【CN109942570A】一种基于吩噻嗪的共轭微孔聚合物、制备方法和高效催化应用【专利】

【CN109942570A】一种基于吩噻嗪的共轭微孔聚合物、制备方法和高效催化应用【专利】
【CN109942570A】一种基于吩噻嗪的共轭微孔聚合物、制备方法和高效催化应用【专利】

(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 (43)申请公布日 (21)申请号 201910179842.0

(22)申请日 2019.03.11

(71)申请人 中南大学

地址 410083 湖南省长沙市岳麓区麓山南

路932号

(72)发明人 潘春跃 何训名 喻桂朋 

(74)专利代理机构 长沙永星专利商标事务所

(普通合伙) 43001

代理人 何方

(51)Int.Cl.

C07D 417/14(2006.01)

B01J 31/02(2006.01)

C07D 209/30(2006.01)

B01J 35/10(2006.01)

(54)发明名称

一种基于吩噻嗪的共轭微孔聚合物、制备方

法和高效催化应用

(57)摘要

本发明公开了一种基于吩噻嗪的共轭微孔

聚合物、制备方法和高效催化应用,属于光催化

功能材料制备技术领域,本发明所述基于咔唑-

吩噻嗪共轭微孔聚合物,具有高比表面积,优异

的热稳定性及化学稳定性和良好的紫外吸收性

能,具有良好的光催化活性,在光照有氧条件下,

能够高效地催化吲哚的有氧硒化,转化率大于

99%,而且作为异相催化剂,便于分离和回收,能

实现循环使用,基于吩噻嗪的共轭微孔聚合物拓

宽了CMPs在光催化中的应用,具有重要的应用价

值和应用前景。权利要求书2页 说明书11页 附图3页CN 109942570 A 2019.06.28

C N 109942570

A

1.一种基于吩噻嗪的共轭微孔聚合物,其特征在于,

具有式I结构:其中,

单元具有如下结构式中任意一种:

式1-1,式1-2,式1-3分别命名为CMP -CSU8,CMP -CSU8-2和CMP -CSU8-3。

2.根据权利要求1所述基于吩噻嗪的共轭微孔聚合物,其特征在于,所述共轭微孔聚合物为粉末状或颗粒状。

3.根据权利要求1所述基于吩噻嗪的共轭微孔聚合物,其特征在于,所述共轭微孔聚合物的平均孔径范围是0.5~50nm,更优选为1~6nm。

4.根据权利要求1~3中任一项所述基于吩噻嗪的共轭微孔聚合物的制备方法,其特征在于,包括以下步骤:(1)制备单元的三溴代物;(2)制备三咔唑吩噻嗪单体:

单元的三溴代物与咔唑以1:3~1:6的物质的量比例加入,在CuI和1,10-菲啰啉的催化下发生偶联反应,即得;

(3)将步骤(2)所得三咔唑吩噻嗪单体溶于有机溶剂,加入到有氧化剂的有机溶液中混合进行反应,然后过滤,洗涤,干燥,得到所述基于吩噻嗪的共轭微孔聚合物材料。

权 利 要 求 书1/2页2CN 109942570 A

聚合物半导体产品及工艺概论

聚合物半导体产业概述 引言 半导体是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。具有五大特性:掺杂性,热敏性,光敏性,负电阻率温度特性,整流特性。根据其半导体特性可分为四类产品:集成电路、光电子器件、分立器件和传感器。 聚合物半导体指具有半导体性质的聚合物,电导率在10-8~103(Ω*㎝)-1 范围内,禁带宽度与无机半导体的禁带宽度相当。聚合物半导体可用来制作发光二极管、场效应管等器件,其制备工艺简单、价格低廉、易成大面结,且便于分子设计,因而受到普遍重视。聚合物半导体发展十分迅速,并已开始步入实用阶段。但由于其稳定性较差,目前应用还受到一定限制。 20世纪70年代末,Heeger发现聚乙炔通过掺杂可实现金属量级的导率,打破了聚合物只能做电绝缘体的传统观念,引起了人们对于共轭聚合物材料的研究兴趣。大量的研究表明,各种共轭聚合物经掺杂后都能变为具有不同导电性能的导电聚合物,具有代表性的共轭聚合物有聚乙炔、聚吡咯、聚苯胺、聚噻吩、聚对苯撑乙烯、聚对苯等。 至今,聚合物半导体材料的发展过程经历了3个主要阶段,以聚乙炔为代表的第1代聚合物半导体材料;以聚噻吩、聚亚苯基乙烯为代表的可溶液加工的第 2代聚合物半导体材料;以及近些年发展起来的给体-受体类第3代聚合物半导体材料。与传统的无机半导体材料相比,聚合物半导体材料具有质轻、价廉、可溶液加工和柔韧性好等优点,在低成本构筑、大面积、全柔性光电器件,例如有机场效应晶体管(OFET)、有机太阳能电池(OPV)、有机发光二极管(OLED)等方面显示了潜在的应用前景。 1.聚合物半导体研究与应用 1.1聚合物太阳能电池 目前开发的太阳能电池有硅太阳能电池、无机化合物半导体太阳能电池、染料敏化太阳能电池、有机小分子太阳能电池及聚合物太阳能电池。相比于其它种类太阳能电池,聚合物太阳能电池具有原料广、成本低、光伏材料可自行设计合成及可制备柔性器件等诸多有点,具有很大的潜力在新一代电子器件中实现应用,成为近年来国际上前沿科学的研究热点之一。 聚合物太阳能电池中,我们将P型材料称为给体材料(D),把N型材料称为受体材料(A)。与无机太阳能电池的工作原理相同,都是基于P-N结光伏打效应,但是光照射到聚合物电池材料时,光子被吸收后产生激子(电子-空穴对)而非直接产生载流子(自由电子或空穴)。激子扩散到D-A面后分离为自由电子和空穴,在内建电场的驱动下自由电子通过受体材料通道迁移至阳极,空穴通过给体材料通道迁移至阴极,从而产生光电流。

