离散LSI系统分析

离散LSI系统分析
离散LSI系统分析

信号与系统分析实验报告

实验项目名称:离散线性时不变系统分析;

连续时间系统分析

所属课程名称:信号与系统实验教程

实验类型:验证型

指导教师:

实验日期:2013.06.04

班级:

学号:

姓名:

离散线性时不变系统分析

一、实验目的

1. 掌握离散线性时不变系统的单位序列响应、单位阶跃响应和任意激励下响应的MATLAB 求解方法。

2. 掌握离散线性时不变系统的频域分析方法;

3. 掌握离散线性时不变系统的复频域分析方法;

4. 掌握离散线性时不变系统的零极点分布与系统特性的关系。

二、实验原理及方法

1.

离散线性时不变系统的时域分析

描述一个N 阶线性时不变离散时间系统的数学模型是线性常系统差分方程,N 阶线性时不变离散系统的差分方程一般形式为

)

()(0

i n x b k n y a M

i i N k k -=-∑∑== (2.1) 也可用系统函数来表示

12001212120

()

()()()

()1M

i

M i

i M N

N

k

N k k b z

b b z b z b z Y z b z H z X z a z a z a z a z a z

----=----=++++==

==

++++∑∑ (2.2)

系统函数()H z 反映了系统响应和激励间的关系。一旦上式中k a ,i b 的数据确定了,系统的性质也就确定了。特别注意0a 必须进行归一化处理,即01a =。

对于复杂信号激励下的线性系统,可以将激励信号在时域中分解为单位序列或单位阶跃

序列的线性叠加,把这些单元激励信号分别加于系统求其响应,然后把这些响应叠加,

即可得到复杂信号作用于系统的零状态响应。因此,求解系统的单位序列响应和单位阶跃响应尤为重要。由图2-1可以看出一个离散LSI 系统响应与激励的关系。

()()()

z X z H z =()()*()

n x n h n

图2-1 离散LSI 系统响应与激励的关系

(1) 单位序列响应(单位响应)

单位响应()h n 是指离散线性时不变系统在单位序列()n δ激励下的零状态响应,因此

()h n 满足线性常系数差分方程(2.1)及零初始状态,即

()()

N M

k

i

k i a h n k b n i δ==-=-∑∑, (1)(2)0h h -=-== (2.3)

按照定义,它也可表示为

()()()h n h n n δ=* (2.4) 对于离散线性时不变系统,若其输入信号为()x n ,单位响应为()h n ,则其零状态响应

()zs y n 为

()()*()zs y n x n h n = (2.5)

可见,()h n 能够刻画和表征系统的固有特性,与何种激励无关。一旦知道了系统的单位响应()h n ,就可求得系统对任何输入信号()x n 所产生的零状态响应()zs

y n 。

MATLAB 提供了专门用于求离散系统冲激响应的函数impz(),其调用格式有 [h,n]=impz(b,a)

求解离散系统的单位响应,其中012[,,,,]M b b b b b =,12[1,,,,]N

a a a a =,

[0,1,2,]n '=;

[h,n]=impz(b,a,N)

求解离散系统的单位响应,采样点数由N 确定,[0,1,2,

,N-1]n '=;

impz(b,a) :在当前窗口,用stem(n,h)绘出图形。 (2)单位阶跃响应

单位阶跃响应()s n 是指离散离散时不变系统在单位阶跃序列()u n 激励下的零状态响应,它可以表示为

()()()()n

m s n u n h n h m =-∞

=*=

∑ (2.6)

上式表明,离散线性时不变系统的单位阶跃响应是单位响应的累加和,系统的单位阶跃响应和系统的单位响应之间有着确定的关系,因此,单位阶跃响应也能完全刻画和表征一个线性时不变系统。

MATLAB 提供了专门用于求离散系统单位阶跃响应的函数stepz( ),其调用格式有 [s,n]=stepz(b,a) :求解离散系统的单位阶跃响应,其中0

1

2

[,,,,]M

b b b b b =,

12[1,,,

,]N a a a a =,[0,1,2,]n '=;

[s,n]=stepz(b,a,N) :求解离散系统的单位阶跃响应,采样点数由N 确定,[0,1,2,,N-1]n '=;

stepz(b,a) :在当前窗口,用stem(n,s)绘出图形。 (3)任意激励下的零状态响应

已经知道,离散线性时不变系统可用常系数线性差分方程(2.1)式来描述,Matlab 提供的函数dlsim( )能对上述差分方程描述的离散线性时不变系统的响应进行仿真,该函数不仅能绘制指定时间范围内的系统响应波形图,而且还能求出系统响应的数值解。其调用格式有

dlsim(b,a, x) :求解输入序列为x 的零状态响应

需要特别强调的是,Matlab 总是把由分子和分母多项式表示的任何系统都当作是因果系统。所以,利用impz (b,a),stepz(b,a),d lsim(b,a,x)函数求得的响应总是因果信号。

同时,卷积和也是线性时不变系统求解零状态响应的重要工具之一。假设系统的输入信号为()x n ,单位响应为()h n ,则系统的零状态响应()zs y n 可由(2.5)式求解。Matlab 提

供了专门用于求离散系统卷积和的函数conv( ),其调用格式有

y=conv(x,h) :求解序列x ,h 的卷积和,若序列x 的长度为n1,序列h 的长度为n2,卷积和y 的长度为n1+n2-1。这一点需要特别注意,否则,作图时容易造成横纵坐标长度不匹配。

(4)带初始状态的任意激励下的全响应

任意激励下的离散线性时不变系统的全响应为零输入响应和零状态响应之和,表示为

()()()zi zs y n y n y n =+ (2.7)

Matlab 提供了用于求离散系统全响应的函数filter( ),其调用格式有 y=filter( b,a,x) :求解零状态响应;

y=filter( b,a,x,zi) :求解初始条件为zi 的系统的全响应,zi 向量的长度为max(length(a),length(b))-1,返回值为系统的全响应。

z = filtic(b,a,y,x):将初始状态转换为初始条件,其中[(1),(2),(3),

,()]x x x x x m =----,

[(1),(2),(3),,()]y y y y y n =----;

z = filtic(b,a,):将初始状态转换为初始条件0x =,[(1),(2),(3),

,()]y y y y y n =----

2 离散线性时不变系统的复频域(Z 域)分析

(1)利用Z 变换解差分方程

在前面图2-1中表示了离散系统的响应与激励的关系,由图可知,系统的响应既可以用时域的方法求解,也可以用Z 域的方法求解。当已知系统输入序列的Z 变换()X z ,系统函数()H z 时,系统响应序列的Z 变换可由()()()Y z X z H z =求出。Matlab 提供了用于求序列Z 变换和Z 反变换的函数,其调用格式有

X=ztrans(x):求无限长序列x 的Z 变换,返回Z 变换的表达式,注意这里x ,X 都是符号表达式;

x=iztrans(X):求X (z )的Z 反变换x(n),返回Z 反变换的表达式,注意这里x ,X 都是符号表达式;

