位移的大小可能小于4m B.位移的大小可能大于10m C.加速度的大小可能小于4m/s D.加速度的大小可能大于10m/s 析:同向时2201/6/14 10s m s m t v v a t =-=-= m m t v v s t 71210 4201=?+=?+= 反向时2202/14/14 10s m s m t v v a t -=--=-= m m t v v s t 312 10 4202-=?-=?+= 式中负号表示方向跟规定正方向相反 答案:A 、D 例题2:两木块自左向右运动,现用高速摄影机在同一底片上多次曝光,记录下木快每次曝光时的位置,如图所示,连续两次曝光的时间间隔是相等的,由图可知 ( ) A 在时刻t 2以及时刻t 5两木块速度相同 B 在时刻t1两木块速度相同 C 在时刻t 3和时刻t 4之间某瞬间两木块速度相同 D 在时刻t 4和时刻t 5之间某瞬间两木块速度相同 解析:首先由图看出:上边那个物体相邻相等时间内的位移之差为恒量,可以判定其做匀变速直线运动;下边那个物体很明显地是做匀速直线运动。由于t 2及t 3时刻两物体位置相同,说明这段时间内它们的位移相等,因此其中间时刻的即时速度相等,这个中间时刻显然在t 3、t 4之间 答案:C 例题3 一跳水运动员从离水面10m 高的平台上跃起,举双臂直立身体离开台面,此时中心位于从手到脚全长的中点,跃起后重心升高0.45m 达到最高点,落水时身体竖直,手先入水(在此过程中运动员水平方向的运动忽略不计)从离开跳 台到手触水面,他可用于完成空中动作的时间是多少?(g 取10m/s 2 结果保留两位数字) 解析:根据题意计算时,可以把运动员的全部质量集中在重心的一个质点,且忽略其水平方向 的运动,因此运动员做的是竖直上抛运动,由g v h 22 0=可求出刚离开台面时的速 度 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 1 t 2 t 3 t 4 t 5 t 6 t 7

历年高考物理试题分类汇编

历年高考物理试题分类汇编 牛顿运动定律选择题 08年高考全国I理综 15.如图,一辆有动力驱动的小车上有一水平放置的弹簧,其左端固定在小车上,右端与一小球相连,设在某一段时间内小球与小车相对静 止且弹簧处于压缩状态,若忽略小球与小车间的 摩擦力,则在此段时间内小车可能是AD A.向右做加速运动 B.向右做减速运动 C.向左做加速运动 D.向左做减速运动 08年高考全国II理综 16.如图,一固定斜面上两个质量相同的小物块A和B紧 挨着匀速下滑,A与B的接触面光滑。已知A与斜面之间 的动摩擦因数是B与斜面之间动摩擦因数的2倍,斜面倾 角为α。B与斜面之间的动摩擦因数是A A. 2 tan 3 α B. 2 cot .3 α C. tanαD.cotα 08年高考全国II理综 18.如图,一很长的、不可伸长的柔软轻绳跨过光滑定滑轮,绳 两端各系一小球a和b。a球质量为m,静置于地面;b球质量为 3m,用手托往,高度为h,此时轻绳刚好拉紧。从静止开始释放 b后,a可能达到的最大高度为B A.h B.1.5h C.2h D.2.5h 08年高考北京卷理综 20.有一些问题你可能不会求解,但是你仍有可能对这些问题的解是否合理进行分析和判断。例如从解的物理量单位,解随某些已知量变化的趋势,解在一跸特殊条件下的结果等方面进

行分析,并与预期结果、实验结论等进行比较,从而判断解的合理性或正确性。 举例如下:如图所示。质量为M 、倾角为θ的滑块A 放于水平地面上。把质量为m 的滑块 B 放在A 的斜面上。忽略一切摩擦,有人求得B 相对地面的加 速度a=2 sin sin M m g M m θθ++,式中g 为重力加速度。 对于上述解,某同学首先分析了等号右侧量的单位,没发现问题。他进一步利用特殊条件对该解做了如下四项分析和判断,所得结论都是“解可能是对的”。但是,其中有一项是错误的。请你指出该项。D A. 当θ?时,该解给出a=0,这符合常识,说明该解可能是对的 B. 当θ=90?时,该解给出a=g,这符合实验结论,说明该解可能是对的 C. 当M ≥m 时,该解给出a=gsin θ,这符合预期的结果,说明该解可能是对的 D. 当m ≥M 时,该解给出a=sin B θ,这符合预期的结果,说明该解可能是对的 08年高考山东卷理综 19.直升机悬停在空中向地面投放装有救灾物资的箱子,如图所 示。设投放初速度为零.箱子所受的空气阻力与箱子下落速度的平方成正比,且运动过程中箱子始终保持图示姿态。在箱子下落过程中.下列说法正确的是C A.箱内物体对箱子底部始终没有压力 B.箱子刚从飞机上投下时,箱内物体受到的支持力最大 C.箱子接近地面时,箱内物体受到的支持力比刚投下时大 D.若下落距离足够长,箱内物体有可能不受底部支持力而“飘起来” 08年高考宁夏卷理综 20.一有固定斜面的小车在水平面上做直线运动,小球通 过细绳与车顶相连。小球某时刻正处于图示状态。设斜面对小球的支持力为N ,细绳对小球的拉力为T ,关于此时刻小球的受力情况,下列说法正确的是AB