最新16梯度法和共轭梯度法基本原理和特点

16梯度法和共轭梯度法基本原理和特点

16梯度法和共轭梯度法基本原理和特点? 梯度法又称最速下降法,基本原理是在迭代点附近采用使目标函数值下降最快的负梯度方向作为搜索方向, 求目标函数的极小值,特 点;迭代计算简单,只需求一阶偏导数,所占的存储单 元少,对初始点的要求不 高,在接近极小点位置时收敛速度很慢,共轭的特点为 在梯度法靠近极值点收敛速度放慢时,它可以构造共轭方向使其收敛速度加快, 迭代计算比较简单,效果 好,在每一步迭代过程中都要构造共轭的、方向,比较繁琐。17迭代终止准则有哪三种? 1)当设计变量在相邻两点之间的移动距离充分小时,可用相邻两点的矢量差的模作为终止的判据, 2)当相邻两点目标函数值之差达到充分小时,可 用两次迭代的目标函数之 差作为终止判据。 3)当迭代点逼近极值点时,目标函数在该点的梯度已达到充分小时,可用梯度的模作为 终止判据。

18 .无约束设计法,1)powell法,它是在下降迭代过 运算中只需计算和比较目标函数值的大小,不需计算偏导数的方法,是较好的一种直接搜索 算法。 2)梯度法,又称最速下降法,它是采用使目标 函数值下降最快的负梯度方向作为搜索方向来求目标函数的极小值。 3)共轭梯度法,又称FR法,是利用目标函数的 梯度确定共轭方向,使得计算简便而效 果好,只需利用相邻两点的梯度就可以构造一个共轭方向,这种方式产生共轭方 向并进行迭代的算法称为 共轭梯度法。 4)变尺度法,又称DFP法,为了得到既有快速收敛的性质,又能避免计算二阶导数矩阵及逆矩阵,减少计算工作量。迭代公式X=X+aS, 19有约束设计法? 1)复合形法,在可行域中选取k个设计点作为 初始复合形的顶点,然后比较复合形个各项目标函数值的大小,其中目标函数值最大的点为坏点,以坏

发光性液晶共轭聚合物的研究进展[1]

发光性液晶共轭聚合物的研究进展 王国杰 李 敏3 陈欣方 (吉林大学材料科学系 长春 130023) 摘 要 综述了可用做发光材料的液晶共轭聚合物(LCCPs)的种类及其制备,介绍了LCCPs在制备发光器件中的取向方法,并对其光学性能进行了评述。 关键词 液晶聚合物 共轭聚合物 发光 Abstract The development of liquid crystalline conjugated polymers(LCCPs)used as light emitting materials is reviewed.The synthesis and properties of electroluminescent LCCPs,and various techniques for orienting LCCPs are presented. K ey w ords Liquid crystalline polymers,C onjugated polymers,Luminescence 1990年Burroughes等[1]在Nature上首次报道了聚合物半导体聚苯撑乙烯(PPV)的电致发光性。随后在1991年得到了Heeger等的进一步确证[2],从此,发光聚合物的研究在世界范围内广泛开展起来。相对于无机和有机小分子发光材料,共轭聚合物发光材料具有以下特点[3]:有良好的成膜性及加工性、可通过旋涂、浇铸等方法制成大面积薄膜;共轭聚合物有优良的粘附性、机械强度及稳定性;其电子结构、发光颜色等通过化学结构的改变和修饰可进行调节;虽然,聚合物自身的电导率很低,但作发光层的膜非常薄(100nm),因此即使驱动电压很低,加在聚合物膜上的电场强度仍足以产生器件发光所需要的电流密度,从而消除了掺杂带来的结构不稳定性。 液晶共轭聚合物(LCCP)是近几年发展起来的一类新型的功能高分子[4~14],它兼有液晶聚合物和共轭聚合物的双重特性,集液晶性和发光性于一身。与各向同性发光聚合物相比,LCCP具有独特的长程有序性、光学各向异性。因而,可用于制备具有偏振发光性和发光视角可控的新型发光器件,并且其分子排列的各向异性可导致材料电荷传输的各向异性。具有取向的发光聚合物发射的偏振光用做液晶显示(LC D)的背照明,可明显提高LC D的亮度、对比度、发光效率和视角等。LCCP 在信息显示方面的应用前景和可观的实用价值,已经引起了科学界和工业界极大兴趣。本文将综述这一类新型功能高分子的研究进展。 1 液晶共轭聚合物的合成与性质 按照聚合物主链的不同,目前文献报道的液晶共轭聚合物可分为聚苯撑乙烯型、聚苯型、聚噻吩型、共聚噻吩型等四类。图1给出了文献报道的液晶共轭聚合物的分子结构。 1.1 聚苯撑乙烯型 二卤代苯与二烯苯通过Heck偶合反应可制备2,52二烷氧基聚苯撑乙烯[4](图1a)。反式聚苯撑乙烯衍生物主链刚硬,侧链烷氧基柔韧,因而,在一定条件下呈现出向列液晶相。此类LCCP的 王国杰 男,28岁,博士,从事高分子化学与物理研究。 3联系人 国家自然科学基金资助项目(29974013) 2000201209收稿,2000205230修回

