实验一.光电传感器实验

实验一.光电传感器实验
实验一.光电传感器实验

实验一光电传感器实验

1-1 PSD光电位置传感器——位移测量

一.实验目的:

1.了解PSD光电位置传感器的结构。

2.掌握PSD光电位置传感器的工作原理。

二.实验原理:

光电位置敏感器件(PSD)是基于光伏器件的横向效应的器件,是一种对入射到光敏面上的光电位置敏感的光电器件。因此,称其为光电位置敏感器件(Position Sensitive Detector,简称为PSD),如图1所示为PIN型PSD器件的结构示意图,它由三层构成,上面为P型层,中间位I型层,下面为N型层。在上面的P型层上设置有两个电极,两电极间的P型层除具有接受入射光的功能外还具有横向分布电阻的特性。即P型层不但为光敏层,而且还是一个均匀的电阻层。

当光束入射到PSD器件光敏层上距中心点得距离为xA时,在入射位置上产生与入射辐射成正比的信号电荷,此电荷形成的光电流通过电阻P型层分别由电极1和2输出,设P

型层的电阻是均匀的,两电极间的距离为2L,流过两电极的电流分别为I1和I2,则流过N 型层上电极的电流I0为I1和I2之和,即I0=I1+I2。

若以PSD器件的几何中心点O为原点,光斑中心距原点O的距离为xA,则

利用上式即可测出光斑能量中心对于器件中心的位置xA,它只与电流I1和I2的和、差及其比值有关,而与总电流无关。

图1 图2

PSD器件已被广泛地应用于激光自准直、光点位移量和振动的测量、平板平行度的检测和二维位置测量等领域。目前,PSD器件已有一维和二维两种PSD器件。本仪器用的是一维PSD

器件,主要用来测量光斑在一维方向上的位置或移动量的装置,图2为一维PSD器件的原理图,其中①和②为信号电极,③为公共电极。它的光敏面为细长的矩形条。图3为其等效电路,它由电流源Ip、理想二极管VD、结电容Cj、横向分布电阻RD和并联电阻Rsh组成, PSD器件属于特种光伏器件,它的基本特性与一般硅光伏器件基本相同,如光谱响应、时间响应和温度响应等与前面讲述的PN结光伏器件相同。作为位置传感器PSD有其独特特性,即位置检测特性,PSD的位置检测特性近似于直线,图4所示为一维PSD位置检测误差特性曲线,由曲线可知,越接近中心位置测量误差越小,因此,利用PSD来检测光斑位置时,尽量使光点靠近器件中心。

图3 图4

三.实验所需器件:

PSD组件(器件已装在基座上)、固体激光器、反射体、PSD光电位置单元、数字电压表四.实验步骤:

1.通过PSD基座上端圆孔观察PSD器件及在基座上的安装位置,PSD光电位置传感器的“I1”

和“I2”两端对应接入PSD光电位置单元的“I1”和“I2”两输入端,输出端V o接数字电压表20V档。

2.确认接线无误后,开启仪器电源,此时因无光源照射,PSD器件前端的聚焦透镜也无光照射而形成的光点照射在PSD器件上,Vo输出的为环境光的噪声电压,试用一块遮光片将观察圆孔盖上,观察光噪声对输出电压的变化。

3.将激光器电源插头插入“激光电源”插口,激光器安装在基座圆孔中并固定。注意激光束照射到反射面上时的情况,光束应与反射面垂直。激光束照射到反射面后PSD组件上的透镜将漫反射的激光光线聚焦到PSD器件表面,旋转激光器角度,调节激光光点,(必要时也可旋转调节PSD前的透镜)使光点尽可能集中在PSD器件上。

4.从原点开始,位移平台分别向前和向后位移,因为PSD器件对光点位置的变化非常敏感,故每次螺旋测微仪旋转10格(1/10mm),并将位移值(mm)与输出电压值(U0)

记录列表,作出U/X曲线,求出灵敏度S,S=△U/△X。根据曲线分析其线性。

五.注意事项:

1.实验中所用的固体激光器光点可调节,实验时请注意光束不要直接照射眼睛,否则有可能对视力造成不可恢复的损伤。

2.每一支激光器的光点和光强都略有差异,所以对同一PSD器件,光源不同时光生电流的大小也是不一样的。实验时背景光的影响也不可忽视,尤其是采用日光灯照明时,或是仪器周围有物体移动造成光线反射发生变化时,都会造成PSD光生电流改变,致使单元V0输出端电压产生跳变,这不是仪器的毛病。如实验时电压信号输出较小,则可调节一下激光器照射角度和光点在PSD器件上的上下位置,使输出达到最大。

1-2 PSD光电位置传感器——光电特性

一.实验目的:

1.了解PSD器件对入射光强度改变的反应及光点大小对光生电流的影响。

二.实验原理:

典型PSD器件的基本特性参数

所有PSD的光谱响应范围均为300~1100nm;峰值响应波长为900nm。

一维PSD位置传感器误差表示从中心到75%处的误差值。

三.实验所需器件:

激光器、射灯光源、PSD器件及放大变换电路、数字电压表、示波器

四.实验步骤

1.在实验十八的基础上调整位移平台前后位置,使光点在平台位移时均能照在PSD器件的光敏面上,如位移范围不够则可将激光器在激光器座中的位置前后作些调整。2.开启激光电源,记录下光点位移时V O端的最大输出值。

3.保持单元电路增益不变,将光源更换成射灯光源,记录下不同光源照射时输出端的最大V O值。

4.调节PSD入射光聚焦透镜(或激光器调焦透镜),使光斑放大,依次重复步骤1、2,观察输出电压的变化。

5.根据实验结果作出PSD器件光电特性的定性结论。

实验1-3光栅传感器——光栅距的测定

一.实验目的:

1.了解光栅的结构,学习光栅距的测量方法;

2.了解光栅传感器的实际应用。

二.实验原理:

根据栅式数字传感器的工作原理,可分为光栅和磁栅两种,光栅是由很多等节距的透光隙缝和不透光的刻线均匀相间排列构成的光电器件。按其原理和用途,它又可分为物理光栅和计量光栅。物理光栅是利用光的衍射现象制造的,主要用于光谱分析和光波长等物理的测量。计量光栅主要利用莫尔(Moire)现象,测量长度、角度、速度、加速度、振动等物理量。计量光栅按应用范围不同又分为投射光栅和反射光栅两种,具体制作时又可制作成线位移的长光栅和角位移的圆光栅。按光栅的表面结构,又可分为幅值光栅和相位光栅等。

如图1所示,设光栅透光狭缝的宽度为a,两缝间不透光部分的宽度为b,a+b=d定义为光栅常数,又称光栅距,是相邻狭缝相应点之间的距离,它表示光栅的空间周期性。本实验用的为每毫米50条线的物理光栅。

图2中的AB 表示一衍射光栅,光栅面与纸面垂直;BP 是平行单色光垂直入射时,从光栅狭缝发出的衍射光,其衍射角为θ;作线段AC 垂直于BP ,交BP 于C. BC 就是从相邻两缝A 与B 分别发出的衍射角为θ的衍射光的光程差。 因为∠BAC 等于θ,所以该光程差为

BC=d sin θ (1)

此处d 是光栅上两相邻狭缝中心间的距离,叫做光栅常数。当光程差等于波长的整数倍时,即

BC= ±n λ (2)

从各狭缝发出的衍射光都以相同的相位前进,因而互相加强。于是将(2)式代入(1)式,可得

d sin θn =±n λ (3)

上式称为光栅公式。式中n 取0,1,2……等值,叫做明条纹的级。取n = 0时,θn = 0,对应的是最亮的“零”级明条纹;n = 1时,对应的是第一级明条纹,其余依次类推。

在实验中,如果光栅常数d 已知,那么只要测出θ的值,光波波长λ就可以根据式(3)

推算出来。同样,若光波波长λ已知,也可通过测定的值得出光栅常数d .