高考物理真题分类汇编(详解)

高中物理学习材料 (马鸣风萧萧**整理制作) 2011年高考物理真题分类汇编(详解) 功和能 1.(2011年高考·江苏理综卷)如图所示,演员正在进行杂技表演。由图可估算出他将一只鸡蛋抛出的过程中对鸡蛋所做的功最接近于 A .0.3J B .3J C .30J D .300J 1.A 解析:生活经验告诉我们:10个鸡蛋大约1斤即0.5kg ,则一个鸡蛋的质量约为 0.5 0.0510 m kg = =,鸡蛋大约能抛高度h =0.6m ,则做功约为W=mgh =0.05×10×0.6J=0.3J ,A 正确。 2.(2011年高考·海南理综卷)一物体自t =0时开始做直线运动,其速度图线如图所示。下列选项正确的是( ) A .在0~6s 内,物体离出发点最远为30m B .在0~6s 内,物体经过的路程为40m C .在0~4s 内,物体的平均速率为7.5m/s D .在5~6s 内,物体所受的合外力做负功 v/m ·s -1 10

2.BC 解析:在0~5s,物体向正向运动,5~6s向负向运动,故5s末离出发点最远,A错;由面积法求出0~5s的位移s1=35m, 5~6s的位移s2=-5m,总路程为:40m,B对;由面积法求出0~4s的位移s=30m,平度速度为:v=s/t=7.5m/s C对;由图像知5~6s过程物体加速,合力和位移同向,合力做正功,D错 3.(2011年高考·四川理综卷)如图是“神舟”系列航天飞船返回舱返回地面的示意图,假定其过程可简化为:打开降落伞一段时间后,整个装置匀速下降,为确保安全着陆,需点燃返回舱的缓冲火箭,在火箭喷气过程中返回舱做减速直线运动,则 A.火箭开始喷气瞬间伞绳对返回舱的拉力变小B.返回舱在喷气过程中减速的主要原因是空气阻力 C.返回舱在喷气过程中所受合外力可能做正功D.返回舱在喷气过程中处于失重状态 3.A 解析:在火箭喷气过程中返回舱做减速直线运动,加速度方向向上,返回舱处于超重状态,动能减小,返回舱所受合外力做负功,返回舱在喷气过程中减速的主要原因是缓冲火箭向下喷气而获得向上的反冲力。火箭开始喷气前匀速下降拉力等于重力减去返回舱受到的空气阻力,火箭开始喷气瞬间反冲力直接对返回舱作用因而伞绳对返回舱的拉力变小。 4.(2011年高考·全国卷新课标版)一质点开始时做匀速直线运动,从某时刻起受到一恒力作用。此后,该质点的动能可能 A.一直增大 B.先逐渐减小至零,再逐渐增大 C.先逐渐增大至某一最大值,再逐渐减小 D.先逐渐减小至某一非零的最小值,再逐渐增大 4.ABD 解析:当恒力方向与速度在一条直线上,质点的动能可能一直增大,也可能先逐渐减小至零,再逐渐增大。当恒力方向与速度不在一条直线上,质点的动能可能一直增大,也可能先逐渐减小至某一非零的最小值,再逐渐增大。所以正确答案是ABD。

高中物理运动学公式word版(带答案)可编辑

匀变速直线运动公式: 加速度的定义式:a=速度与时间的关系:v= 位移与时间的关系:X=平均速度与中间时刻瞬时速度的关系:末速度与初速度的平方差关系:等时相邻的两段位移差的关系:ΔX=a 某段时间内中间时刻的瞬时速度:经过某段位移中点时的瞬时速度: 初速为零的匀加速直线运动的比例关系: ①前1秒、前2秒、前3秒……前n秒末的速度之比为: 1 : 2 : 3 : …… : n ②第1秒、第2秒、第3秒……第n秒末的速度之比为: 1 : 2 : 3 : …… : n ③前1秒、前2秒、前3秒……前n秒内的位移之比为: 1 : 4 : 9 : …… : ④第1秒、第2秒、第3秒……第n秒内的位移之比为: 1 : 3 : 5 : …… : (2n-1) ⑤前1米、前2米、前3米……前n米所用的时间之比为: 1 : : : …… : ⑥第1米、第2米、第3米……第n米所用的时间之比为: 1 : : : …… : ⑦第1米、第2米、第3米……第n米末的速度之比为: 1 : : : …… : 自由落体运动规律: 加速度:a=速度与时间的关系:v= 下落高度与时间的关系:h=平均速度与中间时刻瞬时速度的关系:末速度与下落高度的关系:等时相邻的两段高度差的关系:Δh=g 某段时间内中间时刻的瞬时速度:经过某段下落高度中点时的瞬时速度:落地时间:t= 竖直上抛运动规律: 运动性质:上升时为_匀减速直线运动__,下落时为自由落体运动 . 加速度:a=速度与时间的关系:v= 上升的时间:回到抛出点的时间:

位移与时间的关系(位移的初位置在抛出点):X= 上升时的平均速度与初速度的关系: . 最高点离抛出点的高度:h m=落回抛出点的速度为v=- 平抛运动 1、实质:水平方向做匀速直线运动,竖直方向做自由落体运动。 2、水平分运动:水平分速度:水平位移: 3、竖直分运动:竖直分速度:竖直位移:。 4、合运动:位移:X=速度:V=。 5、下落时间:t= 6、任意时刻:速度与水平面夹角α的正切值: 位移与水平面夹角β的正切值: 7、某时刻速度、位移与初速度方向的夹角α、β的关系为 8、平抛运动的物体,任意时刻随时速度的反向延长线一定通过水平位移的中点。 顺着斜面平抛物体,物体又重新落在斜面上 1、落在斜面上时速度方向与斜面加角恒定 . 2、物体在斜面上运动时间: 3、运动过程中距离斜面的最大距离: 4、运动过程中离斜面距离最大的时间:t= 5、水平位移和竖直位移的关系: 6、物体的位移:X=

2020年高考物理试题分类汇编 普通高校招生考试 精品

θ F 2020普通高校招生考试试题汇编-相互作用 1(2020安徽第1题).一质量为m 的物块恰好静止在倾角为θ的斜面上。现对物块施加一个竖直向下的恒力F ,如图所示。则物块 A .仍处于静止状态 B .沿斜面加速下滑 C .受到的摩擦力不便 D .受到的合外力增大 答案:A 解析:由于质量为m 的物块恰好静止在倾角为θ的斜面上,说明斜面对物块的作用力与物块的重力平衡,斜面与物块的动摩擦因数μ=tan θ。对物块施加一个竖直向下的恒力F ,使得合力仍然为零,故物块仍处于静止状态,A 正确,B 、D 错误。摩擦力由mg sin θ增大到(F +mg )sin θ,C 错误。 2(2020海南第4题).如图,墙上有两个钉子a 和b,它们的连 线与水平方向的夹角为45°,两者的高度差为l 。一条不可伸长 的轻质细绳一端固定于a 点,另一端跨过光滑钉子b 悬挂一质量 为m1的重物。在绳子距a 端2 l 得c 点有一固定绳圈。若绳圈上悬挂质量为m2的钩码,平衡后绳的ac 段正好水平,则重物和钩 码的质量比12 m m 为 A.5 B. 2 C. 52 D.2 解析:平衡后设绳的BC 段与水平方向成α角,则:tan 2,sin 5 αα== 对节点C 分析三力平衡,在竖直方向上有:21sin m g m g α=得:1215sin 2 m m α==,选C 3 (广东第16题).如图5所示的水平面上,橡皮绳一端固定,另一端连 接两根弹簧,连接点P 在F 1、F 2和F 3三力作用下保持静止。下列判断正 确的是 A. F 1 > F 2> F 3 B. F 3 > F 1> F 2 C. F 2> F 3 > F 1 D. F 3> F 2 > F 1 4(北京理综第18题).“蹦极”就是跳跃者把一 端固定的长弹性绳绑在踝关节等处,从几十米高 处跳下的一种极限运动。某人做蹦极运动,所受 绳子拉力F 的大小随时间t 变化的情况如图所示。 将蹦极过程近似为在竖直方向的运动,重力加速 度为g 。据图可知,此人在蹦极过程中最大加速