共轭聚合物合成方法的研究

80 2003年增刊 化学与生物工程 ————一———————一—_—h—一—————●—___-一 共轭聚合物合成方法的研究 王维,张爱清 (中南民族大学化学与生命科学学院,湖北武汉4311074) 摘要:综连了聚芳撑(PPP、PPY、PqP)、聚对苯撑乙烧(PPV)、聚苯胺(PAn)、聚腈(PAZ)几种共轭聚合物的合成 方法,井指出了甚轭聚各物应用中存在问题厦夸后的合成方向。 关键词:典轭聚合物;聚对苯撑}聚吡咯}聚噻吩;聚对苹撑乙烧;聚苯胺;聚腈;合成中图分类号:0631.23 文献标识码:A 文章编号:1672—5425(20(13)增刊一0080一07 聚合物常被认为是绝缘体,但共轭聚合物因其结构特征而具有优良的光电学性能。自1977年白川英 树(K.Shiakawa)和MacDiarmid等人首次用AsF5或 12对聚乙炔(Polyaeetylene,PA)进行P型掺杂,获得 103 s?m1以上的高电导率以来,人们对共轭聚合物 的结构和性能有了新的认识。1990年剑桥大学的Burronghes等用聚对苯撑乙炔(PPV)制备了电致发光器件,引起了世人的关注。共轭聚台物的研究在世 刘丽,路庆华,印杰,朱子康,王宗光.溶胶一凝胶{击制备聚酰亚胺/二氧化钛赙光杂化材料[J].高等学校化学学报,2001.22 (11),1943—1944. JPhotopolSdTechno】,1992-298. KerwlnR E,GodrickMR.Thermally stablephotorejist p。ly— mer[J]PdymEng Sci,1971,8(5)l426—429.YochN.HiramotoH.New photosensitivehigh temperaturepol— ymers forelectric applications[J].JMaeromol Sei Chem,1984, A211I3-14):1641—1663. 攘豪情,李悦生t丁盂贤.新的离子型光敏秉酡亚胺U3.应用化 学,1998.1 8(2).J00—105. WilsonD,Santa Ann.StenzenbergerH D.et a1.Polyimide[M]. Puhllshed r,theUSAChapman andHallNew York.1990:119. Hasegawn M.KoehiM,Mita1,eta1.Moleeulafaggragadonand fluorescencespectraofaromatic I)0lyimides[J].EurPolymJ, 1989,25:349‘354 RubnerR.Kieeberg W,KuhnE.German Patent2 437 348, 1994 界范围内乍l益广泛的开展起来,已逐渐成为一门新型的多学科交叉的研究领域。近些年研究主要集中在聚对苯撑(PPP)、聚吡咯(PPY)、聚噻吩(PTP)、聚苯胺(PAn)和聚苯撑乙炔(PPV),这是因为它们原料易得.合成方法简便、聚合物性能优良等优点,并显示出了广泛的应用前景。其应用领域主要包括:发光材料、非线性光学器件、充电电池、电容器、传感器、液晶材料等,国内外相关研究有不少文献报道[1“…,且部分应用已 [i9]柬普坤,李佐弗,李加深,玛戚,王强.主链古有机硅结构的光敏 聚酰亚胺的研究[J].功能高分子学报,1998.11(1):1998 f20]LinAA,VinodRS,et a1.MaeromoIeeules,1998,21:1165[213 ScaianoJ C.Ferrira J C N。Polym EngSci.1989,29(14);942 [zz3 Chiang wT.MeiwP.Tetrahedmn Letters,199Z,33‘511: 7869-7878. [23]ChiangWT,MeiWP.JApplyPolymSci,1993.50,2191—8195.[24]1wamotoM,KasaharaS?IrayamaK,ct日1.JpnJ Appl phys, 1991.30(2A):L218 [zsJ Jgargoa,MethodsMater,MleroeleetronTechaol(Proc hit. Syrup)。1982:81. [883JoChoi,e1.a1.Polym EngSci,1992.32(21)11632. [273KRCarter.eta1.PMSE,1995t72I 385. [683 E PCassidy,etal Po[ymNews.1989,14:392. 作者简介:扬志兰(1979一),士,硕士研宛生.研究方向:高分子 功能材料。 StudyofPhotosensitivePolyimide YANGZhHan,ZHANGAi-qing (College∥ChemistryandLi尼Science,SouthCentralUniversityforNationalities,Wuhan430074。Chinn) Abstract:Thepresentpaperreviewstheinvestigativeresearchofphotosensitivepolyimides.Thesyntheticmethods,propertiesandapplication arc discussedindetail.Beside,thedevelopmentaldirectionandappliedforegroundo{photosensitivepolyimides in microelectron are included. Keywords:photosensitive;polyimide;syntheticmethod;property;application;microelectron 圮玷钉 q 阳朝 叼 龃 ;  万方数据