根据光栅衍射规律,一级光斑对应衍射角θ,有式(3)得:sin θ=λ/d

光栅衍射如图3,有s i n θ=

得到光栅距d 与激光波长λ、衍射距离L 、中央光斑与一级光斑的间距S 存在下列的关系:

图1光栅片示意图

图3 光栅衍射光斑排列

图2 光程差

(式中单位:L 、S 为mm ,λ为nm, d 为μm )

三.实验仪器:

CSY10G 型光电传感器系统实验仪、光栅传感器、激光器、直尺、投射屏(白纸一张)、移动平台。

四.实验步骤:

1.激光器放入光栅传感器正对面的激光器支座中,接通激光电源后调节上下左右位置使光

点对准光栅组中点后用紧定螺丝固定。

2.在光栅传感器后方安放好投射屏,观察到一组有序排列的衍射光斑,与激光器正对的光

斑为中央光斑,依次向两侧为一级、二级、三级…衍射光斑。如图3所示。请观察光斑的大小及光强的变化规律。

3.用直尺量得衍射距离L 、光斑距S ,。根据光栅衍射规律,光栅距d 与激光波长λ、衍射

距离L 、中央光斑与一级光斑的间距S 的关系式,即可求得实验所用的光栅的光栅距d 。 4.尝试用激光器照射用做莫尔条纹的光栅传感器,测定光栅距,了解光斑间距与光栅距的

关系。

五.实验数据记录表格 λ=?????????????? nm 1.

2.莫尔条纹用光栅传感器光栅距测定(可在完成实验1-4后再测)。

实验1-4 光栅莫尔条纹特性实验

一.实验目的:

1.了解产生光栅莫尔条纹的原理。 2 .仔细观察光栅莫尔条纹的变化规律。 3 .理解莫尔条纹微位移测量的原理和方法。

二.实验原理:

d S

λ

=

光栅的基本元件是主光栅和指示光栅。它们是在一块长条形光学玻璃上,均匀刻上许多明暗相间、宽度相同的刻线,常用的光栅每毫米有10、25、50、100和250条线,本实验所用的为每毫米50条线的,主光栅的刻线一般比指示光栅(在位移平台上)长。若隙缝宽度为a,刻线宽度为b ,则d=a+b 为光栅节距或栅距,通常取a=b=d/2。

若将两块光栅(主光栅、指示光栅)叠合在一起,并且使它们的刻线之间成一个很小的角度θ,如图1所示,由于遮光效应,两块光栅的刻线相交处形成亮带,而在一块光栅的刻线与另一块光栅的隙缝相交处形成暗带,在与光栅刻线垂直的方向,将出现明暗相间的条纹,这些条纹就成为莫尔条纹。

图1 莫尔条纹形成示意图

如果用W 表示光栅栅距,θ表示两光栅刻线夹角,B H 表示莫尔条纹间距(相邻亮带或暗带中心之间的距离)。近似有:

θ

θ

θ

W

W BC AB B H ≈

=

=

=2

sin

22sin

横向莫尔条纹的斜率 :

2tan

tan θ

α= 当两块光栅沿着垂直于刻线方向相对移动时,莫尔条纹将沿着刻线方向移动,光栅移动一个节距d ,莫尔条纹也移动一个间距B H 。从上式可知θ越小,B H 越大,使得B H ?d,即莫尔条纹有使栅距放大的作用,因此,读出莫尔条纹的数目比读光栅刻线要方便的多。通过光栅栅距的位移和莫尔条纹的对应关系,就可以容易地测量莫尔条纹移动数,获取小于光栅栅距的微小位移量。

四.实验步骤:

1.安装好主光栅与指示光栅,使两光栅保持平行,光栅间间隙要尽量小,微调主光栅角度,使莫尔条纹清晰可见,用紧定螺丝固定好光栅的相对位置。

2.旋动移动平台螺旋测微仪,向前或向后,观察莫尔条纹上下移动与指示光栅位移方向

的关系。

3.人工微位移测量:当指示光栅位移一个光栅距时,莫尔条纹就移动一个条纹距。调节位移平台,仔细记数条纹移动数目,根据实验二十测得的光栅距,与位移条纹数相乘,此即为指示光栅的位移距离,实验时可与螺旋测微仪的转动刻度相对照。(事实上光栅莫尔条纹记数所测得的位移精度可以远高于螺旋测微仪的精度)

五.实验数据记录表格

1-5 CCD电荷耦合传感器——莫尔条纹计数

一.实验目的:

1.了解图像莫尔条纹的原理;

2.通过本实验进一步加深对CCD器件工作原理和具体应用的认识。

二.实验原理:

(一)传统的莫尔条纹计数原理:

传统的莫尔条纹计数是利用普通光电接收元件将莫尔条纹亮暗变化的光信号,转化成脉冲信号,实现数字显示。主光栅和指示光栅做相对移动产生了莫尔条纹,莫尔条纹需要经过转换电路才能将光信号转换成电信号。光栅传感器的光电转换系统由聚光镜和光敏元件组成,当两块光栅做相对移动时,光敏元件上的光强随莫尔条纹移动而变化,当两光栅刻线重叠时,透过的光强最大,光电元件输出的电信号也最大,当光被遮去一半时,光强减小;光全被遮去而成全黑时,光强为零,若光栅继续移动,投射到光敏元件上的光强又逐渐增大,光敏元件输出的波形可由如下公式描述:

U = U0 + U m sin 2π/W

式中:U0——输出信号的直流分量,U m——交流信号的幅值,x——光栅的相互位移量。有上式可知,利用光栅可以测量位移x的值。

为了辨别主光栅是向左还是向右移动,仅有一条明暗交替的莫尔条纹是无法辨别的,因此,在原来的莫尔条纹上再加上一条莫尔条纹,使两个莫尔条纹信号相差π/2相位。如果仅以光栅的栅距作其分辨单位,只能读到整条莫尔条纹,倘若要读出位移为0.1μm,势必

要求每毫米刻线1万条,这是目前工艺水平无法实现的,因此,只能在合适的光栅栅距的基础上,对栅距进一步细化,才可能获得更高的测量精度,常用的细分方法有倍频细分法、电桥细分法。本实验用的为四倍频细分法,在一个莫尔条纹宽度上并列放置4个光电元件,得到相位分别相差π/2的四个正弦周期信号。用适当电路处理这一列信号,使其合并脉冲信号,每个脉冲分别和四个周期信号的零点相对应,则电脉冲的周期为1/4个莫尔条纹宽度,用计数器对这一列脉冲信号计数,就可以读到1/4个莫尔条纹宽度的位移量。这样便得到光栅固有分辨率的4倍,若再增加光敏元件,同理可以进一步提高测量分辨率。

(二)本实验采用CCD接收莫尔条纹图像,并利用计算机实时显示和自动判断条纹移动情况。它与传统技术相比,信息量大,更为直观,可靠性和精度更高。

三.实验仪器:

CSY10G光电传感器系统实验仪中的实验部件——

图像采集卡、CCD摄像头(视频线和电源线)、光栅组、位移平台

四.实验内容:

(一)特别提醒的注意事项:

1. 不要用手触摸光栅组。

(二)实验步骤

1.安装好光栅组,调节位移平台,使两片光栅完全重合,调节主光栅角度,选择合适的条纹宽度,莫尔条纹要清晰可见。为提高后续计算机判读的精度,莫尔条纹方向应接近水平,且条纹数目在3条以上。

2.在光栅组前安装好CCD摄像头,接通电源,安装好实验软件“Count”,启动“CCD莫尔条纹记数”软件,进入程序,按“活动图像”键,屏幕上即出现条纹图象,调节CCD 光圈及镜头与光栅组的距离,使条纹图像尽量清晰。

3.按“冻结图像”键,用鼠标在屏幕上确定莫尔条纹间隔,然后开始记数。(本步实验中思考操作思考题1)

4.缓慢地转动螺旋测微仪,在屏幕上定一标记,用眼睛目测读取条纹移动数,并将目测数与软件自动记数结果对照,得出定性的结论。(本步实验中思考操作思考题2)

注意:通过转动螺旋测微仪使平台产生微位移时,必须控制条纹移动的速度,如果条纹移动过快,程序将无法正常读取信号,建议移动的速度控制在每2秒1个条纹左右。5.根据光栅衍射实验中测得的光栅组的光栅距,求出指示光栅(位移平台)的位移量。五、操作思考题

1.用鼠标确定莫尔条纹间隔的方法简单,但是由于仅靠手工操作,会造成一定的误差?可以采取什么方法来提高条纹间隔的精度?

2.本实验软件在手工确定了条纹间隔的基础之上实现了自动计数,试思考软件是如何实现此功能的?