[r,p,c]=residuez(b,a):把b(z)/a(z)展开成部分分式;

[b,a]=residuez(r,p,c):根据部分分式的r 、p 、c 数组,返回有理多项式。 (2)系统的零极点分布与系统因果性和稳定性的关系

因果系统的单位响应)(n h 一定满足当0

系统稳定要求 ∞

<∑∞

-∞

=n n h |)(| ,对照z 变换定义,系统稳定要求收敛域包含单位圆。如果系统因果且稳定,收敛域包含∞点和单位圆,那么收敛域可表示为:

10,||<<∞≤

MATLAB 提供了用于求系统零极点的函数,其调用格式有 roots():利用多项式求根函数来确定系统函数的零极点位置;

roots(a):求极点位置,a 为系统函数)(z H 分母多项式所构成的系数向量; roots(b):求零点位置,b 为系统函数)(z H 分子多项式所构成的系数向量;

zplane(b,a):绘制由行向量b 和a 构成的系统函数的零极点分布图;

zplane(z,p):绘制由列向量z 确定的零点、列向量p 确定的极点构成的零极点分布图。

(3)系统的零极点分布与系统频率响应的关系 将式(2.2)因式分解,得到

∏∏=-=---=N

k k M

m

m z d z c A z H 1

11

1)

1()

1()( (2.9) 式中,00

a b

A =,m c 是)(z H 的零点,k d 是其极点。A 参数影响频率响应的幅度大小,

影响系统特性的是零点

m c 和极点k d 的分布。

下面采用几何方法研究系统零极点分布对系统

频率特性的影响。

将式(2.9)的分子、分母同乘以M N z +,得到:

∏∏∏∏==-=-=---=--=N k k

M

m m

M

N N

k k

M

m m

d

z c

z Az z d

z c

A z H 1

11

11

1

)

()()

1()

1()( (2.10)

假设系统稳定,将ωj e z =代入上式,得到频率响应

)]

(arg[1

1)

()()

()

()(ω

ωωω

ω

ωj e

H j j N k k

j

M

m m j M N j j e e H d

e c e Ae e H =--=∏∏==- (2.11)

设M N =,由式(2.11)得到

∏∏==--=N

k k

j

N

m m j j d

e c e

A e H 1

1

)

()

()(ωω

ω (2.12)

在z 平面上,m

j c e -ω用一根由零点

m c 指向单位圆(ω

j e )上任一点B 的向量c m 表

示,同样k

j d e -ω用一根由极点

k d 指向单位圆(ωj e )上任一点B 的向量d k 来表示,

c m 和

B

d k 分别称为零点矢量和极点矢量,用极坐标表示为:

m

j m m e c B c α=,

k

j k k e d B d β=。

c m 和

d k 表示式代入式(2.12),得到

)(1

1

1

1

)()

()

()(ω?ωωω

ωj j N

k k

N

m m

N

k k

j N

m m j j e e H d

c

A d

e c e

A e H ==--=∏∏∏∏====

∏∏===N k k

N

m m

j d

c

A

e H 1

1|)(|ω

(2.13)

∑∑==-=N

k k

N

m m 1

1

)(βαω? (2.14)

系统或者信号的频率特性由式(2.13)和式(2.14)确定。按照式(2.13),知道零极点的分布后,可以很容易地确定零极点位置对系统特性的影响。当B 点转到极点附近时,极点矢量长度最短,因而幅度特性可能出现峰值,且极点愈靠近单位圆,极点矢量长度愈短,峰值愈高愈尖锐。如果极点在单位圆上,则幅度特性为∞,系统不稳定。对于零点,情况相反,当B 点转到零点附近时,零点矢量长度变短,幅度特性将出现谷值,且零点愈靠近单位圆,谷值愈接近零。当零点在单位圆上时,谷值为零。综上所述,极点位置主要影响频响的峰值位置及尖锐程度,零点位置主要影响频响的谷值位置及形状。

Matlab 提供了专门用于求离散系统频率响应的函数freqz(),其调用格式如下: [H,w] = freqz(b,a,n):返回数字系统的n 点频率值(复数),这n 个点均匀地分布在[0,π]上,系统默认的采样点数目为512点;

[H,f] = freqz(b,a,n,Fs):用于对()j H e ω在[0,Fs/2]上等间隔采样n 点,采样点频率及相应的频响值分别存放在f 和H 中。

H = freqz(b,a,w):用于对()j

H eω在[0,2π]上进行采样,采样频率点由w指定。

H = freqz(b,a,f,Fs):用于对()j

H eω在[0,Fs]上进行采样,采样频率点由f指定。

freqz(b,a,n):用于在当前图形窗口中绘制幅频和相频特性曲线。

下面介绍几个实用的函数:

mag=abs(H):求解系统的绝对幅频响应;

db=20*log10((mag+eps)/max(mag)):求解系统的相对幅频响应;

pha=angle(H):求解系统的相频响应;

grd=grpdelay(b,a,w): 求解系统的群延迟。

三、实验内容

1.设某LTI系统的

]5

[

]

[-

=n

n

,输入

]5

[

]

[

]

[-

-

=n

u

n

u

n

x

,求系统输出

]

[

*]

[

]

[n

h

n

x

n

y=:

主程序如下:

clear;clf;clc;

n=[-5:20]; %设定一个n的观察范围

h=delta(n-5);x=stepseq(0,-5,20)-stepseq(5,-5,20);

[y,ny]=conv_m(x,n,h,n)

subplot(2,2,1);stem(n,x);title('x[n]');

xlabel('n');axis([-5,20,0,1.2]);grid on;

subplot(2,2,2);stem(n,h);title('h[n]');

xlabel('n');axis([-5,20,0,1.2]);grid on;

subplot(2,2,3);stem(ny,y);title('y[n]');

xlabel('n');axis([-5,20,0,1.2]);grid on;

delta.m

function y=delta(x)

y=(x==0);

stepseq.m的源程序如下:

function[x,n]=stepseq(n0,n1,n2)

if nargin~=3%nargin(num ber of arguments input);“ ~=”表示不相等 disp('Usage: Y=stepseq(n0,n1,n2)');

return;

else if((n0n2)|(n1>n2))

error('arguments must satisfy n1<=n0<=n2')%n0n2或者n1>n2 end

n=[n1:n2];

x=[(n-n0)>=0];

conv_m.m的源程序如下:

function[y,ny]=conv_m(x,nx,h,nh)

%Modified convolution routine for signal processing

%[y,ny]=conv_m(x,nx,h,nh)

%y=convolution result

%ny=support of y

%x=first signal on support nx

%nx=support of x

%h=second signal on support nh %nh=support of h if nargin~=4

disp('Usage:Y=conv_m(x,nx,h,nh)'); return ; end ;

nyb=nx(1)+nh(1); %ny 's begining nye=nx(length(x))+nh(length(h)); %ny 's end

ny=[nyb:nye]; %ny 仅仅为了计算一下结果y 对应的横坐标范围

y=conv(x,h); %Convolution and polynomial multiplication;conv 为MATLAB 的固有函数

%conv_m 函数比conv 函数多用了用于表示横坐标范围的ny 、nx 、nh,因为这里假定二维坐标范围nx 和nh 可能从负数开始,所以要重新计算y 的横坐标范围ny ;如果nx 和nh 均为[0:N],则可以直接得出ny 为[0:2N](正如conv 函数中那样);在conv_m 和conv 函数中,x 和h 的横坐标范围都可以实不相等的

思考题:若]

[*][][0

n n n x n y -=δ,试写出

][n y 与][n x 的关系,并对MA TLAB 的仿真结果。

解:因为[]0n n -δ函数是延时器,所以y[n]=x[n]* []0n n -δ=x[n -0n ]。

2.设某线性时不变系统的h[n]=???