共轭聚合物的电学性质

共轭聚合物的电学性质 姓名:周宇班级:10级高分子材料与工程1班学号:201015014021 摘要:共轭导电聚合物是一种极有应用前景的功能高分子材料,简单了解共轭导电聚合 物的导电特性、应用以及共轭导电聚合物在制作二次电池、新型电子器件等方面具有独特的特性和优点。 关键词:共轭聚合物电学性质应用及发展 前言 导电高分子的研究和应用是近年来高分子科学最重要的成就之一。1974年日本白川英树等偶然发现一种制备聚乙炔自支撑膜的方法,得到聚乙炔薄膜不仅力学性能优良,且有明亮金属光泽。而后MacDiarmid、Hedger、白川英树等合作发现聚乙炔膜经过AsF5、I2等掺杂后电导率提高13个数量级,达到103S?cm-1,成为导电材料。这一结果突破了传统的认为高分子材料只是良好绝缘体的认识,引起广泛关注。 由于共轭导电聚合物同时具有聚合物、无机半导体和金属导体的特性,因而具有巨大的潜在的商业应用价值。在这里就聚合物的导电性及共轭聚合物材料的特性及其应用作一扼要介绍。 正文 一.聚合物的电学性质 高分子材料的电学性能是指在外加电场作用下材料所表现出来的介电性能、导电性能、电击穿性质以及与其他材料接触、摩擦时所引起的表面静电性质等。 (一)聚合物的介电性能 聚合物在外电场作用下贮存和损耗电能的性质称介电性,这是由于聚合物分子在电场作 tg表示. 用下发生极化引起的,通常用介电系数ε和介电损耗 1.介电损耗 电介质在交变电场中极化时,会因极化方向的变化而损耗部分能量和发热,称介电损耗。介电损耗产生的原因有两方面:一为电导损耗,是指电介质所含的微量导电载流子在电场作用下流动时,因克服电阻所消耗的电能;二为极化损耗,这是由于分子偶极子的取向极化造成的.对非极性聚合物而言,电导损耗可能是主要的.对极性聚合物的介电损耗而言,其主要部分为

【CN109942570A】一种基于吩噻嗪的共轭微孔聚合物、制备方法和高效催化应用【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910179842.0 (22)申请日 2019.03.11 (71)申请人 中南大学 地址 410083 湖南省长沙市岳麓区麓山南 路932号 (72)发明人 潘春跃 何训名 喻桂朋  (74)专利代理机构 长沙永星专利商标事务所 (普通合伙) 43001 代理人 何方 (51)Int.Cl. C07D 417/14(2006.01) B01J 31/02(2006.01) C07D 209/30(2006.01) B01J 35/10(2006.01) (54)发明名称 一种基于吩噻嗪的共轭微孔聚合物、制备方 法和高效催化应用 (57)摘要 本发明公开了一种基于吩噻嗪的共轭微孔 聚合物、制备方法和高效催化应用,属于光催化 功能材料制备技术领域,本发明所述基于咔唑- 吩噻嗪共轭微孔聚合物,具有高比表面积,优异 的热稳定性及化学稳定性和良好的紫外吸收性 能,具有良好的光催化活性,在光照有氧条件下, 能够高效地催化吲哚的有氧硒化,转化率大于 99%,而且作为异相催化剂,便于分离和回收,能 实现循环使用,基于吩噻嗪的共轭微孔聚合物拓 宽了CMPs在光催化中的应用,具有重要的应用价 值和应用前景。权利要求书2页 说明书11页 附图3页CN 109942570 A 2019.06.28 C N 109942570 A

1.一种基于吩噻嗪的共轭微孔聚合物,其特征在于, 具有式I结构:其中, 单元具有如下结构式中任意一种: 式1-1,式1-2,式1-3分别命名为CMP -CSU8,CMP -CSU8-2和CMP -CSU8-3。 2.根据权利要求1所述基于吩噻嗪的共轭微孔聚合物,其特征在于,所述共轭微孔聚合物为粉末状或颗粒状。 3.根据权利要求1所述基于吩噻嗪的共轭微孔聚合物,其特征在于,所述共轭微孔聚合物的平均孔径范围是0.5~50nm,更优选为1~6nm。 4.根据权利要求1~3中任一项所述基于吩噻嗪的共轭微孔聚合物的制备方法,其特征在于,包括以下步骤:(1)制备单元的三溴代物;(2)制备三咔唑吩噻嗪单体: 单元的三溴代物与咔唑以1:3~1:6的物质的量比例加入,在CuI和1,10-菲啰啉的催化下发生偶联反应,即得; (3)将步骤(2)所得三咔唑吩噻嗪单体溶于有机溶剂,加入到有氧化剂的有机溶液中混合进行反应,然后过滤,洗涤,干燥,得到所述基于吩噻嗪的共轭微孔聚合物材料。 权 利 要 求 书1/2页2CN 109942570 A

(修改稿)一种新的修正DY共轭梯度法的全局收敛性

一种修正的DY 共轭梯度法的全局收敛性 敖卫斌 (重庆师范大学 数学学院,重庆 401331) 摘要:本文提出了一种新的非线性修正的DY 共轭梯度算法(MDYCG ),该算法得到的搜索方向为下降方向,它既不受线搜索规则的影响,也不受目标函数的凸性影响。在精确线搜索下,MDYCG 算法化归为标准的DY 共轭梯度算法。证明了该方法在Armijo 型线搜索下的全局收敛性,给出了初步的数值结果。 关键词:无约束优化;共轭梯度法;Armijo 型线搜索;全局收敛性 中图分类号:0182.1 1. 引言 考虑无约束优化问题: min (),,n f x x R ∈ (1) 其中:n f R R →为连续可微函数,其梯度向量记为() g x ,简记为g 。 共轭梯度法是求解大规模无约束优化问题的有效算法之一,它像最速下降法一样在每步迭代中不需要存储和计算矩阵,其迭代格式为: 1k k k k x x d α+=+ (2) 1,1;,1, k k k k k g k d g d k β--=?=?-+>? (3) 其中,()k k g f x =?,k d 为搜索方向,k α是通过一维线搜索获得的步长,k β为标量。不同的k β对应着不同的共轭梯度算法。1964, Fletcher 和 Reeves 首先提出非线性共轭梯度法参数k β,它定义为 22 1 k FR k k g g β-= ([2]). 还有其他著名的k β,比如 1 2 1 T PRP k k k k g y g β --= ( [3-4]), 111T HS k k k T k k g y d y β ---=([5]), 111 T LS k k k T k k g y d g β---=-([6]), 2 11 k DY k k k g d y βT --= ([7]), 2 11 k CD k k k g d g βT --=- ([8]); 收稿日期:2013-05-07; 作者简介: 敖卫斌(1987-),男,重庆九龙坡人,硕士研究生,主要从事最优化理论与研究.