高中物理运动学公式总结

高中物理运动学公式总结 一、质点的运动——直线运动。 1)匀变速直线运动。 1、平均速度;t x V =定义式平均速率;t s V = 2、有用推理ax Vo Vt 222=- 3、中间时刻速度;202V Vt V Vt +==平 4、末速度Vt=V0+at 5、中间位置速度2 2220Vt V Vx += 6、位移 t 2t 2a t 0t t 2V V V s =+==平 7、加速度t V Vt a 0 +=(以V0为正方向,a 与V0同向[加速]a ?0,反向则a <0) 8、实验推论;S1-S2=S3-S2=S4-S3=ΛΛ=?x=a t 2 9、初速度为0n 个连续相等的时间内s 的比;s1:s2:s3ΛΛ:Sn=1:3:5ΛΛ:(2n-1) 10、初速度为0的n 个连续相等的位移内t 之比; t1:t2:t3ΛΛ:tn=1:(12-0):(23-):ΛΛ:(1--n n ) 11、a=t n m Sn Sm 2--(利用上个段位移,减少误差---逐差法) 12、主要物理量及单位:初速度V0= s m ;加速度a=s m 2;末速度Vt=s m 1s m =h k m 注; 1平均速度是矢量, 2物体速度大,加速度不一定加大 2)自由落体运动 1初速度V0=0 2末速度Vt=gt 23下落高度)位置向下计算从00(22 V g h t = 4推论t 2V =2gh 注; 1自由落体运动是初速度为0的匀加速直线运动,遵循匀变速直线运动规律。

2a=g=s 2m ≈10s 2m (重力加速度在赤道附近较小,在高山处比平底小,方向竖直向下)3) 竖直上抛运动 1位移S=Vot-22 gt 2末速度Vt=Vo-gt 3有理推论02 2V Vt -=-2gs 4上升最大高度Hm= g Vo 22(从抛出到落回原位置的时间) 5往返时间g t Vo 22= 注; 1全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。 2分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性。 称性上升与下落过程具有对3:1如在同点,速度等值反向。 2上升过程经过两点所用时间与下落过程经过这两点所 用时间相等。 物理规律汇总 1)相互作用力 1重力 【1】方向竖直向下,但不一定与接触面垂直,不一定指向地心。(除赤道与两级) 【2】重力是由地球的引力而产生,但重力≠引力(除两级) 2弹力 【1】绳子的拉力方向总是沿着绳,且指向绳子收缩的方向。、 【2】同一根绳子上的力相同。 【3】杆的力可以是拉力,也可以是推力。方向可以沿各个方向。 3摩擦力 【1】摩擦力不一定是阻力,也可以使动力。 【2】受滑动摩擦力的物体也可能是静止的。 【3】受静摩擦力的物体也可能是运动的。 2)牛顿运动定律 1力是改变物体运动状态的原因, 2力是产生加速度的原因, 3物体具有加速度,则物体一定具有加速度,物体具有加速度,则一定受力。 4质量是惯性大小的唯一量度, 5物体具有向下的加速度时,物体处于失重状态, 6物体具有向上的加速度时,物体处于超重状态。 打点计时器

高中物理运动学公式总结

高中物理运动学公式总结 一、质点的运动——直线运动。 1)匀变速直线运动。 1、平均速度; t x V = 定义式平均速率; t s V = 2、有用推理ax Vo Vt 22 2 =- 3、中间时刻速度;2 2V Vt V Vt += =平 4、末速度Vt=V0+at 5、中间位置速度2 2 2 2 Vt V Vx += 6、位移 t 2t 2 a t 0t t 2 V V V s = +==平 7、加速度t V Vt a 0 += (以V0为正方向,a 与V0同向[加速]a ?0,反向则a <0) 8、实验推论; S1-S2=S3-S2=S4-S3= =? x=a t 2 9、初速度为0n 个连续相等的时间内s 的比;s1:s2:s3 :Sn=1:3:5 :(2n-1) 10、初速度为0的n 个连续相等的位移内t 之比; t1:t2:t3 :tn=1:(12-0):(23- ): :( 1-- n n ) 11、a= t n m Sn Sm 2 --(利用上个段位移,减少误差---逐差法) 12、主要物理量及单位:初速度V0=s m ;加速度a=s m 2 ;末速度Vt= s m 1 s m =3.6 h km 注; 1平均速度是矢量, 2物体速度大,加速度不一定加大 2)自由落体运动 1初速度V0=0 2末速度Vt=gt 23下落高度 ) 位置向下计算 从00(2 2 V g h t = 4推论t 2 V =2gh