六、数据记录与处理

本实验报告书写要求:

实验目的、仪器、原理(简述光栅距测定原理和莫尔条纹形成、测定微小位移原理)、步骤、数据处理、实验总结与讨论

附:

仪器说明

功能简介:

CSY10G型光电传感器系统实验仪是为了适应现代光电传感器实验教学课程所需而研制的实验仪器。其特点是将各种光电(光敏)传感器、被测体、信号源、仪表显示、信号采集、处理电路及实验所需的温度、位移、光源、旋转装置集中于一机,可以方便地对十种光电传感器进行光电特性、光照特性、温度特性等二十余种实验。并可根据实验原理自主开发出更多的实验内容。

仪器组成:

实验仪主要由实验工作台、光电器件、信号源及仪表显示、图象和数据采集、光电转换、处理电路组成。

位于实验仪顶部的工作台部分,分别布置有热释电红外传感器、温度源、慢速电机、衍射光栅、固体激光器、PSD光电位置传感器、CCD电荷图象传感器、位移平台、光电器件安装板(七种光电元件与金针插座)、莫尔条纹光栅位移传感器、光纤传感器、光电断续器、旋转电机等。(详见实验仪工作台布局图)

传感器:(十种)

1. 光敏二极管:由具有光敏特性的PN结制成,不同的光敏二极管光谱范围是不同的。

2. 光敏三极管:具有NPN或PNP结构的半导体光敏管,引出电极二个,较之光敏二极管具有更高的灵敏度。

3. 光敏电阻:CdS材料制成,其电阻值随光照强度而改变。

4. 光电池:根据光生伏特效应原理制成的半导体PN结,光谱响应范围在50~100μm波长之间。

5. 光断续器:透过型的红外发射-接收器件。

6. 光纤传感器:导光型近红外发射-接收传感器,可测位移、转速、振动等。

7. PSD光电位置传感器:一维半导体光点位置敏感传感器,测试范围≤25mm,灵敏度≥0.01mm,精度1%。

8. CCD电荷耦合图象传感器:物体轮廓与图象监测,光敏面尺寸4mm×3.5mm。

9. 热释电红外传感器:工作范围波长5~10μm红外光,探测距离≥5m。

10. 光栅传感器:光栅衍射及光栅距测试、光栅莫尔条纹精密位移测试。

实验辅助单元:

1.温度源:直流电加热器,温升≤100℃。

2.光源:12V安全电压,高亮度卤钨灯;各色高亮度LED发光管。

3.慢速电机:控速电机及遮温叶片组成。

4.位移装置:位移范围25mm,精度1μm。

5.旋转电机:转速0~2400转/分。

6.直流稳压电源:±12V、±2V~10V、激光电源、CCD电源。

7.数字电压/频率表:3 1/2位显示,精度1%。

8.微安表:0~100μA,精度2.5%。

9.试件插座:位于光电器件模板上,可供实验者插入随机所带附件中提供的光

电器件进行实验比较,试件插座上的传感器与仪器下部面板上的传感器接口处的接线端是相通的,实验时传感器接线可从下部面板端口引出。另外,“光敏电阻Ⅱ”、“光电池Ⅱ”、”光敏二极管Ⅱ“、“发光二极管Ⅲ”与备用插座相并接,实验时接入的其他试件可插入试件插座,也可插入相关传感器的备用插座。

10.实验选配单元:实验者可利用仪器提供的电源、电位器、三极管、部分光电

器件、仪表及实验连接线组成光电器件的光谱、照度、伏安特性等测试电路。

实验原理:

光电传感器(探测器)是将光信号转换为电信号的传感器,它主要检测直接引起光强度变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能导致光量变化的其它非电量,如物体形状、表面粗糙度、位移、速度、加速度、工作状态识别等。光电传感器具有非接触性、响应快、性能可靠等特点,因而在现代工业生产中得到广泛应用。

光电传感器的物理基础是光电效应。在光辐射作用下电子逸出材料的表面,产生光电子发射称为外光电效应,基于这种效应的光电器件有光电管、光电倍增管等。电子不逸出材料表面的则是内光电效应。光电导效应、光生伏特效应属于内光电效应。光电效应通常分为外光电效应和内光电效应,,通常所用的光敏电阻、光敏二极管、光敏三极管、硅光电池等都属于上述两种类型。

光电导效应

当光照射到某种半导体材料上时,进入半导体内部的光子能量足够大,某些电子吸收光子的能量,从原来的束缚态变成导电的自由态,这时在外电场的作用下,流过半导体的电流会增大,即半导体的电导会增大,该现象叫光电导效应。它是一种内光电效应。

光电导效应可分为本征型和杂质型两类。前者是指能量足够大的光子使电子离开价带跃入导带,价带中由于电子离开而产生空穴,在外电场作用下,电子和空穴参与电导,使电导增加。杂质型光电导效应则是能量足够大的光子使施主能级中的电子或受主能级中的空穴跃迁到导带或价带,从而使电导增加。杂质型光电导的长波限比本征型光电导的要长得多。长波限对于光探测器具有重要的意义,长波限越长,则能够探测的光波长也就越大。例如,Ge探测器的探测波长就大于Si探测器。

光生伏特效应

在无光照时,半导体PN结内部自建电场。当光照射在PN结及其附近时,在能量足够大的光子作用下,在结区及其附近就产生少数载流子(电子、空穴对)。载流子在结区外时,靠扩散进入结区;在结区中时,因电场的作用,电子漂移到N区,空穴漂移到P区。结果使N区带负电荷,P区带正电荷,产生附加电动势,此电动势称为光生电动势,此现象称为光生伏特效应。

光电传感器的基本特性

光电传感器的基本特性则包括:伏安特性、光照特性等。其中光电传感器在一定的入射照度下,光敏元件的电流I与所加电压U之间的关系称为光敏器件的伏安特性。改变照度则可以得到一组伏安特性曲线。它是传感器应用设计时选择电参数的重要依据。光电传感器的光谱灵敏度与入射光强之间的关系称为光照特

性,有时光电传感器的输出电压或电流与入射光强之间的关系也称为光照特性,它是光敏传感器应用设计时选择参数的重要依据之一。

操作须知

实验时,传感器接入光电转换/处理电路相应的传感器接口,(按照传感器与处理电路的相应图形对应接入即可)按照实验内容正确操作,确认无误后开启电源。

实验者可利用仪器提供的试件插座和实验方法对相同种类不同型号的光电传感器进行性能测试比较。实验选配单元中的可变电阻可用在光敏器件的测试电路中,具体阻值在实验中应由万用表,尤其是在做伏安特性、光照特性等实验时。

请按照说明安装好图象卡及实验软件,(安装图象卡时计算机内不能有其它图象卡驱动程序,否则要引起文件冲突)。按照安装说明正确安装图象卡的驱动程序和应用程序,正确进行选项设置,视频源的制式一定要选为“PAL_B”,这样才能获得清晰稳定的图象,在详细了解了实验软件内容和操作方法后进行实验。

实验前应检查仪器的工作电压是否正常,实验连接线是否完好,实验中应避免电源之间相互短路。

图象卡的视频线及数据采集卡的通信线务请连接正确。

请注意当高亮度光源打开时对仪器有一定的干扰,特别是在小信号数据采集时应避免开灯,光源灯头及电源线接头应注意保持接触良好。

仪器工作台上的具体布局请见布局示意图。CCD摄象机及一体组装的移动导轨可以按照实验需要灵活安装,实验时请根据实验需要按布局图安装在相应的导轨基座支柱上。

请特别注意:固体激光器插头(3V电压供电)不能插入CCD电源插孔(12V 供电),否则会烧坏激光器。

光电实验仪器在实验时应注意背景光的影响,必要时许多实验都应在暗光下进行。

请注意本仪器为实验性仪器,大多实验主要是对光电传感器进行定性的分析演示,而非应用工程中的定量测试。通过完成本实验仪的实验内容,期望能对实验者在光电传感器方面的认识有所加深,为以后的工程应用打下基础。