有机-聚合物太阳能电池概述

有机/聚合物太阳能电池 1. 有机/聚合物太阳能电池的基本原理 有机/聚合物太阳电池的基本原理是利用光入射到半导体的异质结或金属半导体界面附近产生的光生伏打效应(Photovoltaic)。光生伏打效应是光激发产生的电子空穴对一激子被各种因素引起的静电势能分离产生电动势的现象。当光子入射到光敏材料时,光敏材料被激发产生电子和空穴对,在太阳能电池内建电场的作用下分离和传输,然后被各自的电极收集。在电荷传输的过程中,电子向阴极移动,空穴向阳极移动,如果将器件的外部用导线连接起来,这样在器件的内部和外部就形成了电流。对于使用不同材料制备的太阳能电池,其电流产生过程是不同的。对于无机太阳能电池,光电流产生过程研究成熟,而有机半导体体系的光电流产生过程有很多值得商榷的地方,也是目前研究的热点内容之一,在光电流的产生原理方面,很多是借鉴了无机太阳能电池的理论(比如说其能带理论),但是也有很多其独特的方面,现介绍如下: 一般认为有机/聚合物太阳电池的光电转换过程包括:光的吸收与激子的形成、激子的扩散和电荷分离、电荷的传输和收集。对应的过程和损失机制如图1所示。 图1 聚合物太阳能电池光电转换过程和入射光子损失机理

光吸收与激子的形成 当太阳光透过透明电极ITO照射到聚合物层上时,不是所有的光子都能被聚合物材料所吸收的,只有光子能量hν大于材料的禁带宽度E g时,光子才能被材料吸收,激发电子从聚合物的最高占有轨道(HOMO)跃迁到最低空轨道(LUMO),留在HOMO中的空位通常称为“空穴”,这样就形成了激子,通常激子由于库仑力的作用,具有较大的束缚能而绑定在一起。对于入射到地面的太阳光谱从其能量分布来看,大约在700nm处能量是最强的,因而所使用的激活层材料其吸收光谱也应该尽量的接近太阳的辐照光谱,并且在700nm处达到最强的吸收,这样有力于激活层材料对光的吸收和利用。但是从目前研究的聚合物材料来看,其吸收光谱均不能与太阳光谱很好的匹配。 激子扩散和电荷分离 通常情况下,光激发产生的激子要经过一定的路径,传输到合适的位置才能进行解离。在传输过程中激子迁移的动力是扩散。当束缚的激子扩散到由半导体/金属、有机层/有机层、有机层/无机层所形成的界面处可以完成激子的解离。但是激子的扩散长度是有限的,一般在10nm左右,距离界面10nm以外的激子是得不到解离的,对光电流没有贡献。当激子迁移到界面处,并在界面处解离成功才能形成自由的载流子(正、负电荷),自由的载流子在内建电势或是外加电场力的作用下,会产生定向的运动,从而使两种载流子分开。 电荷的传输和收集 电子在聚合物中的传输是以跳跃的方式进行的,迁移率比较低。如MEH-PPV(聚 2-甲氧基-5-(2'-乙基-己氧基)-1,4-亚苯基亚乙烯基)的空穴迁移率是10-7cm2/V·S,聚噻吩的是10-5cm2/V·S,而在这两种材料中电子的迁移率要远低于空穴的迁移率。向两个电极传输的正负电荷,最终会传输到电极处被各自的电极收集。因而电荷的收集效率也是影响光伏器件功率转换效率的关键因素。主要影响电荷收集的因素是电极处的势垒,再有就是激活层与电极界面的接触情况。 2. 有机/聚合物光伏器件结构 聚合物太阳能电池是有机太阳能电池研究的一个组成部分。围绕提高有机太阳能电池效率的研究,在过去的几年中取得了大量成果,从材料的选择到器件结构的优化都进行了不同程度的改进。在器件设计方面有机太阳能电池出现了四种结构:单层器件、双层或多层器件、复合层器件、层压结构器件,图2给出了这四种方式结构示意图。采用这些器件结构的耳的在于通过提高有机分子材料中电荷分离和收集的效率来得到较高 的电池转换效率。

PPV共轭聚合物光电材料

P P V共轭聚合物光电材料 PPV共轭聚合物概述 随着社会的发展,显示技术目前已经成为无论是信息化还是人们日常生活都离不开的高科技领域。阴极射线管(CRT)、液晶显示(LCD)、无机LED、等离子体显示(PDP)和荧光管显示(VFD)等显示技术都在不断的被改进和完善,以适应社会和市场的要求。 有机薄膜电致发光(OLED)是近年来发展迅速并且具有巨大应用前景的新型平板显示技术,按材料的分子结构和化学性质可以分为有机小分子材料和聚合物光电材料,此两种材料各有优缺点。 有机小分子发光材料的优点是:材料易提纯、亮度高、发光效率高和易蒸镀成膜,缺点是热稳定性差且易结晶。 聚合物光电材料的优点是:具有良好的热稳定性、优异的成膜性和较好的机械强度,但材料合成复杂,提纯困难,难制成多层器件。其中聚对苯撑乙烯撑PPV [poly(1,4-phenylenevinylene)]以分子结构易于修饰、合成路线多、发光效率高、热稳定性好而成为最有发展前途的一类发光聚合物。 概括起来,有机电致发光显示器具有以下优点; (1)可实现红、绿、蓝多色显示; (2)具有面光源共同的特点,亮度达200cd/m3; (3)不需要背光源,可使器件小型化; (4)驱动电压较低(直流10V左右),节省能源; (5)器件厚度薄,附加电路简单,可用于超小型便携式显示装置;