注; 1自由落体运动是初速度为0的匀加速直线运动,遵循匀变速直线运动规律。 2a=g=9.8s 2 m ≈10s 2 m (重力加速度在赤道附近较小,在高山处比平底小,方向竖直向下) 3)竖直上抛运动 1位移S=V o t- 22 gt 2末速度Vt=V o-gt 3有理推论0 2 2 V Vt -=-2gs 4上升最大高度H m= g Vo 22 (从抛出到落回原位置的时间) 5往返时间g t Vo 2 2= 注; 1全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。 2分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性。 称性上升与下落过程具有对 3:1如在同点,速度等值反向。 2上升过程经过两点所用时间与下落过程经过这两点所 用时间相等。 物理规律汇总 1)相互作用力 1重力 【1】方向竖直向下,但不一定与接触面垂直,不一定指向地心。(除赤道与两级) 【2】重力是由地球的引力而产生,但重力≠引力(除两级) 2弹力 【1】绳子的拉力方向总是沿着绳,且指向绳子收缩的方向。、 【2】同一根绳子上的力相同。 【3】杆的力可以是拉力,也可以是推力。方向可以沿各个方向。 3摩擦力 【1】摩擦力不一定是阻力,也可以使动力。 【2】受滑动摩擦力的物体也可能是静止的。 【3】受静摩擦力的物体也可能是运动的。 2)牛顿运动定律 1力是改变物体运动状态的原因, 2力是产生加速度的原因, 3物体具有加速度,则物体一定具有加速度,物体具有加速度,则一定受力。 4质量是惯性大小的唯一量度, 5物体具有向下的加速度时,物体处于失重状态, 6物体具有向上的加速度时,物体处于超重状态。

2019年高考物理试题分类汇编:选修3-4专题

2019年高考物理试题分类汇编:3--4 1.(2018福建卷).一列简谐波沿x 轴传播,t=0时刻的波形如图甲所示,此时质点P 正沿y 轴负方向运动,其振动图像如图乙所示,则该波的传播方向和波速分别是 A .沿x 轴负方向,60m/s B .沿x 轴正方向,60m/s C .沿x 轴负方向,30 m/s D .沿x 轴正方向,30m/s 答案:A 2.(1)(2018福建卷)(6分)在“用双缝干涉测光的波长”实验中(实验装置如图): ①下列说法哪一个是错误......的_______。(填选项前的字母) A .调节光源高度使光束沿遮光筒轴线照在屏中心时,应放上单缝和双缝 B .测量某条干涉亮纹位置时,应使测微目镜分划中心刻线与该亮纹的中心对齐 C .为了减少测量误差,可用测微目镜测出n 条亮纹间的距离a ,求出相邻两条亮纹间距x /(1)a n =-V ②测量某亮纹位置时,手轮上的示数如右图,其示数为___mm 。 答案:①A ②1.970 3.(2018上海卷).在光电效应实验中,用单色光照射某种金属表面,有光电子逸出,则光电子的最大初动能取决于入射光的( ) (A )频率 (B )强度 (C )照射时间 (D )光子数目 答案: A 4.(2018上海卷).下图为红光或紫光通过双缝或单缝所呈现的图样,则( ) (A )甲为紫光的干涉图样 (B )乙为紫光的干涉图样 (C )丙为红光的干涉图样 (D )丁为红光的干涉图样 答案: B 5.(2018上海卷).如图,简单谐横波在t 时刻的波形如实线所示,经过?t =3s ,其波形如虚线所示。已知图中x 1与x 2相距1m ,波的周期为T ,且2T <?t <4T 。则可能的最小波速为__________m/s ,最小周期为__________s 。 (A ) (B ) ( C ) (D )

年高考物理真题分类汇编 热学

2011年高考物理真题分类汇编(详解+精校)热学 1.(2011年高考·四川理综卷)气体能够充满密闭容器,说明气体分子除相互碰撞的短暂时间外 A.气体分子可以做布朗运动 B.气体分子的动能都一样大 C.相互作用力十分微弱,气体分子可以自由运动 D.相互作用力十分微弱,气体分子间的距离都一样大 1.C 解析:布朗运动是固体小颗粒的运动,A错误;气体分子的运动是杂乱无章的,表示气体分子的速度大小和方向具有不确定性,与温度的关系是统计规律,B错误;气体分子的相互作用力十分微弱,但是由于频繁撞击使得气体分子间的距离不是一样大,D错误;气体分子的相互作用力十分微弱,气体分子可以自由运动造成气体没有形状。答案C。 2.(2011年高考·全国卷新课标版)对于一定质量的理想气体,下列说法正确的是_______。A.若气体的压强和体积都不变,其内能也一定不变 B.若气体的内能不变,其状态也一定不变 C.若气体的温度随时间不断升高,其压强也一定不断增大 D.气体温度每升高1K所吸收的热量与气体经历的过程有关 E.当气体温度升高时,气体的内能一定增大 2.ADE 解析:理想气体的内能只由温度决定,由理想气体状态方程PV C T =可知,若气体 的压强和体积都不变,温度T也不变,所以内能也一定不变,A、E选项正确。若气体的内能不变,则温度T不变,但气体的压强和体积可以改变,B项错误。若气体的温度升高,体 积增大,其压强可以不变, C项错误。由热力学第一定律U Q W ?=+知,D选项正确。3.(2011年高考·全国大纲版理综卷)关于一定量的气体,下列叙述正确的是 A.气体吸收的热量可以完全转化为功 B.气体体积增大时,其内能一定减少 C.气体从外界吸收热量,其内能一定增加 D.外界对气体做功,气体内能可能减少 3.AD 解析:根据热力学第二定律:不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化。即气体吸收热量在引起了其他变化的情况下,可以完全转化为功,A对;内能的影响因素有气体的体积和温度,故气体体积增大时,由于温度变化情况未知,故内能不一定减少,B错;内能可以通过做功和热传递改变,气体从外界吸收热量,由于对外做功情况未知,故内能不一定增加,C错;同理外界对气体做功,由于热传递情况未知,故气体内能有可能减少,D对。 4.(2011年高考·重庆理综卷)某汽车后备箱内安装有撑起箱盖的装置,它主要由汽缸和活塞组成。开箱时,密闭于汽缸内的压缩气体膨胀,将箱盖顶起,如图所示。在此过程中,若缸内气体与外界无热交换,忽略气体分子间相互作用,则缸内气体