?

?≤≤其它

05

n 0n

输入信号为x[n]=??

?

??≤≤其它05n 01

求输出:a :];[*][][1

n h n x n y = b :]5[*][][2

+=n h n x n y

(a )主程序如下:

n=[-5:20];

u1=stepseq(0,-5,20);u2=stepseq(6,-5,20);%u1=u[n];u2=u[n-6] %input x[n]

x=u1-u2;

%impulse response h[n] h=n.*x;

subplot(3,1,1);stem(n,x);axis([-5 20 0 2]);title('Input Sequence'); ylabel('x[n]');

subplot(3,1,2);stem(n,h);axis([-5 20 0 6]);title('Inpulse Response'); ylabel('h[n]'); %output response

[y1,ny]=conv_m(x,n,h,n);%conv_m 为自定义求卷积的函数

subplot(3,1,3);stem(ny,y1);title('Output Sequence');xlabel('n'); ylabel('y_1[n]');

(b )主程序如下:

n=-10:20;

u1=stepseq(0,-10,20);u2=stepseq(6,-10,20);%u1=u[n];u2=u[n-6] %input x[n] x=u1-u2;

u3=stepseq(-5,-10,20);u4=stepseq(1,-10,20);%u3=u[n+5];u4=u[n-1] x1=u3-u4;

%impulse rsponse h[n+5] h=(n+5).*x1;

离散时间系统特性分析

实验五实验报告 实验名称:离散时间系统特性分析

一、实验目的: 1 。深入理解单位样值响应,离散系统的频率响应的概念; 2。 掌握通过计算机进行求得离散系统的单位样值响应,以及离散系统的频率 响应的方法。 二、实验原理: 对于离散系统的单位样值而言,在实际处理过程中,不可能选取无穷多项的取值。往往是选取有限项的取值,当然这里会产生一个截尾误差,但只要这个误差在相对小一个范围里,可以忽略不计。 另外,在一些实际的离散系统中,往往不是事先就能得到描述系统的差分方程的,而是通过得到系统的某些相应值,则此时系统的分析就需借助计算机的数值处理来进行,得到描述系统的某些特征,甚至进而得到描述系统的数学模型。 本实验首先给出描述系统的差分方程,通过迭代的方法求得系统的单位样值响应,进而求得该离散系统的频率响应。限于试验条件,虽然给出了系统方程,但处理的方法依然具有同样的实际意义。 具体的方法是: 1 在给定系统方程的条件下,选取激励信号为δ(n),系统的起始状态为零 状态,通过迭代法,求得系统的单位样值响应h(n)(n=0,…,N )。 2 利用公式 其中Ω的取值范围为0~2π 。计算系统的频率响应。 三、实验内容 1 已知系统的差分方程为 利用迭代法求得系统的单位样值响应,取N =10。 2 利用公式 其中

#include #include #define N 10 #define M 20 #define pi 3.1415926 struct pinlv{ double fu; double xiang;}; double h[N+1],x[N+1]; struct pinlv PL(double w) { double a=0, b=0,fu,xiang; int k; struct pinlv FX; for(k=0;k<=N;k++){ a=a+h[k]*cos(-k*w); b=b+h[k]*sin(-k*w);} fu=sqrt(a*a+b*b); xiang=atan(b/a); if((a<0)&(b>0)) xiang=xiang+pi; if((a<0)&(b<0)) xiang=xiang-pi; FX.fu=fu; FX.xiang=xiang; return(FX); } main() { int i,j; double w0; struct pinlv FX[M+1]; FILE *fp1,*fp2; fp1=fopen("H:\\单位样值响应.txt","w"); fp2=fopen("H:\\频率特性.txt","w"); h[-1]=0;h[-2]=0; for(i=-1;i<=N;i++) x[i]=0; x[0]=1; for(i=0;i<=N;i++) h[i]=1.3*h[i-1]-0.4*h[i-2]+x[i-1]; printf("系统的单位样值响应为\n"); fprintf(fp1,"系统的单位样值响应(从x[0]开始)为\n"); fprintf(fp1,"激励x[i] 响应y[i]\n"); for(i=0;i<=N;i++)

环境系统分析小结

环境系统分析小结 环工卓越班章雷1302031005 摘要:系统分析是对研究对象进行有目的、有步骤的探索和研究过程,它运用科学的方法和工具,确定一个系统所应具备的功能和相应的环境条件,以确定实现系统目标的最佳方案。 关键词:环境系统分析;环境生态;环境质量模型. 环境系统分析是以环境质量的变化规律、污染物对人体和生态的影响、环境自净能力以及有关环境工程技术原理为依据,运用系统工程学的理论和方法,研究如何建立起一个合理的环境污染预防控制系统的数学模型,并研究如何利用它来分析各种污染控制过程可调因素(或各种可替换方案)对环境目标或费用、能耗等的影响,以及寻求最优决策方案。 环境系统分析的理论基础和专门技术基础。理论基础:环境科学、环境经济学、环境工程学和系统工程学的基本理论(如运筹学)。专门技术基础:数学建模、计算科学、环境影响评估方法、生命周期评估、系统化的图与网络分析方法。 《环境系统分析》是我国高等学校环境工程、环境科学专业的一门专业基础课,课程任务和教学目标包括:1.使

学生了解污染物在水体和大气中的迁移、扩散和变化规律,建立相应的环境系统模型;2.使学生掌握建立环境数学模型的一般知识;3.使学生了解湖泊、水库水体富营养化的原因和水体富营养化的控制技术;4.使学生掌握区域性环境污染控制系统规划的基本原理和方法;5.使学生建立采用最优化技术求解水污染控制系统规划问题的概念,并有能力解决一般性问题。本门课程一共有十一个章节,主要内容有:环境系统分析概论、数学模型概述、环境质量基本模型、水体水质模型、流域非点源模型、大气质量模型、环境质量评价方法与模型以及环境规划,还有环境决策分析。其中,水体水质模型主要指内陆水体模型,包括湖泊水库水质模型和河流水质模型;环境规划包括水环境规划和大气环境规划。 通过对这门课程的学习,我们对环境系统的分析方法有了一定的了解,它的最大特征是追求环境系统的最优化。 环境系统分析的最优化方法的选用主要有对确定性问题,可采用线性规划、动态规划、非线性规划、整体规划等。对非确定性问题,可用马尔可夫过程,排队论,对策论等方法进行最优化。有的系统优化问题还应用网络理论、图论和模糊数学等进行最优化。 根据本书前言部分介绍这门课程的学科基础包括数学、运筹学、环境科学与环境工程学等,内容较为丰富,通过选