(6)响应速度快,是液晶显示器(LCD)的1000倍; (7)器件的象元数为320个,显示精度超过液晶显示器的5倍; (8)可制作在柔软的衬底上,器件可弯曲、折叠。 PPV类高分子是典型的空穴传输型发光材料,空穴的传输速度远远大于电子。PPV类共扼高分子的发光是分子从基态被能量激发到激发态,再由激发态回到基态产生的辐射跃迁过程。由于聚合物具有偶数电子,基态时电子成对存在于各分子轨道,根据Pauli不相容原理,同一轨道上的两个电子自旋相反,所以分子中总的电子自旋为零(S),这个分子所处的电子能态为单重态(2S+1=0)。当分子中的一个电子吸收能量被激发时,通常它的自旋不变,则激发态是单重态;如果激发过程中电子发生自旋反转,则激发态为三重态(三重态的能量低于单重态)。当分子在电场(或光能)激发下被激发到激发单重态(S),经振动能级弛豫到最低激发单重态(S1),最后由S1回到基态So,此时产生荧光;或者经系间跨跃至最低激发三重态(Tl)最后产生Tl-So的电子跃迁,此时辐射出磷光。由于PPV类共扼高分子的EL发光光谱和PL发光光谱极其相似,表明二者具有相同的激发态,即主要通过单重态激发而发出荧光。[1] 图1-1 PPV共扼高分子的辐射跃迁过程

共轭梯度法

最速下降法 1.最速下降方向 函数f(x)在点x处沿方向d的变化率可用方向导数来表示。对于可微函数,方向导数等于梯度与方向的内积,即: Df(x;d) = ▽f(x)T d, 因此,求函数f(x)在点x处的下降最快的方向,可归结为求解下列非线性规划: min ▽f(x)T d s.t. ||d|| ≤ 1 当 d = -▽f(x) / ||▽f(x)|| 时等号成立。因此,在点x处沿上式所定义的方向变化率最小,即负梯度方向为最速下降方向。 2.最速下降算法 最速下降法的迭代公式是 x(k+1) = x(k) + λk d(k) , 其中d(k)是从x(k)出发的搜索方向,这里取在x(k)处的最速下降方向,即 d = -▽f(x(k)). λk是从x(k)出发沿方向d(k)进行一维搜索的步长,即λk满足 f(x(k) + λk d(k)) = min f(x(k)+λd(k)) (λ≥0). 计算步骤如下: (1)给定初点x(1) ∈ R n,允许误差ε> 0,置k = 1。 (2)计算搜索方向d = -▽f(x(k))。 (3)若||d(k)|| ≤ε,则停止计算;否则,从x(k)出发,沿d(k)进行一维搜索,求λk,使 f(x(k) + λk d(k)) = min f(x(k)+λd(k)) (λ≥0). (4)令x(k+1) = x(k) + λk d(k),置k = k + 1,转步骤(2)。 共轭梯度法 1.共轭方向 无约束问题最优化方法的核心问题是选择搜索方向。 以正定二次函数为例,来观察两个方向关于矩阵A共轭的几何意义。 设有二次函数: f(x) = 1/2 (x - x*)T A(x - x*) , 其中A是n×n对称正定矩阵,x*是一个定点,函数f(x)的等值面 1/2 (x - x*)T A(x - x*) = c 是以x*为中心的椭球面,由于 ▽f(x*) = A(x - x*) = 0, A正定,因此x*是f(x)的极小点。 设x(1)是在某个等值面上的一点,该等值面在点x(1)处的法向量 ▽f(x(1)) = A(x(1) - x*)。

共轭聚合物光电材料设计

材料化学专业科研训练 题目:共轭聚合物光电材料设计班级:材化12-3 姓名:丁泽 指导教师:杨照地 哈尔滨理工大学化学与环境工程学院 2014年12月31日

摘要 共轭聚合物是由大量重复基元通过化学键连接的一维体系,具有独特的光、电、电化学等性质,由于共轭聚合物结构( 链段、构象、聚集态) 的复杂性,即使在非常精细的合成条件下,少量结构缺陷的形成也是难免的,本文在前人的基础上设计了在PPV共轭聚合物主链及侧链上添加各种基团或原子后的改性情况。共轭聚合物,特别在其固态状态下激发能量能够有效传递,使得少量缺陷的影响被放大,对其光电性质产生巨大影响。因此对共轭聚合物结构缺陷的研究,包括缺陷成因与控制、缺陷密度的分析、缺陷的分子结构与电子结构特征等,对于高品质材料的研发具有重要的意义。 关键词共轭聚合物,PPV,光电材料,合成改性,修饰改性

目录 摘要...................................................................................................................... I 第1章绪论.. (1) 1.1 共轭聚合物概述 (1) 1.1.1 共轭聚合物的分类 (4) 第2章PPV类共轭聚合物 (5) 2.1 PPV类共轭聚合物简介 (5) 2.2 共轭聚合物的缺陷 (6) 2.2.1 PPV 的四面体缺陷 (8) 2.2.2 PPV的氧化缺陷 (9) 2.2.3 顺式缺陷 (10) 第3章PPV共轭聚合物的改性研究 (13) 3.1 PPV类聚合物的结构修饰 (13) 3.1.1 侧链修饰 (14) 3.1.2 主链修饰 (18) 总结 (20) 参考文献 (21)