高一物理复习运动学专题复习

高一物理运动学专题复习 知识梳理: 一、机械运动 一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等运动形式. 二、参照物 为了研究物体的运动而假定为不动的物体,叫做参照物. 对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,灵活地选取参照物会给问题的分析带来简便;通常以地球为参照物来研究物体的运动. 三、质点 研究一个物体的运动时,如果物体的形状和大小属于无关因素或次要因素,对问题的研究没有影响或影响可以忽略,为使问题简化,就用一个有质量的点来代替物体.用来代管物体的有质量的做质点.像这种突出主要因素,排除无关因素,忽略次要因素的研究问题的思想方法,即为理想化方法,质点即是一种理想化模型. 四、时刻和时间 时刻:指的是某一瞬时.在时间轴上用一个点来表示.对应的是位置、速度、动量、动能等状态量. 时间:是两时刻间的间隔.在时间轴上用一段长度来表示.对应的是位移、路程、冲量、功等过程量.时间间隔=终止时刻-开始时刻。 五、位移和路程 位移:描述物体位置的变化,是从物体运动的初位置指向末位置的矢量. 路程:物体运动轨迹的长度,是标量.只有在单方向的直线运动中,位移的大小才等于路程。 六、速度 描述物体运动的方向和快慢的物理量. 1.平均速度:在变速运动中,物体在某段时间内的位移与发生这段位移所用时间的比值叫做这段时间内的平均速度,即V =S/t ,单位:m / s ,其方向与位移的方向相同.它是对变速运动的粗略描述.公式V =(V 0+V t )/2只对匀变速直线运动适用。 2.瞬时速度:运动物体在某一时刻(或某一位置)的速度,方向沿轨迹上质点所在点的切线方向指向前进的一侧.瞬时速度是对变速运动的精确描述.瞬时速度的大小叫速率,是标量. 3.速率:瞬时速度的大小即为速率; 4.平均速率:质点运动的路程与时间的比值,它的大小与相应的平均速度之值可能不相同。 七、匀速直线运动 1.定义:在相等的时间里位移相等的直线运动叫做匀速直线运动. 2.特点:a =0,v=恒量. 3.位移公式:S =vt . 八、加速度 1.加速度的物理意义:反映运动物体速度变化快慢...... 的物理量。 加速度的定义:速度的变化与发生这一变化所用的时间的比值,即a = t v ??=t v v ?-1 2。 加速度是矢量。加速度的方向与速度方向并不一定相同。 2.加速度与速度是完全不同的物理量,加速度是速度的变化率。所以,两者之间并不存在“速度大加速度也大、速度为0时加速度也为0”等关系,加速度和速度的方向也没有必然相同的关系,加速直线运

11-19年高考物理真题分类汇编之(十)(10个专题)