实验三___离散时间系统的时域分析

实验三 离散时间系统的时域分析 1.实验目的 (1)理解离散时间信号的系统及其特性。 (2)对简单的离散时间系统进行分析,研究其时域特性。 (3)利用MATLAB对离散时间系统进行仿真,观察结果,理解其时域特性。 2.实验原理 离散时间系统,主要是用于处理离散时间信号的系统,即是将输入信号映射成的输出的某种运算,系统的框图如图所示: (1)线性系统 线性系统就是满足叠加原理的系统。如果对于一个离散系统输入信号为时,输出信号分别为,即:。 而且当该系统的输入信号为时,其中a,b为任意常数,输出为,则该系统就是一个线性离散时间系统。 (2)时不变系统 如果系统的响应与激励加于系统的时刻无关,则该系统是时不变系统。对于一个离散时间系统,若输入,产生输出为,则输入为,产生输出为,即: 若,则。 通常我们研究的是线性时不变离散系统。 3.实验内容及其步骤 (1)复习离散时间系统的主要性质,掌握其原理和意义。 (2)一个简单的非线性离散时间系统的仿真 系统方程为: x = cos(2*pi*0.05*n); x1[n] = x[n+1] x2[n] = x[n] x3[n] = x[n-1] y = x2.*x2-x1.*x3; 或者:y=x*x- x[n+1]* x[n-1] 是非线性。 参考:% Generate a sinusoidal input signal clf; n = 0:200; x = cos(2*pi*0.05*n); % Compute the output signal x1 = [x 0 0]; % x1[n] = x[n+1] x2 = [0 x 0]; % x2[n] = x[n] x3 = [0 0 x]; % x3[n] = x[n-1]

离散控制系统分析方法

实验二 离散控制系统分析方法 一、实验目的 利用MATLAB 对各种离散控制系统进行时域分析。 二、实验指导 1.控制系统的稳定性分析 由前面章节学习的内容可知,对线性系统而言,如果一个连续系统的所有极点都位于s 平面的左半平面,则该系统是一个稳定系统。对离散系统而言,如果一个系统的全部极点都位于z 平面的单位圆内部,则该系统是一个稳定系统。一个连续的稳定系统,如果所有的零点都位于s 平面的左半平面,即所有零点的实部小于零,则该系统是一个最小相位系统。一个离散的稳定系统,如果所有零点都位于z 平面的单位圆内,则称该系统是一个最小相位系统。由于Matlab 提供了函数可以直接求出控制系统的零极点,所以使用Matlab 判断一个系统是否为最小相位系统的工作就变得十分简单。 2.控制系统的时域分析 时域分析是直接在时间域对系统进行分析。它是在一定输入作用下,求得输出量的时域表达式,从而分析系统的稳定性、动态性能和稳态误差。这是一种既直观又准确的方法。 Matlab 提供了大量对控制系统的时域特征进行分析的函数,适用于用传递函数表示的模型。其中常用的函数列入表1,供学生参考。 例1.z z z H 5.05 .1)(2+= 试绘出其单位阶跃响应及单位斜波输入响应。 解:为求其单位阶跃响应及单位斜波输入响应,编制程序如下: num=[1.5]; den=[1 0.5 0];sysd=tf(num,den,0.1) [y,t,x]=step(sysd);

subplot(1,2,1) plot(t,y); xlabel('Time-Sec'); ylabel('y(t)'); gtext('单位阶跃响应') grid; u=0:0.1:1; subplot(1,2,2) [y1,x]=dlsim(num,den,u); plot(u,y1) xlabel('Time-Sec'); ylabel('y(t)'); gtext('单位速度响应') grid 二、实验内容 1、MATLAB在离散系统的分析应用 对于下图所示的计算机控制系统结构图1,已知系统采样周期为T=0.1s,被 控对象的传递函数为 2 () s(0.11)(0.05s1) G s s = ++ ,数字控制器 0.36 () 0.98 z D z z - = + ,试 求该系统的闭环脉冲传递函数和单位阶跃响应。 图1 计算机控制系统结构图 实验步骤: 1).求解开环脉冲传递函数,运用下面的matlab语句实现:>> T=0.1; >> sys=tf([2],[0.005 0.15 1 0]); %将传函分母展开>> sys1=c2d(sys,T,'zoh'); >> sys2=tf([1 -0.36],[1 0.98],0.1); >> sys3=series(sys2,sys1) 执行语句后,屏幕上显示系统的开环脉冲传递函数为: sys3 = 0.03362 z^3 + 0.05605 z^2 - 0.01699 z - 0.002717 --------------------------------------------------

离散时间系统的时域分析

第七章离散时间系统的时域分析 §7-1 概述 一、离散时间信号与离散时间系统 离散时间信号:只在某些离散的时间点上有值的 信号。 离散时间系统:处理离散时间信号的系统。 混合时间系统:既处理离散时间信号,又处理连 续时间信号的系统。 二、连续信号与离散信号 连续信号可以转换成离散信号,从而可以用离散时间系统(或数字信号处理系统)进行处理: 三、离散信号的表示方法:

1、 时间函数:f(k)<——f(kT),其中k 为序号,相当于时间。 例如:)1.0sin()(k k f = 2、 (有序)数列:将离散信号的数值按顺序排列起来。例如: f(k)={1,0.5,0.25,0.125,……,} 时间函数可以表达任意长(可能是无限长)的离散信号,可以表达单边或双边信号,但是在很多情况下难于得到;数列的方法表示比较简单,直观,但是只能表示有始、有限长度的信号。 四、典型的离散时间信号 1、 单位样值函数:? ??==其它001)(k k δ 下图表示了)(n k ?δ的波形。

这个函数与连续时间信号中的冲激函数 )(t δ相似,也有着与其相似的性质。例如: )()0()()(k f k k f δδ=, )()()()(000k k k f k k k f ?=?δδ。 2、 单位阶跃函数:? ??≥=其它001)(k k ε 这个函数与连续时间信号中的阶跃函数)(t ε相似。用它可以产生(或表示)单边信号(这里称为单边序列)。 3、 单边指数序列:)(k a k ε

比较:单边连续指数信号:)()()(t e t e t a at εε=,其 底一定大于零,不会出现负数。 (a) 0.9a = (d) 0.9a =? (b) 1a = (e) 1a =? (c) 1.1a = (f) 1.1a =?