仪器使用前应对各项传感器、公共电路进行检查,如能完成实验指导书中的相应内容,则仪器性能正常。

照度实验报告

照度实验报告 一、背景 作业场所的合理采光与照明,对生产中的效率、卫生和安全都有重要的意义。它是工作 场所设计中的重要项目,无论是天然采光还是人工照明,其主要目的都是给人们的生活和生 产提供必需的视觉条件。 适当的照度设计应遵循工效学的原则,使照度设置达到保证物体的轮廓立体视觉,有利 于辨认物体的高低,深浅,前后远近及相对位置,有利于眼睛的辨色能力,有利于大视野, 降低疲劳、减少错误和工伤事故的发生。提高照度值可以提高识别速度和主体视觉,从而提 高工作效率和准确度。但照度值提高到使人产生眩光时,会降低工作效率。此外,利用照明 设计对人的情绪的影响,根据场所功能的需求,可使光环境对人产生兴奋或抑制的作用。在 绿色照明理念的指导下,人工照明应考虑节能和环保的要求。 二、实验目的 正确熟悉和使用照度计,采集光环境数据,并通过分析数据来判断光环境的照度是否合 理,假如不合理则提出合理的改善措施。 三、实验场所 上海海洋大学图书馆二楼大厅自习室(室外) 四、实验要求 1、照度采集 2、对自习室的照度情况进行分析 3、分析光照度合理性,并提出改善措施 五、分析 1、主观分析 (1)、主观评价调查数据 (2)、主观评价结果分析 a、计算每个项目的评分s(n): s(n)= 式中,s(n)为第n个项目的评分 p(m)为第m个状态的分值,其中,p(1)=0,p(2)=10,p(3)=50,p(4)=100, v (n,m)为第n个评价项目的第m个状态所得的票数。所以: s(1)= s(2)= s(3)= s(4)= s(5)= s(6)= =16.4 =10.8 =12.4 =12.6 =12.4 =12.6 s(7)= s(8)= s(9)= s(10)= b、计算总的光环境指数 s s= =9.2 =8.2 =9.4 =10 式中,w(n)为第n个评价项目权值,设其权值均为1 所以: s=11.4 为了便于分析和确定评价结果,本方法将光环境质量按光环境的指数范围分为四个质量 等级,其质量等级的划分及其含意如下表所示: 因为10<11.4<=50所以根据上表的结论,本实验的光环境质量等级为3,含义是: 问题较大 2、客观分析(照度数据采集及分析)(1)、照度采集现场 在进行照度值测量的时间点上我们选择了一个晴朗的下午2点~3点之间,光照十分充足, 因为时间和条件的限制就没有对阴天和晚上进行测量和分析。 图书馆二楼自习室现场

光电传感器实验

光电传感器实验研究 电气信息学院 摘要:本实验通过研究光敏电阻、光敏二极管、光敏三极管、硅光电池的伏安特性和光照特性曲线和光纤通讯基本原理,从而掌握光电传感器的原理。这样可以丰富自己的物理知识,使自己感受物理的魅力,并学会运用物理知识解决生活中的实际问题。 关键词:光敏电阻,光敏二极管,光敏三极管,硅光电池,光纤 光敏传感器是将光信号转换为电信号的传感器,也称为光电式传感器,它可用于检测直接引起光强度变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其它非电量,如零件直径、表面粗糙度、位移、速度、加速度及物体形状、工作状态识别等。光敏传感器具有非接触、响应快、性能可靠等特点。光敏传感器的物理基础是光电效应,即光敏材料的电学特性都因受到光的照射而发生变化。本实验主要是研究光敏电阻、硅光电池、光敏二极管、光敏三极管四种光敏传感器的基本特性以及光纤传感器基本特性和光纤通讯基本原理。本实验目的:1、了解光敏电阻的基本特性,测出它的伏安特性曲线和光照特性曲线。2、了解光敏二极管的基本特性,测出它的伏安特性和光照特性曲线。3、了解硅光电池的基本特性,测出它的伏安特性曲线和光照特性曲线。4、了解光敏三极管的基本特性,测出它的伏安特性和光照特性曲线。 5、了解光纤传感器基本特性和光纤通讯基本原理。 一、光敏传感器的基本特性及实验原理 1、伏安特性 光敏传感器在一定的入射光强照度下,光敏元件的电流I与所加电压U之间的关系称为光敏器件的伏安特性。改变照度则可以得到一组伏安特性曲线,它是传感器应用设计时选择电参数的重要依据。某种光敏电阻、硅光电池、光敏二极管、光敏三极管的伏安特性曲线如图1、图2、图3、图4所示。

光电开关说明书

光电开关说明书 ①漫反射式光电开关:它是一种集发射器和接收器于一体的传感器,当有被检测物体经过时,物体将光电开关发射器发射的足够量的光线反射到接收器,于是光电开关就产生了开关信号。当被检测物体的表面光亮或其反光率极高时,漫反射式的光电开关是首选的检测模式。 ②镜反射式光电开关:它亦集发射器与接收器于一体,光电开关发射器发出的光线经过反射镜反射回接收器,当被检测物体经过且完全阻断光线时,光电开关就产生了检测开关信号。 ③对射式光电开关:它包含了在结构上相互分离且光轴相对放置的发射器和接收器,发射器发出的光线直接进入接收器,当被检测物体经过发射器和接收器之间且阻断光线时,光电开关就产生了开关信号。当检测物体为不透明时,对射式光电开关是最可*的检测装置。 ④槽式光电开关:它通常采用标准的U字型结构,其发射器和接收器分别位于U型槽的两边,并形成一光轴,当被检测物体经过U型槽且阻断光轴时,光电开关就产生了开关量信

号。槽式光电开关比较适合检测高速运动的物体,并且它能分辨透明与半透明物体,使用安全可*。 ⑤光纤式光电开关:它采用塑料或玻璃光纤传感器来引导光线,可以对距离远的被检测物体进行检测。通常光纤传感器分为对射式和漫反射式。 它们的工作光线示意图如图3所示。 (2)术语解释 常见的术语示意图如图4所示。 ①检测距离:是指检测体按一定方式移动,当开关动作时测得的基准位置(光电开关的感应表面)到检测面的空间距离。额定动作距离指接近开关动作距离的标称值。 ②回差距离:动作距离与复位距离之间的绝对值。 ③响应频率:在规定的1s的时间间隔内,允许光电开关动作循环的次数。 ④输出状态:分常开和常闭。当无检测物体时,常开型的光电开关所接通的负载由于光电开关内部的输出晶体管的截止而不工作,当检测到物体时,晶体管导通,负载得电工作。 ⑤检测方式:根据光电开关在检测物体时发射器所发出的光线被折回到接收器的途径的不同,可分为漫反射式、镜反射式、对射式等。 ⑥输出形式:分NPN二线、NPN三线、NPN四线、PNP二线、PNP三线、PNP四线、AC 二线、AC五线(自带继电器),及直流NPN/PNP/常开/常闭多功能等几种常用的输出形式。

光电计数器实验报告

光电计数器实验报告 学生姓名李志 学号081244115 专业名称光信息科学与技术 指导教师易煦农 时间日期2011-10-19 摘要 21世纪是信息时代,是获取信息,处理信息,运用信息的时代。传感与检测技术的重要性在于它是获得信息并对信息进行必要处理 的基础技术,是获取信 息和处理加工信息的手段,无法获取信息则无法运用信息。 光电式传感器是将光信号转化为电信号的一种传感器。它的理论基础是光电效应。这类效应大致可分为三类。第一类是外光电效应,即在光照射下,能使电子逸出物体表面。利用这种效应所做成的器件有真空光电管、光电倍增管等。第二类是内光电效应,即在光线照射下,能使物质的电阻率改变。这类器件包括各类半导体光敏电阻。第三类是光生伏特效应,即在光线作用下,物体内产生电动势的现象,此电动势称为光生电动势。这类器件包括光电池、光电晶体管等。光电效应都是利用光电元件受光照后,电特性发生变化。敏感的光波长是在可见光附近,包括红外波长和紫外波长。数字式电子计数器有直观和计数精确的优点,目前已在各种行业中普遍使用。数字式电子计

数器有多种计数触发方式,它是由实际使用条件和环境决定的。有采用机械方式的接触式触发的,有采用电子传感器的非接触式触发的,光电式传感器是其中之一,它是一种非接触式电子传感器。采用光电传感器制作的光电式电子计数器。这种计数器在工厂的生产流水线上作产品统计,有着其他计数器不可取代的优点。 【关键词】光电效应光电传感器光电计数器 ABSTRACT The 21st century is the age of information, it is the access to information, treatment information, use of the information age. Sensing and detection technology is important because it is the access to information and the information necessary to deal with the underlying technology, is access to information and means of processing information, unable to get information you won't be able to use information. Photoelectric sensor is a light signal into an electric signal of the sensor. It is the theoretical basis of the photoelectric effect. These effects can be broadly divided into three categories. The first type is outside of the photoelectric effect, namely, in daylight, can make the tungsten surface. Use this effect caused by device with vacuum photocell, photomultiplier tubes, etc. The second category is the photoelectric effect, i.e., in the light, can make the electrical resistivity of the material change. Such devices include various types of photosensitive semiconductor. The third category is photo voltaic effect, in the light, the objects within the EMF EMF, this is called light-induced electromotive force. This class of