11-19年高考物理真题分类汇编之(十)(10个专题) 第91节 气体的等温变化、玻马定律 1.2013年上海卷 15.已知湖水深度为20m ,湖底水温为4℃,水面温度为17℃,大气压强为1.0×105Pa 。当一气泡从湖底缓慢升到水面时,其体积约为原来的(取g =10m/s 2,ρ=1.0×103kg/m 3) A .12.8倍 B . 8.5倍 C .3.1倍 D .2.1倍 答案:C 解析:湖底压强大约为3个大气压,由气体状态方程,当一气泡从湖底缓慢升到水面时,其体积约为原来的3.1倍,选项C 正确。 2. 2014年物理上海卷 10.如图,竖直放置、开口向下的试管内用水银封闭一段气体,若试管自由下落,管内气体( ) A .压强增大,体积增大 B .压强增大,体积减小 C .压强减小,体积增大 D .压强减小,体积减小 【答案】B 【解析】初始时,水银处于静止状态,受到重力和封闭气体的压力之和与外界大气压力等大反向;当试管自由下落时,管中水银也处于完全失重状态,加速度为g 竖直向下,所以封闭气体的压强与外界大气压等大;由此可知封闭气体的压强增大,根据玻马定律可知,气体的体积减小,B 项正确。 3.2012年物理上海卷 31.(13分)如图,长L =100cm ,粗细均匀的玻璃管一端封闭。水平放置时,长L 0=50cm 的空气柱被水银封住,水银柱长h =30cm 。将玻璃管缓慢地转到开口向下的竖直位置,然后竖直插入水银槽,插入后有Δh =15cm 的水银柱进入玻璃管。设整个过程中温度始终保持不变,大气压强p 0=75cmHg 。求: (1)插入水银槽后管内气体的压强p ; (2)管口距水银槽液面的距离H 。 解析: (1)设当转到竖直位置时,水银恰好未流出,管截面积为S ,此时气柱长l =70cm

2019高考物理真题汇编——计算题

目录 牛顿第二定律 (2) 功能 (3) 动量 (4) 力学综合 (4) 动量能量综合 (5) 带电粒子在电场中的运动 (7) 带电粒子在磁场中的运动 (8) 电磁感应 (9) 法拉第电磁感应定律(动生与感生电动势) (9) 杆切割 (9) 线框切割 (10) 感生电动势 (11) 电磁感应中的功能问题 (11) 电磁科技应用 (12) 热学 (13) 光学 (15) 近代物理 (17) 思想方法原理类 (17)

牛顿第二定律 1.【2019天津卷】完全由我国自行设计、建造的国产新型航空母舰已完成多次海试,并 取得成功。航母上的舰载机采用滑跃式起飞,故甲板是由水平甲板和上翘甲板两部分构成,如图1所示。为了便于研究舰载机的起飞过程,假设上翘甲板BC是与水平甲板AB相切的一段圆弧,示意如图2,AB长L1=150m,BC水平投影L2=63m,图中C

点切线方向与水平方向的夹角θ=12°(sin12°≈0.21)。若舰载机从A点由静止开始做匀加速直线运动,经t=6s到达B点进入BC.已知飞行员的质量m=60kg,g=10m/s2,求 (1)舰载机水平运动的过程中,飞行员受到的水平力所做功W; (2)舰载机刚进入BC时,飞行员受到竖直向上的压力F N多大。 2.【2019江苏卷】如图所示,质量相等的物块A和B叠放在水平地面上,左边缘对齐。 A与B、B与地面间的动摩擦因数均为μ.先敲击A,A立即获得水平向右的初速度,在B上滑动距离L后停下。接着敲击B,B立即获得水平向右的初速度,A、B都向右运动,左边缘再次对齐时恰好相对静止,此后两者一起运动至停下。最大静摩擦力等于滑动摩擦力,重力加速度为g。求: (1)A被敲击后获得的初速度大小v A; (2)在左边缘再次对齐的前、后,B运动加速度的大小a B、a B′; (3)B被敲击后获得的初速度大小v B。 功能 3.【2019.04浙江选考】小明以初速度v0=10m/s竖直向上抛出一个质量m=0.1kg的小皮 球,最后在抛出点接住。假设小皮球在空气中所受阻力大小为重力的0.1倍。求小皮球(1)上升的最大高度; (2)从抛出到接住的过程中重力和空气阻力所做的功