离散控制系统分析方法

实验二离散控制系统分析方法 一、实验目的 利用MATLAB对各种离散控制系统进行时域分析。 二、实验指导 1.控制系统的稳定性分析 由前面章节学习的内容可知,对线性系统而言,如果一个连续系统的所有极点都位于s平面的左半平面,则该系统是一个稳定系统。对离散系统而言,如果一个系统的全部极点都位于z平面的单位圆内部,则该系统是一个稳定系统。一个连续的稳定系统,如果所有的零点都位于s平面的左半平面,即所有零点的实部小于零,则该系统是一个最小相位系统。一个离散的稳定系统,如果所有零点都位于z平面的单位圆内,则称该系统是一个最小相位系统。由于Matlab提供了函数可以直接求出控制系统的零极点,所以使用Matlab判断一个系统是否为最小相位系统的工作就变得十分简单。 2.控制系统的时域分析 时域分析是直接在时间域对系统进行分析。它是在一定输入作用下,求得输出量的时域表达式,从而分析系统的稳定性、动态性能和稳态误差。这是一种既直观又准确的方法。 Matlab提供了大量对控制系统的时域特征进行分析的函数,适用于用传递函数表示的模型。其中常用的函数列入表1,供学生参考。

例1.z z z H 5.05 .1)(2+= 试绘出其单位阶跃响应及单位斜波输入响应。 解:为求其单位阶跃响应及单位斜波输入响应,编制程序如下: num=[1.5]; den=[1 0.5 0];sysd=tf(num,den,0.1) [y,t,x]=step(sysd); subplot(1,2,1) plot(t,y); xlabel('Time-Sec'); ylabel('y(t)'); gtext('单位阶跃响应') grid; u=0:0.1:1; subplot(1,2,2) [y1,x]=dlsim(num,den,u); plot(u,y1) xlabel('Time-Sec'); ylabel('y(t)'); gtext('单位速度响应') grid 二、 实验内容 1、MATLAB 在离散系统的分析应用 对于下图所示的计算机控制系统结构图1,已知系统采样周期为T=0.1s ,被

离散时间系统的分析

课程设计报告 课程设计题目:离散时间系统分析学号:201420130206 学生姓名:董晓勇 专业:通信工程 班级:1421301 指导教师:涂其远 2015年12月18日

离散时间系统的分析 一、设计目的和意义 1 . 目的: (1)深刻理解卷积和、相加、相乘运算,掌握求离散序列卷积和、相加相乘的计算方法;(2)加深理解和掌握求离散序列Z变换的方法; (3)加深和掌握离散系统的系统函数零点、函数极点和系统时域特性、系统稳定性的关系。 2 . 意义: 在对《信号与系统》一书的学习中,进行信号与系统的分析是具有十分重要的意义,同时也是必不可少的。利用matlab函数,只需要简单的编程,就可以实现系统的时域、频域分析,对系统特性进行分析,为实际的系统设计奠定了基础。本设计在离散系统Z域分析理论的基础上,利用matlab对离散系统的稳定性和频域响应进行了分析。 二、设计原理

第一部分:对离散时间系统的时域进行分析呈 对离散时间信号的代数运算(相加、相乘、卷积和),是在时域进行分析。相加用“+”来完成,相乘用“·*”来完成,卷积和则用conv 函数来实现,具体形式为y=conv(x1,x2,….),其中x1,x2,…..为输入的离散序列 ,y 为输出变量。 在零初始状态下,matlab 控制工具箱提供了一个filter 函数,可以计算差分方程描述的系统的响应,其调用形式为: y=filter(b,a,f) 其中,a=[a0,a1,a2,…]、b=[b0,b1,b2,….]分别是系统方程左、右边的系数向量,f 表示输入向量,y 表示输出向量。 第二部分:对离散时间系统的Z 域进行分析 matlab 工具箱提供了计算Z 正变换的函数ztrans,其调用形式为: F=zrtans(f) %求符号函数f 的Z 变换,返回函数的自变量为z 。 Matlab 的zplane 函数用于系统函数的零极点图的绘制,调用方式为: zplane(b,a)其中,b 、a 分别为系统函数分子、分母多项式的系数向量。 matlab 中,利用freqz() 函数可方便地求得系统的频率响应,调用格式为: freqz(b,a,N) 该调用方式将绘制系统在0~PI 范围内N 个频率等分点的幅频特性和相频特性图。 三、 详细设计步骤 1.自己设计两个离散时间序列x1、x2,对其进行相加,相乘,卷积运算,并显示出图形。 2.根据已知的LTI 系统:y[n]-0.7y[n-1]-0.6y[n-2]+y[n-3]=x[n]+0.5[n-1],得其在Z 域输 入输出的传递函数为: 1 12310.5()10.70.6z H z z z z ----+= --+ 利用matlab 求:(1)系统函数的零点和极点,并在z 平面显示他们的分布;(2)画出幅频响应和相频响应的特性曲线。 四、 设计结果及分析 (1).自行设计产生两个离散序列信号,对其进行相加、乘及卷积运算

离散LSI系统分析

信号与系统分析实验报告 实验项目名称:离散线性时不变系统分析; 连续时间系统分析 所属课程名称:信号与系统实验教程 实验类型:验证型 指导教师: 实验日期:2013.06.04 班级: 学号: 姓名:

离散线性时不变系统分析 一、实验目的 1. 掌握离散线性时不变系统的单位序列响应、单位阶跃响应和任意激励下响应的MATLAB 求解方法。 2. 掌握离散线性时不变系统的频域分析方法; 3. 掌握离散线性时不变系统的复频域分析方法; 4. 掌握离散线性时不变系统的零极点分布与系统特性的关系。 二、实验原理及方法 1. 离散线性时不变系统的时域分析 描述一个N 阶线性时不变离散时间系统的数学模型是线性常系统差分方程,N 阶线性时不变离散系统的差分方程一般形式为 ) ()(0 i n x b k n y a M i i N k k -=-∑∑== (2.1) 也可用系统函数来表示 12001212120 () ()()() ()1M i M i i M N N k N k k b z b b z b z b z Y z b z H z X z a z a z a z a z a z ----=----=++++== == ++++∑∑ (2.2) 系统函数()H z 反映了系统响应和激励间的关系。一旦上式中k a ,i b 的数据确定了,系统的性质也就确定了。特别注意0a 必须进行归一化处理,即01a =。 对于复杂信号激励下的线性系统,可以将激励信号在时域中分解为单位序列或单位阶跃 序列的线性叠加,把这些单元激励信号分别加于系统求其响应,然后把这些响应叠加, 即可得到复杂信号作用于系统的零状态响应。因此,求解系统的单位序列响应和单位阶跃响应尤为重要。由图2-1可以看出一个离散LSI 系统响应与激励的关系。 ()()() z X z H z =()()*() n x n h n 图2-1 离散LSI 系统响应与激励的关系 (1) 单位序列响应(单位响应) 单位响应()h n 是指离散线性时不变系统在单位序列()n δ激励下的零状态响应,因此 ()h n 满足线性常系数差分方程(2.1)及零初始状态,即 ()() N M k i k i a h n k b n i δ==-=-∑∑, (1)(2)0h h -=-== (2.3) 按照定义,它也可表示为 ()()()h n h n n δ=* (2.4) 对于离散线性时不变系统,若其输入信号为()x n ,单位响应为()h n ,则其零状态响应