北航_仪器光电综合实验报告_彩色线阵CCD传感器系列实验

2012/4/29

彩色线阵CCD传感器系列实验 实验时间:2012年4月27日星期五 (一)实验目的: 1.了解并学习CCD的使用、驱动原理和功能特性等。 (二)实验内容: 1.本实验共分为以下四个实验部分,主要内容为: 1)线阵原理及驱动 2)特性测量实验 3)输出信号二值化 4)线阵CCD的AD数据采集 (三)实验仪器: 1.双踪迹同步示波器(带宽50MHz以上)一台, 2.彩色线阵CCD多功能实验仪YHCCD-IV一台 3.实验用PC计算机及A/D数据采集基本软件 (四)实验结果及数据分析: 一、线阵原理及驱动 1)驱动频率与周期 表格 1 驱动频率与周期实验结果

由于对不同驱动频率示值,对应不同驱动频率,当显示数值为0时,f=1Mhz;为1时,f=500Khz;为2时,f=250Khz;为3时,f=125Khz; 对应F1,F2频率始终是驱动信号的8分之一,而RS则为F1,F2频率的2倍; 现象及数据分析:由上图可知,在同一频率档位上,随着积分时间档位的增长,FC周期逐渐增加;对于同一积分档位,考虑到驱动频率间的关系,FC周期恰好成倍数关系; 2)积分时间测量 表格 2 积分时间测量结果 现象及数据分析:由上图可知,在同一频率档位上,随着积分时间档位的增长,FC周期逐渐增加;对于同一积分档位,考虑到驱动频率间的关系,FC周期恰好成倍数关系; 二、特性测量实验 表格 3 输出信号幅度与积分时间的关系0档

对应曲线: 图表 1 输出信号幅度与积分时间的关系0档 表格 4 输出信号幅度与积分时间的关系 1档

图表 2 输出信号幅度与积分时间的关系1档 表格 5 输出信号幅度与积分时间的关系2档

光电传感器的设计

光电传感器的设计-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

光电传感器的设计 题目:光电传感器的设计 院(系):信息工程学院 专业:光电信息科学与工程 姓名:褚飞亚 学号: 20 指导教师:张洋洋 2016年6月27号

摘要 随着信息技术的迅猛发展,传感器的应用技术也在飞速发展,新的应用技术呈现出爆炸式的发展。传感器作为作为测控系统中对象信息的入口,作为捕获信息的主要工具,在现代化事业中的重要性已被人们所认识。光电传感器的应用技术为信息科学的一个分支,俗称“电眼”。它是将传统光学技术与现代微电子技术以及计算机技术机密结合的纽带,是获取光信息或借助光提取其他信息的重要手段。现如今汽车成为大多数人必不可少的东西。经常开车的朋友们,应该都有过这样的苦恼每次开车到了单位或者小区大门口都要等门卫来开门或者等其按动电动门的开关,既费时间又费人力,如果巧妙地利用光电传感器就可以实现光控大门。所以借此次课程设计来设计一个光控大门,即把光敏电阻装在大门上并且在汽车灯光能照到的地方,把带动大门的电动机接在干簧管的电路中,那么夜间汽车开到大门前,灯光照射到光敏电阻时,干簧继电器就可以自动接通电动机电路,电动机就能带动大门打开。这样就解决了上述的问题。

目录 1、设计要求...............................................错误!未定义书签。 功能与用途 ............................................................................................. 错误!未定义书签。 指标要求 ................................................................................................. 错误!未定义书签。 2、光电传感器介绍及工作原理 ...............错误!未定义书签。 、光电传感器 ......................................................................................... 错误!未定义书签。 工作原理 ................................................................................................. 错误!未定义书签。 3、方案设计...............................................错误!未定义书签。 4、元件选择和电路设计 ...........................错误!未定义书签。 元件选择 ................................................................................................. 错误!未定义书签。 电路设计 ................................................................................................. 错误!未定义书签。 5、总结.......................................................错误!未定义书签。参考文献.....................................................错误!未定义书签。

光电传感器特性分析

光电传感器特性分析 摘要:随着科技的发展,人类越来越注重信息和自动化,在日常的生产学习过 程中,人们常常要进行自动筛选、自动传送,而为了实现这些,光电传感发挥了不可磨灭的作用。光敏传感器的物理基础是光电效应,即光敏材料的电学特性因受到光的照射而发生变化。 关键词:光电效应、光电传感器、光敏材料 一、 理论基础——光电效应 光电效应通常分为外光电效应和内光电效应两大类。外光电效应是指在光照射下,电子逸出物体表面的外发射的现象,也称光电发射效应,基于这种效应的光电器件有光电管、光电倍增管等。内光电效应是指入射的光强改变物质导电率的物理现象,称为光电导效应,大多数光电控制应用的传感器,如光敏电阻、光敏二极管、光敏三极管、硅光电池等都属于内光电效应类传感器。 1.外光电效应 光照在照在光电材料上,材料表面的电子吸收的能量,若电子吸收的能量足够大,电子会克服束缚逸出表面,从而改变光电子材料的导电性,这种现象成为外光电效应。 根据爱因斯坦的光电子效应,光子是运动着的粒子流,每种光子的能量为hv(v 为光波频率,h 为普朗克常数),由此可见不同频率的光子具有不同的能量,光波频率越高,光子能量越大。假设光子的全部能量交给光子,电子能量将会增加,增加的能量一部分用于克服正离子的束缚,另一部分转换成电子能量。根据能量守恒定律: 式中,m 为电子质量,v 为电子逸出的初速度,w 为逸出功。 由上式可知,要使光电子逸出阴极表面的必要条件是hv>w 。由于不同材料具有不同的逸出功,因此对每一种阴极材料,入射光都有一个确定的频率限,当入射光的频率低于此频率限时,不论光强多大,都不会产生光电子发射,此频率 限称为“红限”。相应的波长为 式中,c 为光速,w 为逸出功。 2.内光电效应 当光照射到半导体表面时,由于半导体中的电子吸收了光子的能量,使电子从半导体表面逸出至周围空间的现象叫外光电效应。利用这种现象可以制成阴极射线管、光电倍增管和摄像管的光阴极等。半导体材料的价带与导带间有一个带隙,其能量间隔为Eg 。一般情况下,价带中的电子不会自发地跃迁到导带,所以半导体 w hv -=2mv 2 1 w hc K = λ

光电探测技术实验报告

光电探测技术实验报告 班级:08050341X 学号:28 姓名:宫鑫

实验一光敏电阻特性实验 实验原理: 光敏电阻又称为光导管,是一种均质的半导体光电器件,其结构如图(1)所示。由于半导体在光照的作用下,电导率的变化只限于表面薄层,因此将掺杂的半导体薄膜沉积在绝缘体表面就制成了光敏电阻,不同材料制成的光敏电阻具有不同的光谱特性。光敏电阻采用梳状结构是由于在间距很近的电阻之间有可能采用大的灵敏面积,提高灵敏度。 实验所需部件: 稳压电源、光敏电阻、负载电阻(选配单元)、电压表、 各种光源、遮光罩、激光器、光照度计(由用户选配) 实验步骤: 1、测试光敏电阻的暗电阻、亮电阻、光电阻 观察光敏电阻的结构,用遮光罩将光敏电阻完全掩 盖,用万用表测得的电阻值为暗电阻 R暗,移开遮光罩,在环境光照下测得的光敏电阻的 阻值为亮电阻,暗电阻与亮电阻之差为光电阻,光 电阻越大,则灵敏度越高。 在光电器件模板的试件插座上接入另一光敏电阻, 试作性能比较分析。 2、光敏电阻的暗电流、亮电流、光电流 按照图(3)接线,电源可从+2~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮则暗电流L暗=V暗/R L,亮电流L亮=V亮/R L,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。 分别测出两种光敏电阻的亮电流,并做性能比较。 图(2)几种光敏电阻的光谱特性 3、伏安特性: 光敏电阻两端所加的电压与光电流之间的关系。 按照图(3)分别测得偏压为2V、4V、6V、8V、10V、12V时的光电流,并尝试高照射光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。将所测得的结果填入表格并作出V/I曲线。 注意事项: 实验时请注意不要超过光电阻的最大耗散功率P MAX, P MAX=LV。光源照射时灯胆及灯杯温度均很高,请勿用手触摸,以免烫伤。实验时各种不同波长的光源的获取也可以采用在仪器上的光源灯泡前加装各色滤色片的办法,同时也须考虑到环境光照的影响。