2013-2014浙江高考物理真题汇编

2013-2014浙江高考物理真题汇编 一、单项选择题: 1.【2012】如图所示,与水平面夹角为300的固定斜面上有一质量m=1.0kg的物体。细绳的一端与物体相 连。另一端经摩擦不计的定滑轮与固定的弹簧秤相连。物体静止在斜面上,弹簧秤的示数为4.9N。关于物 体受力的判断(取g=9.8m/s2).下列说法正确的是() A.斜面对物体的摩擦力大小为零 B. 斜面对物体的摩擦力大小为4.9N,方向沿斜面向上 C. 斜面对物体的支持力大小为4.9N,方向竖直向上 D. 斜面对物体的支持力大小为4.9N,方向垂直斜面向上 2. 【2014】功率为10w的发光二极管(LED灯)的亮度与功率为60W的白炽灯相当。根据国家节能战略, 2016年前普通白炽灯应被淘汰。假设每户家庭有2只60W的白炽灯,均用10W的LED灯替代。估算出 全国一年节省的电能最接近() A.8×108KW·h B. 8×1010KW·h C. 8×1011KW·h D. 8×1013KW·h 3.【2013】磁卡的磁条中有用于存储信息的磁极方向不同的磁化区,刷卡器中有检测线圈.当以速度v0刷 卡时,在线圈中产生感应电动势,其E-t关系如右图所示.如果只将刷卡速度改为 v0 2 ,线圈中的E-t关 系图可能是( ) 4.【2013】如图所示,水平木板上有质量m=1.0 kg的物块,受到随时间t变化的水平拉力F作用,用力 2) D A.5 s内拉力对物块做功为零 B.4 s末物块所受合力大小为4.0 N C.物块与木板之间的动摩擦因数为0.4 D.6 s~9 s内物块的加速度大小为2.0 m/s2 二、不定项选择 5.【2013】如图所示,总质量为460 kg的热气球,从地面刚开始竖直上升时的加速度为0.5 m/s2,当热 气球上升到180 m时,以5 m/s的速度向上匀速运动.若离开地面后热气球所受浮力保持不变,上升过程 中热气球总质量不变,重力加速度g=10 m/s2.关于热气球,下列说法正确的是( ) A.所受浮力大小为4830 N B.加速上升过程中所受空气阻力保持不变 C.从地面开始上升10 s后的速度大小为5 m/s D.以5 m/s匀速上升时所受空气阻力大小为230 N 6.【2013】在半导体离子注入工艺中,初速度可忽略的磷离子P+和P3+,经电压为U的电场加速后,垂直 进入磁感应强度大小为B、方向垂直纸面向里、有一定宽度的匀强磁场区域,如图所示.已知离子P+在磁 场中转过θ=30°后从磁场右边界射出.在电场和磁场中运动时,离子P+和P3+( ) A.在电场中的加速度之比为1∶1 B.在磁场中运动的半径之比为3∶1 C.在磁场中转过的角度之比为1∶2 D.离开电场区域时的动能之比为1∶3 7. 【2012】由光滑细管组成的轨道如图所示,其中AB段和BC段是半径为R的四分之一圆弧,轨道固定 在竖直平面内。一质量为m的小球,从距离水平地面为H的管口D处静止释放,最后能够从A端水平抛 出落到地面上。下列说法正确的是() A.小球落到地面时相对于A点的水平位移值为 B. 小球落到地面时相对于A点的水平位移值为 C.小球能从细管A端水平抛出的条件是H>2R D.小球能从细管A端水平抛出的最小高度H min= R 8. 【2012】用金属做成一个不带电的圆环,放在干燥的绝缘桌面上。小明同学用绝缘材料做的笔套与头发 摩擦后,将笔套与头发摩擦后,将笔套自上向下慢慢靠近圆环,当距离约为0.5cm时圆环被吸引到笔套上, 如图所示。对上述现象的判断与分析,下列说法正确的是( ) A.摩擦使笔套带电 B.笔套靠近圆环时,圆环上、下都感应出异号电荷 C.圆环被吸引到笔套的过程中,圆环所受静电力的合力大于圆环的重力 D.笔套碰到圆环后,笔套所带的电荷立刻被全部中和 9.【2014】如图所示,水平地面上固定一个光滑绝缘斜面,斜面与水平面的夹角为θ.一根轻质绝缘细线的 一端固定在斜面顶端,另一端系有一个带电小球A,细线与斜面平行.小球A的质量为m、电荷量为q.小 球A的右侧固定放置带等量同种电荷的小球B,两球心的高度相同、间距为d.静电力常量为k,重力加速 度为g,两带电小球可视为点电荷.小球A静止在斜面上,则() A.小球A与B之间库仑力的大小为 kq2 d2 B.当 q d= mg sin θ k时,细线上的拉力为0 C.当 q d= mg tan θ k时,细线上的拉力为0 D.当 q d= mg k tan θ 时,斜面对小球A的支持力为0 10.【2014】如图1所示,两根光滑平行导轨水平放置,间距为L,其间有竖直向下的匀强磁场,磁感应强 度为B.垂直于导轨水平对称放置一根均匀金属棒.从t=0时刻起,棒上有如图2所示的持续交变电流I, 周期为T,最大值为I m,图1中I所示方向为电流正方向.则金属棒() A.一直向右移动B.速度随时间周期性变化 C.受到的安培力随时间周期性变化D.受到的安培力在一个周期内做正功 三、实验题 11.【2013】如图所示,装置甲中挂有小桶的细线绕过定 滑轮,固定在小车上;装置乙中橡皮筋的一端固定在导 轨的左端,另一端系在小车上.一同学用装置甲和乙分 别进行实验,经正确操作获得两条纸带①和②,纸带上 的a、b、c……均为打点计时器打出的点. (1)任选一条纸带读出b、c两点间距离为 (2)任选一条纸带求出c、e两点间的平均速度大小为________,纸带①和②上c、e两点间的平均速 度v①________v②(填“大于”、“等于”或“小于”);

相关文档
最新文档