连续和离散系统分析

实验一连续与离散系统分析 一、实验目得 学习连续系统与离散系统响应得matlab求解方法; 二、实验主要仪器设备与材料 计算机 三、实验方法、步骤及结果测试 实验方法:编程,上机调试,分析实验结果; 步骤: 编程实现上述各实验内容 四、实验结果 1、某系统得传递函数为: 试求系统得冲激响应与阶跃响应。 2、编制程序求解下列两个系统得单位冲激响应与阶跃响应,并绘出其图形。要求

分别用filter、conv、impz三种函数完成。给出理论计算结果与程序计算结果并讨论。 (I) 理论计算结果: 程序计算结果: A:单位冲激响应 (1)用Filter函数(2)用Conv函数 (3)用impz函数 单位冲激响应: n 0 1 2 3 4 5 h(n) 1 -1、75 1、19 -0、67 0、355 -0、18 单位阶跃响应: n 0 1 2 3 4 5 y(n) 1 -0、75 0、44 -0、234 0、12 -0、06

B:单位阶跃响应(1)用Fil ter 函数 (2)用Conv 函数 (3)用Imp z函数 (II ) 理论计算结果: 程序计算结果: A:单位冲激响应(1)用f ilter 函数 单位冲激响应: n 0 1 2 3 4 5 h(n) 0 0、25 0、25 0、25 0、25 单位阶跃响应: N 0 1 2 3 4 5 y(n) 0 0、25 0、5 0、75 1 1

(2)用Conv函数 (3)用Impz函数 B:单位阶跃响应 (1)用filter函数 (2)用Conv函数 (3)用Impz函数

实验七--离散系统分析的MATLAB实现讲解学习

实验七 离散系统分析的MATLAB 实现 一、实验目的 1、掌握利用MATLAB 绘制系统零极点图的方法; 2、掌握离散时间系统的零极点分析方法; 3、学习离散系统响应的MATLAB 求解方法; 4、掌握用MATALB 实现离散系统频率特性分析的方法; 5、深刻理解离散系统的系统函数零极点对系统频响的影响,可以根据 零极点知识设计简单的滤波器。 二、基本原理 (一)离散系统零极点 线性时不变离散系统可用线性常系数差分方程描述,即 ()()N M i j i j a y n i b x n j ==-=-∑∑ (1) 其中()y k 为系统的输出序列,()x k 为输入序列。 将式(1)两边进行Z 变换, 00 () () ()() () M j j j N i i i b z Y z B z H z X z A z a z -=-== == ∑∑ (2) 将式(2)因式分解后有: 11 () ()() M j j N i i z q H z C z p ==-=-∏∏ (3) 其中C 为常数,(1,2,,)j q j M =L 为()H z 的M 个零点,(1,2,,)i p i N =L 为()H z 的 N 个极点。 系统函数()H z 的零极点分布完全决定了系统的特性,若某系统函数的零极点已知,则系统函数便可确定下来。因此,系统函数的零极点分布对离散系统特性的分析具有非常重要意义。 (二)离散系统零极点图及零极点分析 1、零极点图的绘制 设离散系统的系统函数为 () ()() B z H z A z =

则系统的零极点可用MATLAB 的多项式求根函数roots()来实现,调用格式为: p=roots(A) 其中A 为待求根多项式的系数构成的行矩阵,返回向量p 则是包含多项式所有根的列向量。如多项式为231 ()48 B z z z =+ +,则求该多项式根的MATLAB 命令为为: A=[1 3/4 1/8]; P=roots(A) 运行结果为: P = -0.5000 -0.2500 需注意的是,在求系统函数零极点时,系统函数可能有两种形式:一种是分子、分母多项式均按z 的降幂次序排列;另一种是分子、分母多项式均按1z -的升幂次序排列。这两种方式在构造多项式系数向量时稍有不同。 (1)()H z 按z 的降幂次序排列:系数向量一定要由多项式最高次幂开始,一直到常数项,缺项要用0补齐。如 34322()3221 z z H z z z z z +=++++ 其分子、分母多项式系数向量分别为A=[1 0 2 0]、B=[1 3 2 2 1]。 (2)()H z 按1z -的升幂次序排列:分子和分母多项式系数向量的维数一定要相同,不足的要用0补齐,否则0z =的零点或极点就可能被漏掉。如 1 1212()11124 z H z z z ---+=++ 其分子、分母多项式系数向量分别为A=[1 2 0]、B=[1 1/2 1/4]。 用roots()求得()H z 的零极点后,就可以用plot()函数绘制出系统的零极点图。下面是求系统零极点,并绘制其零极点图的MATLAB 实用函数ljdt(),同时还绘 制出了单位圆。函数ljdt()的程序如下: function ljdt(A,B) % The function to draw the pole-zero diagram for discrete system p=roots(A) %求系统极点 q=roots(B) %求系统零点 p=p'; %将极点列向量转置为行向量 q=q'; %将零点列向量转置为行向量 x=max(abs([p q 1])); %确定纵坐标范围

连续离散系统频域分析

课程实验报告 学年学期2015-2016学年第二学期 课程名称信号与系统 实验名称连续和离散系统的频域分析实验室北校区5号楼计算机房 专业年级电气141 学生姓名宋天绍 学生学号2014011595 提交时间 成绩 任课教师吴凤娇 水利与建筑工程学院

实验二:连续和离散系统的频域分析 一:实验目的 1:学习傅里叶正变换和逆变换,理解频谱图形的物理含义 2:了解连续和离散时间系统的单位脉冲响应 3:掌握连续时间系统的频率特性 二:实验原理 1. 傅里叶正变换和逆变换公式 正变换:()()j t F f t e dt ωω∞ --∞ =? 逆变换:1()()2j t f t F e d ωωωπ ∞ -∞ = ? 2. 频域分析 t j t j e d d e t e ωωωπ ωωωπ??∞∞-∞∞-E =E =)(21)(21)(将激励信号分解为无穷多个正弦分量的和。 ?∞∞-H E =ωωωπωd e t r t j zs )()(21)(,R(ω)为)(t r zs 傅里叶变换;π ωωd )(E 各频率分量的复数振幅 激励单位冲激响应时的零状态响应→ )(t δ)(t h 单位阶跃响应时的零状态响应激励→)(t u )(t g 3 各函数说明: (1)impulse 冲激响应函数:[Y,X,T]=impulse(num,den); ) 1()2()1() 1()2()1()()()(1 1++++++++==--n a s a s a m b s b s b s A s B s H n n m m num 分子多项式系数; num=[b(1) b(2) … b(n+1)]; den 分母多项式系数; den=[a(1) a(2) … a(n+1)]; Y,X,T 分别表示输出响应,中间状态变量和时间变量; 如:3 52 )(2 +++= s s s s H ,等价于)(2)()(3)(5)(t e t e t r t r t r +=++ 定义den=[1 5 3];num=[1 2]; [Y,X,T]=impulse(num,den); (2)step 阶跃响应函数:[Y,X,T]=step(num,den);num 分子多项式;den 分母多项式 Y,X,T 分别表示输出响应,中间状态变量和时间变量; 如:3 52 )(2+++= s s s s H ,den=[1 5 3];num=[1 2]; [Y,X,T]= step (num,den); (3)impz 数字滤波器的冲激响应 [h,t]=impz(b,a,n) b 分子多项式系数;a 分母多项式系数;n 采样样本 h 离散系统冲激响应;t 冲激时间,其中t=[0:n-1]', n=length(t)时间样本数