传感器测速实验报告(第一组)

传感器测速实验报告 院系: 班级: 、 小组: 组员: 日期:2013年4月20日

实验二十霍尔转速传感器测速实验 一、实验目的 了解霍尔转速传感器的应用。 二、基本原理 利用霍尔效应表达式:U H=K H IB,当被测圆盘上装有N只磁性体时,圆盘每转一周磁场就变化N次。每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速。 本实验采用3144E开关型霍尔传感器,当转盘上的磁钢转到传感器正下方时,传感器输出低电平,反之输出高电平 三、需用器件与单元 霍尔转速传感器、直流电源+5V,转动源2~24V、转动源电源、转速测量部分。 四、实验步骤 1、根据下图所示,将霍尔转速传感器装于转动源的传感器调节支架上,调节探头对准转盘内的磁钢。 图9-1 霍尔转速传感器安装示意图 2、将+15V直流电源加于霍尔转速器的电源输入端,红(+)、黑( ),不能接错。 3、将霍尔传感器的输出端插入数显单元F,用来测它的转速。 4、将转速调解中的转速电源引到转动源的电源插孔。 5、将数显表上的转速/频率表波段开关拨到转速档,此时数显表指示电机的转速。 6、调节电压使转速变化,观察数显表转速显示的变化,并记录此刻的转速值。

五、实验结果分析与处理 1、记录频率计输出频率数值如下表所示: 电压(V) 4 5 8 10 15 20 转速(转/分)0 544 930 1245 1810 2264 由以上数据可得:电压的值越大,电机的转速就越快。 六、思考题 1、利用霍尔元件测转速,在测量上是否有所限制? 答:有,测量速度不能过慢,因为磁感应强度发生变化的周期过长,大于读取脉冲信号的电路的工作周期,就会导致计数错误。 2、本实验装置上用了十二只磁钢,能否只用一只磁钢? 答:如果霍尔是单极的,可以只用一只磁钢,但可靠性和精度会差一些;如果霍尔 是双极的,那么必须要有一组分别为n/s极的磁钢去开启关断它,那么至少要两只磁钢。

光电传感器介绍

光电式传感器 1.概述 光电传感器是采用光电元件作为检测元件的传感器。它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号。光电传感器一般由光源、光学通路和光电元件三部分组成。光电检测方法具有精度高、反应快、非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制中应用非常广泛。光电传感器是各种光电检测系统中实现光电转换的关键元件,它是把光信号(红外、可见及紫外光辐射)转变成为电信号的器件。 光电式传感器是以光电器件作为转换元件的传感器。它可用于检测直接引起光量变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其他非电量,如零件直径、表面粗糙度、应变、位移、振动、速度、加速度,以及物体的形状、工作状态的识别等。光电式传感器具有非接触、响应快、性能可靠等特点,因此在工业自动化装置和机器人中获得广泛应用。近年来,新的光电器件不断涌现,特别是CCD图像传感器的诞生,为光电传感器的进一步应用开创了新的一页。 2.物理特性 2.1外光电效应 2.1.1光子假设 1887年,赫兹发现光电效应,爱因斯坦第一个成功解释光电效应。爱因斯坦根据普朗克量子假说而进一步提出的光量子,即光子概念,对光电效应研究做出了决定性的贡献。爱因斯坦光子假说的核心思想是:表面上看起来连续的光波是量子化的。单色光由大量不连续的光子组成。若单色光频率为n,那么每个 光子的能量为E=hv, 动量为。 由爱因斯坦光子假说发展成现代光子论(photon theory)的两个基本点是:

(1) 光是由一颗一颗的光子组成的光子流。每个光子的能量为E = hv,动量 为。由N个光子组成的光子流,能量为N hv。 (2) 光与物质相互作用,即是每个光子与物质中的微观粒子相互作用。 根据能量守恒定律,约束得最不紧的电子在离开金属面时具有最大的初动 能,所以对于电子应有: 2.2 内光电效应 光电传感器通常是指能敏感到由紫外线到红外线光的光能量,并能将光能转化成电信号的器件。其工作原理是基于一些物质的光电效应。 光电效应:当具有一定能量E的光子投射到某些物质的表面时,具有辐射能量的微粒将透过受光的表面层,赋予这些物质的电子以附加能量,或者改变物质的电阻大小,或者使其产生电动势,导致与其相连接的闭合回路中电流的变化,从而实现了光—电转换过程。在光线作用下能使物体电阻率改变的称为内光电效应。属于内光电效应的光电转换元件有光敏电阻以及由光敏电阻制成的光导管等。 2.2.1光电导效应 光照变化引起半导体材料电导变化的现象称光电导效应(又称为光电效应、光敏效应),即光电导效应是光照射到某些物体上后,引起其电性能变化的一类光致电改变现象的总称。当光照射到半导体材料时,材料吸收光子的能量,使非传导态电子变为传导态电子,引起载流子浓度增大,因而导致材料电导率增大。在光线作用下,对于半导体材料吸收了入射光子能量,若光子能量大于或等于半导体材料的禁带宽度,就激发出电子-空穴对,使载流子浓度增加,半导体的导电性增加,阻值减低,这种现象称为光电导效应。光敏电阻就是基于这种效应的光电器件。

传感器实验参考资料

光电传感器测转速实验 实 验 指 导 书

简 介 一、本实验装置的设计宗旨: 本实验装置具有设计性、趣味性、开放性和拓展性,实验中大量重复的接线、调试和后续数据处理、分析、可以加深学生对实验仪器构造和原理的理解,有利于培养学生耐心仔细的实验习惯和严谨的实验态度。非常适合大中专院校开设开放性实验。本实验装置采用了性能比较稳定,品质较高的敏感器件,同时采用布局较为合理且十分成熟的电路设计。 二、光电传感器测转速实验实验装置 1.传感器实验台部分 2.九孔实验板接口平台部分:九孔实验板作为开放式和设计性实验的一个桥梁(平台); 3.JK-19型直流恒压电源部分:提供实验时所必须的电源; 4.处理电路模块部分:差动放大器、电压放大器、调零、增益、移相等模块组成。 三、主要技术参数、性能及说明: (1)光电传感器:由一只红外发射管与接收管组成。 (2)差动放大器:通频带kHz 10~0可接成同相、反相、差动结构,增益为100~1倍的直流放大器。 (3)电压放大器:增益约为5位,同相输入,通频带kHz 10~0。 (4)19JK -型直流恒压电源部分:直流V 15±,主要提供给各芯片电源: V 6 ,V 4 ,V 2±±±分三档输出,提供给实验时的直流激励源;V 12~0:A 1ax Im =作 为电机电源或作其它电源。 光电传感器测转速实验 【实验原理】 如图所示:光电传感器由红外发射二极管、红外接收管、达林顿出管及波形整形组成。

发射管发射红外光经电机转动叶片间隙,接收管接收到反射信号,经放大,波形整形输出方波,再经转换测出其频率,。 图1 【实验目的】 了解光电传感器测转速的基本原理及运用。 【实验仪器】 如图所示,光电式传感器、JK-19型直流恒压电源、示波器、差动放大器、电压放大器、频率计和九孔实验板接口平台。 图2 图3 【实验步骤】 1.先将差动放大器调零,按图1接线;