形貌可控超交联微孔聚合物的合成及应用

形貌可控超交联微孔聚合物的合成及应用 具有高比表面积、丰富孔道结构的微孔有机聚合物(MOPs),是纯粹通过有机小分子构建得到的一类多孔材料,其独特的性质(如低骨 架密度、良好的物理化学及热稳定性、多样的合成方法、易于调控及功能化的孔道结构等)使此类材料在分子吸附、分离、催化、传感、能源存储及转换等领域显示出广阔的应用前景,逐渐发展成为高分子材料学研究的热点。相比于其它几种MOPs材料如自聚微孔聚合物(PIMs)、共轭微孔聚合物(CMPs)、共价有机框架(COFs)等,超交联聚合物(HCPs)是一类由深度交联的刚性分子链非紧密堆积形成的多孔 聚合物材料,主要通过傅克烷基化反应制备,其合成具有反应条件温和、单体来源广泛、催化剂廉价易得等特点。目前,在HCPs材料的合成及功能化方面已开展了大量研究工作,然而对于构建具有特殊宏观和微观形貌HCPs材料的研究仍处于起步阶段,一维、二维及宏观三维HCPs材料的相关报道较少。另外,具有微观有序结构和共辄结构HCPs 的设计以及其在相关领域的应用研究仍然不足。因此,制备具有不同形貌的HCPs材料、研究材料形貌与性能之间的关系、合成具有共轭及有序结构HCPs并拓展其在光电领域的应用将是目前HCPs领域发展的新方向。本论文基于外交联编织法,采用不同的功能性单体和聚合方法,分别设计合成了多种具有宏观、微观形貌、特殊功能化和共辄结构的HCPs材料。通过红外光谱、固体核磁、X射线光电子能谱、扫描和投射电子显微镜、N2吸附解吸附等表征手段对得到HCPs材料的结构、形貌及性能进行研究,并初步探究了不同HCPs材料在吸附、

多相催化、光电等领域的应用。论文的主要研究内容如下:第一章对超交联微孔聚合物的发展进行了综述,重点介绍了合成HCPs的三种主要方法、不同维度下HCPs的形貌研究以及其在吸附、分离、催化、药物释放、传感等领域的研究进展。第二章制备了具有宏观三维形貌的多级孔整块材料,并分别将其应用于气体储存和水处理。首先,采用高内相乳液聚合制备具有内部连通大孔结构的聚苯乙烯整块材料前体,然后直接使用二甲氧基甲烷(FDA)外交联剂编织引入微孔、介孔结构,得到高比表面积的超交联产物。通过调节共聚单体中二乙烯基苯(DVB)含量,可以调控超交联整块材料的比表面积及孔结构。具有高比表面积的整块材料能够显示出良好的H2和CO2吸附性能,同时整块材料超亲油的表面性质使其能够通过吸附快速除去水中有机溶剂及油污。第三章合成了吡啶功能化的多级孔整块材料,将其用于负载不同的金属纳米颗粒制备了整块多相催化剂,其中负载Au纳米颗粒的整块材料可用于催化还原4-硝基苯酚。采用高内相乳液模板法,将4-乙烯基吡啶功能性单体和苯乙烯共聚制备了功能化整块材料前体,然后直接FDA交联得到了高比表面积的功能化整块材料。改变4-乙烯基吡啶的单体比例可以调节整块材料的功能化程度,从而提高其对CO2的吸附性能。以功能化整块材料为载体,分别通过NaBH4还原法和热还原法负载了多种金属纳米颗粒,使用不同功能化程度整块材料或改变金属离子浓度可以对负载金属纳米颗粒的尺寸进行调控。将负载Au纳米颗粒的整块材料用于催化还原4-硝基苯酚模型反应,整块材料显示出高催化活性和循环使用性。相比于粉末状的多相催化剂,