实验四-离散时间系统的频域分析(附思考题程序)

实验四 离散时间系统的频域分析 1.实验目的 (1)理解和加深傅里叶变换的概念及其性质。 (2)离散时间傅里叶变换(DTFT)的计算和基本性质。 (3)离散傅里叶变换(DFT)的计算和基本性质。 2.实验原理 对离散时间信号进行频域分析,首先要对其进行傅里叶变换,通过得到的频谱函数进行分析。 离散时间傅里叶变换(DTFT ,Discrete-time Fourier Transform)是傅立叶变换的一种。它将以离散时间nT (其中,T 为采样间隔)作为变量的函数(离散时间信号)f (nT )变换到连续的频域,即产生这个离散时间信号的连续频谱()iw F e ,其频谱是连续周期的。 设连续时间信号f (t )的采样信号为:()()()sp n f t t nT f nT d ¥ =-? = -?,并且其傅里叶变 换为:()()(){}sp n iwt f t f nT t nT dt e d ¥ ¥ -? =-? --= ? òF 。 这就是采样序列f(nT)的DTFT::()()iwT inwT DTFT n F e f nT e ¥ -=-? = ?,为了方便,通常将采 样间隔T 归一化,则有:()()iw inw DTFT n F e f n e ¥ -=-? = ?,该式即为信号f(n)的离散时间傅 里叶变换。其逆变换为:()1()2iw DTFT inw F e dw f n e p p p -=ò。 离散傅里叶变换(DFT ,Discrete-time Fourier Transform )是对离散周期信号的一种傅里叶变换,对于长度为有限长信号,则相当于对其周期延拓进行变换。在频域上,DFT 的离散谱是对DTFT 连续谱的等间隔采样。 21 1 20 ()()| ()()DFT k DTFT k w N knT N N i iwT iwnT N n n F w F e f nT e f nT e p p =----==== = 邋 长度为N 的有限长信号x(n),其N 点离散傅里叶变换为: 1 ()[()]()kn N N n X k DFT x n x n W -=== ?。 X(k)的离散傅里叶逆变换为:10 1()[()]()kn N N k x n IDFT X k X k W N --===?。 DTFT 是对任意序列的傅里叶分析,它的频谱是一个连续函数;而DFT 是把有限长序列作为周期序列的一个周期,对有限长序列的傅里叶分析,DFT 的特点是无论在时域还是频域

离散系统的Z域分析

实验名:离散系统的Z 域分析 一、实验目的 1、掌握离散序列z 变换的计算方法。 2、掌握离散系统系统函数零极点的计算方法和零极点图的绘制方法,并能根据零极点图分析系统的因果性和稳定性。 3、掌握利用MATLAB 进行z 反变换的计算方法。 二、实验原理与计算方法 1、z 变换 离散序列x (n )的z 变换定义为:∑∞ -∞ =-= n n z n x Z X )()(。 在MA TLAB 中可以利用符号表达式计算一个因果序列的z 变换。其命令格式为: syms n; f=(1/2)^n+(1/3)^n; ztrans(f) 2、离散系统的系统函数及因果稳定的系统应满足的条件 一个线性移不变离散系统可以用它的单位抽样响应h (n )来表示其输入与输出关系,即 y (n )= x (n )* h (n ) 对该式两边取z 变换,得: Y (z )= X (z )· H (z ) 则: ) () ()(z X z Y z H = 将H (z )定义为系统函数,它是单位抽样响应h (n )的z 变换,即 ∑∞ -∞ =-= =n n z n h n h Z z H )()]([)( 对于线性移不变系统,若n <0时,h (n )=0,则系统为因果系统;若 ∞<∑∞ -∞ =n n h |)(|,则 系统稳定。由于h (n )为因果序列,所以H (z )的收敛域为收敛圆外部区域,因此H (z )的收敛域为收敛圆外部区域时,系统为因果系统。因为∑∞ -∞ =-= n n z n h z H )()(,若z =1时H (z )收敛,即 ∞<= ∑∞ -∞ ==n z n h z H |)(||)(1,则系统稳定,即H(z)的收敛域包括单位圆时,系统稳定。 因此因果稳定系统应满足的条件为:1,||<∞≤<ααz ,即系统函数H (z )的所有极点全部落在z 平面的单位圆之内。 3、MA TLAB 中系统函数零极点的求法及零极点图的绘制方法 MATLAB 中系统函数的零点和极点可以用多项式求根函数roots ()来实现,调用该函数的命令格式为:p=roots(A)。其中A 为待求根多项式的系数构成的行向量,返回向量p 是包含该多项式所有根位置的列向量。 如:求多项式8 1 43)(2++=z z z A 的根的MA TLAB 命令为: A=[1 3/4 1/8]; p=roots(A) 运行结果为: p= -0.5000 -0.2500 也可以用[z,p,k]=tf2zp(B,A)函数求得。其中z 为由系统的零点构成的向量,p 为由系统的极点构成的向量,k 表示系统的增益;B 、A 分别为系统函数中分子分母多项式的系数向

实验6_离散时间系统的z域分析报告

实验6 离散时间系统的z 域分析 一、实验目的 1.掌握z 变换及其反变换的定义,并掌握MATLAB 实现方法。 2.学习和掌握离散时间系统系统函数的定义及z 域分析方法。 3.掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。 二、实验原理 1. Z 变换 序列x(n)的z 变换定义为 ()()n n X z x n z +∞ -=-∞ = ∑ Z 反变换定义为 1 1 ()()2n r x n X z z dz j π-= ?? 在MATLAB 中,可以采用符号数学工具箱的ztrans 函数和iztrans 函数计算z 变换 和z 反变换: Z=ztrans(F) 求符号表达式F 的z 变换。 F=ilaplace(Z) 求符号表达式Z 的z 反变换。 2.离散时间系统的系统函数 离散时间系统的系统函数H(z)定义为单位抽样响应h(n)的z 变换 ()()n n H z h n z +∞ -=-∞ = ∑ 此外,连续时间系统的系统函数还可以由系统输入和输出信号的z 变换之比得到 ()()/()H z Y z X z = 由上式描述的离散时间系统的系统函数可以表示为 101101()M M N N b b z b z H z a a z a z ----+++= +++…… 3.离散时间系统的零极点分析 离散时间系统的零点和极点分别指使系统函数分子多项式和分母多项式为零的点。在MATLAB 中可以通过函数roots 来求系统函数分子多项式和分母多项式的根,从而得到系统的零极点。 此外,还可以利用MATLAB 的zplane 函数来求解和绘制离散系统的零极点分布图,zplane 函数调用格式为: zplane(b,a) b,a 为系统函数的分子、分母多项式的系数向量(行向量)。 zplane(z,p) z,p 为零极点序列(列向量)。 系统函数是描述系统的重要物理量,研究系统函数的零极点分布不仅可以了解系统单位