自动化传感器实验报告十三 光电转速传感器测速实验

广东技术师范学院实验报告 学院:自动化专业:自动化班级: 08自动化 成绩: 姓名:学号: 组 别: 组员: 实验地点:实验日期:指导教师签名: 实验十二项目名称:光电转速传感器测速实验 一、实验目的 了解光电转速传感器测量转速的原理及方法。 二、基本原理 光电式转速转速传感器有反射型和透射型两种,本实验装置是透射型的,传感器端部有发光管和光电管,发光管发出的光源通过转盘上开的孔透射后由光电二极管接受转换成电 信号,由于转盘上有相间的6个孔,转动时将获得与转速及孔数有关的脉冲,将电脉冲计数 处理即可得到转速值。 三、需用器件与单元 光电转速传感器、直流电源5V、转动源及2~24V直流电源、智能转速表。 四、实验步骤 1.光电转速传感器已经安装在传感器实验箱(二)上。 2.将+5V直流源加于光电转速传感器的电源端。 3.将光电转速传感器的输出接到面板上的智能转速表。 4.将面板上的0~30V稳压电源调节到5 V,接入传感器实验箱(二)上的转动电源处。 5.调节转动源的输入电压,使转盘的速度发生变化,观察转速表上转速的变化。 电压(V) 5 6 7 8 9 10 11 12 频率 (HZ) 45 60 78 95 113 130 150 169 6.调节转动源的输入电压,使转盘的转速发生变化,把界面切换到示波器状态,观察传感器输出波形的变化。 电压越大,波形越窄。 五、注意事项 1.转动源的正负输入端不能接反,否则可能击穿电机里面的晶体管。 2.转动源的输入电压不可超过24V,否则容易烧毁电机。 3.转动源的输入电压不可低于2V,否则由于电机转矩不够大,不能带动转盘,长时间

光电传感器实验报告

实验报告2 ――光电传感器测距功能测试 1.实验目的: 了解光电传感器测距的特性曲线; 掌握LEGO基本模型的搭建; 熟练掌握ROBOLAB软件; 2.实验要求: 能够用LEGO积木搭建小车模式,并在车头安置光电传感器。能在光电传感器紧贴红板,以垂直红板的方向作匀速直线倒车运动过程中进行光强值采集,绘制出时间-光强曲线,然后推导出位移-光强曲线及方程。 3.程序设计: 编写程序流程图并写出程序,如下所示:

ROBOLAB程序设计: 4.实验步骤: 1)搭建小车模型,参考附录步骤或自行设计(创新可加分)。 2)用ROBOLAB编写上述程序。 3)将小车与电脑用USB数据线连接,并打开NXT的电源。点击ROBOLAB 的RUN按钮,传送程序。 4)取一红颜色的纸板(或其他红板)竖直摆放,并在桌面平面与纸板垂直 方向放置直尺,用于记录小车行走的位移。 5)将小车的光电传感器紧贴红板放置,用电脑或NXT的红色按钮启动小 车,进行光强信号的采样。从直尺上读取小车的位移。 6)待小车发出音乐后,点击ROBOLAB的数据采集按钮,进行数据采集, 将数据放入红色容器。共进行四次数据采集。 7)点击ROBOLAB的计算按钮,分别对四次采集的数据进行同时显示、平 均线及拟和线处理。 8)利用数据处理结果及图表,得出时间同光强的对应关系。再利用小车位 移同时间的关系(近似为匀速直线运动),推导出小车位移同光强的关 系表达式。 5.调试与分析 a)采样次数设为24,采样间隔为0.05s,共运行1.2s。采得数据如下所示。

b)在ROBOLAB的数据计算工具中得到平均后的光电传感器特性曲线,如图所示: c)对上述平均值曲线进行线性拟合,得到的光强与时间的线性拟合函数:

实验 光电传感器实验

实验光电传感器实验 实验项目编码: 实验项目时数:2 实验项目类型:综合性()设计性()验证性(√) 一、实验目的 通过本次实验过程,了解透射式、反射式光电开关组成原理及应用。掌握工程实践中的使用方法。 二、实验内容及基本原理 (一)实验内容 1.透射式光电开关实验 2.反射式红外光电接近开关实验 3.光电传感器测转速实验 (二)实验原理 光电式转速传感器有反射型和透射型二种。 1.光电开关可以由一个光发射管和一个接收管组成(光耦、光断续器)。当发射管和接收管之间无遮挡时,接收管有光电流产生,一旦此光路中有物体阻挡时光电流中断,利用这种特性可制成光电开关用来工业零件计数、控制等。 2.反射式红外光电接近开关由一个红外光发射管和一个接收管组装成一体。当发射管发射红外光被接近物反射到接收管时,接收管有光电流产生,一旦接近物离开时接收管接收不到红外光光电流中断,利用这种特性可制成光电开关用来计数、控制等。 3.转动源装置中安装的是透射型的(光电断续器也称光耦),传感器端部二内侧分别装有发光管和光电管,发光管发出的光源透过转盘上通孔后由光电管接收转换成电信号,由于转盘上有均匀间隔的 6 个孔,转动时将获得与转速有关的脉冲数,脉冲经处理由频率表显示f,即可得到转速n=10f。实验原理框图如图1所示。 图1 光耦测转速实验原理框图 三、实验用仪器与设备 1.主机箱中的±2V~±10V 步进可调直流稳压电源 2.光电器件实验模块(一)、发光二极管(或红外二极管)、光敏三(或二)极管 3.光电开关实验模块、反射式光耦(光电接近开关) 4.频率\转速表、电压表

5.光电转速传感器—光电断续器(已装在转动源上) 6.转动源 四、实验方法与步骤 (一)透射式光电开关实验 1.将主机箱中的±2V~±10V 步进可调直流稳压电源调节到±10V 档,按图2示意安装接线,注意接线孔颜色(极性)相对应。 图2 透射式光电开关实验接线示意图 2.开启主机箱电源,观察遮挡与不遮挡光路时模板上指示发光二极管的亮暗变化情况,由此形成了开关功能。 (二)反射式红外光电接近开关实验 1、将主机箱中的±2V~±10V步进可调直流稳压电源调节到±10V 档,按图3示意安装接线,注意接线孔颜色(极性)相对应。 图3 透射式光电开关实验 2、开启主机箱电源,接近物接近与远离时模板上指示发光二极管的亮暗变化情况,由此形成了开关功能。

传感器设计实验―光电测转速

光电式传感器测转速实验报告 ——传感器与检测技术 班级:1321202 专业:测控技术与仪器学号:201320120209 姓名:林建宇

1.实验目的: 1)掌握利用光电传感器进行非接触式转速测量的方法; 2)掌握测量和显示电路的设计方法; 3)了解光电式传感器以及示波器的使用方法。 2.实验基本原理: 光电式转速传感器有反射型和透射型二种,本实验装置是透射型的(光电断续器也称光耦),传感器端部二内侧分别装有发光管和光电管,发光管发出的光源透过转盘上通孔后由光电管接收转换成电信号,由于转盘上有均匀间隔的6个孔,转动时将获得与转速有关的脉冲数,脉冲经处理由频率表显示f,即可得到转速n=10f。实验原理框图如下图所示。 光耦测转速实验原理框图 3.需用器件与单元: 主机箱中的直流稳压电源、示波器、电压表、频率\转速表;转动源、光电转速传感器—光电断续器(已装在转动源上)。 4.实验步骤: (1)、按图1所示接线,并且接上示波器,将直流稳压电源调到10V档。

图1、光电传感器测速实验接线示意图 (2)、检查接线无误后,合上主机箱电源开关,调节电机控制旋钮,F/V表以及示波器就会显示相应的频率f,计算转速为n=10f。实验完毕,关闭主、副电源。 5、实验结论与总结 组数 1 2 3 4 5 6 仪器频率108 133 166 186 232 373 示波器频率106.083 134.913 167.949 188.170 232.125 373.892 转速1080 1330 1660 1860 2320 3730 (注:转速单位为转/分钟) 平均误差?△=∑△i/6 (i=6) ?△≈0.855 σ≈1.070 总结:通过计算可知标准差较小,仪器准确率较高。由仪器和示波器所测的两种频率,其中示波器所显示的为标准值。根据上面实验观察到的波形,由于孔所占比例小,所以方波的高电平比低电平要宽。光电式传感器测转速方法简单,易于实现。

光电传感器实验心得

竭诚为您提供优质文档/双击可除 光电传感器实验心得 篇一:光电传感器实验 Dh-sJ3光电传感器物理设计性实验装置 (实验指导书) 实 验 讲 义 请勿带走 杭州大华科教仪器研究所 杭州大华仪器制造有限公司 Dh-sJ3光电传感器物理设计性实验装置 光敏传感器是将光信号转换为电信号的传感器,也称为光电式传感器,它可用于检测直接引起光强度变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其它非电量,如零件直径、表面粗糙度、位移、速度、加速度及物体形状、工作状态识别等。光