共轭聚合物应用研究新进展

1995,N 〇6 材料导报 ? 55 ? 71994-2015 China Academic Journal Electronic Publishing House. All rights reserved, https://www.360docs.net/doc/4a776382.html, 共轭聚合物应用研究新进展 New Progress in Applications of Conjugated Polymers 金绪刚龚克成 (华南理工大学高分子材料系,广州510641) 摘要 由于具有优异的电活性和光学性能以及可加工性,共轭聚合物有着广 泛的并有希望实现的用途。文中总结和展望了共扼聚合物在应用研究方面的发展现 状 和前景。 关键i 司 共轭聚合物导电聚合物电活性 Abstract In this paper.it is pointed out that the conjugated polymers have a wide range of promising applications because of their excellent electroactive and optical performance and processability. The current status and prospect of their applied research are forecasted. Key Words conjugated polymer,conducting polymer?eiectroactive 1概述 聚乙炔、聚苯胺等共轭聚合物是近十几 年发展起来的具有半导体或金属导电率的本 征型导电聚合物材料,其电活性来源于独特 的共轭电子结构。在分子链中,随着〃电子体 系扩大,出现w 成键态和,反键态,继而形 成能带。n 成键态形成价带,^反键态形成导 电带,其禁带宽度一般在1?4eV 间。由于这 种非定域的《电子结构,通过化学掺杂*聚合 物 可形成P 型或N 型导电态。反式聚乙炔掺 杂态导电率高达l 〇5ScnT l 数量级,许多掺杂 态共轭聚合物在1〇2?lOScm —1。理论和实 验表明,孤子,极子或双极子是掺杂共轭聚合 物导电的主要载流子,跳跃和隧道效应是载 流子主要传递机理。在共轭聚合物中,控制载 流子浓度的方法除化学掺杂外.也可由光激 发或电子器件注入法。在此情况下,由于电子 和声子相互作用,载流子自定域,形成孤子、 极子、双极子或激子,共轭聚合物表现出一些 持别的光电性能,如掺杂引起的强的次能级 光吸收带;激子缔合辐射发光现象;在激光下 非线性光学特性,等等。 导电聚合物合成方法主要有化学法和电 化学法。合成的产物多为不熔不溶的结晶粉 末,不易加工成型。另外,导电聚合物还存在 稳定性问题。未掺杂聚合物的不饱和双键易 受氧化及其它物质的攻击,导致电性能及其 它性能下降。同时,掺杂剂的 作用也影响聚合 物的稳定性。作为实际应用,上述 缺点是必须 克眼的。近年来.国内外工作者在这方面进行 了许多卓有成效的研究工作,可概括如下几 点:①在合成方法和掺杂方式上下功夫,改善 加工性能 和稳定性[1?2];②化学改性W ,如侧 基化或共聚;③ 与高分子材料或无材料等复 合,形成性能优异的新 材料体系[<];④合成新 型的共轭聚合物[5] ? 共轭聚合物独特的电学和光学性能及其 作为高分子材料的特点,决定了共轭聚合物 广泛的应用 前景。这便是共轭聚合物材料突 飞猛进发展的动力源泉。 2典型的共轭聚合物及其复合材料 共轭聚合物发展至今,其品种较多,主要 有聚乙炔(PA )、聚苯胺(PANI )、聚噻吩 (?丁)、聚吡咯(??丫)、聚(对-苯撑)(卩??)、聚 (对-苯撑乙烯)(PPV )、聚二乙炔(PDA )、聚 苯硫醚(PPS )等。其中聚苯胺、聚噻吩和聚吡 咯被公认为最有实用价值的共轭聚合物,也 是研究的热点。 聚苯胺(PANI )的化学稳定性好,电化学 可逆性优异.原料易得,合成方法简便,是最 有希望在实际中应用的导电高分子材料,_ 杂态电导率可达lOOScm —。一般来说,非导 电态PANI 可溶于NMP 、DMAC 等有机溶 剂,但掺杂后变得难溶。

新型固有微孔聚合物材料的合成与气体分离性能研究

新型固有微孔聚合物材料的合成与气体分离性能研究 宫飞祥,王俊华,张所波 中国科学院长春应用化学研究所,高分子物理与化学国家重点实验室,长春130022 关键词:微孔聚合物 氢气吸附 气体分离 聚合物固有微孔材料(PIM)是一类新型的微孔材料。其通常都具有强刚性以及 扭曲的分子链结构以有效的阻止分子链在空间的有效堆积从而获得超高的自由体积[1]。这类材料除了具备一般微孔材料高比表面积的优点,还具有合成方法多样性以及组成元素均为轻元素等优点,故在非均相催化、膜分离、储氢、吸附等领域有着广泛的应用前景[2,3]。 O O S O O O O n Fig. 1 The structure of PIM-S 本文通过5,5′,6,6′-四羟基-3,3′,3,3′ -四甲基螺环双茚与 3,3 ′ ,4,4′-四氟二苯砜的 芳香亲核取代聚合反应,得到了一种新型的半梯状聚合物PIM-S (Fig. 1)。由于其强刚性聚合物主链以及扭曲的螺环结构有效地阻止了聚合物的链堆积因而具有固有 微孔结构。低温N 2吸附实验表明此聚合物BET 比表面积高达306.6 m 2/g 。 并且在77K , 1个标准大气压下氢气吸附质量百分数达0.68%(Fig. 2)。 Fig. 2. Permeability/permselectivity diagrams for the CO 2/CH 4 (Left) and O 2/N 2 (Right) gas pair, respectively 该研究工作得到国家自然科学基金(No.50673087,50825303)的大力资助。

. P(N2)P(O2) P(CO2)P(CH4)α(O2/N2)α(CO2/CH4) α(CO2/N2) PIM-S 11.5 51.3 292.4 17.1 4.5 17.1 25.4 Table 1. Gas permeability of the PIM-S film 这类材料在氯仿,N-甲基吡咯烷酮等有机溶剂中具有良好的溶解性和成膜性。 同时我们对O2, N2, CO2, CH4在此类聚合物均质膜中的渗透性能进行了研究。研 究结果表明这四种气体在此聚合物薄膜中均有着高的渗透系数及高的选择性(Table 1, Fig. 2),是一类潜在的优良的气体分离膜材料。 参考文献: [1]Neil B. McKeown, Peter M. Budd, Chem. Soc. Rev., 2006, 35: 675. [2] Bader S. Ghanem, Neil B. McKeown, Peter M. Budd, Detlev Fritsch, Macromolecules, 2008, 41: 1640. [3] Naiying Du, Gilles P. Robertson, Jingshe Song, Ingo Pinnau, Sylvie Thomas, Michael D. Guiver, Macromolecules, 2008, 41: 9656. Synthesis of a novel polymer with intrinsic microporosity as gas separation membrane Feixiang Gong, Junhua Wang, Suobo Zhang State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 Abstract:Polymers of Intrinsic microporosity are novel microporous materials.They combine high internal surface areas with the synthetic diversity and can be used for a wide range of applications including heterogeneous catalysis, membrane separations and hydrogen storage. A novel semi-ladder polymer (PIM-S) was synthesized via aromatic nucleophilic substitution polycondensation of 5,5′,6,6′-tetrahydroxy-3,3,3′,3′-tetramethylspirobisindane with a new monomer 3,3′,4, 4′-tetrafluorodiphenyl sulfone in this article. Due to a high rigidity and contorted macromolecule structure generating loose chain packing, it is a polymer with intrinsic

相关文档
最新文档