实验一离散时间信号与系统分析

实验一 离散时间信号与系统分析 一、实验目的 1.掌握离散时间信号与系统的时域分析方法。 2.掌握序列傅氏变换的计算机实现方法,利用序列的傅氏变换对离散信号、系统及系统响应进行频域分析。 3.熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对采样定理的理解。 二、实验原理 1.离散时间系统 一个离散时间系统是将输入序列变换成输出序列的一种运算。若以][?T 来表示这种运算,则一个离散时间系统可由下图来表示: 图 离散时间系统 输出与输入之间关系用下式表示 )]([)(n x T n y = 离散时间系统中最重要、最常用的是线性时不变系统。 2.离散时间系统的单位脉冲响应 设系统输入)()(n n x δ=,系统输出)(n y 的初始状态为零,这是系统输出用)(n h 表示,即)]([)(n T n h δ=,则称)(n h 为系统的单位脉冲响应。 可得到:)()()()()(n h n x m n h m x n y m *=-= ∑∞ -∞= 该式说明线性时不变系统的响应等于输入序列与单位脉冲序列的卷积。 3.连续时间信号的采样 采样是从连续信号到离散时间信号的过渡桥梁,对采样过程的研究不仅可以了解采样前后信号时域何频域特性发生的变化以及信号内容不丢失的条件,而且有助于加深对拉氏变换、傅氏变换、Z 变换和序列傅氏变换之间关系的理解。 对一个连续时间信号进行理想采样的过程可以表示为信号与一个周期冲激脉冲的乘 积,即:)()()(?t t x t x T a a δ=

其中,)(?t x a 是连续信号)(t x a 的理想采样,)(t T δ是周期冲激脉冲 ∑∞ -∞=-= m T mT t t )()(δδ 设模拟信号)(t x a ,冲激函数序列)(t T δ以及抽样信号)(?t x a 的傅立叶变换分别为)(Ωj X a 、)(Ωj M 和)(?Ωj X a ,即 )]([)(t x F j X a a =Ω )]([)(t F j M T δ=Ω )](?[)(?t x F j X a a =Ω 根据连续时间信号与系统中的频域卷积定理,式(2.59)表示的时域相乘,变换到频域为卷积运算,即 )]()([21)(?Ω*Ω=Ωj X j M j X a a π 其中 ?∞ ∞ -Ω-==Ωdt e t x t x F j X t j a a a )()]([)( 由此可以推导出∑∞-∞=Ω-Ω=Ωk s a a jk j X T j X )(1)(? 由上式可知,信号理想采样后的频谱是原来信号频谱的周期延拓,其延拓周期等于采样频率。根据香农定理,如果原信号是带限信号,且采样频率高于原信号最高频率的2倍,则采样后的离散序列不会发生频谱混叠现象。 4.有限长序列的分析 对于长度为N 的有限长序列,我们只观察、分析在某些频率点上的值。 ???-≤≤=n N n n x n x 其它010),()( 一般只需要在π2~0之间均匀的取M 个频率点,计算这些点上的序列傅立叶变换: ∑-=-=1 0)()(N n jn j k k e n x e X ωω 其中,M k k /2πω=,1,,1,0-=M k ΛΛ。)(ωj e X 是一个复函数,它的模就是幅频特 性曲线。 三、主要实验仪器及材料

离散时间系统分析资料

课程设计报告课程设计题目:离散时间系统分析 学号:201420130327 学生姓名:刘新强 专业:通信工程 班级:1421302 指导教师:涂其远 2015年12 月15 日

目录 第0章: Matlab简介 第1章: 离散时间系统的设计 1.课程设计的目的与要求 2.课题内容分析 3.实验原理 4.具体设计方案 第2章: 离散时间系统的仿真 1.画出零极点图,判断系统的稳定性 2.求出单位样值响应,并画出图形 3.求出系统的幅频响应和相频响应,并画出图形第3章: 总结

第0章: Matlab简介 MATLAB[1] 是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室)。是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。 MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。 MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来; 2) 具有完备的图形处理功能,实现计算结果和编程的可视化; 3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握; 4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,为用户提供了大量方便实用的处理工具。

第六章 离散系统的z域分析

1、确定序列)1()2 1 (---k k ε的z 变换,并写出其收敛域。 解: 21,2 11121111 2)21 ()1()2 1 ()]1()21([)]([)(101 < -=-- =+-=-=---=---==-∞ =--∞=-∞ -∞=-∑∑∑z z z z z z k k F z f F z F k k k k k k k k k k εε 2、确定序列)(])41()21[(k k k ε+的z 变换,并写出其收敛域。 解: 21,)4 1)(21() 83 (24 111 2111)41()21()(1100>---= -+ -=+=--+∞=-∞ =-∑∑z z z z z z z z z z F k k k k k k 3、确定序列k )2 1(的z 变换,并写出其收敛域。 解: 2 2 1,)2)(21 (231 2221)21 (1)21()21()21()21()(0001 <<---=----=+-=+==∑∑∑∑∑∞=-∞ =∞=-∞ -∞=--∞=---z z z z z z z z z z z z z F k k k k k k k k k k k k k k k 4、用部分分式展开法求逆变换,已知) 22)(2(3)(22+---=z z z z z z X

解:对 z z X )(进行部分分式展开,有 j z k j z k z k z z z z z z X +-+--+-=+---=11222)(2(3)(* 2 212 ) 其中,4 3 411)1)(2(3,2122232 21j j z j z z z k z z z z k -=+=+---=-==+--= 故有j z z j j z z j z z z X +-++---+-- =1)43 41(1)434 1(221)( 由于4 21π j e z j z -=--,则 )()]4 sin(43)4cos(41[)2(2)()2(21)(k k k k k x k k επ πε++-= 5、对于一个稳定的离散时间LTI 系统,其输入)(k f 和输出)(k y 的关系为 )()1()(3 10 )1(k f k y k y k y =++- -,求其单位冲激响应。 解:对差分方程两边取z 变换(零状态下),有)()()(310)(1 z F z zY z Y z Y z =+-- 则系统函数为11111 3 1183 3183)311)(31()()()(------- -=--==z z z z z z F z Y z H 其极点为33121 ==P P ,,由于系统稳定,其收敛域包含单位圆,因此冲激响应为一个左边序列与一个右边序列之和,即 )()3 1 (83)1()3(83)(k k k h k k εε---= 6、求序列?????≥<=0 ,00 ,)21()(k k k f k 的双边z 变换,并注明收敛域。 解:由双边z 变换的定义,得∑∑∑--∞ =---∞=-∞ -∞ =-=== 1 1 )2()21()()(k k k k k k k z z z k f z F 令k i -=代入上式,有2 1,212)2()(1 <-= = ∑∞ =z z z z z F i i 7、求序列)(])3 1()2 1 [()(k k f k k ε-+=的z 变换,并注明收敛域。 解:由常用序列的z 变换,有

相关文档
最新文档