敏传感器具有非接触、响应快、性能可靠等特点,因而在工业自动控制及智能机器人中得到广泛应用。 光敏传感器的物理基础是光电效应,即光敏材料的电学特性都因受到光的照射而发生变化。光电效应通常分为外光电效应和内光电效应两大类。外光电效应是指在光照射下,电子逸出物体表面的外发射的现象,也称光电发射效应,基于这种效应的光电器件有光电管、光电倍增管等。内光电效应是指入射的光强改变物质导电率的物理现象,称为光电导效应。大多数光电控制应用的传感器,如光敏电阻、光敏二极管、光敏三极管、硅光电池等都是内光电效应类传感器。当然近年来新的光敏器件不断涌现,如:具有高速响应和放大功能的ApD雪崩式光电二极管,半导体光敏传感器、光电闸流晶体管、光导摄像管、ccD图像传感器等,为光电传感器的应用开创了新的一页。本实验主要是研究光敏电阻、硅光电池、光敏二极管、光敏三极管四种光敏传感器的基本特性以及光纤传感器基本特性和光纤通讯基本原理。 一、实验目的 1、了解光敏电阻的基本特性,测出它的伏安特性曲线和光照特性曲线。 2、了解光敏二极管的基本特性,测出它的伏安特性和光照特性曲线。 3、了解硅光电池的基本特性,测出它的伏安特性曲线

光电探测实验报告

光电探测技术 实验报告 班级:10050341 学号:05 姓名:解娴

实验一光敏电阻特性实验 一、实验目的 1.了解一些常见的光敏电阻的器件的类型; 2.了解光敏电阻的基本特性; 3.测量不同偏置电压下的光敏电阻的电压与电流,并作出V/A曲线。 二、实验原理 伏安特性显示出光敏电阻与外光电效应光电元件间的基本差别。这种差别是当增加电压时,光敏电阻的光电流没有饱和现象,因此,它的灵敏度正比于外加电压。 光敏电阻与外光电效应光电元件不同,具有非线性的光照特性。各种光敏电阻的非线性程度都是各不相同的。 大多数场合证明,各种光敏电阻均存在着分析关系。这一关系为 式中,K为比例系数;是永远小于1的分数。 光电流的增长落后于光通量的增长,即当光通量增加时,光敏电阻的积分灵敏度下降。 这样的光照特性,使得解算许多要求光电流与光强间必需保持正比关系的问题时不能利用光敏电阻。 光照的非线性特性并不是一切光敏半导体都必有的。目前已有就像真空光电管—样,它的光电流随光通量线性增大的光敏电阻的实验室试样。光敏电阻的积分灵敏度非常大,最近研究出的硒—鎘光敏电阻达到12A/lm,这比普通锑、铯真空光电管的灵敏度高120,000倍。

三、实验步骤 1、光敏电阻的暗电流、亮电流、光电流 按照图1接线,电源可从+2V~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮。则暗电流L暗=V暗/RL,亮电流L亮=V亮/RL,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。 2、伏安特性 光敏电阻两端所加的电压与光电流之间的关系即为伏安特性。按照图1接线,分别测得偏压为2V、4V、6V、8V、10V时的光电流,并尝试高照度光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。将所测得的结果 填入表格并做出V/I曲线。 图1光敏电阻的测量电路 偏压2V4V6V8V10V12V 光电阻I 四、实验数据 实验数据记录如下: 光电流: E/V246810 U/V0.090.210.320.430.56 I/uA1427.54255.270.5 暗电流:0.5uA 实验数据处理:

北航_仪器光电综合实验报告_彩色线阵CCD传感器系列实验

2012/4/29 彩色线阵ccD专感器系列实验 实验时间:2012年4月27日星期五 (一)实验目的: 1.了解并学习CCD勺使用、驱动原理和功能特性等。 (二)实验内容: 1. 本实验共分为以下四个实验部分,主要内容为: 1)线阵原理及驱动 2)特性测量实验 3)输出信号二值化 4)线阵CCD勺AD数据采集 (三)实验仪器: 1.双踪迹同步示波器(带宽50MH以上)一台, 2.彩色线阵CC多功能实验仪YHCC B IV—台 3.实验用PC十算机及A/D数据采集基本软件

(四)实验结果及数据分析:一、线阵原理及驱动 1)驱动频率与周期

由于对不同驱动频率示值,对应不同驱动频率,当显示数值为0时,f=1Mhz ;为1时, f=500Khz ;为2时,f=250Khz ;为3时,f=125Khz ; 对应F1, F2频率始终是驱动信号的8分之一,而RS则为F1, F2频率的2倍; 现象及数据分析:由上图可知,在同一频率档位上,随着积分时间档位的增长,FC周期逐渐增加;对于同一积分档位,考虑到驱动频率间的关系,FC周期恰好成倍数关系; 2)积分时间测量 现象及数据分析:由上图可知,在同一频率档位上,随着积分时间档位的增长,FC周期逐渐增加;对于同一积分档位,考虑到驱动频率间的关系,FC周期恰好成倍数关系; 二、特性测量实验

积分时间(档)FC时间 ms 幅度(H)幅度(L)Vh-VI 0 11.78 7.2 -1.2 8.4 2 13.82 10.8 -0.8 11.6 4 15.88 17.2 -0.8 18 6 17.92 21.2 -0.8 22 8 19.98 25.6 -0.8 26.4 10 22.02 30.8 -1.6 32.4 对应曲线: 表格 驱动频率1档输出信号U 幅度积分时间(档)FC时间 ms 幅度(H)幅度(L)Vh-VI 0 23.56 36.4 -2 38.4 2 27.64 44.8 -0.8 45.6 4 31.76 48.8 -0.8 49.6 6 35.84 48.8 -0.8 49.6 8 39.94 48.8 -0.8 49.6 图表1 输出信号幅度与积分时间的关系0档 U14 祝号1丁視,mi 13 3QJ 14 ■ Q _ tf 曲 ?

光电、磁电传感器测量转速实验报告

广东技术师范学院实验报告 学院: 机电学院 专业: 机械电子工程(师范) 班级: 10机电师 成绩: 姓名: 章烁斌 学号: 15 组别: 组员: 实验地点: 607 实验日期: 2013.05 指导教师签名: 实验 (1) 项目名称:光电传感器、磁电传感器测量转速实验 1.实验项目名称 光电传感器、磁电传感器测量转速实验 2.实验目的和要求 (1)了解和掌握采用光电传感器测量的原理和方法 (2)了解和掌握采用磁电传感器测量的原理和方法 (3)了解和掌握转速测量的基本方法 3.实验原理 (1)光电传感器的结构和工作原理 光电传感器在工业上的应用可归纳为吸收式、遮光式、反射式、辐射式四种基本形式。本实验采用的是反射式光电传感器。反射式光电传感器的工作原理见图1,主要由被测旋转部件、反光片(或反光贴纸)、反射式光电传感器组成,在可以进行精确定位的情况下,在被测部件上对称安装多个反光片或反光贴纸会取得较好的测量效果。在本实验中,由于测试距离近且测试要求不高,仅在被测部件上只安装了一片反光贴纸,因此,当旋转部件上的反光贴纸通过光电传感器前时,光电传感器的输出就会跳变一次。通过测出这个跳变频率f ,就可以知道转速n 。n=f 图1 反射式光电传感器测转速的工作图

如果在被测部件上对称安装多个反光片或反光贴纸,那么,n=f/N。N-反光片或反光贴纸的数量。 (2)磁电传感器的结构和工作原理 磁电传感器的内部结构请参考图2,它的核心部件有衔铁、磁钢、线圈几个部分,衔铁的后部与磁性很强的磁钢详解,衔铁的前端有固定片,其材料是黄铜,不导磁。线圈缠绕在骨架上并固定在传感器内部。为了传感器的可靠性,在传感器的后部填入了环氧树脂以固定引线和内部结构。 图2 磁电传感器的内部结构 使用时,磁电转速传感器是和测速(发讯)齿轮配合使用的,如图3。测速齿轮的材料是导磁的软磁材料,如钢、铁、镍等金属或者合金。测速齿轮的齿顶与传感器的距离d比较小,通常按照传感器的安装要求,d约为1mm。齿轮的齿数为定值(通常为60齿)。这样,当测速齿轮随被测旋转轴同步旋转的时候,齿轮的齿顶和齿根会均匀的经过传感器的表面,引起磁隙变化。在探头线圈中产生感应电动势,在一定的转速范围内,其幅度与转速成正比,转速越高输出的电压越高,输出频率与转速成正比。 图3 直射式光电传感器的工作方式 那么,在已知发讯齿轮齿数的情况下,测得脉冲的频率就可以计算出测速齿轮的转

相关文档
最新文档